EP1794497B1 - Method and device for influencing combustion processes, in particular during the operation of a gas turbine - Google Patents

Method and device for influencing combustion processes, in particular during the operation of a gas turbine Download PDF

Info

Publication number
EP1794497B1
EP1794497B1 EP05797010A EP05797010A EP1794497B1 EP 1794497 B1 EP1794497 B1 EP 1794497B1 EP 05797010 A EP05797010 A EP 05797010A EP 05797010 A EP05797010 A EP 05797010A EP 1794497 B1 EP1794497 B1 EP 1794497B1
Authority
EP
European Patent Office
Prior art keywords
flame
control
switch
induction coil
normally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05797010A
Other languages
German (de)
French (fr)
Other versions
EP1794497A1 (en
Inventor
Werner Hartmann
Jörg KIESER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1794497A1 publication Critical patent/EP1794497A1/en
Application granted granted Critical
Publication of EP1794497B1 publication Critical patent/EP1794497B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the invention relates to a device for influencing combustion processes, in particular during operation of a gas turbine, being used to maintain the combustion over a large parameter range pilot flames whose flame control is done via electromagnetic fields.
  • the pilot flames required in gas turbines to maintain combustion over a large parameter range produce a not insignificant proportion of the pollutants, in particular the nitrogen oxides (NOx).
  • the pilot flames of a gas turbine have a narrow working range and are - u.a. because of the large inertia of a gas flow-related control - only partially suitable for controlling the combustion process in the combustion chamber.
  • a mixer assembly for use in a combustor of a gas turbine in which a plasma generator is provided to produce at least dissociated and ionized fuel.
  • electrical means are used 'in situ'.
  • a method for increasing the enthalpy in the combustion in which an electric field is used to control the flame.
  • a burner is also previously known, are associated with the means for electric field generation.
  • an inductive, pulsed energy coupling via an induction coil surrounding the flame with the flame takes place as a secondary winding of a pulse transformer, wherein at least one controllable switch is used.
  • a pulse transformer wherein at least one controllable switch is used.
  • Such arrangements are known for the generation of eg Pinchvor réellen. Because of the shielding effect of the conductive flame plasma, the effect preferably takes place in the outer region of the flame, so that these cold flame regions are preferably given additional heating by the pulsed energy supply which is made inductively. This allows the Temperature profile in the flame are briefly equalized over the cross section.
  • the advantages of the invention lie essentially in the very fast controllability of the electrical power in the sub-millisecond range when using correspondingly short power pulses, as well as the scalability to high gas pressures and the coupling of high electrical power. With suitable switches even very fast control operations, e.g. be implemented for the suppression of acoustic eigenmodes in the combustion chamber.
  • the equalization of the flame temperature leads to a reduction in the production of pollutants such as nitrogen oxides.
  • Pulse repetition frequency and pulse amplitude are controlled by a control system that characterizes the current operating state of the gas turbine via appropriate sensors (temperature, acoustic vibrations, exhaust gas composition, etc.) and controlled by a targeted additional energy supply to the pilot or main flame.
  • FIG. 1 1 denotes a device for flame control.
  • 10 mean a ceramic tube, on which an induction coil 11 with inductance L is arranged.
  • 12 is a burner and 13 denotes the associated pilot flame.
  • Suitable means are provided for controlling the induction coil: 14 and 15 each represent capacitors, the capacitor 14 realizing a stray capacitance CS and the capacitor 15 realizing a pulse capacitance C P.
  • the capacitors are connected to a high voltage source U H and connected to ground on the other side.
  • the switch 16 is driven by a control unit 30 rule. As inputs for the control unit rule serve sensors 31, 32nd
  • pulse energy can be coupled in to control the turbine pilot flame.
  • 20 means a ceramic combustion chamber wall and 23 the main flame in the turbine.
  • 21 and 21 'induction coils are designated, which in FIG. 2 are formed as flat coils.
  • Each of the flat coils has a control device, which in principle corresponds to the control device FIG. 1 equivalent.
  • the circuit is connected to a high voltage source U H and there are switches 16, 16 'present, which are connected by a control / regulating unit 30 with corresponding sensors 31, 32.
  • the individual control devices can be coupled together.
  • FIG. 2 is a spatially controllable coupling of high-frequency energy directly into the plasma of the main flame possible.
  • the single ones Induction coils 21, 22 are advantageously designed as flat coils. In FIG. 2 they are located outside the ceramic combustion chamber wall. In the case of an electrically conductive combustion chamber wall, they can also be arranged inside the combustion chamber.
  • FIG. 1 and FIG. 2 in particular results in the fast controllability, whereby a homogenization of the flame temperature can be achieved. This causes a reduction in the production of pollutants.
  • the devices described allow scalability to high gas pressures and for coupling high electrical power. In particular, acoustic eigenmodes in the combustion chamber can thus also be suppressed.
  • FIGS. 3 and 4 show embodiments that are not part of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

The invention relates to the use of electromagnetic fields for influencing combustion processes. According to the invention, the flame is controlled by the coupling of repeated, inductive, pulsed energy. The associated device uses at least one induction coil (11, 21) that at least partially surrounds the flame and said device is equipped with a controllable switch (16, 16') or a high frequency generator (26, 26').

