EP1795655A1 - Soil improvement process using jet grouting which provides high grouting material savings - Google Patents

Soil improvement process using jet grouting which provides high grouting material savings Download PDF

Info

Publication number
EP1795655A1
EP1795655A1 EP06024991A EP06024991A EP1795655A1 EP 1795655 A1 EP1795655 A1 EP 1795655A1 EP 06024991 A EP06024991 A EP 06024991A EP 06024991 A EP06024991 A EP 06024991A EP 1795655 A1 EP1795655 A1 EP 1795655A1
Authority
EP
European Patent Office
Prior art keywords
grouting
grouting material
precutting
soil
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06024991A
Other languages
German (de)
French (fr)
Inventor
Antonio Sanella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECSOIL Srl
Original Assignee
TECSOIL Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECSOIL Srl filed Critical TECSOIL Srl
Publication of EP1795655A1 publication Critical patent/EP1795655A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Definitions

  • the present invention relates to a soil improvement process using jet grouting, which provides considerable savings in grouting material, hereafter referred to as grout.
  • the soil improvement process known in the art as jet grouting is known to require in situ mixing of soil with a grout (usually a mixture of water and cement), which is injected therein under high pressure (above 200 bar).
  • This process destroys the soil matrix and creates a mixture of grout and soil to form a homogeneous and continuous element having predetermined characteristics.
  • a variety of soil improvement mixtures may be formed, by changing the type of grouting mixture depending on the soil type or by changing the angles of rotation of the tool or not rotating it at all, or the tool withdrawal time.
  • This may substantially provide cylindrical columns by continuous 360° rotation of the tool in combination with an upward vertical translation thereof, or quasi-rectangular panels by withdrawing the tool without rotating it.
  • This prior art method involves considerable cement waste, because during injection most of the injected material overflows due to an un unbalance between the injected volume and the volume to be stabilized.
  • the object of this invention is to dramatically reduce cement consumption during injection, while providing larger stabilized columns or panels.
  • the soil is drilled 2 to a desired depth using a traditional tool 1, in a so-called exploration drilling step.
  • This step which is strictly necessary for particular soils, where the presence of particularly hard layers is expected, may be eliminated with easily drillable soils.
  • water is injected under very high pressure (above 400 bar) by at least one nozzle 3, preferably two nozzles.
  • a chamber 4 which contains a volume of water and disaggregated soil; with the very high pressure water jet, air is also injected.
  • a third grouting material injection step or grouting proper, is carried out, in which a grouting material (cement) is injected at a pressure above 100 bar from the bottom of the chamber 4 that is formed in step two.
  • a grouting material cement
  • the volume of grouting material that flows up from the bottom of such chamber fills the whole volume created before, and pushes upwards the water and soil decompressed and precut in the previous step until they flow out.
  • the flow rate of injected cement or grouting material is of the order of 400 liters per minute or more.
  • step two which is filled by jet grouting during withdrawal from the bottom thereof during step three. Since this step may be stopped without withdrawing the tool all along its operating height, production times may be apparently reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

The invention finds application in the field of soil improvement processes and particularly relates to a process known as "jet grouting" in which a mixture of cement and water is injected in the soil under high pressure (above 200 bar). The process of this invention includes: a first simple drilling step using a downwardly advanced tool for exploration of the soil to be stabilized; a second soil precutting step across an area of the same size as the intended stabilization area, such precutting step being performed using a downwardly advanced tool and high pressure water and air jetting; a third grouting step by high pressure jetting of a mixture of cement or grouting material, using a tool which is moved upwards and outwards from the bottom; such third step is carried out while monitoring the material flowing out of the hole formed in the first drilling step.

