EP1766323B1 - Projectile, in particular an anti-infrastructure penetrating bomb and method for penetration of said projectile through a wall - Google Patents

Projectile, in particular an anti-infrastructure penetrating bomb and method for penetration of said projectile through a wall Download PDF

Info

Publication number
EP1766323B1
EP1766323B1 EP05752648A EP05752648A EP1766323B1 EP 1766323 B1 EP1766323 B1 EP 1766323B1 EP 05752648 A EP05752648 A EP 05752648A EP 05752648 A EP05752648 A EP 05752648A EP 1766323 B1 EP1766323 B1 EP 1766323B1
Authority
EP
European Patent Office
Prior art keywords
projectile
perforating
tube
bomb
pyrotechnic charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05752648A
Other languages
German (de)
French (fr)
Other versions
EP1766323A1 (en
Inventor
Denis Salignon
Claude Georget
Dominique Lesne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDA Armements SAS
Original Assignee
TDA Armements SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDA Armements SAS filed Critical TDA Armements SAS
Publication of EP1766323A1 publication Critical patent/EP1766323A1/en
Application granted granted Critical
Publication of EP1766323B1 publication Critical patent/EP1766323B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/56Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information for dispensing discrete solid bodies
    • F42B12/58Cluster or cargo ammunition, i.e. projectiles containing one or more submissiles
    • F42B12/62Cluster or cargo ammunition, i.e. projectiles containing one or more submissiles the submissiles being ejected parallel to the longitudinal axis of the projectile
    • F42B12/625Cluster or cargo ammunition, i.e. projectiles containing one or more submissiles the submissiles being ejected parallel to the longitudinal axis of the projectile a single submissile arranged in a carrier missile for being launched or accelerated coaxially; Coaxial tandem arrangement of missiles which are active in the target one after the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/36Means for interconnecting rocket-motor and body section; Multi-stage connectors; Disconnecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/06Electric fuzes with time delay by electric circuitry