Description

Die Erfindung bezieht sich auf eine Vorrichtung zur Beeinflussung von Verbrennungsvorgängen, insbesondere beim Betrieb einer Gasturbine, wobei zur Aufrechterhaltung der Verbrennung über einen großen Parameterbereich Pilotflammen verwendet werden, deren Flammensteuerung über elektromagnetische Felder erfolgt.The invention relates to a device for influencing combustion processes, in particular during operation of a gas turbine, being used to maintain the combustion over a large parameter range pilot flames whose flame control is done via electromagnetic fields.

Die bei Gasturbinen zur Aufrechterhaltung der Verbrennung über einen großen Parameterbereich notwendigen Pilotflammen erzeugen einen nicht unwesentlichen Anteil der Schadstoffe, insbesondere der Stickoxide (NOx). Die Pilotflammen einer Gasturbine haben einen engen Arbeitsbereich und sind - u.a. wegen der großen Trägheit einer gasflussbezogenen Regelung - nur bedingt zur Steuerung des Verbrennungsablaufs in der Brennkammer geeignet.The pilot flames required in gas turbines to maintain combustion over a large parameter range produce a not insignificant proportion of the pollutants, in particular the nitrogen oxides (NOx). The pilot flames of a gas turbine have a narrow working range and are - u.a. because of the large inertia of a gas flow-related control - only partially suitable for controlling the combustion process in the combustion chamber.

Eine Erweiterung des Arbeitsbereichs der Pilotflammen bei gleichzeitiger Verringerung der Schadstofferzeugung sowie eine sehr schnelle Beeinflussbarkeit des Verbrennungsvorgangs können sich sehr vorteilhaft auf Wirkungsgrad und Schadstoffausstoß auswirken.An extension of the working range of the pilot flame while reducing the production of pollutants and a very rapid influencing the combustion process can have a very beneficial effect on efficiency and pollutant emissions.

Neben der nur eingeschränkt möglichen und vergleichsweise trägen Regelung von Gasfluss und Brenngaszusammensetzung werden seit einiger Zeit Methoden untersucht, eine Flammensteuerung über elektrische Felder zu erzielen. Diese Methode führt zu einer Erweiterung des Arbeitsbereichs der Pilotflamme in Bezug auf die Luftzahl sowie eine Verringerung des NOx-Gehaltes im Abgas der Flamme. Weiterhin ist eine schnelle Beeinflussung der Flamme möglich. Aus der DE 199 47 258 A1 ist das Grundprinzip einer induktiven Einkopplung von elektrischer Energie in einen Gasstrom bekannt. Weiterhin offenbart die EP 1 215 392 eine Vorrichtung zur Energieeinkopplung in einen mit einem Luft-Kraftstoff-gefüllten Brennraum eines Verbrennungsmotors, um das Luft-Kraftstoff-Gemisch zu entzünden.In addition to the limited and relatively sluggish control of gas flow and fuel gas composition, methods have been investigated for some time to achieve flame control via electric fields. This method leads to an extension of the working range of the pilot flame in relation to the air ratio and a reduction of the NOx content in the exhaust gas of the flame. Furthermore, a rapid influence of the flame is possible. From the DE 199 47 258 A1 is the basic principle of inductive coupling of electrical Energy in a gas stream known. Furthermore, the disclosure EP 1 215 392 a device for energy coupling in an air-fuel-filled combustion chamber of an internal combustion engine to ignite the air-fuel mixture.

Aus der EP 12 25 392 A2 ist eine Mischeranordnung zur Verwendung in einem Brenner einer Gasturbine bekannt, bei der ein Plasmagenerator zur Erzeugung von wenigstens dissoziiertem und ionisiertem Brennstoff vorhanden ist. Dafür werden 'in situ' elektrische Mittel eingesetzt. Weiterhin ist aus der FR 1 340 937 A ein Verfahren zum Vergrößern der Enthalpie bei der Verbrennung bekannt, bei dem ein elektrisches Feld zur Steuerung der Flamme eingesetzt wird. Aus der GB 1 140 862 A ist ebenfalls ein Brenner vorbekannt, dem Mittel zur elektrischen Felderzeugung zugeordnet sind. Schließlich ist aus der CH 619 866 A die Überlagerung von elektrostatischen Feldern für einen Verbrennungsvorgang bekannt.From the EP 12 25 392 A2 For example, a mixer assembly for use in a combustor of a gas turbine is known in which a plasma generator is provided to produce at least dissociated and ionized fuel. For this purpose, electrical means are used 'in situ'. Furthermore, from the FR 1 340 937 A a method for increasing the enthalpy in the combustion is known, in which an electric field is used to control the flame. From the GB 1 140 862 A a burner is also previously known, are associated with the means for electric field generation. Finally, out of the CH 619 866 A the superposition of electrostatic fields known for a combustion process.

Von letzterem Stand der Technik ausgehend ist es Aufgabe der Erfindung, ein verbessertes Verfahren zur Steuerung des Verbrennungsvorganges anzugeben und eine Vorrichtung zu schaffen, mit der mit einfachen Mitteln der Verbrennungsvorgang gesteuert werden kann.Starting from the latter prior art, it is an object of the invention to provide an improved method for controlling the combustion process and to provide a device with which the combustion process can be controlled by simple means.

Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst. Weiterbildungen der Vorrichtung sind in den abhängigen Ansprüchen angegeben.The object is achieved by the features of claim 1. Further developments of the device are specified in the dependent claims.

