EP1768776A2 - Traitement d'effluents gazeux par plasma a pression atmospherique - Google Patents

Traitement d'effluents gazeux par plasma a pression atmospherique

Info

Publication number
EP1768776A2
EP1768776A2 EP05789918A EP05789918A EP1768776A2 EP 1768776 A2 EP1768776 A2 EP 1768776A2 EP 05789918 A EP05789918 A EP 05789918A EP 05789918 A EP05789918 A EP 05789918A EP 1768776 A2 EP1768776 A2 EP 1768776A2
Authority
EP
European Patent Office
Prior art keywords
gas
gas mixture
injection
mixture
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05789918A
Other languages
German (de)
English (en)
Inventor
Yassine C/O L'AIR LIQUIDE S.A. KABOUZI
Michel Moisan
Jean-Christophe Rostaing
Daniel Guerin
Hervé Dulphy
Pascal Moine
Valere Laurent
Bruno Depert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0451527A external-priority patent/FR2873045B1/fr
Priority claimed from FR0552063A external-priority patent/FR2888130A1/fr
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1768776A2 publication Critical patent/EP1768776A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/089Liquid-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a process for converting a first gas or gas mixture comprising at least some molecules having at least one bond between two atoms constituting said molecules into a second gas or gas mixture, optionally containing liquid products and / or or solids resulting from this transformation, in which at least one bond between two atoms of said molecules is broken under the action of an electric and / or magnetic field to which said first gas or gas mixture is subjected
  • Plasmas are particularly applied to the depollution of the discharges emitted by the deposition and etching processes of thin layers for the manufacture of semiconductors.
  • These effluents (perfluorinated gases, corrosive halogens, gaseous hydrides, organometallic precursors, etc.) occur at the outlet of the primary vacuum pumps with relatively high concentrations in a flow of 15 to 60 liters of nitrogen for each pump.
  • microwave discharges at atmospheric pressure are preferable to others because of their high electron density (10 12 to 10 15 cm -3 ) to induce a large number of dissociative inelastic collisions.
  • a characteristic of atmospheric microwave plasmas is the relatively high average energy taken by heavy particles (neutrons and ions).
  • the temperature of the gas can indeed reach 3000 to 7000 K in the region of the axis of the dielectric chamber containing the discharge.
  • the wall of this enclosure (for example a dielectric tube) must remain at a higher temperature. bass compatible with his physical integrity.
  • it is preferably cooled by the circulation in contact with a heat transfer dielectric fluid. There is therefore a radial temperature gradient decreasing from the axis to the periphery. As the temperature decreases, the density of the gas increases, the ionization is less likely and the recombination of the charged particles is favored.
  • the electron density decreases at the same time as the temperature of the axis of the tube towards the periphery.
  • the light intensity of the discharge fades away from the axis.
  • the electronic density becomes very low for an axial position less than the radius of the tube and the discharge no longer fills the section of the latter. It is said that the discharge is contracted.
  • This radial distribution decreasing towards the periphery of the electron density depends in particular on the operational parameters of the plasma: nature and concentrations of the different pollutant gases in the nitrogen, total flow, microwave power. It also depends on previously fixed parameters such as the internal diameter of the discharge tube, and the nature of the material constituting it (especially via the thermal conductivity).
  • the radial distribution of electronic density and temperature of the gas influences the heat exchange relationship between the gaseous medium and the tube wall, and thereby the reliability of the latter. It has been found that certain gases such as helium and hydrogen, based on nitrogen concentrations of the order of a percent, have the effect of promoting the radial expansion of the discharge and thus increasing the temperature. gas in the vicinity of the wall of the tube. Thus the aging of the latter by thermal effect is accentuated. It has also been found that other gases have the opposite effect and favor the radial contraction of the discharge. In this case, it is generally observed that the plasma does not remain constantly centered on the axis, but moves randomly in the section of the tube.
  • the plasma When the plasma is decentered and is close to the wall of the tube, it is temporarily exposed to a very high gas temperature and the action of electrons out of thermodynamic equilibrium, even higher energy.
  • the limiting case is when the plasma is one or more very dense filaments which, if they come into contact for a sufficient time of the wall, induce extreme localized stresses on the latter. There is then a risk of rupture of the wall by thermomechanical overload, of specific erosion of the tube wall by the high-energy fluorinated species, and also of carbonization of the cooling dielectric fluid on the outer surface of the tube opposite the point plasma contact on the wall.
  • a first solution for this type of problem is to use a tube of very high performance material such as aluminum nitride, with which this phenomenon of degradation becomes extremely rare without it being impossible to predict the occurrence, however .
  • the parameters governing the phenomenon of contraction and filamentation are generally imposed by the characteristics of the recipes of the user's processes that can implement various halogenated gases, a plasma gas such as argon and various adjuvants such as helium , hydrogen or other chemical additives, or even heavy rare gases, all in very variable proportions and generally not known.
  • a plasma gas such as argon
  • various adjuvants such as helium , hydrogen or other chemical additives, or even heavy rare gases
  • the existence of a radial plasma density gradient also plays a large role in limiting the performance of effluent destruction systems.
  • the peripheral zone of the enclosure is colder and depleted in electrons. Therefore, the dissociation of the pollutant gas molecules is less likely in this peripheral zone than in the central zone and their reformation from their fragments is favored (because of the relatively high absolute concentrations).
  • a molecule of polluting gas passing through the enclosure while remaining in this low energy peripheral zone has a much lower probability of being dissociated than if it transited near the axis. It could be envisaged that said molecule, during its course, migrates towards the warmer central zone by diffusion, convection or turbulence.
  • the plasma column is relatively short and the flow rate is relatively high, taking into account the total flow of nitrogen at the outlet of the primary pumps, so that these processes of exchange of material have little time to be fulfilled.
  • the invention also relates to gas generators such as fluorine F 2 obtained by cracking in a plasma of a molecule such as NF 3 .
  • gas generators such as fluorine F 2 obtained by cracking in a plasma of a molecule such as NF 3 .
  • the process according to the invention is characterized in that the flow of gas or mixture of gases is injected through the electric and / or magnetic field in a non-rectilinear manner so as to increase the length traveled by the gas molecules through said field. and thus increase the destruction efficiency of the gas molecules or gas mixture.
  • the gas or gas mixture is injected into the field with a tangential amount of movement of the gas or gas mixture greater than the amount of axial movement of said gas or gas mixture; more preferably, the tangential momentum is much greater than the amount of axial movement.
  • At least a portion of the gas or gas mixture is injected with a tangential component of velocity in a cavity, preferably tubular before being subjected to the action of the electric and / or magnetic field.
  • the gas or gas mixture is injected via a plurality of injection having a tangential component.
  • the tangential injections are regularly distributed over the circumference.
  • the injections or gas mixtures are all located in the same plane; or the injections are located in different planes.
  • the injections that are located in the same plane are regularly distributed in this plane.
  • At least one plane comprises only one injection; and / or at least one plane comprises two injections at 180 °; and / or at least one plane comprises three injections at 120 °; and / or at least one plane comprises four injections at 90 °.
  • the injection plane or planes are perpendicular to the axis of the tube or cavity subjected to the field.
  • at least one of the injections is carried out through an orifice oriented so as to give a velocity component of the injected gases parallel to the desired flow direction for the gases to or in the cavity.
  • a gaseous injection into a cavity in particular a tubular cavity, which, in use, is arranged generally vertically, the gas flowing from the top to the bottom, it will be preferable, in certain cases, to make this injection not possible. not horizontally, but in a direction inclined downwards with respect to the vertical axis of the cavity, at an angle which may vary between 0 ° and 90 °, preferably between 20 ° and 70 °, more preferably around 45 °.