Definitions

  • the present invention relates to a penetrating projectile, including an anti-infrastructure penetration bomb. It is particularly applicable for traversing very thick walls of non-metallic material such as concrete for example.
  • a bomb is carried by a rocket.
  • a rocket has essentially three parts. At the front it contains its guidance system and at the rear its engine for propulsion. Between these two elements is the military charge, in other words essentially the bomb.
  • the size and weight of the rockets are fixed and their speed. It follows that the volume, the weight and the speed of the bomb are also fixed, whatever the required performances. In particular, the kinetic energy can not be increased in order to obtain new performances, even more advanced.
  • the first solution prevents in particular to make a bomb body versatile with respect to surface threats or buried.
  • the second solution leads to a bomb body very expensive and actually a bomb very inefficient because the explosive mass on board is then reduced by more than half compared to a normal body of steel.
  • a patent application FR 2 472 168 A presents a sub-projectile launcher where the latter are accelerated at the end of the trajectory.
  • the piercing projectile comprises for example a system which determines its position inside the target as a function of time and which triggers the detonation of its pyrotechnic charge at a predetermined time.
  • This system determines for example the position of the perforator from its characteristics of the deceleration levels in the target material and its speed at the point of impact on the target.
  • the inner tube comprises at least two sections of different calibres, the smaller gauge section being oriented towards the exit of the tube, the body of the projectile perforator being adapted to the output caliber of the tube, the propulsion body being wedged at the transition of the two sections during the ejection of the piercing projectile body.
  • the transition between the two sections forms for example a cone so that the casing of the propellant body is welded by friction on the cone.
  • the body of the piercing projectile can be fixed to the casing of the propellant body by pins.
  • the main advantages of the invention are that it can be implemented at a constant volume, mass and speed with respect to the current solutions, that it makes it possible to increase the range of arrival angle of the body. a bomb on a wall, and that it increases the load of explosive board.
  • the figure 1 represents the structure of a rocket 1. As indicated above, it consists essentially of three parts 2, 3, 4. The front of the rocket comprises the guide means 2 and the rear comprises the means 3. Between the two is the penetrating projectile 4, for example a military load such as a bomb. The fact that the envelope of the rocket is frozen as well as the overall mass results in the volume and the mass devoted to the penetrating projectile 4 are also fixed, to the extent that it is also not possible to reduce the allocated parts the guide means and the propulsion means. The structural mechanical strength of the penetrating body can not therefore be significantly increased. Likewise the speed of the penetrating body is fixed by the speed of the rocket 1.
  • the figure 2 presents, by a cross-sectional view, an exemplary embodiment of a projectile according to the invention.
  • the projectile is a bomb.
  • the figure 2 so has a bomb 10 that can be contained in the space allocated to the penetrating body 4 in the rocket of the figure 1 while having great penetration performance.
  • the bomb comprises a body 21 inside which a tube 22 is placed.
  • the tube 22 comprises, for example, a wedging cone 221 making the transition between a first tube section 222 and an outlet section 223 of smaller caliber, oriented forward of the bomb body.
  • the bomb body 21 being symmetrical with revolution, the axis 20 of the tube 22 merges for example with the axis of the body 21.
  • the pyrotechnic charge 23 is disposed inside the bomb body 21 around the tube 22.
  • the load 23 is contained inside a sheath 24, placed between the inner face of the bomb body 21 and the tube 22.
  • a priming relay 25, for example of toric shape, located inside the pyrotechnic charge 23 allows to start the firing of the latter.
  • a base 20 closes the rear of the bomb body 21.
  • a striker 26 is placed in the base opposite the ignition relay 25, through the wall 27. The striker 26 is controlled by an electronic block 28, for example of toric form, also contained in the base 20.
  • a shock attenuator 29 is placed in front of the pyrotechnic charge, wedged between the sheath 24 and the inside of the bomb body 21. Inside the tube is arranged a projectile puncher hyper velocity 30 pyrotechnic charge.
  • This perforator allows in particular the prior creation of a conduit in the wall to be crossed. For this purpose, at the approach of the wall, the perforator leaves the tube, thanks to its own propulsion means, with a speed much higher than that of the bomb body 21. Then it detonates once introduced inside the wall.
  • the figure 3 presents, by a cross section, an exemplary embodiment of the projectile projectile 30.
  • This projectile comprises a body 31. This body has for example at the front a tip 32 to facilitate penetration. Inside the body is placed a pyrotechnic charge. ignition relay 34 is placed inside the load 33. A support 35 closes the space at the rear of the pyrotechnic charge 33. This support 35 comprises a striker 39 located opposite the ignition relay 34 for performing a percussion initiation which causes the ignition of the pyrotechnic charge 33. The striker 39 is controlled by an electronic block 36 also placed in the support 35. A cover 37 closes the rear of the body. A propellant body 301 is placed behind the body of the projectile 31.
  • This propellant body 301 is held in the body of the projectile by means of pins 38.
  • the outer wall of the propellant body 301 is extended inside a body. wall portion of the body of the projectile extending itself beyond the cover 37.
  • the pins pass through the two walls facing each other through holes provided for this purpose.
  • the propellant body has inside its envelope 303 a pyrotechnic charge 302.
  • This load 302 is for example composed of plastic loaves.
  • a cap 304 closes the rear of the propulsion body.
  • the cap 304 comes for example to screw on the casing 303 of the propellant body.
  • One or more lids 305 are pierced in the plug to pass a control link 306.
  • This connection is for example connected to an ignition pad 307 placed in contact with the pyrotechnic charge 302.
  • Calibration means 308 are for example placed between the cap 304 and the loading of the propulsion body 302.
  • the firing of the propulsion body 301 causes the tube 31 to be ejected from the tube of the piercing projectile 30.
  • the figure 4 presents the rocket 1 in two places of its trajectory to a concrete wall 42 in an x, y axis system.
  • the positions relative to the ground are indicated on an x-axis.
  • the y-axis represents the altitude of the rocket.
  • the scales of distances and altitudes are reduced compared to the scales of representation of the rocket and the slab.