Gemäß der Erfindung erfolgt eine induktive, gepulste Energieeinkopplung über eine die Flamme umgebende Induktionsspule mit der Flamme als Sekundärwindung eines Impulstransformators, wobei wenigstens ein steuerbarer Schalter eingesetzt wird. Solche Anordnungen sind zur Erzeugung von z.B. Pinchvorgängen bekannt. Die Wirkung setzt dabei wegen der abschirmenden Wirkung des leitfähigen Flammenplasmas bevorzugt im Außenbereich der Flamme ein, so dass diese kalten Flammenbereiche bevorzugt eine zusätzliche Heizung durch die induktiv erfolgte gepulste Energiezufuhr erhalten. Dadurch kann der Temperaturverlauf in der Flamme kurzzeitig über den Querschnitt vergleichmäßigt werden.According to the invention, an inductive, pulsed energy coupling via an induction coil surrounding the flame with the flame takes place as a secondary winding of a pulse transformer, wherein at least one controllable switch is used. Such arrangements are known for the generation of eg Pinchvorgängen. Because of the shielding effect of the conductive flame plasma, the effect preferably takes place in the outer region of the flame, so that these cold flame regions are preferably given additional heating by the pulsed energy supply which is made inductively. This allows the Temperature profile in the flame are briefly equalized over the cross section.

Da über die Zufuhr von impulsförmig zugeführter elektrischer Energie eine sehr schnelle Regelung der Verbrennungsprozesse erfolgt, können auch akustische Eigenschwingungen im Brennkammerbereich durch entsprechende rückgekoppelte Regelalgorithmen kompensiert werden.Since very rapid regulation of the combustion processes takes place via the supply of pulsed electrical energy, acoustic natural oscillations in the combustion chamber region can also be compensated for by corresponding feedback control algorithms.

Für die Zuführung von elektrischer Energie in Form induktiv übertragener Leistung stehen prinzipiell zwei Möglichkeiten zur Verfügung :

  • Energiezufuhr in einer Serie von Einzelimpulsen mit kurzer Dauer von Mikrosekunden (µs) bis Millisekunden (ms).
  • kontinuierliche (oder quasi-kontinuierliche) Zuführung induktiv eingekoppelter Hochfrequenzleistung über wenigstens einen HF-Leistungsgenerator.
For the supply of electrical energy in the form of inductively transmitted power, there are basically two possibilities:
  • Energy supply in a series of single pulses of short duration from microseconds (μs) to milliseconds (ms).
  • continuous (or quasi-continuous) supply inductively coupled high frequency power via at least one RF power generator.

Mit der erfindungsgemäßen Vorrichtung wird eine schnell regelbare Energieeinkopplung in Flammen erreicht, mit deren Hilfe eine nahezu trägheitslose Steuerung des Verbrennungsablaufs in der Pilotflamme ermöglicht wird bis hin zu hohen thermischen Leistungen im MW-Bereich und darüber.With the device according to the invention a rapidly controllable energy input is reached in flames, with the help of a nearly inertia-free control of the combustion process in the pilot flame is made possible up to high thermal outputs in the MW range and above.

Die Vorteile der Erfindung liegen im Wesentlichen in der sehr schnellen Regelbarkeit der elektrischen Leistung im sub-Millisekunden-Bereich bei Verwendung entsprechend kurzer Leistungsimpulse, sowie der Skalierbarkeit zu hohen Gasdrücken und der Einkopplung hoher elektrischer Leistungen. Mit geeigneten Schaltern können auch sehr schnelle Regelvorgänge z.B. zur Unterdrückung akustischer Eigenmoden in der Brennkammer realisiert werden.The advantages of the invention lie essentially in the very fast controllability of the electrical power in the sub-millisecond range when using correspondingly short power pulses, as well as the scalability to high gas pressures and the coupling of high electrical power. With suitable switches even very fast control operations, e.g. be implemented for the suppression of acoustic eigenmodes in the combustion chamber.

Die Vergleichmäßigung der Flammentemperatur führt zu einer Verringerung der Schadstofferzeugung wie z.B. von Stickoxiden.The equalization of the flame temperature leads to a reduction in the production of pollutants such as nitrogen oxides.

Weiterhin ist es mit der Erfindung möglich, den Verbrennungsvorgang auch in der Brennkammer selbst berührungslos zu steuern; dies kann über ein einzelnes großes, oder über mehrere getrennte, räumlich verteilte kleinere Induktionssysteme erfolgen, so dass sogar eine gezielte räumlich aufgelöste Beeinflussung des Verbrennungsvorgangs ermöglicht wird. Damit lassen sich gezielt Temperaturspitzen abbauen und somit der NOx-Ausstoß verringern, der Verbrennungsvorgang (Wirkungsgrad) optimieren sowie akustische Resonanzen verhindern. Flachspulen sind hier eine besonders günstige Lösung.Furthermore, it is possible with the invention to control the combustion process even in the combustion chamber itself without contact; This can be done over a single large, or over several separate, spatially distributed smaller induction systems, so that even a targeted spatially resolved influence on the combustion process is made possible. This can be used to selectively reduce temperature peaks and thus reduce NOx emissions, optimize the combustion process (efficiency) and prevent acoustic resonance. Flat coils are a particularly favorable solution here.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den weiteren Patentansprüchen. Es zeigen jeweils in schematischer Darstellung