  • the operating conditions of the plasma devices situated at the outlet of the pumps of the etching and deposition reactors must, in general, be able to absorb a total input flow rate greater than 80 liters per minute. (slm) when the exhausts of several etching chambers are simultaneously connected to the depollution unit and operate simultaneously.
  • the gas is then essentially nitrogen.
  • the total power required must generally be greater than 3 kW and cooling of the outer wall of the cavity, in particular of the discharge tube, is provided.
  • the implementation of the invention generally allows the establishment of a system of hydrodynamic forces that tend to maintain axial symmetry of the system and prevent a random disturbance including electromagnetic or thermal nature does away with the plasma of the axial position.
  • the flow of the fluid according to the invention makes it possible to considerably lengthen the path of the gas in the active zone by impressing the flow preferably with a helical movement (when using an axially symmetrical cavity), and also by promoting the exchange of matter by turbulence between high and low energy zones of the plasma.
  • the gas injection will preferably be tangential and carried out by means of one or more channels formed in the flange for connecting the duct for supplying the flue gas stream upstream of the discharge tube.
  • this gaseous motor flow used to obtain such a movement can be reduced to the aforementioned gaseous effluents from the exhaust of the primary pump.
  • the tangential momentum of the gas is preferably substantially larger than its axial counterpart. This involves providing tangential inlet channels of the gas at the tube supply connection which are each of a section substantially smaller than the diameter of the discharge tube. This adds a significant component to the pressure drop of the device, which must not reach a value such that the total overpressure at the exhaust of the primary pump exceeds the practical limit allowed.
  • effluent treatment systems are generally operated with variable capacity often continuously with one to four process reactors discharging at a time.
  • the diameter of the gas injection channels will be adapted to the treated flow.
  • the operation of a system for treating plasma effluents, in particular microwaves generally requires the addition of one or more reactive auxiliary gases, for example air, oxygen, water vapor, etc., brought for example in the form of compressed air.
  • one or more reactive auxiliary gases for example air, oxygen, water vapor, etc.
  • This additional air flow can come from the distribution network of the semiconductor manufacturing plant, under a pressure of several bars. It is therefore perfectly usable on small diameter orifices.
  • the additional dilution introduced is largely offset by the increase in the specific efficacy of destruction of pollutants induced by the presence of the gas flow according to the invention, in particular the helical movement of these gases.
  • the injection system can take many forms. Tangential channels can lead to one level or many.
  • the gas supply upstream of the injection channels (flow division) is arranged, in a manner known per se, so as not to add significant pressure drop.
  • the gas injection device 1 has been modified with respect to the devices described in US Pat. No. 5,965,786 in which there was, for example, a single tangential injection of gas made in a lateral cylindrical opening of diameter substantially equal to that of the dielectric tube 5 where the plasma is produced (by means not shown in the figure).
  • the injections of gas to be treated are carried out according to this example through the part 2 according to four orifices. Injection 7, 8, 9 and 10 ( Figures 1 and 2) located in a plane perpendicular to X-X '. These orifices are respectively extended by pipes respectively 11, 12, 13 and 14 to join the gas injection cavity 4.
  • the process gas it is also possible to inject the process gas to be destroyed in the plane BB, but it is preferable to inject air, nitrogen, optionally an oxidizing gas favoring a reaction with the destroyed and under pressure molecules, preferably (between 1 and 10 x 10 5 Pa). All injection orientations of the different gases are possible, in particular orientations that were not made in a plane perpendicular to the axis of the tube, but at an angle less than 90 ° (co-current) or greater than 90.degree. (countercurrent), ... etc.
  • the preliminary division of the total flow to feed the 4 channels 7, 8, 9 and 10 in the example in a uniform manner is usually done from a uniformization chamber (not shown) in which the gas flows are mixed. and whose conditions are becoming standardized, in which the main line opens out from the exhausts of the pumps. From this chamber depart in a relatively symmetrical manner four derived pipes. As much as possible, the input flow and the divided output flows of this chamber must be parallel so as not to add losses.
  • FIG. 4 shows the evolution of the destruction rate of SF 6 as a function of the microwave power (net) supplied to the plasma, as well as the total pressure drop between the gas inlet in the uniformization chamber and the leaving the gases after cooling in a heat exchanger (not shown in the figure) for cooling the gas exiting downstream of the dielectric tube where the discharge takes place.
  • a destruction rate of 90% is obtained at a power of 3000 W, and a destruction rate of 99% to 3500 W.
  • the pressure drop remains perfectly within the limits prescribed for industrial operation, with a certain margin for the case of unanticipated fluctuations that could result from certain operating conditions.
  • auxiliary injection channels 22, 23 to provide an additional driving force for the maintenance of the helical movement of the gas, by increasing the additional flow rate of air or nitrogen to a total flow of 50 slm for example:
  • Figure 5 shows the evolution of the destruction rate and the pressure drop as a function of the net microwave power, in the first case above (20 +
  • FIG. 6 shows a single-stage dynamic injection head comprising a uniformization chamber 101 for the pressure of the gas or gas mixture.
  • the gas to be treated is injected via channel 100 into chamber 101 where the pressure of the gas is equalized.
  • This chamber is delimited as a cylindrical ring 101 surrounding the tube 105 in which the gases to be treated are injected via the injections 106 through the body 108 which surrounds the upper part of the tube 105 and the ignition electrode electrode block 104 which passes through the cover 102 of the chamber 101 and the chamber body 103.
  • the lower part of the tube 105 widens at 107 to fit on the dielectric tube (not shown).
  • FIG. 7 shows a two-stage dynamic injection head on which the same elements as those of FIG. 6 bear the same references.
  • the injections of gas to be treated are through the orifices 201 on the upper part, while the injections of auxiliary gas (nitrogen, argon) are through the "low" orifices 203 in communication with the pressure uniformization chamber 205, powered via channel 204.
  • auxiliary gas nitrogen, argon
  • the dynamic injection head is installed directly to the vertical of the ceramic tube in which the plasma is established.
  • the head described in FIGS. 6 and 7 gives the gases a circular motion with a downward displacement coaxial with the tube so that the created plasma does not accidentally stick to the wall and is far enough away to provide enhanced protection for the plasma.
  • the ceramic tube thus protected (5) is reduced thermal load by 25 to 35%, which results in a significantly lower coolant temperature than in the absence of circular downward movement of the gases.
  • the oil of the cooling system does not degrade in contact with the hot ceramic wall (the absence of carbon deposit on the outer wall of the tube (oil side) testifies to the effectiveness of the device and the homogeneity of the " skin temperature "of the tube)
  • the frequency of the preventive maintenance of the apparatus could be reduced.
  • the total flow must be continuously adjusted by adding a complementary flow of nitrogen to another neutral gas (from 0 to 50 l / m) (the flow rate is calculated according to of the number of rooms to be treated, several rooms being connected in parallel on the system).
  • the sum of the flows of the primary pumps to be treated and the additional nitrogen must be greater than the minimum operating flow rate of the plasma, which in all cases can not be less than 2 l / min.
  • the invention described above is not limited to surface wave plasmas but concerns any atmospheric microwave plasma maintained in a cavity, in particular a dielectric tube, whether from a resonant cavity or at the inside a microwave circuit, for example in a hollow rectangular guide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Procédé de transformation d'un gaz ou mélange de gaz et notamment d'effl uent gazeux fluorés, dans lequel au moins une liaison entre deux atomes d'au moins une molécule dudit gaz ou mélange de gazeux est rompue sous l'action d'un champ électrique et/ou magnétique auquel est soumis ledit gaz ou mélange de gaz. Le flux de gaz ou mélange de gaz est injecté à travers le champ électrique et/ou magnétique de manière non rectiligne afin d'augmenter la longueur parcourue par les molécules de gaz au travers dudit champ et ainsi augmenter l'efficacité de transformation des molécules de gaz ou mélange de gaz.

