EP1769526B1 - Light bulb containing an illumination body that contains carbide - Google Patents

Light bulb containing an illumination body that contains carbide Download PDF

Info

Publication number
EP1769526B1
EP1769526B1 EP05763639A EP05763639A EP1769526B1 EP 1769526 B1 EP1769526 B1 EP 1769526B1 EP 05763639 A EP05763639 A EP 05763639A EP 05763639 A EP05763639 A EP 05763639A EP 1769526 B1 EP1769526 B1 EP 1769526B1
Authority
EP
European Patent Office
Prior art keywords
coating
incandescent lamp
lamp according
power supply
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05763639A
Other languages
German (de)
French (fr)
Other versions
EP1769526A1 (en
Inventor
Axel Bunk
Georg Rosenbauer
Matthias Damm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1769526A1 publication Critical patent/EP1769526A1/en
Application granted granted Critical
Publication of EP1769526B1 publication Critical patent/EP1769526B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/40Leading-in conductors

Definitions

  • the invention relates to an incandescent lamp with carbide-containing luminous element according to the preamble of claim 1. It is in particular to halogen incandescent lamps having a luminous body of TaC, or contains the luminous body TaC as a component or coating.
  • Tantalum carbide has a melting point about 500 K higher than tungsten.
  • the temperature of a luminous body of tantalum carbide can be set considerably higher than that of a filament of tungsten.
  • tantalum carbide lamps lamps with tantalum carbide as luminous element
  • Marketing of tantalum carbide lamps has been hindered mainly by the brittleness of tantalum carbide and the rapid decarburization or decomposition of the filament at high temperatures.
  • FIG. 3 shows an unilaterally pinched bulb 1 with a piston 2 made of hard glass, and a pinch 3, in which two foils 4 are embedded.
  • a piston 2 made of hard glass
  • a pinch 3 in which two foils 4 are embedded.
  • On the film 4 each end outer (5) and inner power supply lines 6, which are connected in the interior of the piston with an axial filament 7.
  • the luminous body preferably breaks in exactly this area.
  • the task now is to protect or stabilize this area if possible so that the susceptibility to breakage in this area is reduced. This stabilization should allow at least a safe transport of the lamp to the customer.
  • the handling of the coils made of TaC is critical because of the still considerable brittleness of the TaC, so that this process control is usually out of the question.
  • an integral luminous element is used for this, in which the two power supply lines are a continuation of the coiled filament.
  • the filament and the power supply are made of a single wire.
  • the power supply is partially coated, with a certain distance of the coating to the filament is useful. The distance is based on the temperature that is reached in operation at the location of the boundary between the coated and uncoated part of the power supply.
  • the first preferred embodiment is based on the idea that prior to carrying out the carburization of the TaC helix, those points at which the carburization of the tantalum can not be completed due to the low temperatures occurring there and, accordingly, mainly the brittle subcarbide Ta 2 C is present, before being carried out the carburization by a coating to protect.
  • the coating is primarily intended to shield the tantalum in the respective regions from the carbon-containing atmosphere provided during carburization via the exhaust tube, so that no carburization occurs at these sites.
  • the protective layer must at least survive the carburizing process to ensure safe transport of the lamps to the customer. Thereafter, depending on the specific application, the protective layer is no longer necessarily needed; A - even partial - degradation of the protective layer by diffusion or chemical processes may then be tolerated. It is usually not desired.
  • the material of the protective layer must not melt or evaporate at the temperatures at which the brittle subcarbide would be formed without the protective layer, ie the melting point should preferably be above about 2000 ° C, better still significantly higher.
  • the coating at the outlets to places is placed so close to the luminous body, that the transition region between the uncoated and the coated places at the departure is already at such a high temperature in that at the area of the power supply immediately following the end of the coating, a complete carburization of the tantalum to tantalum carbide can take place.
  • the coating - at least in the areas near the transition to the uncoated area - must be so thin that here by the coating no increased heat dissipation is caused.
  • Typical layer thicknesses are 1 to 50 ⁇ m. The respective value depends on the coating material used and the thickness of the wire to be coated. In "colder" areas near the outlet, the coating may also be thicker in order to additionally achieve mechanical stabilization here. The layer thickness can therefore follow a gradient, the layer thickness increasing steadily or suddenly in the direction of the pinch edge.
  • the outlets are surrounded with a relatively thick layer of a material, in order to mechanically stabilize the outlets, and on the other hand, the points with the brittle transition phase Ta 2 C to places so close to the luminaire to move that takes place by "shortening of the lever arm" at impact load, an increase in shock resistance.
  • Typical layer thicknesses are in the range 50 to 200 microns.
  • the relatively thick protective coating performs a similar function to that in DE-Az 10 2004 014 211.4 Coating coil (not yet published).
  • metals which form carbides with carbon which are also brittle, but whose brittleness is not so great as that of Ta 2 C.
  • the metals tungsten, molybdenum, hafnium, niobium or zirconium or their carbides.
  • carbides of non-metals is also possible, such as boron carbide or silicon carbide.
  • the coating prevents or delays the carburization at the outlets; the coating spiral ensures further stabilization. It is important that the coating is extended beyond the end of the coating spiral out in the direction of the filament, since at the end of the coating filament often so low temperatures occur at which the carburization can not be completed.
  • the invention described here relates in particular to lamps with reduced piston volume, wherein the distance of the luminous element, in particular its luminous portions, from the inner wall of the piston is at most 18 mm.
  • the piston diameter is at most 35 mm, in particular in the range between 5 mm and 25 mm, preferably in the range between 8 mm and 15 mm.
  • pistons of such small dimensions in particular of such small diameter, the risk of separation of solids from the piston wall must be counteracted at all costs.
  • these small piston diameters can depending on the color temperature of the coil, the blackening of the bulb via a two-fold cycle, as it is still unpublished DE-Az 103 56 651.1 is described, significantly reduced or avoided.
  • the power supply is protected in that it is at least partially coated with a coating.
  • it is an axially or transversely to the axis arranged luminous body in a one-sided or two-sided closed, in particular squeezed piston.
  • the luminous element is preferably a single-coiled wire whose ends, which serve as a power supply, are uncoiled. Typical diameters of the wire for the luminous element are 50 to 300 ⁇ m. Typically, the filament is formed from 5 to 20 turns. A preferred gradient factor in order to achieve the highest possible stability of the luminous element is 1.4 to 2.8.
  • the coating extends to the region of the power supply, which enters from the piston interior into the piston material.
  • the piston is closed by one or two bruises. This area is called the pinch edge.
  • the breaking sensitivity is particularly high, especially in the area of the squish edge, since a high bending moment occurs here.
  • the coating extends over at least 10%, preferably over at least 50% and particularly preferably over at least 80%, of the length of the power supply in the interior of the piston. It is important for the coating according to the first embodiment with a relatively thin layer that the coating is pulled up to places so close to the luminous body, that the temperature at the unprotected sites is already so large that there is a complete carburization and the occurrence of the brittle Subcarbide Ta 2 C is avoided.
  • a coating according to the second embodiment serves as a support; It should be pulled up as far as possible to reach the greatest possible stabilization.
  • the piston can be specially adapted for this, for example elliptical or cylindrical, as known per se.
  • a particular advantage lies in the use of halogen fillings, since with suitable dimensioning not only a cyclic process for the material of the luminous body, but also for the material of the coating can be set in motion.
  • An example is a Re-Br cycle process using Re as the coating material and Br as the active halogen.
  • Such fillings are known per se. In particular, it is a filling for a dual cycle process, as in the unpublished DE-A 103 56 651.1 is described.
  • the construction of the invention is much simpler than previous designs, because, especially for NV applications up to 80 V, no quartz beam is needed and because usually can be dispensed with a Umspinnungsplanetaryl, and also because no problematic contacts between an already Maschinenbur mandat from TaC existing lighting fixtures and the power supply lines (welding or clamping or crimping) are required.
  • welding or clamping or crimping When handling an already Maschinenbur striv luminaire from TaC it is often damaged at the ends of the filament due to the brittleness of the material.
  • the material of the luminous element is TaC.
  • carbides of Hf, Nb or Zr are suitable.
  • the present invention is particularly suitable for low-voltage lamps with a voltage of at most 50 V, because the necessary filament can be made relatively solid and for the wires preferably a diameter between 50 microns and 300 microns, especially at most 150 microns for general lighting purposes with maximum power of 100 W, exhibit. Thick wires up to 300 ⁇ m are used in particular for photo-optical applications up to a power of 1000 W.
  • the invention is used for one-sided squeezed lamps, since the luminous body can be kept relatively short, which also reduces the susceptibility to breakage. But the use for double-sided squeezed lamps and mains voltage lamps is conceivable.
  • FIG. 1 shows a bulb pinched on one side 1 with a piston made of quartz glass 2, a pinch seal 3, and inner power supply lines 6, the films 4 in the pinch seal 3 with a filament 7 connect.
  • the luminous element is a simply wound, axially arranged wire made of TaC, whose uncoiled ends 14 are continued transversely to the lamp axis.
  • the outer leads 5 are attached to the outside of the foils 4.
  • the inner diameter of the piston is 5 mm.
  • the coil ends 14 are then bent parallel to the lamp axis and form the inner power supply lines 6 as an integral extension.
  • the power supply lines 6 are provided with a coating 8 over at least the part of their entire length which does not become hotter than 2000 ° C. during operation. This consists of a material as shown below.
  • the metals rhenium (melting point: 3453 K), ruthenium (melting point: 2583 K), osmium (melting point: 3318 K), and iridium (melting point: 2683 K) do not form carbides or only to a small extent carbides. In them, carbon is soluble only to a relatively small extent. They are largely impermeable to carbon, cf. z.
  • the patent US 1854970 One possibility is therefore those areas of the initially consisting of tantalum filament, which only heated to temperatures below about 2500 K. be surrounded with a protective layer of these metals.
  • the thickness of the protective layer must be chosen sufficiently large to survive at least the carburizing process. Typical are layer thicknesses between 1 .mu.m and 50 .mu.m; depending on the design of the carburizing process.
  • the order of the metals can be carried out, for example, electrolysis, CVD deposition or sputtering processes.
  • the material of the protective layer can also consist of refractory compounds which must not react with the tantalum of the outlets of the filament, nor with the carbon-containing atmosphere of the lamp or may not diffuse into the tantalum.
  • HfB 2 , ZrB 2 , NbB 2 and TiB 2 are stable to carbides at least up to 2800K against reaction with carbon containing compounds. Furthermore, the compounds HfB 2 , ZrB 2 and NbB 2 are stable over the entire temperature range of interest here to a reaction with tantalum, whereas TiB 2 reacts with tantalum to form TaB 2 (the resulting titanium has too low a melting point anyway). Thus, for example, HfB 2 , ZrB 2 and NbB 2 are possible materials for the required protective layers since they react neither with the tantalum substrate nor with the carbon-containing atmosphere of the lamp.
  • relatively small layer thicknesses can be used, which are preferably in the range between 0.5 .mu.m and 5 .mu.m.
  • the use of tantalum boride may be useful in some cases, since the tantalum boride does not react with the carbon in the gas phase and the boron must first diffuse into the interior of the wire, which further diffuses the Carbon is delayed sufficiently long.
  • the nitrides HfN, ZrN, NbN, TiN, VN and TaN are stable against reaction with methane-derived carbon to carbides only up to temperatures of about 1000K or below.
  • ZrN reacts up to relatively high temperatures (about 1500 K) not with the carbon in the lamp atmosphere, also HfN (up to 1100 K resistant) is relatively stable.
  • ZrN and HfN do not react with tantalum at TaN in the temperature range in question, ie zirconium nitride and hafnium nitride are more stable than tantalum nitride.
  • NbN and VN can react with the tantalum to TaN; TiN decomposes at too low temperatures around 2000 K.
  • the two materials HfN and ZrN are conditionally suitable as material for protective coatings.
  • a certain reaction time is required, which - depending on the process in the carburization and thickness of the applied layers - may be sufficient to the underlying area of the tantalum wire before to protect a carburation.
  • a coating of the tantalum wire in the range in question with TaN may in individual cases be sufficient to slow carburization of the region in question so that in practice it plays no role during the carburization of the luminous body.
  • the tantalum wire may first be coated with ZrN or HfN, both of which do not react with tantalum in the range of temperatures in question.
  • the first layer applied to the tantalum may then be further coated with e.g. Rhenium, osmium etc. are coated, which react neither with the ZrN or HfN still with the carbon from the lamp atmosphere.
  • Rhenium, osmium etc. are coated, which react neither with the ZrN or HfN still with the carbon from the lamp atmosphere.
  • the respective less desirable properties of the individual layer systems - namely the diffusion of the metals rhenium, osmium, etc. into the tantalum and the reaction of zirconium nitride and hafnium nitride to the respective carbides - can be avoided.
  • Such systems are stable for relatively long periods.
  • the decay of the boron nitride with subsequent reaction of the tantalum to tantalum (di) boride and also the less stable tantalum nitride proceeds usually progressing so slowly that the carburization of the tantalum is delayed for a sufficient amount of time.
  • boron carbide in its disintegration preferably the more stable tantalum (di) boride is formed and not the tantalum carbide. The time required for the decay of the boron carbide, the reaction with the tantalum and the diffusion of the boron atoms into the interior of the tantalum delay the carburization.
  • a special case of the examples described above is the passivation of the outlets - which consist of tantalum prior to carburization - by boriding or nitriding, whereby the carburization in the critical temperature range is delayed or prevented sufficiently long in the subsequent Karburierrind.
  • no protective layer is applied to the outlets, but the surface "passivated” by chemical reaction of the tantalum with boron or nitrogen or the rate of carburization sufficiently low.
  • the outlets of the luminous element in this case are coated with a layer whose thickness is preferably in the range between one-tenth and one-half the diameter of the tantalum wire to be coated.
  • a layer whose thickness is preferably in the range between one-tenth and one-half the diameter of the tantalum wire to be coated.
  • tungsten, molybdenum, hafnium, zirconium or other carbide-forming materials may additionally be considered as coating materials.
  • the protective layer consists of tantalum or one uses from the outset in the area of the outlets tantalum wires of larger diameter than in the area of the filament.
  • the described procedures can also be applied to lamps with carbides of metals other than luminous bodies such as hafnium carbide or zirconium carbide or niobium carbide.
  • FIG. 2 shows a two-sided squeezed incandescent lamp 20, also known as Soffitte, with a piston made of quartz glass 21, two pinch 24 and 25, leads 27, which are connected to a luminous element 26.
  • the inner diameter of the piston is 15 mm.
  • the luminous element 26 is simply coiled and consists of TaC.
  • the power supply lines 27 are partially covered with a coating 30 of hafnium boride and terminate in base portions 28, as is well known, sitting on the pinch 24, 25.
  • the coating or a part thereof, which does not comprise the peak temperature reached at the coating nor be surrounded by a wrapping of helical wire or a solid sleeve, for example made of molybdenum, as in principle DE-Az 10 2004 014 211.4 (not yet published).
  • the lamp preferably uses a filament of tantalum carbide, which preferably consists of a single-coiled wire.
  • the piston is made of quartz glass or hard glass with a piston diameter between 5 mm and 35 mm, preferably between 8 mm and 15 mm.
  • the filling is mainly inert gas, in particular noble gas such as Ar, Kr or Xe, possibly with the addition of small amounts (up to 15 mol%) of nitrogen.
  • Added to this is a hydrocarbon, hydrogen and a halogen additive.
  • Zirconium carbide, hafnium carbide, or an alloy of various carbides such as, for example, in US Pat US-A 3 405 328 described.
  • a luminous body which consists of a support material such as a rhenium wire core or a carbon fiber, said core is coated with tantalum carbide or another metal carbide, see the unpublished application DE-Az 103 56 651.1 ,
  • Another possibility is to first deposit carbon on the luminous body consisting of TaC, for example by heating the TaC luminous body in an atmosphere with a high CH 4 concentration. Tantalum carbide is then deposited on this carbon layer.
  • tantalum can be deposited in a CVD process, which is then carburized either by the enclosed carbon and / or externally by heating in an atmosphere containing, for example, CH 4 .
  • the hydrogen content is at least the carbon content, preferably two to eight times the carbon content.
  • the halogen content is at most half, in particular one fifth to one twentieth, in particular to one tenth, of the carbon content.
  • the halogen content should at most equal to the hydrogen content, preferably at most half of the hydrogen content.
  • a guideline for the halogen content is 500 to 5000 ppm. All these data refer to a cold filling pressure of 1 bar. If the pressure changes, the individual concentration data must be converted so that the absolute quantities of substance are retained; e.g. Halve all concentration data in ppm at a pressure doubling.
  • the color temperature is 3800 K. It uses a TaC wire (obtained from carburized tantalum) with a diameter of 125 ⁇ m. He is simply coiled and shows a much better fracture behavior than lamps with uncoated outlets. The fracture tests were carried out with a beater.
  • the electrodes ie massive power supply of mostly molybdenum or tungsten, during lamp operation slowly carbon from the Gas phase record and thus act as a "getter” for carbon, at least in the hotter areas near the attachment of the filament. This disturbs the cycle in the lamp; a return of carbon to the lamp is no longer possible.
  • the electrodes may be coated with a layer of the above metals rhenium, osmium, ruthenium, or iridium.
  • the coatings of the electrodes with, for example, hafnium boride, zirconium boride and niobium boride. Since, for example, molybdenum boride is more stable than molybdenum carbide, the electrodes can be passivated by boron from the outside. Another possibility is the coating of the Mo or W electrodes with nitrides such as hafnium nitride, zirconium nitride, niobium nitride; Although these compounds are slowly converted into carbides during carburization or during operation of the lamp, the time required for this is sufficiently high given a sufficiently thick layer thickness. Even a complete design of the massive power supply of one of the metals mentioned is possible.
  • Coated luminaires are suitable for transporting the lamp under normal conditions.
  • the filament is so fragile that special measures would have to be taken for the transport of the lamp.
  • the discarding of the filament is reduced the shorter the filament outlets are selected.
  • the cause of the discarding is the volume increase in the carburization. This increase is noticeable in particular by an increase in length. It has been shown that the disturbing discarding does not lead to a tilting within the turns of the filament, but that the filament as a whole tilts laterally out of the axial position.
  • the avoidance of rejection is an unconditional prerequisite for the use of interference filters on the piston in the sense of an IRC coating, as is known per se, see EP 765 528 ,
  • the outer diameter of the additional use of a sleeve corresponds to a maximum of twice the diameter of the wire of the lamp. The thinner the sleeve, the lower its weight.
  • a very specific filling consists of the following components: 1 bar (cold filling pressure) Kr + 1% C 2 H 4 + 1% H 2 + 0.05% CH 2 Br 2 .
  • the concentration data are mol%.
  • the material of the power supply lines may have portions of the metal or of the metal carbide in the luminous element in a different stoichiometry. This case occurs in particular when a coating material such as rhenium diffuses into a wire of other metal such as tantalum.