Description

  • The present invention relates to a soil improvement process using jet grouting, which provides considerable savings in grouting material, hereafter referred to as grout.
  • The soil improvement process known in the art as jet grouting is known to require in situ mixing of soil with a grout (usually a mixture of water and cement), which is injected therein under high pressure (above 200 bar).
  • This process destroys the soil matrix and creates a mixture of grout and soil to form a homogeneous and continuous element having predetermined characteristics.
  • A variety of soil improvement mixtures may be formed, by changing the type of grouting mixture depending on the soil type or by changing the angles of rotation of the tool or not rotating it at all, or the tool withdrawal time.
  • This may substantially provide cylindrical columns by continuous 360° rotation of the tool in combination with an upward vertical translation thereof, or quasi-rectangular panels by withdrawing the tool without rotating it.
  • Pressures of up to 400-600 bar are currently used.
  • In prior art a mixture of water and cement is injected under high pressure during withdrawal of the tool to form the desired volume.
  • This prior art method involves considerable cement waste, because during injection most of the injected material overflows due to an un unbalance between the injected volume and the volume to be stabilized.
  • The object of this invention is to dramatically reduce cement consumption during injection, while providing larger stabilized columns or panels.
  • These objects and advantages are fulfilled thanks to the process of this invention, which is characterized as claimed in the annexed claims and particularly in that it includes a step of high pressure water injection as the tool is advanced downwards to form a substantially cylindrical chamber if the tool is rotated or a quasi-rectangular chamber if panels are to be obtained without rotation, in which the stabilization mixture is to be injected.
  • These and other features will be more apparent upon reading the following description of the process, which is shown by way of example and without limitation in the accompanying drawings, in which:
    • Figure 1 is a diagrammatic view of the first step of the process, which is referred to as exploration drilling;
    • Figure 2 is a diagrammatic view of the second step of the process, which is referred to as precutting;
    • Figure 3 is a diagrammatic view of the third step of the process, which is referred to as grouting.
  • Referring to Figure 1, the soil is drilled 2 to a desired depth using a traditional tool 1, in a so-called exploration drilling step.
  • This step, which is strictly necessary for particular soils, where the presence of particularly hard layers is expected, may be eliminated with easily drillable soils.
  • Next, as shown in Figure 2, water is injected under very high pressure (above 400 bar) by at least one nozzle 3, preferably two nozzles.
  • During this step, which is carried out with the tool advancing downwards, a chamber 4 is created, which contains a volume of water and disaggregated soil; with the very high pressure water jet, air is also injected.
  • Next, as shown in Figure 3, a third grouting material injection step, or grouting proper, is carried out, in which a grouting material (cement) is injected at a pressure above 100 bar from the bottom of the chamber 4 that is formed in step two.
  • During this step, the volume of grouting material that flows up from the bottom of such chamber, with the help of the gas phase, fills the whole volume created before, and pushes upwards the water and soil decompressed and precut in the previous step until they flow out.
  • The flow rate of injected cement or grouting material is of the order of 400 liters per minute or more.
  • By monitoring the overflow of water and soil, it is possible to determine when the volumes are firmly stabilized, especially to meet the design requirements; particularly, the increased density due to the presence of grout in said overflow material is measured with respect to the density of the soil during the cutting step.
  • The injection ends regardless of the level reached by the tool, when such density and, consequently, the amount of grout therein is constant and compliant with design requirements.
  • The above process clearly allows to considerably reduce the use of grouting material (grout), by minimizing the overflow material and larger volumes may be obtained than with prior art process, thanks to the formation of a pre-chamber, in step two, which is filled by jet grouting during withdrawal from the bottom thereof during step three. Since this step may be stopped without withdrawing the tool all along its operating height, production times may be apparently reduced.

Claims (11)

  1. Soil improvement process using jet grouting which provides high grouting material savings, characterized in that it includes: a so-called precutting step by high pressure water injection to the desired depth to create a chamber of desired volume, substantially equal to the desired stabilization volume; a subsequent step of high pressure injection of grouting material from the bottom of the chamber created in the preceding step towards the ground.
  2. A process as claimed in claim 1, characterized in that it includes an exploration drilling step, which is carried out before the two steps as defined in claim 1.
  3. A process as claimed in claim 1, characterized in that the precutting step uses water at a pressure above 400 bar.
  4. A process as claimed in claim 1, characterized in that air is also injected during the precutting step.
  5. A process as claimed in claim 1, characterized in that the precutting step is carried out using a downwardly advanced tool.
  6. A process as claimed in claim 1, characterized in that the precutting step is started at a given depth.
  7. A process as claimed in claim 1, characterized in that a pressure above 100 bar is used during the grouting material injection step.
  8. A process as claimed in claim 1, characterized in that a volume of grouting material above 400 liters per minute is injected.
  9. A process as claimed in claim 1, characterized in that air is also injected during the grouting material injection step.
  10. A process as claimed in claim 1, characterized in that the density of the overflowing material is monitored during the grouting step.
  11. A process as claimed in claim 1, characterized in that grouting material injection ends when the density of the overflowing material is constant and compliant with design requirements.
EP06024991A 2005-12-07 2006-12-04 Soil improvement process using jet grouting which provides high grouting material savings Withdrawn EP1795655A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITPR20050076 ITPR20050076A1 (en) 2005-12-07 2005-12-07 PROCEDURE TO CONSOLIDATE TYPES OF JET GROUTING WITH A HIGH SAVINGS OF CONSOLIDATING PRODUCT.