Description

Traitement d'effluents gazeux par plasma à pression atmosphérique
La présente invention concerne un procédé de transformation d'un premier gaz ou mélange de gaz comportant au moins certaines molécules ayant au moins une liaison entre deux atomes constituant lesdites molécules, en un deuxième gaz ou mélange de gaz, contenant éventuellement des produits liquides et/ou solides issus de cette transformation, dans lequel au moins une liaison entre deux atomes desdites molécules est rompue sous l'action d'un champ électrique et/ou magnétique auquel ledit premier gaz ou mélange de gaz est soumis
Un procédé de ce type dans son application de destruction d'effluents est connu notamment de US-A-5, 965,786.
Les plasmas sont notamment appliqués à la dépollution des rejets émis par les procédés de dépôt et gravure de couches minces pour la fabrication des semi¬ conducteurs. Ces effluents (gaz perfluorés, halogènes corrosifs, hydrures gazeux, précurseurs organométalliques...) se présentent à l'échappement des pompes à vide primaires avec des concentrations relativement élevées dans un flux de 15 à 60 litres d'azote pour chaque pompe. Pour convertir la plus grande partie de ces quantités importantes de molécules nuisibles, les décharges micro-ondes à la pression atmosphérique sont préférables à d'autres en raison de leur densité électronique élevée (1012 à 1015 cm"3) permettant d'induire un grand nombre de collisions inélastiques dissociatives.
Une caractéristique des plasmas micro-ondes atmosphériques est l'énergie moyenne relativement élevée prise par les particules lourdes (neutres et ions). La température du gaz peut en effet atteindre de 3000 à 7000 K dans la zone de l'axe de l'enceinte diélectrique contenant la décharge. La paroi de cette enceinte (par exemple un tube diélectrique) doit quant à elle demeurer à une température plus basse compatible avec son intégrité physique. Aussi est-elle de préférence refroidie par la circulation à son contact d'un fluide diélectrique caloporteur. Il existe donc un gradient radial de température décroissant de l'axe vers la périphérie. Lorsque la température diminue, la densité du gaz augmente, l'ionisation est moins probable et la recombinaison des particules chargées est favorisée. Ainsi la densité électronique décroît en même temps que la température de l'axe du tube vers la périphérie. Visuellement, on a constaté que l'intensité lumineuse de la décharge s'atténue lorsqu'on s'éloigne de l'axe. Dans certains cas, la densité électronique devient très faible pour une position axiale inférieure au rayon du tube et la décharge ne remplit plus la section de ce dernier. On dit alors que la décharge est contractée.
La forme de cette distribution radiale décroissante vers la périphérie de la densité électronique dépend notamment des paramètres opérationnels du plasma : nature et concentrations des différents gaz polluants dans l'azote, débit total, puissance micro-ondes. Elle dépend aussi de paramètres fixés au préalable comme le diamètre interne du tube à décharge, et la nature du matériau le constituant (via notamment la conductivité thermique).
On conçoit que la répartition radiale de densité électronique et de température du gaz influence la relation d'échange thermique entre le milieu gazeux et la paroi du tube, et par là-même la fiabilité de cette dernière. On a constaté que certains gaz comme l'hélium et l'hydrogène, à partir de concentrations dans l'azote de l'ordre du pour cent, ont pour effet de favoriser l'expansion radiale de la décharge et donc d'augmenter la température du gaz au voisinage de la paroi du tube. Ainsi le vieillissement de ce dernier par effet thermique est accentué. On a également constaté que d'autres gaz ont l'effet inverse et favorisent la contraction radiale de la décharge. Dans ce cas, on observe généralement que le plasma ne reste pas constamment centré sur l'axe, mais se déplace de manière aléatoire dans la section du tube. Lorsque le plasma se décentre et se rapproche de la paroi du tube, celle-ci est exposée temporairement à une température de gaz très élevée ainsi qu'à l'action d'électrons hors d'équilibre thermodynamique, d'énergie encore plus haute. Le cas limite est celui où le plasma se présente comme un ou plusieurs filaments très denses qui, s'ils viennent en contact pendant un temps suffisant de la paroi, induisent des contraintes localisées extrêmes sur cette dernière. Il y a alors risque de rupture de la paroi par surcharge thermomécanique, d'érosion ponctuelle de la paroi du tube par les espèces fluorées de haute énergie, et également de carbonisation du fluide diélectrique de refroidissement sur la surface externe du tube en regard du point de contact du plasma sur la paroi. Une première solution pour ce type de problèmes consiste à utiliser un tube de matériau à très hautes performances comme le nitrure d'aluminium, avec lequel ce phénomène de dégradation devient extrêmement rare sans qu'il soit impossible d'en prévoir l'occurrence, cependant. Notamment, les paramètres gouvernant le phénomène de contraction et de filamentation sont généralement imposés par les caractéristiques des recettes des procédés de l'utilisateur qui peuvent mettre en œuvre des gaz halogènes divers, un gaz plasmagène comme l'argon et différents adjuvants comme l'hélium, l'hydrogène ou d'autres additifs chimiques, voire des gaz rares lourds, tout cela dans des proportions très variables et généralement non connues. Comme de plus le phénomène de contact du plasma et de la paroi est lui- même totalement aléatoire, il est donc très difficile de se prémunir contre ces phénomènes qui induisent un risque d'avarie de fonctionnement et donc de sécurité de l'installation.
Par ailleurs, l'existence d'un gradient radial de densité du plasma joue également un grand rôle dans la limitation des performances des systèmes de destruction d'effluents. En effet, la zone périphérique de l'enceinte est plus froide et appauvrie en électrons. Par conséquent, la dissociation des molécules de gaz polluants est moins probable dans cette zone périphérique que dans la zone centrale et leur reformation à partir de leurs fragments est favorisée (du fait que l'on se trouve à des concentrations absolues relativement élevées). Une molécule de gaz polluant traversant l'enceinte en restant dans cette zone périphérique de basse énergie a une probabilité beaucoup plus faible d'être dissociée que si elle transitait près de l'axe. On pourrait envisager que ladite molécule, au cours de son parcours, migre vers la zone centrale plus chaude par diffusion, convection ou turbulence. Toutefois, dans l'azote, la colonne de plasma est relativement courte et la vitesse de passage relativement élevée si l'on tient compte du débit total d'azote en sortie des pompes primaires, de sorte que ces processus d'échange de matière n'ont guère le temps de s'accomplir.
L'invention concerne également les générateurs de gaz tels que le fluor F2 obtenus par craquage dans un plasma d'une molécule telle que NF3. Un tel procédé et le générateur associés sont décrits dans la demande internationale PCT/FR05/01652 déposée le 29 juin 2005 au nom de la Demanderesse et dont le texte est incorporé dans la présente demande à titre de référence. L'invention permet notamment de répondre aux problèmes posés par les plasmas micro-ondes dans une enceinte, notamment un tube :