Abstract

The invention relates to a light bulb comprising an illumination body, which is inserted, together with a filler material, into a bulb in a vacuum-tight manner. The illumination body has a metal carbide, whose melting point lies above that of tungsten. The current supply is configured in two parts from a first section and a second section. The current supply is configured integrally with the illumination body from a single wire and is covered with a coating that reduces the susceptibility to breakage.

Description

Technisches GebietTechnical area

Die Erfindung geht aus von einer Glühlampe mit carbidhaltigem Leuchtkörper gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um Halogenglühlampen, die einen Leuchtkörper aus TaC aufweisen, oder dessen Leuchtkörper TaC als Bestandteil oder Beschichtung enthält.The invention relates to an incandescent lamp with carbide-containing luminous element according to the preamble of claim 1. It is in particular to halogen incandescent lamps having a luminous body of TaC, or contains the luminous body TaC as a component or coating.

Stand der TechnikState of the art

Aus vielen Schriften ist eine Glühlampe mit carbidhaltigem Leuchtkörper bekannt. Bisher noch ungelöste Problem sind die stark einschränkte Lebensdauer und die hohe Bruchanfälligkeit des Leuchtkörpers. Eine in US 1 854 970 erwähnte Möglichkeit zur Lösung des Problems mit der Bruchanfälligkeit besteht darin, den Leuchtkörper aus Metallkern beispielsweise Wolfram, und darauf aufgebrachter rheniumhaltiger Schicht herzustellen, wobei anschließend eine Tantalcarbid-Beschichtung aufgebracht wird.From many writings an incandescent lamp with carbide-containing filament is known. So far unresolved problem are the severely limited life and the high susceptibility to breakage of the filament. An in US 1 854 970 mentioned possibility for solving the problem with the susceptibility to breakage is to produce the metal core filament, for example, tungsten, and rhenium-containing layer applied thereto, then a tantalum carbide coating is applied.

Aus der US-A 3 524 693 ist bekannt, ein Tantalcarbidfilament zu verwenden, das einfach gewendelt ist. Daran schließen sich integrale Abschnitte einer Stromzuführung an. Diese Abschnitte werden in eine Hülse, die mit einem Metallpulver gefüllt ist, eingeschmolzen.From the US-A 3,524,693 It is known to use a tantalum carbide filament which is simply wound. This is followed by integral sections of a power supply. These sections are melted into a sleeve filled with a metal powder.

Tantalkarbid besitzt einen um ca. 500 K höheren Schmelzpunkt als Wolfram. Somit kann die Temperatur eines Leuchtkörpers aus Tantalkarbid erheblich höher eingestellt werden als diejenige eines Leuchtkörpers aus Wolfram. Wegen der höheren Temperatur des Leuchtkörpers und der verstärkten Emission des Tantalkarbids im sichtbaren Spektralbereich sind mit Tantalkarbidlampen ( = Lampen mit Tantalkarbid als Leuchtkörper) erheblich höhere Lichtausbeuten realisierbar als mit Lampen mit herkömmlichen Glühkörper aus Wolfram. Einer Vermarktung von Tantalkarbidlampen stehen bisher hauptsächlich die Sprödigkeit des Tantalkarbids sowie die schnelle Entkarburierung bzw. Zersetzung des Leuchtkörpers bei hohen Temperaturen im Wege. Zur Überwindung des Problems mit der Sprödigkeit werden in der Patentliteratur z.B. die Verwendung optimierter Verfahren zur Karburierung ( DE 1.558.712 , US 3.650.850 ), der Gebrauch von Legierungen von TaC mit anderen Carbiden / Materialien (z.B. TaC + WC, TaC + HfC, usw., siehe US 3.405.328 , US 4.032,809 , ), und die Verwendung von Trägermaterialen ( US 1854970 ) vorgeschlagen.Tantalum carbide has a melting point about 500 K higher than tungsten. Thus, the temperature of a luminous body of tantalum carbide can be set considerably higher than that of a filament of tungsten. Because of the higher temperature of the luminous element and the increased emission of tantalum carbide in the visible spectral range, tantalum carbide lamps (= lamps with tantalum carbide as luminous element) can achieve considerably higher luminous efficiencies than conventional tungsten filament lamps. Marketing of tantalum carbide lamps has been hindered mainly by the brittleness of tantalum carbide and the rapid decarburization or decomposition of the filament at high temperatures. To overcome the problem with brittleness be in the patent literature eg the use of optimized methods for carburation ( DE 1,558,712 . US 3,650,850 ), the use of alloys of TaC with other carbides / materials (eg TaC + WC, TaC + HfC, etc., see US 3,405,328 . US 4,032,809 ,), and the use of support materials ( US 1854970 ) proposed.