Figur 1
die Steuerung einer Turbinenpilotflamme mit Hilfe ei- ner die Flamme umgebenden Impuls-Induktionsspule zur Einkopplung von Impulsenergie,
Figur 2
die Steuerung der Hauptflamme in der Brennkammer ei- ner Gasturbine mit Hilfe verteilter Induktionsspulen zur räumlich steuerbaren Einkopplung von Hochfre- quenzenergie,
Figur 3
einen Aufbau entsprechend Figur 1 mit einem HF-Gene- rator, ein derartiger Aufbau ist nicht Teil der Erfindung und
Figur 4
einen Aufbau entsprechend Figur 2 mit zwei HF-Gene- ratoren, ein derartiger Aufbau ist nicht Teil der Erfindung.
Further details and advantages of the invention will become apparent from the following description of embodiments With reference to the drawing in conjunction with the other claims. Each show in a schematic representation
FIG. 1
the control of a turbine pilot flame with the aid of a pulse induction coil surrounding the flame for the purpose of coupling in pulse energy,
FIG. 2
the control of the main flame in the combustion chamber of a gas turbine with the aid of distributed induction coils for spatially controllable coupling of high-frequency energy,
FIG. 3
a structure accordingly FIG. 1 with an RF generator, such a structure is not part of the invention and
FIG. 4
a structure accordingly FIG. 2 with two RF generators, such a structure is not part of the invention.

Während im KW-Bereich die Einkopplung einer zur Flammensteuerung ausreichenden Leistung über viele Schwingungsperioden gemittelt erfolgt, muss bei Impulsbetrieb die im Einzelimpuls eingekoppelte Energie dafür ausreichend sein. Dies ist i.a. nur sehr bedingt gegeben, da die Leitfähigkeit und damit die elektrische Impedanz des Plasmas einer Flamme vergleichsweise gering ist im Vergleich zur Impedanz der notwendigen Leistungsimpulselektronik.While in the HF range the coupling of a power sufficient for flame control is averaged over many oscillation periods, the energy coupled in the individual impulse must be sufficient for this during pulsed operation. This is i.a. given only to a limited extent, since the conductivity and thus the electrical impedance of the plasma of a flame is comparatively low in comparison to the impedance of the necessary power pulse electronics.

Daher ist es notwendig, eine Impedanzanpassung der Leistungselektronik an die Impedanz des Flammenplasmas vorzunehmen. Dies erfolgt erfindungsgemäß dadurch, dass ein elektrischer Strom i durch eine die Flamme umgebende, vorwiegend zylindrische Spule durch einen schließenden Schalter über ein längeres Zeitintervall aufgebaut wird (Bild 1). Im Bereich des Strommaximums wird der Schalter (oder ein mit ihm in Serie geschaltetes zweites Schaltelement) mit einer im Vergleich zur Stromaufbauzeit kurzen Zeitkonstante geöffnet. Dadurch wird die induktiv in der Spuleninduktivität L gespeicherte magnetische Energie E ind = 0 , 5 * L * I 2

Figure imgb0001

in Form eines sehr hochfrequenten Hochspannungsimpulses in die Streukapazität CS des Systems umgeladen; das elektrische System besteht aus Spuleninduktivität L als Primärseite eines Lufttransformators und der zugehörigen geringen Streukapazität CS, sowie dem Plasma als (einwindige) Sekundärseite des Transformators stellt nun eine hochimpedante Anordnung dar. Durch diese Maßnahme wird eine erheblich verbesserte Impedanzanpassung der Last an die Energiequelle und damit eine bessere Leistungseinkopplung in das Flammenplasma erreicht als über eine direkte induktive Ankopplung des Einzelimpulses.Therefore, it is necessary to make an impedance matching of the power electronics to the impedance of the flame plasma. This is done according to the invention in that an electric current i is established by a predominantly cylindrical coil surrounding the flame through a closing switch over a longer time interval (FIG. 1). In the region of the current maximum, the switch (or a second switching element connected in series with it) is opened with a short time constant compared to the current build-up time. As a result, the magnetic energy inductively stored in the coil inductance L becomes e ind = 0 . 5 * L * I 2
Figure imgb0001

in the form of a very high-frequency high-voltage pulse in the stray capacitance CS of the system reloaded; The electrical system consists of coil inductance L as the primary side of an air transformer and the associated low stray capacitance CS, and the plasma as (single-wind) secondary side of the transformer now represents a high-impedance arrangement. By this measure, a significantly improved impedance matching of the load to the power source and thus achieves a better power input into the flame plasma than via a direct inductive coupling of the individual pulse.

Die Wechselwirkung des induzierten elektrischen Feldes mit den Ladungsträgern im Flammenplasma wird durch diese Maßnahme enorm vergrößert. Eine gezielte Ladungsträgervermehrung über Stoßionisation wird durch extern einstellbare Zeitkonstanten des Schalters möglich, wobei es nach dem Stand der Technik (vgl. gepulster elektrostatischer Staubfilter) durchaus möglich ist, einen direkten Gasdurchschlag zu vermeiden.The interaction of the induced electric field with the charge carriers in the flame plasma is enormously increased by this measure. A targeted increase in charge carriers via impact ionization is made possible by externally adjustable time constants of the switch, whereby it is entirely possible according to the prior art (see pulsed electrostatic dust filter) to avoid direct gas breakdown.

Impulsfolgefrequenz und Impulsamplitude werden über ein Regelungssystem gesteuert, das über entsprechende Sensorik (Temperatur; akustische Schwingungen; Abgaszusammensetzung; etc.) den momentanen Betriebszustand der Gasturbine charakterisiert und über eine gezielte zusätzliche Energiezufuhr zur Pilot- oder auch Hauptflamme kontrolliert.Pulse repetition frequency and pulse amplitude are controlled by a control system that characterizes the current operating state of the gas turbine via appropriate sensors (temperature, acoustic vibrations, exhaust gas composition, etc.) and controlled by a targeted additional energy supply to the pilot or main flame.