  • the distance x 1 - x 0 is, for example, the order of 20 meters.
  • the separation is carried out by an internal firing, the bomb 10 is then ejected from the rocket.
  • the position of the rocket relative to the wall 42 is for example determined by a proximity sensor located at the front of the rocket with the guide means.
  • FIGS. 5a to 5f illustrate the method according to the invention by presenting different phases of a bomb according to the invention in approach phase and through the wall 42.
  • the figure 5a presents the moment of firing of the loading 302 of the propellant body of the perforator 30 to the immediate approach of the target in this case the wall 42.
  • the bomb is at a distance d less than the distance x 1 - x 0 .
  • This distance d is for example of the order of 10 meters.
  • the distances x 1 - x 0 and d may be substantially the same.
  • the perforator 30 is ejected from the bomb body 21 with a very high speed relative to this body. For example, if the bomb moves at a speed of the order of 300 m / s, the perforator can exit with a relative speed of this order.
  • the bomb body may for example calculate a delay between the moment of ejection of the bomb body of the rocket and the moment of priming of the propellant body of the perforator, the moment of ejection of the bomb body being determined him for example by the guide means 2 located in front of the rocket 1.
  • the control of the electronic unit 28 to the thruster body of the perforator is done for example by means of an electrical connection 306.
  • An active electrical signal for example the ignition pad 307 which triggers the firing of the pyrotechnic charge 302.
  • the figure 5b presents the flight of the perforator 30 to the wall 42, followed by the bomb body 21.
  • the ignition pad 307, the electrical connection 306 and the electronic block compose a system for controlling the firing of the propulsion body 301 before the impact of the bomb 10 on a target, the wall 42 in the example of Figures 5a to 5f .
  • Another type of system could be used.
  • the figure 5c the penetration of the perforator 30 in the wall 42.
  • the relative speed of the latter relative to the bomb body allows it to firstly impact the wall 42.
  • the figure 5d has the detonation of the perforator 30 inside the wall, preferably in the middle, creating an orifice 51 passing through the wall 42.
  • the perforator comprises a system which determines its position inside the wall in function of time and which triggers the detonation of its pyrotechnic charge at a predetermined time.
  • This system is for example contained in the electronic block 36.
  • the detonation is caused by the firing of the pyrotechnic charge 33.
  • the invention advantageously uses the fact that the concretes do not hold the tensile stress. This allows them to be destructured relatively easily by a detonation of the perforator inside the wall, this internal detonation creating high tensile stresses.
  • An internal processor located in the electronic block 36 of the perforator can determine the moment of detonation of the perforator corresponding to its most effective position inside the wall, for example in the middle thereof. For this purpose a table is for example stored in the processor. This table contains the characteristics of the deceleration levels of an object penetrating into a material. It can take into account several types of materials including of course concrete and even different types of concrete.
  • the figure 5e has the penetration of the bomb body 21 in the orifice 51 created by the perforator.
  • the amount of charge conveyed by the perforator 30 may be calculated to obtain an orifice adapted to the caliber of the bomb body 21, that is, to say in practice close to the caliber of the body of bomb.
  • the invention thus makes it possible to considerably reduce the stresses seen by the bomb body during its phase of penetration into the wall and therefore allows a bomb of relatively low structural mechanical strength to pass through walls that are thicker and thicker. resistant.
  • the figure 5f presents the bomb body 21 after crossing the wall 42. At this time the bomb body can for example detonate by firing its pyrotechnic charge 23.
  • the figure 6 highlights an advantage provided by the jamming cone 221 of the inner tube to the bomb body.
  • the figure 6 shows the maintenance of the propellant body of the perforator 30, in particular of the casing 303 of the propellant body 301, in the tube by jamming of the latter at the jamming cone 221.
  • the casing 303 whose diameter is greater than the caliber of the output section of the tube, under the effect of the speed, is soldered by friction on the internal jamming cone of the tube. This avoids any potential intrusion of rubble into the body of the bomb.
  • the maintenance of the propellant body is reinforced by the confinement within the tube of all the propulsion gases.
  • the envelope 303 remains welded to the tube while the body 31 of the perforator, adapted to the output caliber of the tube 22, is ejected from the tube.
  • the body 31 of the perforator is detached from the casing 303 of the propulsion body by shearing the pins 38 which fix the two bodies together.
  • the casing of the propellant body thus forms a protective wall. Indeed, as just indicated above, it thus prevents any intrusion of rubble or debris 52 inside the bomb body during the phase of penetration of the latter in the wall. Such debris, generated in particular during the detonation of the perforator 30 inside the wall as shown in FIG. figure 5 e , could indeed cause parasitic explosions.
  • the resistance of the wall to external intrusions is enhanced by the internal pressure generated by the combustion gases in the tube 22.
  • the function of sealing provided to the propellant body keeps the combustion gases within the tube which, by their thrust, strengthen the strength of the weld.
  • the figure 7 illustrates another advantage of the invention.
  • this figure shows that the invention makes it possible to increase the angle of arrival angle range of the bomb body 21 on a wall 71.
  • the orifice 72 created by the perforator in the wall 71 creates there even an entry face 73 normal to the speed vector V of the body of the bomb.
  • This inlet face 73 in particular avoids the ricochets of the bomb body on the wall when the angle of incidence ⁇ of its velocity vector on the wall is too low. If this angle ⁇ is nevertheless much too weak, there will nevertheless be an incidence.
  • the perforator 30 which is thinner and faster than the bomb body can penetrate the wall even for low angles of incidence, the bomb body benefiting from the orifice created by the perforator and thereby having a range of increased incidence.
  • the invention has been described for the realization of a penetration bomb inside an infrastructure. It can, however, apply to other types of projectiles intended to penetrate into infrastructure through a thick wall.
  • the invention makes it possible in particular to pass through concrete walls with a high modulus of rupture to compression, which can reach, for example, 200 MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