- d'une part, en s'opposant aux variations de diamètre et aux décentrages axiaux aléatoires du plasma pour améliorer l'endurance et la fiabilité du tube à décharge.
- d'autre part, en forçant les molécules de gaz polluants à effectuer un parcours notablement plus long dans les zones denses du plasma afin de mieux utiliser l'excès d'espèces actives disponibles en moyenne dans le système, et ainsi d'augmenter l'efficacité de conversion ramenée à la puissance injectée.
Le procédé selon l'invention est caractérisé en ce que le flux de gaz ou mélange de gaz est injecté à travers le champ électrique et/ou magnétique de manière non rectiligne afin d'augmenter la longueur parcourue par les molécules de gaz au travers dudit champ et ainsi augmenter l'efficacité de destruction des molécules de gaz ou mélange de gaz.
De préférence, le gaz ou mélange de gaz est injecté dans le champ avec une quantité de mouvement tangentielle du gaz ou mélange de gaz supérieure à la quantité de mouvement axiale dudit gaz ou mélange de gaz ; plus préférentiel lement, la quantité de mouvement tangentielle est très supérieure à la quantité de mouvement axiale.
Selon un aspect de l'invention, au moins une partie du gaz ou mélange de gaz est injectée avec une composante tangentielle de vitesse dans une cavité, de préférence tubulaire avant d'être soumise à l'action du champ électrique et/ou magnétique. De préférence, le gaz ou mélange de gaz est injecté par l'intermédiaire d'une pluralité d'injection comportant une composante tangentielle.
Selon une variante préférentielle, les injections tangentielles sont régulièrement réparties sur la circonférence. Différentes variantes de réalisation sont possibles et notamment : les injections ou mélanges de gaz sont toutes situées dans le même plan ; ou les injections sont situées dans différents plans.
Les injections qui sont situées dans un même plan sont régulièrement réparties dans ce plan.
Selon une variante de réalisation : au moins un plan ne comporte qu'une injection ; et/ou au moins un plan comporte deux injections à 180° ; et/ou au moins un plan comporte trois injections à 120° ; et/ou au moins un plan comporte quatre injections à 90°.
En général, le ou les plans d'injection sont perpendiculaires à l'axe du tube ou de la cavité soumis au champ. Cependant, selon une variante de l'invention, au moins une des injections est réalisée au travers d'un orifice orienté de manière à donner une composante de vitesse des gaz injectés parallèle à la direction d'écoulement souhaité pour les gaz vers ou dans la cavité. Ainsi dans le cas d'une injection gazeuse dans une cavité, notamment tubulaire, qui en cours d'utilisation, est disposée généralement verticalement, le gaz s'écoulant du haut vers le bas, on préférera, dans certains cas, réaliser cette injection non pas horizontalement, mais selon une direction inclinée vers le bas par rapport à l'axe vertical de la cavité, selon un angle qui pourra varier entre 0° et 90°, de préférence entre 20°et 70°, plus préférentiellement aux environs de 45°.
Les conditions de fonctionnement des dispositifs plasma situés à la sortie des pompes des réacteurs de gravure et dépôt (à pression atmosphérique ou proche de la pression atmosphérique) doivent, en général, permettre d'absorber un débit total en entrée supérieur à 80 litres par minute (slm) lorsque les échappements de plusieurs chambres de gravure sont connectées simultanément à l'unité de dépollution et fonctionnent simultanément. Le gaz est alors constitué essentiellement d'azote. Pour obtenir une bonne efficacité de conversion des molécules les plus stables, comme les PFC, la puissance totale nécessaire doit être en général supérieure à 3 kW et on prévoit un refroidissement de la paroi externe de la cavité, notamment du tube à décharge.
La mise en œuvre de l'invention permet en général l'établissement d'un système de forces hydrodynamiques qui tendent à maintenir une symétrie axiale du système et empêcher qu'une perturbation aléatoire notamment de nature électromagnétique ou thermique n'écarte le plasma de la position axiale.
Parmi les avantages de l'invention, on notera : - la diminution de la température moyenne de la paroi permettant ainsi d'espacer davantage les opérations de maintenance préventive du tube à décharge.
- le maintien du plasma à distance de la paroi de la cavité (le tube, par exemple) évitant des élévations localisées de température de cette paroi, pouvant atteindre des températures de l'ordre de 10000C. L'écoulement du fluide selon l'invention permet d'allonger considérablement le parcours du gaz dans la zone active en imprimant au flux de préférence un mouvement hélicoïdal (lorsqu'on utilise une cavité à symétrie axiale), et aussi en favorisant les échanges de matière par turbulence entre zones de haute et basse énergie du plasma.
En pratique, il est préférable, notamment lorsqu'on veut maintenir le mouvement hélicoïdal de respecter un certain nombre de contraintes. De préférence :
- Il faut d'abord conserver la compacité du dispositif, sans ajouter si possible d'encombrement supplémentaire notable au dispositif ne comportant par l'injection de gaz selon l'invention..
- Il faut également conserver une perte de charge limitée sur le flux de gaz à traiter, imposée par la pression de fonctionnement à l'échappement de la pompe primaire dans le cas d'une utilisation pour la destruction des effluents issus d'un réacteur de fabrication de semi-conducteurs.
D'une manière générale, l'injection de gaz sera de préférence tangentielle et réalisée au moyen d'un ou plusieurs canaux ménagés dans la bride de raccordement de la canalisation d'amenée du courant d'effluents gazeux en amont du tube à décharge.
Dans le cas notamment d'un mouvement hélicoïdal du gaz, ce flux gazeux moteur utilisé pour obtenir un tel mouvement peut se réduire aux effluents gazeux susmentionnés provenant de l'échappement de la pompe primaire. Pour maintenir un tel mouvement de manière stable, il faut généralement que la quantité de mouvement tangentielle du gaz soit de préférence nettement plus grande que son homologue axiale. Cela implique de ménager des canaux d'arrivée tangentiels du gaz au niveau du raccord d'alimentation du tube qui soient chacun d'une section sensiblement plus faible que le diamètre du tube à décharge. Ceci ajoute une composante non négligeable à la perte de charge du dispositif, qui ne doit pas atteindre une valeur telle que la surpression totale à l'échappement de la pompe primaire dépasse la limite pratique permise.
Cependant, les systèmes de traitement d'effluents sont généralement exploités à capacité variable souvent en permanence avec un à quatre réacteurs de procédé débitant à la fois. Pour maintenir le mouvement hélicoïdal, notamment tout en respectant une perte de charge maximale, le diamètre des canaux d'injections de gaz sera adapté au flux traité.