Es wird vorgeschlagen, diese Art der gepulsten Energieeinkopplung zur Steuerung der Pilotflammen und der Vormischflamme von Gasturbinen einzusetzen. Varianten des Aufbaus, die ein höherpoliges Feld erzeugen, sind einfach zu realisieren und gestatten über entsprechende Wahl der Phasenlage z.B. die Induktion einer Rotationsbewegung des Plasmas. Je nach Art der Anwendung können dabei Flachspulen zur lokalen Flammenbeeinflussung vorteilhaft sein.It is proposed to use this type of pulsed energy injection for controlling the pilot flames and the premix flame of gas turbines. Variants of the structure that produce a higher-pole field are easy to implement and allow appropriate selection of the phase angle, for example. the induction of a rotational movement of the plasma. Depending on the type of application, flat coils may be advantageous for local flame control.

In der Figur 1 ist mit 1 eine Vorrichtung zur Flammensteuerung bezeichnet. Im Einzelnen bedeuten 10 ein Keramikrohr, auf der eine Induktionsspule 11 mit Induktivität L angeordnet ist. Mit 12 ist ein Brenner und mit 13 die zugehörige Pilotflamme bezeichnet.In the FIG. 1 1 denotes a device for flame control. In detail, 10 mean a ceramic tube, on which an induction coil 11 with inductance L is arranged. With 12 is a burner and 13 denotes the associated pilot flame.

Zur Steuerung der Induktionsspule sind geeignete Mittel vorhanden: Dabei stellen 14 und 15 jeweils Kondensatoren dar, wobei der Kondensator 14 eine Streukapazität CS realisiert und der Kondensator 15 eine Impulskapazität CP realisiert. Die Kondensatoren sind an eine Hochspannungsquelle UH angeschlossen und auf der anderen Seite gegen Masse geschaltet. Es ist ein Schalter 16 vorhanden, der als öffnender oder als schließender Schalter realisiert sein kann. Der Schalter 16 wird von einer Steuer-Regel-Einheit 30 angesteuert. Als Eingänge für die Steuer-Regel-Einheit dienen Sensoren 31, 32.Suitable means are provided for controlling the induction coil: 14 and 15 each represent capacitors, the capacitor 14 realizing a stray capacitance CS and the capacitor 15 realizing a pulse capacitance C P. The capacitors are connected to a high voltage source U H and connected to ground on the other side. There is a switch 16, which can be realized as an opening or as a closing switch. The switch 16 is driven by a control unit 30 rule. As inputs for the control unit rule serve sensors 31, 32nd

Mit der Anordnung gemäß Figur 1 kann Impulsenergie zur Steuerung der Turbinenpilotflamme eingekoppelt werden.With the arrangement according to FIG. 1 For example, pulse energy can be coupled in to control the turbine pilot flame.

Letzteres Prinzip ist auf die Anordnung gemäß Figur 2 übertragen. Es bedeuten in diesem Fall 20 eine keramische Brennkammerwand und 23 die Hauptflamme in der Turbine. Mit 21 und 21' sind Induktionsspulen bezeichnet, die in Figur 2 als Flachspulen ausgebildet sind.The latter principle is based on the arrangement FIG. 2 transfer. In this case, 20 means a ceramic combustion chamber wall and 23 the main flame in the turbine. With 21 and 21 'induction coils are designated, which in FIG. 2 are formed as flat coils.

Es kann eine Vielzahl von Flachspulen vorhanden sein. Jede der Flachspulen hat eine Steuereinrichtung, die im Prinzip der Steuereinrichtung entsprechend Figur 1 entspricht. Dies heißt im Einzelnen, dass wiederum Kondensatoren 14, 15 vorhanden sind, die eine Streukapazität CS und eine Impulskapazität CP realisieren. Die Schaltung ist an eine Hochspannungsquelle UH angeschlossen und es sind Schalter 16, 16' vorhanden, die von einer Steuer/Regeleinheit 30 mit entsprechenden Sensoren 31, 32 angeschlossen sind. Die einzelnen Steuereinrichtungen können miteinander gekoppelt sein.There may be a variety of pancake coils. Each of the flat coils has a control device, which in principle corresponds to the control device FIG. 1 equivalent. In detail, this means that in turn there are capacitors 14, 15 which realize a stray capacitance CS and a pulse capacitance C P. The circuit is connected to a high voltage source U H and there are switches 16, 16 'present, which are connected by a control / regulating unit 30 with corresponding sensors 31, 32. The individual control devices can be coupled together.

Mit den verteilten Induktionsspulen entsprechend Figur 2 ist eine räumlich steuerbare Einkopplung von Hochfrequenzenergie direkt in das Plasma der Hauptflamme möglich. Die einzelnen Induktionsspulen 21, 22 sind vorteilhafterweise als Flachspulen ausgeführt. In Figur 2 sind sie außerhalb der keramischen Brennkammerwand angeordnet. Bei elektrisch leitfähiger Brennkammerwand können sie auch innerhalb der Brennkammer angeordnet sein.With the distributed induction coils accordingly FIG. 2 is a spatially controllable coupling of high-frequency energy directly into the plasma of the main flame possible. The single ones Induction coils 21, 22 are advantageously designed as flat coils. In FIG. 2 they are located outside the ceramic combustion chamber wall. In the case of an electrically conductive combustion chamber wall, they can also be arranged inside the combustion chamber.