The invention relates to a penetration projectile, in particular to an anti-infrastructure penetration bomb. A projectile penetration method is also disclosed. The inventive projectile consists of an internal tube (22) provided with a perforating projectile (30) which is arranged therein and comprises at least one body (31) provided with a pyrotechnic charge (33) and a propellant (301) for ejecting the perforation projectile body from the tube by a propellant (301) ignition and a system (28, 306, 307) for controlling the propellant ignition prior to the target through-penetration impact (10) of the projectile. Said invention is used, in particular for penetrating through extra thick walls made of non-metallic material such as concrete.

Description

La présente invention concerne un projectile pénétrant, notamment une bombe de pénétration anti-infrastructure. Elle s'applique notamment pour la traversée de parois très épaisses en matériau non métallique tel que le béton par exemple.The present invention relates to a penetrating projectile, including an anti-infrastructure penetration bomb. It is particularly applicable for traversing very thick walls of non-metallic material such as concrete for example.

Il est connu de réaliser des bombes à haut pouvoir de pénétration, notamment pour traverser des parois en béton à haut module de rupture à la compression. L'épaisseur de telles parois peut atteindre 1,5 mètres, voire plus. Le module de rupture à la compression peut être de l'ordre de 40 à 45 MPa, et des bétons récents ont des modules de rupture à la compression qui dépassent largement 100 MPa. Les besoins opérationnels de traversée de parois en bétons peuvent conduire à des niveaux de performances de plus en plus élevées pour les bombes de pénétration. En particulier il peut être exigé que celles-ci traversent des parois en béton de plus en plus épaisses avec modules de rupture à la compression de plus en plus élevés. Classiquement le pouvoir de pénétration d'une bombe dépend de son énergie cinétique. Il s'ensuit que plus les difficultés de pénétration augmentent, par augmentation de l'épaisseur du béton et/ou de sa résistance notamment, plus il est logique d'augmenter l'énergie cinétique de la bombe, en jouant par exemple sur sa masse et ou sa vitesse. Cependant, ces grandeurs ne peuvent pas être augmentées librement.It is known to make bombs with high penetrating power, especially to cross concrete walls with high modulus of rupture to compression. The thickness of such walls can reach 1.5 meters or more. The compressive rupture modulus may be of the order of 40 to 45 MPa, and recent concretes have compressive rupture moduli which exceed widely 100 MPa. Operational requirements for concrete wall penetrations can lead to higher and higher performance levels for penetration bombs. In particular it may be required that they pass through increasingly thick concrete walls with compression modules of compression higher and higher. Classically the power of penetration of a bomb depends on its kinetic energy. It follows that the more the penetration difficulties increase, by increasing the thickness of the concrete and / or its resistance in particular, the more it makes sense to increase the kinetic energy of the bomb, for example by playing on its mass. and or his speed. However, these quantities can not be increased freely.