Pour s'adapter aux débits variables dans une large gamme, on pourra par exemple utiliser pour le lancement du vortex un flux de gaz moteur auxiliaire supplémentaire, qui ne sera pas nécessairement soumis à la contrainte d'une surpression maximale en entrée. De manière plus précise, le fonctionnement d'un système de traitement d'effluents par plasma notamment micro-ondes nécessite en général l'ajout d'un ou plusieurs gaz auxiliaires réactifs, par exemple de l'air, de l'oxygène, de la vapeur d'eau, etc.. apportés par exemple sous forme d'air comprimé. Très souvent également, pour des raisons liées à l'exploitation, on augmente ce flux d'air au-delà de la simple valeur nécessaire à l'accomplissement des réactions chimiques de conversion des polluants. Ce flux d'air additionnel peut provenir du réseau de distribution de l'usine de fabrication de semi¬ conducteurs, sous une pression de plusieurs bars. Il est donc parfaitement utilisable sur des orifices de petit diamètre. De plus la dilution supplémentaire introduite est largement compensée par l'augmentation de l'efficacité spécifique de destruction des polluants induite par la présence du flux de gaz selon l'invention, notamment le mouvement hélicoïdal de ces gaz.
Concrètement, le système d'injection peut prendre plusieurs formes. Les canaux tangentiels peuvent déboucher à un seul niveau ou à plusieurs. L'alimentation en gaz en amont des canaux d'injection (division du flux) est ménagée, de manière connue en soi, afin à ne pas ajouter de perte de charge significative.
Lorsqu'on utilise un tube diélectrique, par exemple comme décrit dans le brevet US-A-5,965,786, le diamètre interne maximal du tube est imposé par le phénomène de gradient radial de densité électronique de la décharge. Lorsqu'on augmente la valeur du diamètre interne du tube, toutes choses égales par ailleurs, on constate que l'efficacité de conversion des polluants croît tout d'abord du fait de l'augmentation du temps de résidence avec celle de la section. Toutefois, au-delà d'une certaine valeur, l'efficacité diminue du fait que la section de la décharge remplit une fraction de moins en moins importante de la section du tube et l'extension radiale de la zone froide périphérique augmente. Ainsi une proportion de plus en plus grande de molécules polluantes est susceptible de traverser le tube dans une région de faible activité réactionnelle et le rendement de conversion du dispositif diminue. En adjoignant un mouvement hélicoïdal aux gaz, on peut utiliser un diamètre interne de tube diélectrique sensiblement plus grand que celui utilisé sans ce mouvement des gaz, sans risque de chute importante de l'efficacité de conversion. L'utilisation d'un tube de plus grand diamètre permet de traiter des débits plus grands en augmentant la puissance fournie au plasma, sans accentuer la sollicitation thermique du tube et sans augmenter la perte de charge. L'invention va être illustrée sur les figures qui représentent :
- la figure 1 , une vue en coupe du système d'injection de gaz selon l'invention ; - la figure 2, une vue en coupe selon A du dispositif de la figure 1 ;
- la figure 3, une vue en coupe selon B du dispositif de la figure 1 ;
- les figures 4 et 5, en vue des différents résultats de mesures.
- La figure 6, une vue en coupe verticale d'une tête d'injection dynamique à simple étape. - La figure 7, même en coupe verticale d'une tête d'injection dynamique à deux étages.
Sur la figure 1 , le dispositif d'injection de gaz 1 a été modifié par rapport aux dispositif décrit dans US-A-5,965,786 dans lequel on avait par exemple une seule injection tangentielle de gaz réalisée dans une ouverture cylindrique latérale de diamètre sensiblement égal à celle du tube diélectrique 5 où se produit le plasma (grâce à des moyens non représentés sur la figure). Si l'on considère l'axe X-A' orienté verticalement (axe du tube diélectrique 5 et de la cavité d'injection de gaz 4) les injections de gaz à traiter sont réalisées selon cet exemple au travers de la pièce 2 selon quatre orifices d'injection 7, 8, 9 et 10 (figures 1 et 2) situées dans un plan perpendiculaire à X-X'. Ces orifices se prolongent respectivement par des canalisations respectivement 11 , 12, 13 et 14 pour rejoindre la cavité d'injection des gaz 4. Ces quatre canalisations et orifices sont orientés respectivement à 90° selon cet exemple. Voir figure 2 qui est une coupe selon le plan orthogonal A-A au travers de la pièce 2. Au-dessus de la cavité d'injection des gaz se trouve l'électrode 3 permettant d'allumer le plasma. Dans le plan orthogonal B-B (voir coupe figure 3) se trouvent une seconde série d'orifices 20, 21 et de canalisations 22, 23 d'injection de gaz, disposées respectivement à 180° l'une de l'autre. Dans ces orifices, on injecte un gaz par exemple sous pression (par exemple de 2 à 10 x 105 Pa) tel que l'air comprimé toujours disponible dans une usine de fabrication. Ce gaz sous pression va avoir un effet moteur pour former le mouvement hélicoïdal du gaz à traiter issu des quatre orifices dans le plan A-A.
On peut injecter également le gaz de procédé à détruire dans le plan B-B, mais on préfère injecter de l'air, de l'azote, éventuellement un gaz oxydant favorisant une réaction avec les molécules détruites et sous pression, de préférence (entre 1 et 10 x 105 Pa). Toutes les orientations d'injection des différents gaz sont possibles, en particulier des orientations qui ne se faisaient pas dans un plan perpendiculaire à l'axe du tube, mais selon un angle inférieur à 90° (co- courant) ou supérieur e 90° (contre-courant),... etc.
La division préalable du flux total pour alimenter de façon uniformément répartie les 4 canaux 7, 8, 9 et 10 dans l'exemple se fait usuellement à partir d'une chambre d'uniformisation (non représentée) dans laquelle se mélangent les flux de gaz et dont les conditions s'uniformisent, dans laquelle débouche la canalisation principale provenant des échappements des pompes. De cette chambre partent de manière relativement symétrique quatre canalisations dérivées. Autant que possible, le flux d'entrée et les flux divisés de sortie de cette chambre doivent être parallèles pour ne pas ajouter de pertes de charge.
A fort débit (par exemple, quatre chambres de gramme connectées simultanément) un tel débit, il n'est pas nécessaire d'utiliser les canaux d'injection du flux de gaz auxiliaire (plan B-B) pour avoir une impulsion tangentielle suffisante pour maintenir le mouvement hélicoïdal du gaz. Toutefois, on peut injecter par ces canaux 22, 23 un flux d'air comprimé minimal servant à apporter la quantité d'oxygène nécessaire à l'accomplissement des réactions chimiques de conversion des molécules perfluorées.
Des expériences de destruction ont été réalisées avec un mélange de SF6 dilué dans l'azote, à une concentration représentative de 5000 parties par million en volume (ppmv). On ajoute de l'oxygène comme gaz auxiliaire réactif à raison de 1 ,5 fois environ la quantité en volume de SF6 à traiter. La figure 4 montre l'évolution du taux de destruction de SF6 en fonction de la puissance micro-onde (nette) fournie au plasma, ainsi que la perte de charge totale entre l'entrée du gaz dans la chambre d'uniformisation et la sortie des gaz après refroidissement dans un échangeur thermique (non représenté sur la figure) servant à refroidir le gaz sortant en aval du tube diélectrique où a lieu la décharge.
Les performances du même dispositif (toutes choses égales par ailleurs) selon USP 5,965,786 sans l'invention et avec l'invention (c'est-à-dire avec une pièce 2 comportant une seule entrée de gaz radiale selon un diamètre voisin de celui du tube 4 et une pièce selon l'invention avec ses injections tangentielles de gaz) sont considérablement améliorées.