In beiden Fällen der Figur 1 und Figur 2 ergibt sich insbesondere die schnelle Steuerbarkeit, womit eine Vergleichmäßigung der Flammentemperatur erreicht werden kann. Dies bewirkt eine Verringerung der Schadstofferzeugung. Die beschriebenen Vorrichtungen ermöglichen die Skalierbarkeit zu hohen Gasdrücken und zur Einkopplung hoher elektrischer Leistungen. Insbesondere können somit auch akustische Eigenmoden in der Brennkammer unterdrückt werden.In both cases the FIG. 1 and FIG. 2 in particular results in the fast controllability, whereby a homogenization of the flame temperature can be achieved. This causes a reduction in the production of pollutants. The devices described allow scalability to high gas pressures and for coupling high electrical power. In particular, acoustic eigenmodes in the combustion chamber can thus also be suppressed.

Figuren 3 und 4 zeigen Ausführungen, die nicht Teil der Erfindung sind. FIGS. 3 and 4 show embodiments that are not part of the invention.

In Abwandlung zu Fig. 1/2 ist in den Figuren 3 und 4 der steuerbare Schalter 16 bzw. 16' durch ein bzw. zwei Leistungs-HF-Generatoren 26 bzw. 26' ersetzt. Mit den HF-Generatoren können insbesondere die Frequenz der eingekoppelten Leistung vorgegeben werden. Ansonsten ist die Anordnung der Induktionsspulen und die Steuer/Regeleinheit mit den zugehörigen Sensoren entsprechend den Figuren 1 und 2 aufgebaut.In modification to Fig. 1/2 is in the FIGS. 3 and 4 the controllable switch 16 or 16 'replaced by one or two power RF generators 26 and 26'. In particular, the frequency of the coupled power can be specified with the HF generators. Otherwise, the arrangement of the induction coils and the control / regulating unit with the associated sensors according to the Figures 1 and 2 built up.

Claims (12)

  1. Device for influencing combustion processes, especially for operation of a gas turbine, wherein the device is used for maintaining combustion over a wide parameter range of pilot flames, the flame control of which is carried out via electromagnetic fields and the use of at least one induction coil (11, 21) which at least partially encompasses the flame (13), characterized in that at least one controllable switch (16, 16') is associated with the least one induction coil (11, 21), so that the flame control is carried out via a repeated, inductive, pulsed energy coupling.
  2. Device according to Claim 1, characterized in that the at least one induction coil is a cylindrical coil (11).
  3. Device according to Claim 1, characterized in that the at least one induction coil are cylindrical coils (21, 21').
  4. Device according to Claim 1, characterized in that the switch (16, 16') is a normally-open switch.
  5. Device according to Claim 1, characterized in that the switch (16, 16') is a normally-closed switch in communication with an energy accumulator in the form of a condenser.
  6. Device according to Claims 4 and 5, characterized in that as a switching unit there are two switch elements which are connected in series, of which at least one is a normally-open switch and one is a normally-closed switch in each case.
  7. Device according to Claim 6, characterized in that pulse durations from microseconds to milliseconds are realized in the switching unit.
  8. Device according to Claim 1, characterized in that at least one HF generator (26, 26') is connected to the induction coil.
  9. Device according to one of Claims 1 to 8, characterized in that there is at least one control/regulating unit (30, 30') which is controlled by sensors (31, 32).
  10. Device according to Claim 9, characterized in that the control/regulating unit (30, 30') includes a feedback loop by which acoustic oscillations are counter-controlled.
  11. Device according to Claim 9, characterized in that the control/regulating unit (30, 30') includes a feedback loop by which the concentrations of pollutants in the exhaust gas are minimized.
  12. Device according to Claim 9, characterized in that the control/regulating unit (30, 30') includes a feedback loop by which the thermodynamic efficiency of the combustion process in the flame is optimized.
EP05797010A 2004-09-27 2005-09-22 Method and device for influencing combustion processes, in particular during the operation of a gas turbine Not-in-force EP1794497B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004046814A DE102004046814B3 (en) 2004-09-27 2004-09-27 Method and device for influencing combustion processes, in particular for the operation of a gas turbine
PCT/EP2005/054738 WO2006034983A1 (en) 2004-09-27 2005-09-22 Method and device for influencing combustion processes, in particular during the operation of a gas turbine

Publications (2)

Publication Number Publication Date
EP1794497A1 EP1794497A1 (en) 2007-06-13
EP1794497B1 true EP1794497B1 (en) 2010-11-03

Family

ID=35539308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05797010A Not-in-force EP1794497B1 (en) 2004-09-27 2005-09-22 Method and device for influencing combustion processes, in particular during the operation of a gas turbine

Country Status (4)