Um den fertigungstechnischen Aufwand beim Bau einer TaC Lampe möglichst gering zu halten, wird vorgeschlagen, eine TaC-Lampe in derselben Geometrie zu bauen wie eine herkömmliche Niedervolt-Halogenlampe in Quarztechnik, siehe z.B. Figur 3.In order to keep the production outlay when constructing a TaC lamp as low as possible, it is proposed to build a TaC lamp in the same geometry as a conventional low-voltage halogen lamp in quartz technology, see, for example FIG. 3 ,

Figur 3 zeigt eine einseitig gequetschte Glühlampe 1 mit einem Kolben 2 aus Hartglas, und einer Quetschung 3, in der zwei Folien 4 eingebettet sind. An der Folie 4 enden jeweils äußere (5) und innere Stromzuführungen 6, die im Innern des Kolbens mit einem axialen Leuchtkörper 7 verbunden sind. FIG. 3 shows an unilaterally pinched bulb 1 with a piston 2 made of hard glass, and a pinch 3, in which two foils 4 are embedded. On the film 4 each end outer (5) and inner power supply lines 6, which are connected in the interior of the piston with an axial filament 7.

Dazu werden zunächst Wendeln aus Tantaldraht gefertigt und unter Verwendung dieser Wendeln Stängellampen gebaut. Anschließend wird der Leuchtkörper aus Tantaldraht in der Stängellampe unter Verwendung eines Gemischs aus Methan und Wasserstoff karburiert. Hinsichtlich den grundlegenden Eigenschaften der Karburierung vgl. z.B. S. Okoli, R. Haubner, B. Lux, Surface and Coatings Technology 47 (1991), 585 - 599 , und G. Hörz, Metall 27, (1973), 680 . In diesem Zusammenhang sind zwei Eigenschaften der Karburierungsreaktionen relevant:

  1. (1) Bei der Karburierung wird zunächst das spröde Subcarbid Ta2C gebildet. Bei weiterer Zufuhr von Kohlenstoff bildet sich dann die TaC Phase.
  2. (2) Die Karburierungsreaktion erfolgt um so schneller, je höher die Temperatur ist.
For this purpose, filaments are first made of tantalum wire and built using these filaments Stängellampen. Subsequently, the filament of tantalum wire in the stud lamp is carburized using a mixture of methane and hydrogen. With regard to the basic properties of carburisation, cf. eg S. Okoli, R. Haubner, B. Lux, Surface and Coatings Technology 47 (1991), 585-599 , and G. Hörz, Metal 27, (1973), 680 , In this context, two characteristics of the carburization reactions are relevant:
  1. (1) During carburization, the brittle subcarbide Ta 2 C is first formed. Upon further addition of carbon, the TaC phase then forms.
  2. (2) The carburization reaction is faster, the higher the temperature is.

Die einfachste Möglichkeit, den Leuchtkörper auf die zur Karburierung benötigten Temperaturen zu bringen, besteht darin, eine geeignete Spannung an den Leuchtkörper anzulegen. Dabei entsteht jedoch bedingt durch die Wärmeableitung ein Temperaturgefälle von den Enden des Leuchtkörpers zur Quetschung hin. Am Leuchtkörper können in jedem Fall hinreichend hohe Temperaturen eingestellt werden, so dass eine durchgehende Karburierung erfolgt. Direkt oberhalb der Quetschung liegen die Temperaturen aber so niedrig (meist unter 700°C), dass überhaupt keine Karburierung erfolgt. In diesem Bereich können für die vollständige Karburierung erforderliche Temperaturen nur schwer eingestellt werden. Zwischen dem Bereich direkt an der Quetschung, in welchem noch ein Draht aus Tantal vorliegt, und dem vollständig durchkarburierten Leuchtkörper befindet sich ein Bereich, in denen das spröde Subcarbid Ta2C vorliegt. Bei einer Stoßbelastung bricht der Leuchtkörper bevorzugt in genau diesem Bereich. Die Aufgabe besteht nun darin, diesen Bereich möglichst so zu schützen bzw. zu stabilisieren, dass die Bruchanfälligkeit in diesem Bereich herabgesetzt wird. Diese Stabilisierung soll wenigstens einen sicheren Transport der Lampe zum Kunden ermöglichen.The easiest way to bring the luminous body to the temperatures required for carburizing is to apply a suitable voltage to the luminous element. However, due to the heat dissipation, a temperature gradient arises from the ends of the filament to Pinching. In any case, sufficiently high temperatures can be set on the luminous element so that continuous carburization takes place. Directly above the pinch, however, the temperatures are so low (usually below 700 ° C) that no carburizing takes place at all. In this area, temperatures required for complete carburization can be difficult to set. Between the area directly at the pinch, in which there is still a wire of tantalum, and the fully durchkarburierten filament is an area in which the brittle subcarbide Ta 2 C is present. In the case of a shock load, the luminous body preferably breaks in exactly this area. The task now is to protect or stabilize this area if possible so that the susceptibility to breakage in this area is reduced. This stabilization should allow at least a safe transport of the lamp to the customer.

Eine Möglichkeit besteht darin, den kritischen Bereich, in welchem das spröde Subcarbid Ta2C dominiert, durch den Gebrauch einer Überzugswendel oder Hülse zu schützen, wie in DE-Az 10 2004 014 211.4 (noch nicht veröffentlicht) beschrieben.One possibility is to protect the critical region in which the brittle subcarbide Ta 2 C dominates by the use of a coating helix or sleeve, as in US Pat DE-Az 10 2004 014 211.4 (not yet published).

Alternativ kann man auch den aus Tantal bestehenden Leuchtkörper vor dem Einbau in die Lampe karburieren. Allerdings ist in diesem Fall das Handling der aus TaC bestehenden Wendeln wegen der immer noch erheblichen Brüchigkeit des TaC kritisch, so dass diese Prozessführung meist nicht in Frage kommt.Alternatively, one can also carburize the existing of tantalum luminaire prior to installation in the lamp. However, in this case the handling of the coils made of TaC is critical because of the still considerable brittleness of the TaC, so that this process control is usually out of the question.

Darstellung der ErfindungPresentation of the invention

Es ist Aufgabe der vorliegenden Erfindung, eine Glühlampe mit carbidhaltigem Leuchtkörper, insbesondere mit Halogenfüllung, gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die eine lange Lebensdauer ermöglicht und das Problem der Brüchigkeit des Leuchtkörpers überwindet.It is an object of the present invention to provide an incandescent lamp with carbide-containing filament, in particular with halogen filling, according to the preamble of claim 1, which allows a long life and overcomes the problem of brittleness of the filament.

Diese Aufgaben werden durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.These objects are achieved by the characterizing features of claim 1. Particularly advantageous embodiments can be found in the dependent claims.

Erfindungsgemäß wird dafür ein integraler Leuchtkörper verwendet, bei dem die beiden Stromzuführungen eine Fortführung des gewendelten Leuchtkörpers sind. Leuchtkörper und Stromzuführung sind aus einem einzigen Draht gebildet. Die Stromzuführung ist teilweise beschichtet, wobei ein gewisser Abstand der Beschichtung zum Leuchtkörper sinnvoll ist. Der Abstand orientiert sich an der Temperatur, die im Betrieb an der Stelle der Grenze zwischen beschichtetem und unbeschichtetem Teil der Stromzuführung erreicht wird.According to the invention, an integral luminous element is used for this, in which the two power supply lines are a continuation of the coiled filament. The filament and the power supply are made of a single wire. The power supply is partially coated, with a certain distance of the coating to the filament is useful. The distance is based on the temperature that is reached in operation at the location of the boundary between the coated and uncoated part of the power supply.

Zur Vermeidung bzw. Verringerung der Brüchigkeit des Leuchtkörpers in dem Bereich, in dem das spröde Ta2C vorliegt, werden zwei verschiedene Ausführungsformen der Beschichtung vorgeschlagen.To avoid or reduce the brittleness of the luminous element in the region in which the brittle Ta 2 C is present, two different embodiments of the coating are proposed.

Der ersten bevorzugten Ausführungsform liegt der Gedanke zugrunde, vor der Durchführung der Karburierung der TaC Wendel diejenigen Stellen, an denen aufgrund der dort auftretenden niederen Temperaturen die Karburierung des Tantals nicht abgeschlossen werden kann und dementsprechend hauptsächlich das spröde Subcarbid Ta2C vorliegt, vor der Durchführung der Karburierung durch eine Beschichtung zu schützen. Die Beschichtung soll primär das Tantal in den entsprechenden Bereichen gegen die Kohlenstoff enthaltende Atmosphäre die während der Karburierung über den Pumpstengel bereitgestellt wird, abschirmen, so dass an diesen Stellen keine Karburierung erfolgt. Nur diejenigen Bereiche des ursprünglich aus Tantal bestehenden Leuchtkörpers, die sich bei sehr hohen Temperaturen oberhalb 2000 °C, bevorzugt oberhalb ca. 2300°C befinden, werden nicht mit einer Schutzschicht versehen und folglich komplett zu TaC durchkarburiert (der genaue Grenzwert hängt von den jeweiligen Randbedingungen ab), siehe Figur 1 in der Anlage. Das Auftreten des spröden Subcarbids Ta2C lässt sich bedingt durch die longitudinale Diffusion von Kohlenstoff in Richtung des Temperaturgradienten nicht vollständig vermeiden, kann aber auf einen relativ kleinen Bereich beschränkt werden. Sekundär kann die Beschichtung auch zur Stabilisierung des Abgangs dienen, wenn der schmale Bereich der Existenz des Subcarbids durch eine Schutzschicht mechanisch stabilisiert wird (Vermeidung einer von der Oberfläche einsetzenden Rissbildung). Die Schutzschicht muss wenigstens den Karburierungsprozess überstehen, um einen sicheren Transport der Lampen zum Kunden zu gewährleisten. Danach wird die Schutzschicht, abhängig von der konkreten Anwendung, nicht mehr unbedingt benötigt; ein -- auch teilweiser -- Abbau der Schutzschicht durch Diffusion oder chemische Prozesse kann dann u.U. hingenommen werden. Sie ist im Regelfall jedoch nicht erwünscht. Das Material der Schutzschicht darf bei den Temperaturen, bei denen ohne die Schutzschicht das spröde Subcarbid entstehen würde, nicht schmelzen oder verdampfen, d.h. der Schmelzpunkt sollte möglichst oberhalb ca. 2000 °C, besser noch deutlich höher liegen. Bei Schutz des aus Ta2C bestehenden Übergangsbereichs gemäß diesem Grundprinzip ist wesentlich, dass die Beschichtung an den Abgängen bis zu Orten so nahe am Leuchtkörper angebracht wird, dass der Übergangsbereich zwischen den unbeschichteten und den beschichteten Orten am Abgang sich bereits auf so hoher Temperatur befindet, dass am Bereich der Stromzuführung, der unmittelbar dem Ende der Beschichtung folgt, eine vollständige Karburierung des Tantals zu Tantalcarbid stattfinden kann. In der Regel muss daher die Beschichtung - zumindest in den Bereichen nahe des Übergangs zum unbeschichteten Bereich - so dünn sein, dass hier durch die Beschichtung keine erhöhte Wärmeabfuhr verursacht wird. Typische Schichtdicken sind 1 bis 50 µm. Der jeweilige Wert hängt vom verwendeten Beschichtungsmaterial und der Dicke des zu beschichtenden Drahtes ab. In "kälteren" Bereichen nahe des Abgangs kann die Beschichtung auch dicker sein, um hier zusätzlich eine mechanische Stabilisierung zu erreichen. Die Schichtdicke kann also einem Gradienten folgen, wobei in Richtung der Quetschkante die Schichtdicke stetig oder sprunghaft zunimmt.The first preferred embodiment is based on the idea that prior to carrying out the carburization of the TaC helix, those points at which the carburization of the tantalum can not be completed due to the low temperatures occurring there and, accordingly, mainly the brittle subcarbide Ta 2 C is present, before being carried out the carburization by a coating to protect. The coating is primarily intended to shield the tantalum in the respective regions from the carbon-containing atmosphere provided during carburization via the exhaust tube, so that no carburization occurs at these sites. Only those areas of the original consisting of tantalum illuminating body, which are at very high temperatures above 2000 ° C, preferably above about 2300 ° C, are not provided with a protective layer and thus durchkarburiert completely to TaC (the exact limit depends on the respective Boundary conditions), see FIG. 1 in the plant. The occurrence of the brittle subcarbide Ta 2 C can not be completely avoided due to the longitudinal diffusion of carbon in the direction of the temperature gradient, but can be limited to a relatively small range. Secondary, the coating can also be used for stabilization of descent, when the narrow region of existence of the subcarbide is mechanically stabilized by a protective layer (prevention of surface crack initiation). The protective layer must at least survive the carburizing process to ensure safe transport of the lamps to the customer. Thereafter, depending on the specific application, the protective layer is no longer necessarily needed; A - even partial - degradation of the protective layer by diffusion or chemical processes may then be tolerated. It is usually not desired. The material of the protective layer must not melt or evaporate at the temperatures at which the brittle subcarbide would be formed without the protective layer, ie the melting point should preferably be above about 2000 ° C, better still significantly higher. When protecting the transition area consisting of Ta 2 C in accordance with this basic principle, it is essential that the coating at the outlets to places is placed so close to the luminous body, that the transition region between the uncoated and the coated places at the departure is already at such a high temperature in that at the area of the power supply immediately following the end of the coating, a complete carburization of the tantalum to tantalum carbide can take place. In general, therefore, the coating - at least in the areas near the transition to the uncoated area - must be so thin that here by the coating no increased heat dissipation is caused. Typical layer thicknesses are 1 to 50 μm. The respective value depends on the coating material used and the thickness of the wire to be coated. In "colder" areas near the outlet, the coating may also be thicker in order to additionally achieve mechanical stabilization here. The layer thickness can therefore follow a gradient, the layer thickness increasing steadily or suddenly in the direction of the pinch edge.