Pour atteindre son objectif, une bombe est véhiculée par une roquette. Une roquette comporte essentiellement trois parties. A l'avant elle contient son système de guidage et à l'arrière son moteur pour la propulsion. Entre ces deux éléments se situe la charge militaire, autrement dit essentiellement la bombe. Pour des raisons de polyvalence, de standardisation des rampes de lancement ou de standardisation des stations de tirs, les dimensions et le poids des roquettes sont figées ainsi que leur vitesse. Il s'ensuit que le volume, le poids et la vitesse de la bombe sont aussi figées, quelles que soient les performances demandées. En particulier l'énergie cinétique ne peut pas être augmentée en vue d'obtenir de nouvelles performances, encore plus poussées.To achieve its goal, a bomb is carried by a rocket. A rocket has essentially three parts. At the front it contains its guidance system and at the rear its engine for propulsion. Between these two elements is the military charge, in other words essentially the bomb. For reasons of versatility, standardization of launching pads or standardization of shooting stations, the size and weight of the rockets are fixed and their speed. It follows that the volume, the weight and the speed of the bomb are also fixed, whatever the required performances. In particular, the kinetic energy can not be increased in order to obtain new performances, even more advanced.

Une solution pourrait consister à renforcer la tenue structurale du corps de la bombe, par exemple en triplant son épaisseur. Une autre solution pourrait encore employer un matériau dense avec réduction significative du diamètre. Ces solutions comportent néanmoins des inconvénients. La première solution empêche notamment de faire un corps de bombe polyvalent vis à vis de menaces de surfaces ou enterrées. La deuxième solution conduit à un corps de bombe très cher et de fait à une bombe très peu efficace car la masse d'explosif embarquée est alors réduite de plus de moitié par rapport à un corps normal en acier.One solution could be to strengthen the structural integrity of the body of the bomb, for example by tripling its thickness. Another solution could still use a dense material with significant diameter reduction. These solutions nevertheless have disadvantages. The first solution prevents in particular to make a bomb body versatile with respect to surface threats or buried. The second solution leads to a bomb body very expensive and actually a bomb very inefficient because the explosive mass on board is then reduced by more than half compared to a normal body of steel.

Une demande de brevet FR 2 472 168 A présente un engin lanceur de sous-projectiles où ces derniers sont accélérés en fin de trajectoire.A patent application FR 2 472 168 A presents a sub-projectile launcher where the latter are accelerated at the end of the trajectory.

Un but de l'invention est notamment de permettre à une bombe de relativement faible résistance mécanique structurale de traverser des parois de plus en plus épaisses ou résistantes.

  • A cet effet, l'invention a pour objet un projectile pénétrant tel que défini par la revendication 1.
An object of the invention is in particular to allow a bomb of relatively low structural strength to pass through increasingly thick walls or resistant.
  • For this purpose, the subject of the invention is a penetrating projectile as defined by claim 1.

Le projectile perforateur comporte par exemple un système qui détermine sa position à l'intérieur de la cible en fonction du temps et qui déclenche la détonation de sa charge pyrotechnique à un instant prédéterminé. Ce système détermine par exemple la position du perforateur à partir de ses caractéristiques des niveaux de décélération dans le matériau de la cible et de sa vitesse au point d'impact sur la cible.The piercing projectile comprises for example a system which determines its position inside the target as a function of time and which triggers the detonation of its pyrotechnic charge at a predetermined time. This system determines for example the position of the perforator from its characteristics of the deceleration levels in the target material and its speed at the point of impact on the target.