Country Link
US (1) US20070261383A1 (en)
EP (1) EP1794497B1 (en)
DE (2) DE102004046814B3 (en)
WO (1) WO2006034983A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025551A1 (en) 2007-05-31 2008-12-11 Siemens Ag Process and apparatus for burning hydrocarbonaceous fuels
GB201012627D0 (en) 2010-07-28 2010-09-08 Rolls Royce Plc Combustion controller
GB201012626D0 (en) * 2010-07-28 2010-09-08 Rolls Royce Plc Controllable flameholder
ITMI20112018A1 (en) * 2011-11-07 2013-05-08 Ansaldo Energia Spa GAS TURBINE PLANT FOR THE PRODUCTION OF ELECTRICITY
DE102012204022A1 (en) * 2012-03-14 2013-09-19 Siemens Aktiengesellschaft Gas turbine and method for its operation
US20130291552A1 (en) * 2012-05-03 2013-11-07 United Technologies Corporation Electrical control of combustion
ITRM20130157A1 (en) * 2013-03-15 2014-09-16 Agenzia Naz Per Le Nuove Tecn Ologie L Ener DYNAMIC DEVICE FOR GAS TURBINES AND SUPPRESSION OF HUMMING PHENOMENA.
WO2015017084A1 (en) * 2013-07-30 2015-02-05 Clearsign Combustion Corporation Combustor having a nonmetallic body with external electrodes
US20160138799A1 (en) * 2014-11-13 2016-05-19 Clearsign Combustion Corporation Burner or boiler electrical discharge control

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604936A (en) * 1946-01-15 1952-07-29 Metal Carbides Corp Method and apparatus for controlling the generation and application of heat
US2942420A (en) * 1957-10-28 1960-06-28 Gen Electric Ignition mechanism
US3004137A (en) * 1960-06-07 1961-10-10 Comb And Explosives Res Inc Method and apparatus for the production of high gas temperatures
GB1033392A (en) * 1962-06-20 1966-06-22 Atomic Energy Authority Uk Improvements in or relating to induction coupled plasma generators
US3264508A (en) * 1962-06-27 1966-08-02 Lai William Plasma torch
FR1340937A (en) * 1962-09-12 1963-10-25 Method for increasing the enthalpy and temperature of flames and applications of such a method
GB1140862A (en) * 1965-02-11 1969-01-22 Felix Jiri Weinberg Fuel burners
DE1538106A1 (en) * 1965-09-25 1969-09-04 Siemens Ag Best before generator
US3416870A (en) * 1965-11-01 1968-12-17 Exxon Research Engineering Co Apparatus for the application of an a.c. electrostatic field to combustion flames
US3324334A (en) * 1966-03-15 1967-06-06 Massachusetts Inst Technology Induction plasma torch with means for recirculating the plasma
US3445616A (en) * 1966-12-06 1969-05-20 Corning Glass Works Electric flame generator
US3602683A (en) * 1969-02-03 1971-08-31 Sumitomo Heavy Industries Automatic control mechanism for plasma welder
US3801438A (en) * 1970-04-03 1974-04-02 Atomic Energy Commission Toroidal apparatus for confining plasma
US3958883A (en) * 1974-07-10 1976-05-25 Baird-Atomic, Inc. Radio frequency induced plasma excitation of optical emission spectroscopic samples
FR2290945A1 (en) * 1974-11-12 1976-06-11 Paillaud Pierre PROCESS FOR IMPROVING THE ENERGY EFFICIENCY OF A REACTION
CH619866A5 (en) * 1976-05-07 1980-10-31 Pierre Paillaud Process for improving the energy efficiency of a reaction
US4134034A (en) * 1977-03-09 1979-01-09 Banyaszati Kutato Intezet Magnetohydrodynamic power systems
US4256404A (en) * 1979-09-28 1981-03-17 Phillips Petroleum Company Optoelectronic feedback control for a spectrometer
US4482246A (en) * 1982-09-20 1984-11-13 Meyer Gerhard A Inductively coupled plasma discharge in flowing non-argon gas at atmospheric pressure for spectrochemical analysis
DE3310742A1 (en) * 1983-03-24 1984-09-27 Siemens AG, 1000 Berlin und 8000 München PLASMA BURNER FOR ICP EMISSION SPECTROMETRY
US4609810A (en) * 1984-06-25 1986-09-02 The Perkin-Elmer Corporation Apparatus for controlling a plasma
FR2594491A1 (en) * 1986-02-19 1987-08-21 Fellus Victor Device making it possible to improve the combustion of hydrocarbons or liquid fuels of biological origin
JPH0640074B2 (en) * 1986-03-18 1994-05-25 株式会社島津製作所 ICP analysis method
US4766287A (en) * 1987-03-06 1988-08-23 The Perkin-Elmer Corporation Inductively coupled plasma torch with adjustable sample injector
US4916273A (en) * 1987-03-11 1990-04-10 Browning James A High-velocity controlled-temperature plasma spray method
JP2805009B2 (en) * 1988-05-11 1998-09-30 株式会社日立製作所 Plasma generator and plasma element analyzer
US4990740A (en) * 1989-03-06 1991-02-05 The Dow Chemical Company Intra-microspray ICP torch
US4935596A (en) * 1989-04-21 1990-06-19 The Perkin-Elmer Corporation Shutoff detector for unstable plasma or combustion flame
US5383019A (en) * 1990-03-23 1995-01-17 Fisons Plc Inductively coupled plasma spectrometers and radio-frequency power supply therefor
DE4021182A1 (en) * 1990-07-03 1992-01-16 Plasma Technik Ag DEVICE FOR COATING THE SURFACE OF OBJECTS
WO1992020913A1 (en) * 1991-05-15 1992-11-26 Olin Corporation Plasma ignition apparatus and method for enhanced combustion and flameholding in engine combustion chambers
JPH0782917B2 (en) * 1991-09-09 1995-09-06 株式会社三社電機製作所 Induction plasma torch
US5349154A (en) * 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
JP3035088B2 (en) * 1992-08-21 2000-04-17 三菱重工業株式会社 Gas turbine combustor
US5488666A (en) * 1993-10-01 1996-01-30 Greenhalgh Technologies System for suppressing sound from a flame
US5565118A (en) * 1994-04-04 1996-10-15 Asquith; Joseph G. Self starting plasma plume igniter for aircraft jet engine
US5640841A (en) * 1995-05-08 1997-06-24 Crosby; Rulon Plasma torch ignition for low NOx combustion turbine combustor with monitoring means and plasma generation control means
DE19542918A1 (en) * 1995-11-17 1997-05-22 Asea Brown Boveri Device for damping thermoacoustic pressure vibrations
US6050281A (en) * 1997-06-27 2000-04-18 Honeywell Inc. Fail-safe gas valve system with solid-state drive circuit
US6153158A (en) * 1998-07-31 2000-11-28 Mse Technology Applications, Inc Method and apparatus for treating gaseous effluents from waste treatment systems
WO2001005020A1 (en) * 1999-07-13 2001-01-18 Tokyo Electron Limited Radio frequency power source for generating an inductively coupled plasma
DE19947258A1 (en) * 1999-09-30 2001-04-19 Siemens Ag Production of a heat insulating layer containing zirconium oxide on a component, e.g. turbine blade involves using plasma flash evaporation of a liquid aerosol to form the layer
AU2001265093A1 (en) * 2000-05-25 2001-12-11 Russell F. Jewett Methods and apparatus for plasma processing
US6417625B1 (en) * 2000-08-04 2002-07-09 General Atomics Apparatus and method for forming a high pressure plasma discharge column
DE10061673A1 (en) * 2000-12-12 2002-06-13 Volkswagen Ag Engine spark plug element for coupling energy into volume filled with defined medium has electrode with end region with elongated, mutually separated electrode sections, each coupled to electrode connection
US6453660B1 (en) * 2001-01-18 2002-09-24 General Electric Company Combustor mixer having plasma generating nozzle
DE10137683C2 (en) * 2001-08-01 2003-05-28 Siemens Ag Method and device for influencing combustion processes in fuels
US6693253B2 (en) * 2001-10-05 2004-02-17 Universite De Sherbrooke Multi-coil induction plasma torch for solid state power supply
DE10159152A1 (en) * 2001-12-01 2003-06-12 Mtu Aero Engines Gmbh Process for gas purification
DE10260709B3 (en) * 2002-12-23 2004-08-12 Siemens Ag Method and device for influencing combustion processes in fuels
US7304263B2 (en) * 2003-08-14 2007-12-04 Rapt Industries, Inc. Systems and methods utilizing an aperture with a reactive atom plasma torch
DE102004061300B3 (en) * 2004-12-20 2006-07-13 Siemens Ag Method and device for influencing combustion processes
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them