En effet, selon l'invention un taux de destruction de 90% est obtenu à une puissance de 3000 W environ, et un taux de destruction de 99% à 3500 W. Sans l'invention, il n'est pas possible de traiter un débit de 80 litres/mn (slm) avec des performances suffisantes pour présenter un intérêt pratique.
En utilisant un dispositif sans mise en œuvre de l'invention et avec seulement 60 slm de débit, il faut plus de 5500 W pour détruire à 95 % la même concentration de 5000 ppmv de SF6. Par comparaison avec l'invention (60 slm et même mélange) il suffit de moins de 2500 W. Des mesures additionnelles à 80 slm ont montré que le résultat dépend peu de la concentration de SF6 entre 1000 et 5000 ppmv.
La perte de charge reste parfaitement dans les limites prescrites pour l'exploitation industrielle, avec une certaine marge pour le cas des fluctuations inopinées qui pourraient résulter de certaines conditions de fonctionnement.
En outre, on constate effectivement un changement radical dans la répartition spatiale du plasma et sa stabilité dans le temps. Le plasma reste bien centré sur l'axe et présente une extension radiale apparente moins grande que dans le cas de l'injection sans injection hélicoïdale des gaz. On a visualisé avec une caméra à travers un tube transparent en silice en incidence latérale : cette visualisation a montré l'absence d'instabilités avec décentrage et l'absence de collage du plasma à la paroi du tube. On a également réalisé des visées axiales dans un tube de céramique qui confirment la fixité du plasma au centre de la section du tube. On a également constaté que la quantité de chaleur rayonnée par le plasma était moindre avec l'invention que sans l'invention.
Des expériences de destruction dans les conditions nominales ont pu être poursuivies pendant plusieurs heures dans un tube à décharge en silice, sans aucun dommage constaté sur les parois du tube, notamment de dépolissage suite à l'attaque chimique en surface par les composés fluorés corrosifs. En comparaison, sans mise en œuvre de l'invention et dans les même conditions, un tube en silice est percé par érosion chimique et/ou fusion locale en quelques minutes.
Pour des débits totaux de 50 et 60 slm, on utilise le même mode d'injection (effluents de procédé entrant par les 4 canaux tangentiels de diamètre environ moitié de celui du tube diélectrique et injection d'air comprimé par les deux canaux 22, 23 de diamètre environ moitié des canaux 1 , 8, 9 et 10). Le taux de destruction ramené à la puissance micro-onde est sensiblement meilleur qu'à 80 slm et la perte de charge diminue. Lorsqu'on réduit le flux total en-dessous de 50 slm, on peut encore dans cette configuration d'alimentation entretenir un mouvement hélicoïdal stable pour un débit aussi bas que 30 slm. Toutefois, on constate un peu moins de stabilité dans l'écoulement des gaz. .
A faible débit, il est donc préférable d'utiliser les canaux d'injections auxiliaires 22, 23 pour apporter une force motrice supplémentaire pour l'entretien du mouvement hélicoïdal du gaz, en augmentant le débit additionnel d'air ou d'azote à concurrence d'un débit total de 50 slm par exemple:
Ainsi, lorsqu'une seule chambre de gravure est en fonctionnement (débit de 20 slm environ) on ajoute 30 slm d'air ou d'azote par les canaux d'injection auxiliaires lorsque l'échappement de l'équipement de procédé débite 20 slm (une)
On ajoute 10 slm d'air ou d'azote par les canaux d'injection auxiliaires lorsque l'échappement de l'équipement de procédé débite 40 slm (deux chambres de gravure en fonctionnement)
La figure 5 montre l'évolution du taux de destruction et de la perte de charge en fonction de la puissance micro-ondes nette, dans le premier cas ci-dessus (20 +
30 slm). On notera que les courbes sont très similaires pour le second cas (40 +
1O sIm) quelle que soit la concentration en gaz perfluoré, notamment comprise entre 1000 ou 5000 ppm. Sur la figure 6, est représentée une tête d'injection dynamique à un seul étage comportant une chambre d'uniformisation 101 de pression du gaz ou mélange de gaz.
Le gaz à traiter est injecté via le canal 100 dans la chambre 101 où la pression du gaz est égalisée. Cette chambre est délimitée comme une couronne cylindrique 101 entourant le tube 105 dans lequel sont injectés les gaz à traiter via les injections 106 à travers le corps 108 qui entoure la partie supérieure du tube 105 et le bloc électrode 104 d'allumage du plasma qui traverse le couvercle 102 de la chambre 101 et du corps de chambre 103. La partie inférieure du tube 105 s'élargie en 107 pour venir s'emboîter sur le tube diélectrique (non-représenté).
Sur la figure 7, est représentée une tête d'injection dynamique à deux étages sur laquelle les mêmes éléments que ceux de la figure 6 portent les mêmes références. Les injections de gaz à traiter se font par les orifices 201 sur la partie supérieure, tandis que les injections de gaz auxiliaire (azote, argon) se font par les orifices « bas » 203 en communication avec la chambre d'uniformisation de pression 205, alimentée via le canal 204.
La tête d'injection dynamique est installée directement à la verticale du tube céramique dans lequel le plasma s'établit.
La tête décrite sur les figures 6 et 7 donne aux gaz un mouvement circulaire avec un déplacement vers le bas coaxial au tube de sorte que le plasma créé ne colle pas accidentellement à la paroi et s'en trouve suffisamment éloigné pour offrir une protection renforcée du tube. Le tube céramique ainsi protégé (5) voit sa charge thermique réduite de 25 à 35 %, qui se traduit par une température d'huile de refroidissement sensiblement plus basse qu'en l'absence de mouvement circulaire vers le bas des gaz.
L'huile du système de refroidissement ne se dégrade pas au contact de la paroi céramique chaude (l'absence de dépôt carboné sur la paroi externe du tube (côté huile) témoigne de l'efficacité du dispositif et de l'homogénéité de la « température de peau » du tube)
La fréquence des maintenances préventives de l'appareil a pu être réduite.
Pour un fonctionnement efficace de l'injection dynamique, il est généralement nécessaire d'injecter un débit minimum de gaz de 2 à 60 l/m environ selon la configuration géométrique de la tête (Nombre d'injecteurs, diamètre des injecteurs, angle d'incidence, ...etc.)
Pour rester dans un régime permanent de « Vortex » au niveau du plasma le débit total doit être ajusté en permanence en ajoutant un débit complémentaire d'azote en autre gaz neutre (de 0 à 50 l/m) (le débit est calculé en fonction du nombre des chambres à traiter, plusieurs chambres étant branchées en parallèles sur le système).
Dans tous les cas, la somme des débits des pompes primaires à traiter et de l'azote additionnel doit être supérieure au débit minimum de fonctionnement du plasma, qui dans tous les cas ne peut être inférieur à 2 l/mn. L'invention décrite ci-dessus ne se limite pas aux plasmas d'onde de surface mais concerne tout plasma micro-ondes atmosphérique entretenu dans une cavité, notamment un tube diélectrique, que ce soit à partir d'une cavité résonnante ou à l'intérieur d'un circuit micro-ondes, par exemple dans un guide rectangulaire creux.