Gemäß einer zweiten bevorzugt Ausführungsform werden die Abgänge mit einer relativ dicken Schicht eines Material umgeben, um zum einen die Abgänge mechanisch zu stabilisieren, und zum anderen die Stellen mit der spröden Übergangsphase Ta2C zu Orten so nahe am Leuchtkörper zu verschieben, dass durch "Verkürzung des Hebelarms" bei Stossbelastung eine Erhöhung der Stossfestigkeit stattfindet. Typische Schichtdicken liegen im Bereich 50 bis 200 µm. In diesem Fall übernimmt die relativ dicke Schutzbeschichtung eine ähnliche Funktion wie die in DE-Az 10 2004 014 211.4 (noch nicht veröffentlich) beschriebene Überzugswendel. In diesem Fall können als Material für die Schutzbeschichtung neben den unter Grundprinzip 1 genannten Stoffen auch solche Metalle verwandt werden, welche mit Kohlenstoff Carbide bilden, welche zwar ebenfalls spröde sind, deren Sprödigkeit aber nicht so groß ist wie diejenige des Ta2C. In Frage kommen z.B. die Metalle Wolfram, Molybdän, Hafnium, Niob oder Zirkonium bzw. deren Carbide. Auch der Einsatz der Carbide von Nichtmetallen ist möglich wie z.B. Borcarbid oder Siliziumcarbid.According to a second preferred embodiment, the outlets are surrounded with a relatively thick layer of a material, in order to mechanically stabilize the outlets, and on the other hand, the points with the brittle transition phase Ta 2 C to places so close to the luminaire to move that takes place by "shortening of the lever arm" at impact load, an increase in shock resistance. Typical layer thicknesses are in the range 50 to 200 microns. In this case, the relatively thick protective coating performs a similar function to that in DE-Az 10 2004 014 211.4 Coating coil (not yet published). In this case, as the material for the protective coating in addition to the substances mentioned under Basic Principle 1, metals which form carbides with carbon, which are also brittle, but whose brittleness is not so great as that of Ta 2 C. In question For example, the metals tungsten, molybdenum, hafnium, niobium or zirconium or their carbides. The use of carbides of non-metals is also possible, such as boron carbide or silicon carbide.

Für höhere Anforderungen wird der Gebrauch einer Schutzschicht gemäß erster Ausführungsform mit der Verwendung einer Überzugswendel wie in DE-Az 10 2004 014 211.4 beschrieben kombiniert; daraus resultieren weitere Vorteile wie die Erhöhung der Einschaltfestigkeit. Die Beschichtung verhindert bzw. verzögert die Karburierung an den Abgängen; die Überzugswendel sorgt für eine weitere Stabilisierung. Wichtig ist, dass die Beschichtung noch über das Ende der Überzugswendel hinaus in Richtung des Leuchtkörpers verlängert wird, da am Ende der Überzugswendel häufig noch so niedrige Temperaturen auftreten, bei denen die Karburierung nicht abgeschlossen werden kann.For higher requirements, the use of a protective layer according to the first embodiment with the use of a coating coil as in DE-Az 10 2004 014 211.4 described combined; this results in further advantages such as increasing the breaking strength. The coating prevents or delays the carburization at the outlets; the coating spiral ensures further stabilization. It is important that the coating is extended beyond the end of the coating spiral out in the direction of the filament, since at the end of the coating filament often so low temperatures occur at which the carburization can not be completed.

Die hier beschriebene Erfindung bezieht sich insbesondere auf Lampen mit reduziertem Kolbenvolumen, wobei der Abstand des Leuchtkörpers, insbesondere dessen leuchtende Abschnitte, von der Innenwand des Kolbens höchstens 18 mm beträgt. Insbesondere ist der Kolbendurchmesser höchstens 35 mm, insbesondere im Bereich zwischen 5 mm und 25 mm, bevorzugt im Bereich zwischen 8 mm und 15 mm. Bei Kolben mit so geringen Abmessungen, insbesondere so geringem Durchmesser muss der Gefahr einer Abscheidung von Feststoffen an der Kolbenwand unbedingt entgegengetreten werden. Bei diesen kleinen Kolbendurchmessern kann je nach Farbtemperatur der Wendel die Kolbenschwärzung über einen zweifachen Kreisprozess, wie er in der noch unveröffentlichten DE-Az 103 56 651.1 beschrieben ist, deutlich reduziert bzw. vermieden werden.The invention described here relates in particular to lamps with reduced piston volume, wherein the distance of the luminous element, in particular its luminous portions, from the inner wall of the piston is at most 18 mm. In particular, the piston diameter is at most 35 mm, in particular in the range between 5 mm and 25 mm, preferably in the range between 8 mm and 15 mm. In the case of pistons of such small dimensions, in particular of such small diameter, the risk of separation of solids from the piston wall must be counteracted at all costs. With these small piston diameters can depending on the color temperature of the coil, the blackening of the bulb via a two-fold cycle, as it is still unpublished DE-Az 103 56 651.1 is described, significantly reduced or avoided.

In einer bevorzugten Ausführungsform ist die Stromzuführung dadurch geschützt, dass sie zumindest teilweise mit einer Beschichtung überzogen ist.In a preferred embodiment, the power supply is protected in that it is at least partially coated with a coating.

Insbesondere handelt es sich um einen axial oder quer zur Achse angeordneten Leuchtkörper in einem einseitig oder zweiseitig verschlossenen, insbesondere gequetschten Kolben.In particular, it is an axially or transversely to the axis arranged luminous body in a one-sided or two-sided closed, in particular squeezed piston.

Bevorzugt handelt es sich beim Leuchtkörper um einen einfach gewendelten Draht, dessen Enden, die als Stromzuführung dienen, ungewendelt sind. Typische Durchmesser des Drahtes für den Leuchtkörper sind 50 bis 300 µm. Typisch ist der Leuchtkörper aus 5 bis 20 Windungen gebildet. Ein bevorzugter Steigungsfaktor, um möglichst hohe Stabilität des Leuchtkörpers zu erreichen, ist 1,4 bis 2,8.The luminous element is preferably a single-coiled wire whose ends, which serve as a power supply, are uncoiled. Typical diameters of the wire for the luminous element are 50 to 300 μm. Typically, the filament is formed from 5 to 20 turns. A preferred gradient factor in order to achieve the highest possible stability of the luminous element is 1.4 to 2.8.

Besonders bevorzugt erstreckt sich die Beschichtung auf den Bereich der Stromzuführung, der vom Kolbeninneren in das Kolbenmaterial eintritt. normalerweise ist der Kolben von einer oder zwei Quetschungen abgeschlossen. Dieser Bereich wird als Quetschkante bezeichnet. Außerdem ist die Bruchempfindlichkeit gerade im Bereich der Quetschkante besonders hoch, da hier ein hohes Biegemoment auftritt.Particularly preferably, the coating extends to the region of the power supply, which enters from the piston interior into the piston material. usually the piston is closed by one or two bruises. This area is called the pinch edge. In addition, the breaking sensitivity is particularly high, especially in the area of the squish edge, since a high bending moment occurs here.

Besonders bevorzugt erstreckt sich die Beschichtung über mindestens 10 %, bevorzugt über mindestens 50 % und besonders bevorzugt über mindestens 80 %, der Länge der Stromzuführung im Innern des Kolbens. Wichtig für die Beschichtung gemäß der ersten Ausführungsform mit relativ dünner Schicht ist, dass die Beschichtung bis zu Stellen so nahe am Leuchtkörper hochgezogen ist, dass die Temperatur an den ungeschützten Stellen bereits so groß ist, dass hier eine vollständige Karburierung erfolgt und das Auftreten des spröden Subcarbids Ta2C vermieden wird. Eine Beschichtung gemäß der zweiten Ausführungsform dient als Stütze; sie sollte möglichst weit am Abgang hochgezogen werden, um eine möglichst große Stabilisierung zu erreichen.Particularly preferably, the coating extends over at least 10%, preferably over at least 50% and particularly preferably over at least 80%, of the length of the power supply in the interior of the piston. It is important for the coating according to the first embodiment with a relatively thin layer that the coating is pulled up to places so close to the luminous body, that the temperature at the unprotected sites is already so large that there is a complete carburization and the occurrence of the brittle Subcarbide Ta 2 C is avoided. A coating according to the second embodiment serves as a support; It should be pulled up as far as possible to reach the greatest possible stabilization.

Dieser Aspekt hat besondere Bedeutung deswegen, weil das Konzept der axialen Leuchtkörpers prinzipiell gut geeignet ist, um einen effizienzsteigernden Überzug auf dem Kolben anzubringen. Bekannt ist ein sog. Infrarot-Coating (IRC), wie es beispielsweise in der US-A 5 548 182 beschrieben ist. Entsprechend kann auch der Kolben extra dafür angepasst sein, beispielsweise elliptisch oder zylindrisch geformt, wie an sich bekannt.This aspect is of particular importance because the concept of the axial filament is in principle well suited to provide an efficiency-enhancing coating on the piston. Known is a so-called. Infrared coating (IRC), as it for example in the US Pat. No. 5,548,182 is described. Accordingly, the piston can be specially adapted for this, for example elliptical or cylindrical, as known per se.

Ein besonderer Vorteil liegt in der Anwendung von Halogenfüllungen, da bei geeigneter Dimensionierung nicht nur ein Kreisprozess für das Material des Leuchtkörper, sondern auch für das Material der Beschichtung in Gang gebracht werden kann. Ein Beispiel ist ein Re-Br-Kreisprozess bei Verwendung von Re als Beschichtungsmaterial und Br als aktivem Halogen. Derartige Füllungen sind an sich bekannt. Insbesondere handelt es sich dabei um eine Füllung für einen zweifachen Kreisprozess, wie er in der noch unveröffentlichten DE-A 103 56 651.1 beschrieben ist.A particular advantage lies in the use of halogen fillings, since with suitable dimensioning not only a cyclic process for the material of the luminous body, but also for the material of the coating can be set in motion. An example is a Re-Br cycle process using Re as the coating material and Br as the active halogen. Such fillings are known per se. In particular, it is a filling for a dual cycle process, as in the unpublished DE-A 103 56 651.1 is described.