Publications (1)

Publication Number Publication Date
EP1795655A1 true EP1795655A1 (en) 2007-06-13

Family

ID=37875761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06024991A Withdrawn EP1795655A1 (en) 2005-12-07 2006-12-04 Soil improvement process using jet grouting which provides high grouting material savings

Country Status (2)

Country Link
EP (1) EP1795655A1 (en)
IT (1) ITPR20050076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011536A (en) * 2014-06-30 2016-01-21 株式会社竹中工務店 Removal method for underground obstacle, and construction method for road

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003319A1 (en) * 1985-11-25 1987-06-04 Hoksrud Lars Oeivind A method and an arrangement for control and guidance of the extent of the injection zone when a curable binder is jet injected in soils
DE3712151A1 (en) 1987-04-10 1988-10-27 Gkn Keller Gmbh Method of producing stabilising bodies in a controlled manner in highly permeable soils with the addition of a medium increasing the viscosity
GB2227037A (en) 1989-01-10 1990-07-18 Nit Co Ltd Ground hardening material injector
US5234289A (en) * 1991-08-14 1993-08-10 Shiro Nakashima Device for forming modified ground
GB2279382A (en) * 1993-06-22 1995-01-04 Shiro Nakashima Reinforcing and consolidating ground

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003319A1 (en) * 1985-11-25 1987-06-04 Hoksrud Lars Oeivind A method and an arrangement for control and guidance of the extent of the injection zone when a curable binder is jet injected in soils
DE3712151A1 (en) 1987-04-10 1988-10-27 Gkn Keller Gmbh Method of producing stabilising bodies in a controlled manner in highly permeable soils with the addition of a medium increasing the viscosity
GB2227037A (en) 1989-01-10 1990-07-18 Nit Co Ltd Ground hardening material injector
US5234289A (en) * 1991-08-14 1993-08-10 Shiro Nakashima Device for forming modified ground
GB2279382A (en) * 1993-06-22 1995-01-04 Shiro Nakashima Reinforcing and consolidating ground

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011536A (en) * 2014-06-30 2016-01-21 株式会社竹中工務店 Removal method for underground obstacle, and construction method for road

Also Published As

Publication number Publication date
ITPR20050076A1 (en) 2007-06-08

Similar Documents

Publication Publication Date Title
US7328743B2 (en) Toe-to-heel waterflooding with progressive blockage of the toe region
CN203905895U (en) Multifunctional rotary jet grouting device for core drilling
CN105952374A (en) Complex soil layer anchor cable hole drill pore-forming method
US6183166B1 (en) Method of centrifugally forming a subterranean soil-cement casing
US5787983A (en) Methods of delaying well destruction due to subsidence
CN204551447U (en) Mucky soil cement mixing pile drill bit of drilling machine
EP1795655A1 (en) Soil improvement process using jet grouting which provides high grouting material savings
JP2007016507A (en) Ground improvement method and reinforcing method of existing structural foundation
US6120214A (en) Process for constructing reinforced subterranean columns
KR102234214B1 (en) Fast permeating method and system for grouting of weak ground
US5172763A (en) Steam-foam drive
KR100374912B1 (en) Grouting Method and Apparatus for Selected Chemical
EP2031132A2 (en) Soil improvement process using jet grouting which provides high grouting material savings
CN106677190A (en) Grouting construction method for underwater pebble bed foundation pit curtain
US7699561B2 (en) Method and system for storing liquid in a geological formation
RU2204703C2 (en) Method of development of oil pool in carbonate reservoirs of fractured-porous type
RU2494247C1 (en) Development method of water-flooded oil deposit
JP2007284875A (en) Soil improvement construction method by high-pressure injection stirring
KR101348395B1 (en) Method for reinforcing ground using auto grouting system
KR20010095442A (en) Method for Reinforcing Poor Ground
RU2196878C2 (en) Method of shutoff of water inflow over cementing annular space in operation of oil and gas wells
KR101200103B1 (en) Grouting adjustable gravity
KR20030069922A (en) Method for grouting and drilling nail and anchor
CN110005377A (en) A kind of method of construction of vertical well shaft bottom chamber
RU2189435C1 (en) Method of well completion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071212

17Q First examination report despatched

Effective date: 20080110

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130702