Claims

REVENDICATIONS
1. Procédé de transformation d'un premier gaz ou mélange de gaz comportant au moins certaines molécules ayant au moins une liaison entre deux atomes constituant lesdites molécules, en un deuxième gaz ou mélange de gaz, contenant éventuellement des produits liquides et/ou solides issus de cette transformation, dans lequel au moins une liaison entre deux atomes desdites molécules est rompue sous l'action d'un champ électrique et/ou magnétique auquel ledit premier gaz ou mélange de gaz est soumis, caractérisé en ce que le flux de gaz ou mélange de gaz est injecté à travers le champ électrique et/ou magnétique de manière non rectiligne afin d'augmenter la longueur parcourue par les molécules de gaz au travers dudit champ et ainsi augmenter l'efficacité de rupture des liaisons des molécules au premier gaz ou mélange de gaz.
2. Procédé selon la revendication 1 , caractérisé en ce que le premier gaz ou mélange de gaz est un mélange comportant des effluents gazeux fluorés tels que notamment PFC, HFC ou gaz similaires.
3. Procédé selon la revendication 1 , caractérisé en ce que le premier gaz ou mélange de gaz comporte des molécules ayant une liaison entre un atome de fluor et un autre atome, susceptibles d'engendrer du fluor moléculaire par passage dans le champ électrique et/ou magnétique.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le gaz ou mélange de gaz est injecté dans le champ avec une quantité de mouvement tangentielle du gaz ou mélange de gaz supérieure à la quantité de mouvement axiale dudit gaz ou mélange de gaz.
5. Procédé selon la revendication 4, caractérisé en ce que la quantité de mouvement tangentiel est très supérieure à la quantité de mouvement axiale.
6. Procédé selon les revendications 1 à 5, caractérisé en ce que, au moins une partie du gaz ou mélange de gaz est injectée avec une composante tangentielle de vitesse dans une cavité tubulaire avant d'être soumise à l'action du champ électrique et/ou magnétique.
7. Procédé selon la revendication 6, caractérisé en ce que le gaz ou mélange de gaz est injecté par l'intermédiaire d'une pluralité d'injection comportant une composante tangentielle.
8. Procédé selon les revendications 1 à 7, caractérisé en ce que les injections tangentielles sont régulièrement réparties sur la circonférence.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que les injections sont situées dans le même plan.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que les injections sont dans des plans différents.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce que les injections situées dans un même plan sont régulièrement réparties.
12. Procédé selon l'une des revendications 1 à 11 , caractérisé en ce que les injections de gaz à traiter sont réalisées dans un premier plan et une injection de gaz moteur tel que l'air, l'azote ou l'oxygène est réalisée dans un second plan, de préférence parallèle au premier.
13. Appareil d'injection de gaz pour la mise en œuvre du procédé selon l'une des revendications 1 à 12, caractérisé en ce que cet appareil comporte au moins un premier canal d'injection de gaz, de préférence situé dans un plan perpendiculaire à l'axe dudit tube dont l'extrémité supérieure est fermée.
14. Appareil selon la revendication 13, caractérisé en ce qu'il comporte au moins un second canal d'injection de gaz, de préférence situé dans un plan perpendiculaire à l'axe du tube.
15. Appareil selon l'une des revendications 13 ou 14, caractérisé en ce qu'il comporte une tête d'injection dynamique à deux niveaux comportant également des orifices d'injection de gaz auxiliaire (203).
EP05789918A 2004-07-13 2005-07-08 Traitement d'effluents gazeux par plasma a pression atmospherique Withdrawn EP1768776A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0451527A FR2873045B1 (fr) 2004-07-13 2004-07-13 Traitement d'effluents gazeux par plasma a pression atmospherique
FR0552063A FR2888130A1 (fr) 2005-07-06 2005-07-06 Traitement d'effluents gazeux par plasma a pression atmospherique
PCT/FR2005/050555 WO2006008421A2 (fr) 2004-07-13 2005-07-08 Traitement d'effluents gazeux par plasma a pression atmospherique

Publications (1)

Publication Number Publication Date
EP1768776A2 true EP1768776A2 (fr) 2007-04-04

Family

ID=35473990

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05789918A Withdrawn EP1768776A2 (fr) 2004-07-13 2005-07-08 Traitement d'effluents gazeux par plasma a pression atmospherique

Country Status (4)

Country Link
US (1) US20080234530A1 (fr)
EP (1) EP1768776A2 (fr)
JP (1) JP2008506516A (fr)
WO (1) WO2006008421A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888130A1 (fr) * 2005-07-06 2007-01-12 Air Liquide Electronics Sys Traitement d'effluents gazeux par plasma a pression atmospherique
EP2131633A1 (fr) * 2008-05-28 2009-12-09 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé de refroidissement d'un plasma micro-onde et système de destruction sélective de molécules chimiques utilisant ce procédé
FR2932058A1 (fr) * 2008-05-28 2009-12-04 Air Liquide Procede de demarrage d'un plasma micro-onde et systeme de destruction selective de molecules chimiques utilisant ce procede
DE102009011530A1 (de) 2009-03-03 2010-09-09 Sortech Ag Verfahren zur Ausbildung einer Alumosilikat-Zeolith-Schicht auf einem metallischen Substrat, das beschichtete Substrat sowie dessen Verwendung
DE102015122301B4 (de) 2015-12-18 2020-08-13 Fahrenheit Gmbh Verfahren zur Ausbildung einer Alumosilikat-Zeolith-Schicht auf einem aluminiumhaltigen metallischen Substrat sowie Verwendung des danach erhaltenen Substrats
GB201722035D0 (en) * 2017-12-28 2018-02-14 Arcs Energy Ltd Fluid traetment apparatus for an exhaust system and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965786A (en) * 1996-07-26 1999-10-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the treatment of perfluorinated and hydrofluorocarbon gases for the purpose of destroying them
US20040001787A1 (en) * 2001-07-11 2004-01-01 Applied Materials, Inc. Treatment of effluent from a substrate processing chamber