Also Published As

Publication number Publication date
DE502005010492D1 (en) 2010-12-16
EP1794497A1 (en) 2007-06-13
DE102004046814B3 (en) 2006-03-09
US20070261383A1 (en) 2007-11-15
WO2006034983A1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
EP1794497B1 (en) Method and device for influencing combustion processes, in particular during the operation of a gas turbine
EP1412675B1 (en) Method and device for influencing combustion processes involving combustibles
DE102011052096B4 (en) A method of exciting an RF resonant circuit having as component an igniter for igniting a fuel-air mixture in a combustion chamber
DE102005032890B4 (en) Apparatus for generating atmospheric pressure plasmas
EP1982071B1 (en) High-frequency ignition system for motor vehicles
EP2358986B1 (en) Internal combustion engine and method for compression ignition combustion
WO2007017481A1 (en) Plasma ignition system and method for the operation thereof
EP1792523B1 (en) Igniting device
WO2006061314A1 (en) High-frequency plasma ignition device for internal combustion engines, especially direct-injection otto engines
DE102009013877A1 (en) Method and system for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge
DE69820619T2 (en) Resonance igniter for discharge lamps
EP2199597A2 (en) Ignition device for a combustion engine, which supplies a corona discharge
DE102007025551A1 (en) Process and apparatus for burning hydrocarbonaceous fuels
EP2164309B1 (en) Method and device for operating a hollow cathode arc discharge
DE102005026217A1 (en) Method and device for driving a capacitive load
EP0211133B1 (en) Method and device for the transmission of thermal energy to a space filled with matter
DE3149674A1 (en) EXPANSION THERMAL ENGINE
DE102008022181A1 (en) Plasma generator and method for controlling a plasma generator
DE102010045174B4 (en) Circuit arrangement for an HF ignition of internal combustion engines
DE102010024396B4 (en) A method for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge
DE102013105682A1 (en) Method for controlling a corona ignition device
DE19802745C2 (en) Microwave technical ignition and combustion support device for a fuel engine
DE19621531A1 (en) Method of Air induction handling method for internal combustion engine
DE102014116586B4 (en) Corona ignition system for an internal combustion engine
DE102013111806B3 (en) Method for controlling a corona ignition device and corona ignition device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23C 99/00 20060101AFI20100401BHEP

Ipc: F23C 15/00 20060101ALI20100401BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502005010492

Country of ref document: DE

Date of ref document: 20101216

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010492

Country of ref document: DE

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150909

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151202

Year of fee payment: 11

Ref country code: DE

Payment date: 20151120

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010492

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160922

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930