Darüber hinaus ist die erfindungsgemäße Konstruktion deutlich einfacher als bisherige Konstruktionen, weil, insbesondere für NV-Anwendungen bis maximal 80 V, kein Quarzbalken benötigt wird und weil meist auf eine Umspinnungswendel verzichtet werden kann, und weil außerdem keine problematischen Kontaktierungen zwischen einem bereits durchkarburierten, aus TaC bestehenden Leuchtkörper und den Stromzuführungen (Schweißung oder Klemmung bzw. Crimpung) erforderlich sind. Beim Handling eines bereits durchkarburierten Leuchtkörpers aus TaC kommt es häufig zu Beschädigungen an den Enden des Leuchtkörpers wegen der Sprödigkeit des Materials.In addition, the construction of the invention is much simpler than previous designs, because, especially for NV applications up to 80 V, no quartz beam is needed and because usually can be dispensed with a Umspinnungswendel, and also because no problematic contacts between an already durchkarburierten from TaC existing lighting fixtures and the power supply lines (welding or clamping or crimping) are required. When handling an already durchkarburierten luminaire from TaC it is often damaged at the ends of the filament due to the brittleness of the material.

Bevorzugt ist das Material des Leuchtkörpers TaC. Aber auch Carbide des Hf, Nb oder Zr sind geeignet. Ferner sind Legierungen verschiedener Carbide, z.B. des TaC und des HfC, geeignet.Preferably, the material of the luminous element is TaC. But also carbides of Hf, Nb or Zr are suitable. Further, alloys of various carbides, e.g. TaC and HfC.

Die vorliegende Erfindung eignet sich insbesondere für Niedervoltlampen mit einer Spannung von höchstens 50 V, weil die dafür notwendigen Leuchtkörper relativ massiv ausgeführt sein können und dafür die Drähte bevorzugt einen Durchmesser zwischen 50 µm und 300 µm, insbesondere höchstens 150 µm für Allgemeinbeleuchtungszwecke mit maximaler Leistung von 100 W, aufweisen. Dicke Drähte bis 300 µm werden insbesondere bei fotooptischen Anwendungen bis zu einer Leistung von 1000 W gebraucht. Besonders bevorzugt wird die Erfindung für einseitig gequetschte Lampen verwendet, da hier der Leuchtkörper relativ kurz gehalten werden kann, was die Bruchanfälligkeit ebenfalls reduziert. Aber auch die Verwendung für zweiseitig gequetschte Lampen und Netzspannungslampen ist denkbar.The present invention is particularly suitable for low-voltage lamps with a voltage of at most 50 V, because the necessary filament can be made relatively solid and for the wires preferably a diameter between 50 microns and 300 microns, especially at most 150 microns for general lighting purposes with maximum power of 100 W, exhibit. Thick wires up to 300 μm are used in particular for photo-optical applications up to a power of 1000 W. Particularly preferably, the invention is used for one-sided squeezed lamps, since the luminous body can be kept relatively short, which also reduces the susceptibility to breakage. But the use for double-sided squeezed lamps and mains voltage lamps is conceivable.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:

Figur 1
eine Glühlampe mit Carbid-Leuchtkörper gemäß einem ersten Ausführungsbeispiel;
Figur 2
eine Glühlampe mit Carbid-Leuchtkörper gemäß einem zweiten Ausführungsbeispiel;
Figur 3
eine Glühlampe mit Carbid-Leuchtkörper gemäß dem Stand der Technik.
In the following the invention will be explained in more detail with reference to several embodiments. Show it:
FIG. 1
an incandescent lamp with carbide filament according to a first embodiment;
FIG. 2
an incandescent lamp with carbide filament according to a second embodiment;
FIG. 3
an incandescent lamp with carbide filament according to the prior art.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Figur 1 zeigt eine einseitig gequetschte Glühlampe 1 mit einem Kolben aus Quarzglas 2, einer Quetschung 3, und innere Stromzuführungen 6, die Folien 4 in der Quetschung 3 mit einem Leuchtkörper 7 verbinden. Der Leuchtkörper ist ein einfach gewedelter, axial angeordneter Draht aus TaC, dessen ungewendelte Enden 14 quer zur Lampenachse weitergeführt sind. Die äußeren Zuleitungen 5 sind außen an die Folien 4 angesetzt. Der innere Durchmesser des Kolbens ist 5 mm. Die Wendelenden 14 sind anschließend parallel zur Lampenachse abgebogen und bilden dort die inneren Stromzuführungen 6 als integrale Verlängerung. Die Stromzuführungen 6 sind mindestens über den Teil ihrer gesamten Länge, der im Betrieb nicht heißer als 2000 °C wird, mit einer Beschichtung 8 versehen. Diese besteht aus einem Material wie nachfolgend dargestellt. FIG. 1 shows a bulb pinched on one side 1 with a piston made of quartz glass 2, a pinch seal 3, and inner power supply lines 6, the films 4 in the pinch seal 3 with a filament 7 connect. The luminous element is a simply wound, axially arranged wire made of TaC, whose uncoiled ends 14 are continued transversely to the lamp axis. The outer leads 5 are attached to the outside of the foils 4. The inner diameter of the piston is 5 mm. The coil ends 14 are then bent parallel to the lamp axis and form the inner power supply lines 6 as an integral extension. The power supply lines 6 are provided with a coating 8 over at least the part of their entire length which does not become hotter than 2000 ° C. during operation. This consists of a material as shown below.

Ausführungsbeispiele für die erste Ausführungsform:Embodiments of the first embodiment:

Zum Beispiel bilden die Metalle Rhenium (Schmelzpunkt: 3453 K), Ruthenium (Schmelzpunkt: 2583 K), Osmium (Schmelzpunkt: 3318 K),und Iridium (Schmelzpunkt: 2683 K) keine Carbide bzw. nur in geringem Maße Carbide. In ihnen ist Kohlenstoff nur in relativ geringem Maße löslich. Sie sind für Kohlenstoff weitgehend undurchlässig, vgl. z. B. hinsichtlich der Verwendung von Rhenium beim Leuchtkörper die Patentschrift US 1854970 . Eine Möglichkeit besteht somit darin, diejenigen Bereiche des zunächst aus Tantal bestehenden Leuchtkörpers, die nur auf Temperaturen unterhalb ca. 2500 K erhitzt werden, mit einer Schutzschicht aus diesen Metallen zu umgeben. Da bei hohen Temperaturen Tantal und das Material der genannten Metalle ineinander diffundieren, muss die Dicke der Schutzschicht hinreichend groß gewählt werden, um wenigstens den Karburierprozess zu überstehen. Typisch sind Schichtdicken zwischen 1 µm und 50 µm; je nach Auslegung des Karburierprozesses. Der Auftrag der Metalle kann z.B. Elektrolyse, CVD-Abscheidung oder Sputterprozesse erfolgen.For example, the metals rhenium (melting point: 3453 K), ruthenium (melting point: 2583 K), osmium (melting point: 3318 K), and iridium (melting point: 2683 K) do not form carbides or only to a small extent carbides. In them, carbon is soluble only to a relatively small extent. They are largely impermeable to carbon, cf. z. As regards the use of rhenium in the luminous body, the patent US 1854970 , One possibility is therefore those areas of the initially consisting of tantalum filament, which only heated to temperatures below about 2500 K. be surrounded with a protective layer of these metals. Since at high temperatures tantalum and the material of said metals diffuse into each other, the thickness of the protective layer must be chosen sufficiently large to survive at least the carburizing process. Typical are layer thicknesses between 1 .mu.m and 50 .mu.m; depending on the design of the carburizing process. The order of the metals can be carried out, for example, electrolysis, CVD deposition or sputtering processes.

Alternativ kann das Material der Schutzschicht auch aus hochschmelzenden Verbindungen bestehen, die weder mit dem Tantal der Abgänge des Leuchtkörpers, noch mit der Kohlenstoff enthaltenden Atmosphäre der Lampe reagieren dürfen bzw. nicht in das Tantal eindiffundieren dürfen.Alternatively, the material of the protective layer can also consist of refractory compounds which must not react with the tantalum of the outlets of the filament, nor with the carbon-containing atmosphere of the lamp or may not diffuse into the tantalum.

Zum Beispiel sind HfB2, ZrB2, NbB2 und TiB2 mindestens bis zu 2800 K gegen eine Reaktion mit Kohlenstoff enthaltenden Verbindungen aus der Gasphase zu Karbiden stabil. Des weiteren sind die Verbindungen HfB2, ZrB2 und NbB2 über den gesamten hier relevanten Temperaturbereich gegen eine Reaktion mit Tantal stabil, hingegen setzt sich TiB2 mit Tantal zu TaB2 um (das dabei entstehende Titan hat ohnehin einen zu niedrigen Schmelzpunkt). Somit sind z.B. HfB2, ZrB2 und NbB2 mögliche Materialien für die benötigten Schutzschichten, da sie weder mit dem aus Tantal bestehenden Substrat noch mit der kohlenstoffhaltigen Atmosphäre der Lampe reagieren. In diesem Fall können relativ geringe Schichtdicken eingesetzt werden, welche bevorzugt im Bereich zwischen 0,5 µm und 5 µm liegen. Auch der Gebrauch von Tantalborid (ggf. zu Erreichen durch eine Borierung der Oberfläche) kann in Einzelfällen zweckmäßig sein, da das Tantalborid nicht mit dem Kohlenstoff in der Gasphase reagiert und zunächst das Bor in des Innere des Drahtes eindiffundieren muss, wodurch die weitere Diffusion des Kohlenstoffs hinreichend lange verzögert wird.For example, HfB 2 , ZrB 2 , NbB 2 and TiB 2 are stable to carbides at least up to 2800K against reaction with carbon containing compounds. Furthermore, the compounds HfB 2 , ZrB 2 and NbB 2 are stable over the entire temperature range of interest here to a reaction with tantalum, whereas TiB 2 reacts with tantalum to form TaB 2 (the resulting titanium has too low a melting point anyway). Thus, for example, HfB 2 , ZrB 2 and NbB 2 are possible materials for the required protective layers since they react neither with the tantalum substrate nor with the carbon-containing atmosphere of the lamp. In this case, relatively small layer thicknesses can be used, which are preferably in the range between 0.5 .mu.m and 5 .mu.m. The use of tantalum boride (possibly achieved by surface boronation) may be useful in some cases, since the tantalum boride does not react with the carbon in the gas phase and the boron must first diffuse into the interior of the wire, which further diffuses the Carbon is delayed sufficiently long.