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401302A (en) * 1965-11-01 1968-09-10 Humphreys Corp Induction plasma generator including cooling means, gas flow means, and operating means therefor
DE1290712B (de) * 1966-01-15 1969-03-13 Hoechst Ag Gegen den Abbau durch Licht und Waerme stabilisierte Formmassen
US3619403A (en) * 1970-06-30 1971-11-09 Lfe Corp Gas reaction apparatus
US3620008A (en) * 1970-07-23 1971-11-16 Robert M Newbold Apparatus for removing air pollutants from the exhaust stream of a combustion process
US3707644A (en) * 1971-02-19 1972-12-26 Northern Natural Gas Co Apparatus for heating gases to high temperatures
US3946180A (en) * 1974-04-22 1976-03-23 I-T-E Imperial Corporation Downstream injection nozzle for puffer circuit interrupter
JPH0763033B2 (ja) * 1984-06-27 1995-07-05 吉明 荒田 大出力プラズマジェット発生装置
US4883570A (en) * 1987-06-08 1989-11-28 Research-Cottrell, Inc. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves
US5026484A (en) * 1987-07-28 1991-06-25 Juvan Christian H A Continuous flow method for processing liquids using high-energy discharge
US5349154A (en) * 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
US5349143A (en) * 1993-01-19 1994-09-20 Lucerne Products, Inc. Reversible electrical switch
US5951771A (en) * 1996-09-30 1999-09-14 Celestech, Inc. Plasma jet system
FR2757082B1 (fr) * 1996-12-13 1999-01-15 Air Liquide Procede d'epuration d'un gaz plasmagene et installation pour la mise en oeuvre d'un tel procede
US6322756B1 (en) * 1996-12-31 2001-11-27 Advanced Technology And Materials, Inc. Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
JP2000133494A (ja) * 1998-10-23 2000-05-12 Mitsubishi Heavy Ind Ltd マイクロ波プラズマ発生装置及び方法
WO2000061284A1 (fr) * 1999-04-12 2000-10-19 Mitsubishi Heavy Industries, Ltd. Dispositif de decomposition de composes halogenes organiques et procede de gestion de fonctionnement afferent, et procede de decomposition de composes halogenes organiques
JP2001232180A (ja) * 2000-02-25 2001-08-28 Toshiba Corp 高周波プラズマによる化合物分解装置、化合物分解方法及び化合物分解システム
WO2001093315A2 (fr) * 2000-05-25 2001-12-06 Jewett Russell F Procedes et appareillages de traitement par plasma
FR2825295B1 (fr) * 2001-05-31 2004-05-28 Air Liquide Application des plasmas denses crees a pression atmospherique au traitement d'effluents gazeux
US6620394B2 (en) * 2001-06-15 2003-09-16 Han Sup Uhm Emission control for perfluorocompound gases by microwave plasma torch
JP4196371B2 (ja) * 2002-08-20 2008-12-17 キヤノンアネルバ株式会社 ハロゲンガスの製造方法、ハロゲンガスの製造装置及びハロゲンガスの回収・循環システム
CA2410927A1 (fr) * 2002-11-05 2004-05-05 Michel Petitclerc Reacteur a chauffage electrique pour le reformage en phase gazeuse
US20080110744A1 (en) * 2004-06-30 2008-05-15 Jean-Marc Girard Method for the Preparation of a Gas or Mixture of Gases Containing Molecular Fluorine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965786A (en) * 1996-07-26 1999-10-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the treatment of perfluorinated and hydrofluorocarbon gases for the purpose of destroying them
US20040001787A1 (en) * 2001-07-11 2004-01-01 Applied Materials, Inc. Treatment of effluent from a substrate processing chamber

Also Published As

Publication number Publication date
WO2006008421A3 (fr) 2007-04-05
JP2008506516A (ja) 2008-03-06
WO2006008421A2 (fr) 2006-01-26
US20080234530A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
EP0575260B1 (fr) Dispositif de formation de molécules gazeuses excitées ou instables et utilisations d'un tel dispositif
EP1397529B1 (fr) Application des plasmas denses crees a pression atmospherique au traitement d'effluents gazeux
WO2006008421A2 (fr) Traitement d'effluents gazeux par plasma a pression atmospherique
EP1424120A1 (fr) Procédé et installation de traitement de gaz perfluorés et hydrofluorocarbonés en vue de leur destruction
EP1318968B1 (fr) Procede de traitement des dechets par oxydation hydrothermale.
EP2923535A1 (fr) Procede et dispositif de traitement de matiere fragmentee ou pulverisee biphasee par flux de plasma reactif non isothermique
EP0847794A1 (fr) Procédé d'épuration d'un gaz, et installation pour la mise en oeuvre d'un tel procédé
WO2007007003A2 (fr) Procede de traitement par plasma d'effluents gazeux
WO2005075058A1 (fr) Procede de traitement des gaz par des decharges haute frequence
WO2006010857A1 (fr) Procede de preparation d'un gaz ou melange de gaz contenant du fluor moleculaire
FR2873045A1 (fr) Traitement d'effluents gazeux par plasma a pression atmospherique
FR2888130A1 (fr) Traitement d'effluents gazeux par plasma a pression atmospherique
KR20070035565A (ko) 가스상 유해 방출물의 대기압 플라즈마 처리
EP2131633A1 (fr) Procédé de refroidissement d'un plasma micro-onde et système de destruction sélective de molécules chimiques utilisant ce procédé
WO2008017793A2 (fr) Procede de stockage de l'hydrogene, dispositif pour sa mise en oeuvre et applications
EP2784387A2 (fr) Chambre de combustion pour le traitement thermique d'au moins un effluent comportant des polluants combustibles
FR2864913A1 (fr) Procede de pre-concentration et de destruction d'effluents a l'aide d'un plasma
FR2932059A1 (fr) Systeme de traitement par plasma d'un fluide ou melange de fluides
FR2886866A1 (fr) Procede et dispositif de traitement d'effluents gazeux de procedes industriels
FR2872506A1 (fr) Procede de preparation d'un gaz ou melange de gaz contenant du fluor moleculaire
FR2932058A1 (fr) Procede de demarrage d'un plasma micro-onde et systeme de destruction selective de molecules chimiques utilisant ce procede
WO2009101367A2 (fr) Procede de destruction de n2o par plasma micro-ondes a pression atmospherique
FR2887245A1 (fr) Procede de preparation d'un gaz ou melange de gaz contenant du fluor moleculaire
WO1999023732A1 (fr) Disposititf de laser a gaz et des moyens de purification de gaz integres
FR2888519A1 (fr) Procede de traitement, par plasma, d'effluents gazeux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEPERT, BRUNO

Inventor name: LAURENT, VALERE

Inventor name: MOINE, PASCAL

Inventor name: DULPHY, HERVE

Inventor name: GUERIN, DANIEL

Inventor name: ROSTAING, JEAN-CHRISTOPHE

Inventor name: MOISAN, MICHEL

Inventor name: KABOUZI, YASSINE C/O L'AIR LIQUIDE S.A.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

DAX Request for extension of the european patent (deleted)
17P Request for examination filed

Effective date: 20071005

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20130617

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131029