Die Nitride HfN, ZrN, NbN, TiN, VN und TaN sind gegen eine Reaktion mit aus dem Methan stammenden Kohlenstoff zu Carbiden nur bis zu Temperaturen um ca. 1000 K oder darunter stabil. Insbesondere ZrN reagiert bis zu relativ hohen Temperaturen (ca. 1500 K) nicht mit dem Kohlenstoff in der Lampenatmosphäre, auch HfN (bis zu 1100 K beständig) ist relativ stabil. ZrN und HfN reagieren im fraglichen Temperaturbereich nicht mit Tantal zu TaN, d.h. Zirkoniumnitrid und Hafniumnitrid sind stabiler als Tantalnitrid. Hingegen können NbN und VN mit dem Tantal zu TaN reagieren; TiN zersetzt sich bei zu niedrigen Temperaturen um 2000 K. Somit sind die beiden Materialien HfN und ZrN bedingt als Material für Schutzüberzüge geeignet. Für die Umsetzung von HfN und ZrN bei hohen Temperaturen oberhalb ca. 1500 K zu den jeweiligen Karbiden wird eine bestimmte Reaktionszeit benötigt, welche - je nach Verfahrensführung bei der Karburierung und Dicke der aufgetragenen Schichten - hinreichend sein kann, um den darunterliegenden Bereich des Tantaldrahts vor einer Karburierung zu schützen. In analoger Weise kann auch eine Beschichtung des Tantaldrahts im fraglichen Bereich mit TaN in Einzelfällen hinreichend sein, um eine Karburierung des fraglichen Bereichs so zu verlangsamen, dass sie in der Praxis während der Karburierung des Leuchtkörpers keine Rolle spielt.The nitrides HfN, ZrN, NbN, TiN, VN and TaN are stable against reaction with methane-derived carbon to carbides only up to temperatures of about 1000K or below. In particular, ZrN reacts up to relatively high temperatures (about 1500 K) not with the carbon in the lamp atmosphere, also HfN (up to 1100 K resistant) is relatively stable. ZrN and HfN do not react with tantalum at TaN in the temperature range in question, ie zirconium nitride and hafnium nitride are more stable than tantalum nitride. On the other hand, NbN and VN can react with the tantalum to TaN; TiN decomposes at too low temperatures around 2000 K. Thus, the two materials HfN and ZrN are conditionally suitable as material for protective coatings. For the reaction of HfN and ZrN at high temperatures above about 1500 K to the respective carbides a certain reaction time is required, which - depending on the process in the carburization and thickness of the applied layers - may be sufficient to the underlying area of the tantalum wire before to protect a carburation. In an analogous manner, a coating of the tantalum wire in the range in question with TaN may in individual cases be sufficient to slow carburization of the region in question so that in practice it plays no role during the carburization of the luminous body.

Eine weitere Möglichkeit besteht im Gebrauch von Systemen aus zwei Schichtmaterialien. Z.B kann der Tantaldraht zunächst mit ZrN oder HfN beschichtet werden, die beide im Bereich der in Frage kommenden Temperaturen nicht mit Tantal reagieren. Die erste auf dem Tantal aufgetragene Schicht kann dann noch mit z.B. Rhenium, Osmium etc. beschichtet werden, die weder mit dem ZrN bzw. HfN noch mit dem Kohlenstoff aus der Lampenatmosphäre reagieren. Auf diese Weise lassen sich die jeweilig weniger erwünschten Eigenschaften der einzelnen Schichtsysteme - nämlich die Diffusion der Metalle Rhenium, Osmium usw. in das Tantal und die Reaktion von Zirkoniumnitrid und Hafniumnitrid zu den jeweiligen Karbiden - umgehen. Solche Systeme sind über relativ lange Zeiten stabil.Another possibility is the use of systems of two layer materials. For example, the tantalum wire may first be coated with ZrN or HfN, both of which do not react with tantalum in the range of temperatures in question. The first layer applied to the tantalum may then be further coated with e.g. Rhenium, osmium etc. are coated, which react neither with the ZrN or HfN still with the carbon from the lamp atmosphere. In this way, the respective less desirable properties of the individual layer systems - namely the diffusion of the metals rhenium, osmium, etc. into the tantalum and the reaction of zirconium nitride and hafnium nitride to the respective carbides - can be avoided. Such systems are stable for relatively long periods.

Weiterhin kann man den fraglichen Bereich des Tantaldrahts mit Bornitrid beschichten. Der Zerfall des Bornitrids mit anschließender Reaktion des Tantals zu Tantal(di)borid bzw. auch dem weniger stabilen Tantalnitrid schreitet meist so langsam voran, dass die Karburierung des Tantals hinreichend lange hinausgezögert wird. Analog kann man Borcarbid verwenden, bei dessen Zerfall bevorzugt das stabilere Tantal(di)borid entsteht und nicht das Tantalcarbid. Durch die für den Zerfall des Borcarbids, die Reaktion mit dem Tantal und die Diffusion der Boratome in das Innere des Tantals benötigte Zeit wird die Karburierung hinausgezögert.Furthermore, one can coat the relevant area of the tantalum wire with boron nitride. The decay of the boron nitride with subsequent reaction of the tantalum to tantalum (di) boride and also the less stable tantalum nitride proceeds usually progressing so slowly that the carburization of the tantalum is delayed for a sufficient amount of time. Similarly, one can use boron carbide, in its disintegration preferably the more stable tantalum (di) boride is formed and not the tantalum carbide. The time required for the decay of the boron carbide, the reaction with the tantalum and the diffusion of the boron atoms into the interior of the tantalum delay the carburization.

Ein Sonderfall oben beschriebener Beispiele stellt die Passivierung der Abgänge - welche vor der Carburierung aus Tantal bestehen - durch Borierung oder Nitridierung dar, wodurch beim anschließenden Karburierprozess die Karburierung im kritischen Temperaturbereich hinreichend lange verzögert bzw. unterbunden wird. In diesen Fällen wird keine Schutzschicht auf die Abgänge aufgetragen, sondern die Oberfläche durch chemische Reaktion des Tantal mit Bor oder Stickstoff "passiviert" bzw. die Geschwindigkeit der Karburierung hinreichend weit herabgesetzt.A special case of the examples described above is the passivation of the outlets - which consist of tantalum prior to carburization - by boriding or nitriding, whereby the carburization in the critical temperature range is delayed or prevented sufficiently long in the subsequent Karburierprozess. In these cases, no protective layer is applied to the outlets, but the surface "passivated" by chemical reaction of the tantalum with boron or nitrogen or the rate of carburization sufficiently low.

Ausführungsbeispiele für die zweite Ausführungsform: Embodiments for the second embodiment :

Die Abgänge des Leuchtkörpers werden in diesem Fall mit einer Schicht, deren Dicke bevorzugt im Bereich zwischen einem Zehntel und der Hälfte des Durchmessers des zu beschichtenden Tantaldrahtes liegt, beschichtet. Als Beschichtungsmaterialien kommen neben den bei der Beschreibung des Grundprinzips 1 genannten Metallen zusätzlich Wolfram, Molybdän, Hafnium, Zirkonium oder andere Karbide bildende Materialien in Betracht. Im einfachsten Fall besteht die Schutzschicht aus Tantal bzw. man verwendet von vorneherein im Bereich der Abgänge Tantaldrähte größeren Durchmessers als im Bereich des Leuchtkörpers.The outlets of the luminous element in this case are coated with a layer whose thickness is preferably in the range between one-tenth and one-half the diameter of the tantalum wire to be coated. In addition to the metals mentioned in the description of the basic principle 1, tungsten, molybdenum, hafnium, zirconium or other carbide-forming materials may additionally be considered as coating materials. In the simplest case, the protective layer consists of tantalum or one uses from the outset in the area of the outlets tantalum wires of larger diameter than in the area of the filament.

Die beschriebenen Vorgehensweisen lassen sich auch auf Lampen mit Karbiden anderer Metalle als Leuchtkörper wie Hafniumkarbid oder Zirkoniumkarbid oder Niobkarbid übertragen.The described procedures can also be applied to lamps with carbides of metals other than luminous bodies such as hafnium carbide or zirconium carbide or niobium carbide.

Figur 2 zeigt eine zweiseitig gequetschte Glühlampe 20, auch als Soffitte bekannt, mit einem Kolben aus Quarzglas 21, zwei Quetschung 24 und 25, Zuleitungen 27, die mit einem Leuchtkörper 26 verbunden sind. Der innere Durchmesser des Kolbens ist 15 mm. Der Leuchtkörper 26 ist einfach gewendelt und besteht aus TaC. Die Stromzuführungen 27 sind teilweise mit einer Beschichtung 30 aus Hafniumborid ummantelt und enden in Sockelteilen 28, wie an sich bekannt, die auf der Quetschung 24, 25 sitzen. FIG. 2 shows a two-sided squeezed incandescent lamp 20, also known as Soffitte, with a piston made of quartz glass 21, two pinch 24 and 25, leads 27, which are connected to a luminous element 26. The inner diameter of the piston is 15 mm. The luminous element 26 is simply coiled and consists of TaC. The power supply lines 27 are partially covered with a coating 30 of hafnium boride and terminate in base portions 28, as is well known, sitting on the pinch 24, 25.

Zusätzlich kann die Beschichtung bzw. ein Teil davon, der nicht die an der Beschichtung erreichte Spitzentemperatur umfasst, noch von einer Umhüllung aus Wendeldraht oder einer festen Hülse, beispielsweise aus Molybdän, umgeben sein, wie im Prinzip in DE-Az 10 2004 014 211.4 (noch nicht veröffentlicht) beschrieben.In addition, the coating or a part thereof, which does not comprise the peak temperature reached at the coating, nor be surrounded by a wrapping of helical wire or a solid sleeve, for example made of molybdenum, as in principle DE-Az 10 2004 014 211.4 (not yet published).

Im allgemeinen verwendet die Lampe bevorzugt einen Leuchtkörper aus Tantalcarbid, der bevorzugt aus einem einfach gewendelten Draht besteht.In general, the lamp preferably uses a filament of tantalum carbide, which preferably consists of a single-coiled wire.

Der Kolben ist aus Quarzglas oder Hartglas mit einem Kolbendurchmesser zwischen 5 mm und 35 mm, bevorzugt zwischen 8 mm und 15 mm, gefertigt.The piston is made of quartz glass or hard glass with a piston diameter between 5 mm and 35 mm, preferably between 8 mm and 15 mm.

Die Füllung ist hauptsächlich Inertgas, insbesondere Edelgas wie Ar, Kr oder Xe, ggf. unter Beimengung geringer Mengen (bis 15 mol-%) Stickstoff. Dazu kommt ein Kohlenwasserstoff, Wasserstoff und ein Halogenzusatz.The filling is mainly inert gas, in particular noble gas such as Ar, Kr or Xe, possibly with the addition of small amounts (up to 15 mol%) of nitrogen. Added to this is a hydrocarbon, hydrogen and a halogen additive.

Als Leuchtkörpermaterial, der bevorzugt ein gewendelter Draht ist, eignet sich auch Zirkoniumkarbid, Hafniumkarbid, oder eine Legierung verschiedener Karbide wie z.B. in US-A 3 405 328 beschrieben.Zirconium carbide, hafnium carbide, or an alloy of various carbides, such as, for example, in US Pat US-A 3 405 328 described.

Eine Alternative ist ein Leuchtkörper, der aus einem Trägermaterial wie z.B. einem Rheniumdraht als Kern oder auch einer Kohlenstofffaser besteht, wobei dieser Kern mit Tantalcarbid oder einem anderen Metallcarbid beschichtet ist, siehe hierzu die noch unveröffentlichte Anmeldung DE-Az 103 56 651.1 .An alternative is a luminous body, which consists of a support material such as a rhenium wire core or a carbon fiber, said core is coated with tantalum carbide or another metal carbide, see the unpublished application DE-Az 103 56 651.1 ,

Eine weitere Möglichkeit besteht darin, auf dem aus TaC bestehenden Leuchtkörper zunächst Kohlenstoff abzuscheiden, z.B. durch Erhitzen des TaC Leuchtkörpers in einer Atmosphäre mit einer hohen CH4-Konzentration. Auf dieser KohlenstoffSchicht wird dann Tantalcarbid abgeschieden. Z.B. kann in einem CVD-Prozess Tantal abgeschieden werden, welches dann entweder durch den umschlossenen Kohlenstoff und/oder von außen durch Erhitzen in einer z.B. CH4 enthaltenden Atmosphäre carburiert wird. Gegenüber der Beschichtung von z.B. Kohlenstofffasern hat dies den Vorteil, dass sich der TaC Leuchtkörper - ausgehend vom Tantal - leichter in beliebigen Formen herstellen lässt.Another possibility is to first deposit carbon on the luminous body consisting of TaC, for example by heating the TaC luminous body in an atmosphere with a high CH 4 concentration. Tantalum carbide is then deposited on this carbon layer. For example, tantalum can be deposited in a CVD process, which is then carburized either by the enclosed carbon and / or externally by heating in an atmosphere containing, for example, CH 4 . Compared to the coating of eg carbon fibers This has the advantage that the TaC filament - starting from the tantalum - can be easily produced in any shape.

Als elementare Regeln für die Füllung gilt ein Kohlenstoff-Anteil von 0,1 bis 5 mol%, insbesondere bis 2 mol-%. Der Wasserstoff-Anteil liegt bei mindestens dem Kohlenstoff-Anteil, bevorzugt dem Zwei- bis Achtfachen des Kohlenstoff-Anteils. Der Halogen-Anteil liegt bei höchstens dem Halben, insbesondere ein Fünftel bis ein Zwanzigstel, insbesondere bis ein Zehntel, des Kohlenstoff-Anteils. Bevorzugt sollte der Halogen-Anteil höchstens dem Wasserstoffanteil, bevorzugt höchstens dem Halben des Wasserstoffanteils entsprechen. Eine Richtschnur für den Halogenanteil ist 500 bis 5000 ppm. Alle diese Angaben beziehen sich auf einen Kaltfülldruck von 1 bar. Bei Änderungen des Drucks sind die einzelnen Konzentrationsangaben so umzurechnen, dass die absoluten Stoffmengen erhalten bleiben; z.B. halbieren sich alle Konzentrationsangaben in ppm bei einer Verdoppelung des Drucks.As elementary rules for the filling is a carbon content of 0.1 to 5 mol%, in particular up to 2 mol%. The hydrogen content is at least the carbon content, preferably two to eight times the carbon content. The halogen content is at most half, in particular one fifth to one twentieth, in particular to one tenth, of the carbon content. Preferably, the halogen content should at most equal to the hydrogen content, preferably at most half of the hydrogen content. A guideline for the halogen content is 500 to 5000 ppm. All these data refer to a cold filling pressure of 1 bar. If the pressure changes, the individual concentration data must be converted so that the absolute quantities of substance are retained; e.g. Halve all concentration data in ppm at a pressure doubling.

Konkrete Untersuchung werden für eine 24 V/100 W Lampe vorgestellt. Die Farbtemperatur ist 3800 K. Sie verwendet einen TaC-Draht (aus carburiertem Tantal gewonnen) mit einem Durchmesser von 125 µm. Er ist einfach gewendelt und zeigt ein deutlich besseres Bruchverhalten als Lampen mit unbeschichteten Abgängen. Die Bruchtests wurden mit einem Schlagpendel durchgeführt.Concrete examination will be presented for a 24 V / 100 W lamp. The color temperature is 3800 K. It uses a TaC wire (obtained from carburized tantalum) with a diameter of 125 μm. He is simply coiled and shows a much better fracture behavior than lamps with uncoated outlets. The fracture tests were carried out with a beater.

Dagegen ist eine ansonsten gleiche Lampe, die jedoch die üblichen steifen Elektrodenhalter aus Molybdän oder Wolfram verwendet, erheblich bruchanfälliger, weil bei Verwendung von massiven Mo-Haltern die Stellen das Leuchtkörpers nahe des Verbindungspunktes zwischen Mo-Elektrode und der zunächst aus Tantal bestehenden Wendel sich auf so niedriger Temperatur befinden, dass die Karburierung nicht abgeschlossen werden kann, d.h. dass das spröde Subcarbid dort dominiert. In diesem Falle wird man daher die an dem Mo- bzw. W-Halter befestigten Stromzuführungen zum Leuchtkörper mit einer in der oben beschriebenen Art die Karburierung des Leuchtkörpers unterbindenden Schicht überziehen, so dass an dieser Stelle kein Subcarbid entstehen kann, siehe Figur 4. Lediglich im Übergangsbereich zwischen dem beschichteten und dem unbeschichteten Teil tritt in geringen Maß Subcarbid auf. Allerdings wird die gesamte Bauform damit recht aufwendig.In contrast, an otherwise same lamp, but using the usual rigid electrode holder made of molybdenum or tungsten, considerably more susceptible to breakage, because when using massive Mo-holders, the locations of the filament near the junction between the Mo electrode and the initially made of tantalum coil on are located so low temperature that carburization can not be completed, ie that the brittle subcarbide dominates there. In this case, therefore, one will cover the power supply lines to the luminous element fastened to the Mo or W holder with a layer which prevents carburization of the luminous element in the manner described above, so that no subcarbide can be produced at this point, see FIG In the transition region between the coated and the uncoated part occurs to a small extent subcarbide. However, the entire design is quite expensive.

Hinzu kommt, dass die Elektroden, d.h. massiven Stromzuführungen aus meist Molybdän oder Wolfram, während des Lampenbetriebs langsam Kohlenstoff aus der Gasphase aufnehmen und somit als "Getter" für Kohlenstoff wirken, zumindest in den heißeren Bereichen nahe der Befestigung des Leuchtkörpers. Dadurch wird der Kreisprozess in der Lampe gestört; eine Rückführung von Kohlenstoff zum Leuchtkörper ist nicht mehr möglich. Um dies zu vermeiden bzw. die Kohlenstoffaufnahme wenigstens zu verzögern, empfiehlt es sich in den meisten Fällen, bei Verwendung dieser Konstruktion die Elektrode zumindest im Bereich höherer Temperaturen selber mit einer die Karburierung unterbindenden Schicht zu schützen. Z.B. können die Elektroden mit einer Schicht aus den oben genannten Metallen Rhenium, Osmium, Ruthenium, oder Iridium beschichtet werden. Alternativen stellen die Beschichtungen der Elektroden mit z.B. Hafniumborid, Zirkoniumborid und Niobborid dar. Da z.B. Molybdänborid stabiler ist als Molybdäncarbid, können die Elektroden durch Borierung von außen her passiviert werden. Eine weitere Möglichkeit besteht in der Beschichtung der Mo- oder W-Elektroden mit Nitriden wie Hafniumnitrid, Zirkoniumnitrid, Niobnitrid; diese Verbindungen werden zwar während der Carburierung bzw. im Lampenbetrieb langsam in Carbide umgewandelt, die dafür benötigte Zeit ist jedoch bei hinreichend dick gewählter Schichtdicke hinreichend groß. Auch eine vollständige Auslegung der massiven Stromzuführungen aus einem der genannten Metalle ist möglich.In addition, the electrodes, ie massive power supply of mostly molybdenum or tungsten, during lamp operation slowly carbon from the Gas phase record and thus act as a "getter" for carbon, at least in the hotter areas near the attachment of the filament. This disturbs the cycle in the lamp; a return of carbon to the lamp is no longer possible. In order to avoid this or at least to delay the carbon uptake, it is recommended in most cases, when using this construction, to protect the electrode itself, at least in the region of higher temperatures, with a layer which inhibits carburization. For example, the electrodes may be coated with a layer of the above metals rhenium, osmium, ruthenium, or iridium. Alternatives are the coatings of the electrodes with, for example, hafnium boride, zirconium boride and niobium boride. Since, for example, molybdenum boride is more stable than molybdenum carbide, the electrodes can be passivated by boron from the outside. Another possibility is the coating of the Mo or W electrodes with nitrides such as hafnium nitride, zirconium nitride, niobium nitride; Although these compounds are slowly converted into carbides during carburization or during operation of the lamp, the time required for this is sufficiently high given a sufficiently thick layer thickness. Even a complete design of the massive power supply of one of the metals mentioned is possible.

Mit Beschichtung versehene Leuchtkörper eignen sich für den Transport der Lampe unter üblichen Bedingungen. Bei anderen Konzepten ist der Leuchtkörper so bruchempfindlich, dass für den Transport der Lampe besondere Maßnahmen ergriffen werden müssten.Coated luminaires are suitable for transporting the lamp under normal conditions. In other concepts, the filament is so fragile that special measures would have to be taken for the transport of the lamp.

Das Verwerfen des Leuchtkörpers reduziert sich, je kürzer die Wendelabgänge gewählt werden. Ursache des Verwerfens ist die Volumenzunahme bei der Carburierung. Diese Zunahme macht sich insbesondere durch eine Zunahme der Länge bemerkbar. Es hat sich gezeigt, dass das störende Verwerfen nicht zu einer Verkippung innerhalb der Windungen des Leuchtkörpers führt, sondern dass der Leuchtkörper als Ganzes seitlich aus der axialen Lage kippt. Die Vermeidung des Verwerfens ist unbedingte Voraussetzung zur Nutzung von Interferenzfiltern auf dem Kolben im Sinne eines IRC-Coating, wie es an sich bekannt ist, siehe EP 765 528 .The discarding of the filament is reduced the shorter the filament outlets are selected. The cause of the discarding is the volume increase in the carburization. This increase is noticeable in particular by an increase in length. It has been shown that the disturbing discarding does not lead to a tilting within the turns of the filament, but that the filament as a whole tilts laterally out of the axial position. The avoidance of rejection is an unconditional prerequisite for the use of interference filters on the piston in the sense of an IRC coating, as is known per se, see EP 765 528 ,

Der Außendurchmesser bei der zusätzlichen Verwendung einer Hülse entspricht maximal dem Zweifachen des Durchmessers des Drahts des Leuchtkörper. Je dünner die Hülse, desto geringer ist ihr Gewicht.The outer diameter of the additional use of a sleeve corresponds to a maximum of twice the diameter of the wire of the lamp. The thinner the sleeve, the lower its weight.

In diesem Sinne versteht es sich von selbst, dass der Überzug möglichst eng anliegend direkt auf der Stromzuführung aufgebracht ist. Eine Beabstandung sowie zusätzliche Einbringung von Masse mittels einer noch in den Überzug eingeschobenen Stützhilfe in Form eines zusätzlichen Drahtes wie in US 3 355 619 ist jedoch nicht ausdrücklich ausgeschlossen. Einerseits kann dieser Zusatzdraht als zusätzliche Stützhilfe wirken. Andererseits können an den Wendelabgängen Zusatzstoffe bzw. der komplette Füllgaszusatz für den Füllgaskreisprozess in fester Form in die Lampe eingebracht werden, z.B. beschichtete Kohlenstofffaser oder Kunststofffaser aus halogenierten Kohlenwasserstoffverbindungen.In this sense, it goes without saying that the coating is applied as close as possible directly on the power supply. A spacing and additional introduction of mass by means of an inserted into the cover support aid in the form of an additional wire as in US 3,355,619 is not expressly excluded. On the one hand, this additional wire can act as an additional supportive aid. On the other hand, additives or the complete filling gas additive for the Füllgaskreisprozess can be introduced in solid form in the lamp at the Wendelabgängen, eg coated carbon fiber or plastic fiber of halogenated hydrocarbon compounds.

Für eine Lampe mit einem Durchmesser des Kolbens von 10 mm und einem Leuchtkörper aus TaC besteht eine ganz konkrete Füllung aus folgenden Komponenten: 1 bar (Kaltfülldruck) Kr + 1 % C2H4 + 1 % H2 + 0,05% CH2Br2 . Die Konzentrationsangaben sind mol-%.For a lamp with a 10 mm diameter bulb and a TaC luminous element, a very specific filling consists of the following components: 1 bar (cold filling pressure) Kr + 1% C 2 H 4 + 1% H 2 + 0.05% CH 2 Br 2 . The concentration data are mol%.

Auch wenn die Stromzuführungen und der Leuchtkörper integral aus einem Teil gefertigt sind, schließt dies nicht aus, dass das Material der Stromzuführungen Anteile des Metalls oder des Metallcarbids im Leuchtkörper in anderer Stöchiometrie aufweisen kann. Dieser Fall tritt insbesondere dann ein, wenn ein Beschichtungsmaterial wie Rhenium in einen Draht aus anderem Metall wie Tantal eindiffundiert.Even if the power supply lines and the luminous body are integrally made of one part, this does not exclude that the material of the power supply lines may have portions of the metal or of the metal carbide in the luminous element in a different stoichiometry. This case occurs in particular when a coating material such as rhenium diffuses into a wire of other metal such as tantalum.

Claims (21)

  1. Incandescent lamp having a carbide-containing luminous body (7) and having power supply lines (6), which hold the luminous body, a luminous body (7) being introduced in a vacuum-tight manner together with a filling in a bulb (2), the luminous body having a metal carbide whose melting point is above that of tungsten, the power supply lines being manufactured integrally with the luminous body from a wire, and at least part of the power supply line being surrounded by a coating (8), characterized in that the coating (8) on the power supply line (6) extends up to a point which is so close to the luminous body that the temperature of the uncoated part of the power supply line is at least 2000°C or above.
  2. Incandescent lamp according to Claim 1, characterized in that the luminous body consists of tantalum carbide at least at its surface, and in particular is a singly wound wire.
  3. Incandescent lamp according to Claim 1, characterized in that the bulb (2) consists of quartz glass or hard glass having a bulb diameter of between 5 mm and 35 mm, preferably between 8 mm and 15 mm.
  4. Incandescent lamp according to Claim 1, characterized in that the filling contains inert gas, in particular noble gas, possibly with an admixture of low quantities of nitrogen, and at least one hydrocarbon, hydrogen and at least one halogen additive.
  5. Incandescent lamp according to Claim 1, characterized in that the luminous body (7) is a singly wound wire, preferably having a diameter of from 50 to 300 µm, in particular up to 150 µm.
  6. Incandescent lamp according to Claim 1, characterized in that the thickness of the coating is a maximum of 1/4 of the diameter of the wire.
  7. Incandescent lamp according to Claim 1, characterized in that the coating consists of rhenium or osmium or iridium or ruthenium or mixtures thereof.
  8. Incandescent lamp according to Claim 6, characterized in that the coating consists of a boride of hafnium or of zirconium or of niobium or of tantalum or a mixture thereof.
  9. Incandescent lamp according to Claim 1, characterized in that the coating consists of a metal nitride, in particular hafnium nitride or zirconium nitride or tantalum nitride, or of a nonmetallic compound, in particular of boronitride or of borocarbide or of silicon carbide or a mixture thereof.
  10. Incandescent lamp according to Claim 1, characterized in that the power supply lines (6) are sealed off in one or two sealing parts of the bulb, the coating extending at least up to the boundary face of the sealing part.
  11. Incandescent lamp according to Claim 1, characterized in that the power supply lines (6) consist of metal, in particular tantalum, and the luminous body consists of metal carbide, in particular tantalum carbide, the power supply lines being provided with a coating which has been achieved by the power supply lines being passivated by a previously conducted chemical reaction of the metal up to a point which is so close to the luminous body that the temperature of the non-passivated part is at least 2000°C or above.
  12. Incandescent lamp according to Claim 11, characterized in that the coating consists of tantalum boride or tantalum nitride or a mixture thereof.
  13. Incandescent lamp according to Claim 1, characterized in that the thickness of the coating is at least 1/15 of the diameter of the wire of the power supply line.
  14. Incandescent lamp according to Claim 1, characterized in that the luminous body (7) consists of tantalum carbide, the coating consisting of the materials tungsten or molybdenum or hafnium or zirconium or tantalum or niobium or possibly carbides thereof.
  15. Incandescent lamp according to Claim 1, characterized in that the layer comprises a first coating, a second coating or casing being applied to the first coating which partially or completely covers the first coating.
  16. Incandescent lamp according to Claim 15, characterized in that the first layer applied to the power supply line does not react with the material of the power supply line, and the second layer, which is in contact with the filling, does not react with the filling, and the materials of the two layers do not react with one another and do not diffuse into one another, at least during the carburization period.
  17. Incandescent lamp according to Claim 15, characterized in that the first layer, which is applied directly to the power supply line, consists of zirconium nitride or hafnium nitride, and the second layer, which is in contact with the filling, consists of rhenium or osmium.
  18. Incandescent lamp according to Claim 1, characterized in that the power supply line to the luminous body is fixed to a further power supply line, which consists, for example, of W or Mo and has a considerably larger diameter, the so-called electrode, the power supply lines to the luminous body being coated over their entire length or only partially in the hotter regions close to the point at which the luminous body is fixed in a manner described in the preceding claims.
  19. Incandescent lamp according to Claim 18, characterized in that the electrode is coated on the surface with rhenium or osmium or ruthenium or iridium.
  20. Incandescent lamp according to Claim 18, characterized in that the electrode is coated on the surface with borides, such as, for example, hafnium boride or niobium boride or zirconium boride or nitrides, such as hafnium nitride, niobium nitride or zirconium nitride.
  21. Incandescent lamp according to Claim 18, characterized in that the electrode is passivated on the surface, in particular by means of boriding.
EP05763639A 2004-07-19 2005-07-06 Light bulb containing an illumination body that contains carbide Not-in-force EP1769526B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004034786A DE102004034786A1 (en) 2004-07-19 2004-07-19 Incandescent lamp with carbide-containing filament
PCT/DE2005/001198 WO2006007814A1 (en) 2004-07-19 2005-07-06 Light bulb containing an illumination body that contains carbide

Publications (2)

Publication Number Publication Date
EP1769526A1 EP1769526A1 (en) 2007-04-04
EP1769526B1 true EP1769526B1 (en) 2009-12-30

Family

ID=34972945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05763639A Not-in-force EP1769526B1 (en) 2004-07-19 2005-07-06 Light bulb containing an illumination body that contains carbide

Country Status (8)

Country Link
US (1) US20080012488A1 (en)
EP (1) EP1769526B1 (en)
JP (1) JP4571976B2 (en)
CN (1) CN100583387C (en)
AT (1) ATE453925T1 (en)
CA (1) CA2573622A1 (en)
DE (2) DE102004034786A1 (en)
WO (1) WO2006007814A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977798B1 (en) 2011-07-13 2016-07-29 Urgo Lab USE OF OLIGOSACCHARIDE COMPOUNDS FOR THE PREVENTION AND TREATMENT OF PATHOLOGICAL SCARS
JP6487621B2 (en) * 2014-01-22 2019-03-20 スタンレー電気株式会社 Infrared light source
FR3043556B1 (en) 2015-11-17 2020-01-10 Urgo Recherche Innovation Et Developpement USE OF OLIGOSACCHARIDE COMPOUNDS TO ACTIVATE ANGIOGENESIS
FR3060392B1 (en) 2016-12-19 2019-07-12 Urgo Recherche Innovation Et Developpement USE OF OLIGOSACCHARIDE COMPOUNDS TO ACTIVATE EPIDERMIZATION
FR3066390B1 (en) 2017-05-17 2019-07-12 Urgo Recherche Innovation Et Developpement USE OF OLIGOSACCHARIDE COMPOUNDS FOR TREATING WOUNDS OF ARTERIOPATIC DIABETIC PATIENTS
FR3113583A1 (en) 2020-08-26 2022-03-04 Urgo Recherche Innovation Et Developpement USE OF OLIGOSACCHARIDIC COMPOUNDS TO INCREASE SKIN OXYGENATION DURING THE TREATMENT OF ISCHEMIC WOUNDS
FR3117012A1 (en) 2020-12-07 2022-06-10 Urgo Recherche Innovation Et Developpement TOPICAL USE OF METFORMIN TO REDUCE INFLAMMATION IN THE SKIN

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1925857A (en) * 1930-01-22 1933-09-05 Gen Electric Electric incandescent lamp
NL260575A (en) * 1960-01-29
NL6513874A (en) * 1965-10-27 1967-04-28
US3405328A (en) * 1966-03-02 1968-10-08 Westinghouse Electric Corp Incandescent lamp with a refractory metal carbide filament
US3524693A (en) * 1967-08-17 1970-08-18 Tokyo Shibaura Electric Co Method for assembling a carbide filament incandescent lamp
JPS5281975A (en) * 1975-12-29 1977-07-08 Iwasaki Electric Co Ltd High-melting point carbide filament
DE3610922A1 (en) * 1986-03-24 1987-10-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh HALOGEN BULB
JPH01175162A (en) * 1987-12-28 1989-07-11 Alps Electric Co Ltd Filament for lamp
US5021711A (en) * 1990-10-29 1991-06-04 Gte Products Corporation Quartz lamp envelope with molybdenum foil having oxidation-resistant surface formed by ion implantation
EP0573114B1 (en) * 1992-06-05 1997-01-22 Koninklijke Philips Electronics N.V. Electric lamp
JPH07296783A (en) * 1994-04-27 1995-11-10 Toshiba Lighting & Technol Corp Vehicle use halogen bulb, and headlight using it
DE4420607A1 (en) * 1994-06-13 1995-12-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Electric incandescent lamp and filament for incandescent lamps
JPH08185831A (en) * 1994-12-28 1996-07-16 Matsushita Electron Corp Bulb
MXPA02001858A (en) * 1999-08-22 2004-03-10 Ip2H Ag Light source.
DE10218412A1 (en) * 2002-04-24 2003-11-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Melting film and associated lamp with this film
DE102004014211A1 (en) * 2004-03-23 2005-10-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Incandescent lamp with carbide-containing filament

Also Published As

Publication number Publication date
DE102004034786A1 (en) 2006-03-16
DE502005008792D1 (en) 2010-02-11
EP1769526A1 (en) 2007-04-04
JP2008507099A (en) 2008-03-06
WO2006007814A1 (en) 2006-01-26
CN100583387C (en) 2010-01-20
CN1989590A (en) 2007-06-27
ATE453925T1 (en) 2010-01-15
CA2573622A1 (en) 2006-01-26
JP4571976B2 (en) 2010-10-27
US20080012488A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
EP1769526B1 (en) Light bulb containing an illumination body that contains carbide
EP1594158A2 (en) Incandescent lamp with a luminous body which contains carbides
EP3929325A1 (en) Method for producing a physical vapor deposition (pvd) target for crtan coatings and crta target obtained thereby
EP0602529A2 (en) High-pressure discharge lamp having a ceramic discharge vessel
EP2022870A2 (en) Layer system for creating a surface layer on a surface of a substrate, vaporisation source for manufacturing a layer system
EP1690281A2 (en) Incandescent lamp comprising a carbon cycle
DE3002033C2 (en) Sintered electrode for a discharge tube
DE3132237A1 (en) "THERMOCOUPLE FOR TEMPERATURE MEASUREMENT AND METHOD FOR PRODUCING THE SAME"
WO2006060995A2 (en) Light bulb comprising an illumination body, which contains a metal compound that is stable at high temperature
EP1774601A1 (en) Superconducting conductor element with reinforcement
DE19822841B4 (en) Ozonizer and method of making such
EP1776713A2 (en) Light source and method for mechanically stabilizing the filament or electrode of a light source
EP1769527A1 (en) Light bulb comprising an illumination body that contains carbide
DE102005038551B3 (en) Wire and frame for single-ended lamps based on niobium or tantalum, as well as manufacturing process and use
EP2009134B1 (en) Layer system for creating a surface layer on a surface of a substrate, vaporisation source for manufacturing a layer system
EP2013896B1 (en) Halogen incandescent lamp having a carbide-containing luminous element
WO2010100116A1 (en) Method for depositing a coating
DE2362870C3 (en) Zirconium-containing solder joint, process for its manufacture and use of the same
AT15991U1 (en) High-temperature component
EP1958238B1 (en) Metal halide lamp
WO2007063008A2 (en) Halogen light bulb comprising a carbide-containing filament
EP1958226B1 (en) Metal halid lamp and method of manufacturing said lamp
DE1035798B (en) Waveguide operated in a vacuum
DE2202827C3 (en) Grid electrode for electrical discharge vessels and process for their production
WO2011045219A2 (en) Halogen incandescent bulb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070510

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005008792

Country of ref document: DE

Date of ref document: 20100211

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100430

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100430

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E007669

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20100917

Year of fee payment: 6

Ref country code: NL

Payment date: 20100706

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100720

Year of fee payment: 6

Ref country code: DE

Payment date: 20100920

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100706

BERE Be: lapsed

Owner name: OSRAM G.M.B.H.

Effective date: 20110731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008792

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230