Selon l'invention, le tube intérieur comporte au moins deux sections de calibres différents, la section de plus petit calibre étant orientée vers la sortie du tube, le corps du projectile perforateur étant adapté au calibre de sortie du tube, le corps propulseur se coinçant au niveau de la transition des deux sections lors de l'éjection du corps du projectile perforateur. La transition entre les deux sections forme par exemple un cône de façon à ce que l'enveloppe du corps propulseur se soude par friction sur le cône.According to the invention, the inner tube comprises at least two sections of different calibres, the smaller gauge section being oriented towards the exit of the tube, the body of the projectile perforator being adapted to the output caliber of the tube, the propulsion body being wedged at the transition of the two sections during the ejection of the piercing projectile body. The transition between the two sections forms for example a cone so that the casing of the propellant body is welded by friction on the cone.

Le corps du projectile perforateur peut être fixé à l'enveloppe du corps propulseur par des goupilles.The body of the piercing projectile can be fixed to the casing of the propellant body by pins.

L'invention a pour principaux avantages qu'elle peut être mise en oeuvre à volume, masse et vitesses constants par rapport aux solutions actuelles, qu'elle permet d'augmenter le domaine d'angle d'incidence d'arrivée du corps d'une bombe sur une paroi, et qu'elle permet d'augmenter la charge d'explosif embarquée.The main advantages of the invention are that it can be implemented at a constant volume, mass and speed with respect to the current solutions, that it makes it possible to increase the range of arrival angle of the body. a bomb on a wall, and that it increases the load of explosive board.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :

  • la figure 1, un exemple de structure de roquette ;
  • la figure 2, un exemple de réalisation possible d'un projectile selon l'invention ;
  • la figure 3, un exemple de réalisation d'un projectile perforateur contenu à l'intérieur du projectile précédent ;
  • la figure 4, la situation de la roquette contenant un projectile selon l'invention, au lancement de la roquette et à l'éjection du projectile de la roquette ;
  • les figures 5a à 5f, une illustration du procédé de pénétration selon l'invention ;
  • la figure 6, le corps propulseur du projectile perforateur coincé en sortie du projectile empêchant des débris de pénétrer à l'intérieur ;
  • la figure 7, une illustration du large domaine d'incidence d'un projectile selon l'invention sur une paroi.
Other characteristics and advantages of the invention will become apparent with the aid of the following description made with reference to appended drawings which represent:
  • the figure 1 , an example of rocket structure;
  • the figure 2 an exemplary possible embodiment of a projectile according to the invention;
  • the figure 3 an exemplary embodiment of a piercing projectile contained within the previous projectile;
  • the figure 4 the situation of the rocket containing a projectile according to the invention, the launching of the rocket and the ejection of the projectile rocket;
  • the Figures 5a to 5f an illustration of the penetration method according to the invention;
  • the figure 6 , the propellant body of the piercing projectile stuck at the exit of the projectile preventing debris from penetrating inside;
  • the figure 7 , an illustration of the wide range of incidence of a projectile according to the invention on a wall.

La figure 1 représente la structure d'une roquette 1. Comme il a été indiqué précédemment, celle-ci se compose essentiellement de trois parties 2, 3, 4. L'avant de la roquette comporte les moyens de guidage 2 et l'arrière comporte les moyens de propulsion 3. Entre les deux se situe le projectile pénétrant 4, par exemple une charge militaire telle qu'une bombe. Le fait que l'enveloppe de la roquette soit figée ainsi que la masse globale entraîne que le volume et la masse consacrés au projectile pénétrant 4 sont eux aussi fixés, dans la mesure où il n'est guère possible par ailleurs de diminuer les parties allouées aux moyens de guidage et aux moyens de propulsion. La résistance mécanique structurale du corps pénétrant ne peut donc pas être sensiblement augmentée. De même la vitesse du corps pénétrant est fixée par la vitesse de la roquette 1. La figure 2 présente, par une vue en coupe transversale, un exemple de réalisation d'un projectile selon l'invention. Pour la suite de la description on considère que le projectile est une bombe. La figure 2 présente donc une bombe 10 qui peut être contenue dans l'espace alloué au corps pénétrant 4 dans la roquette de la figure 1 tout en présentant de grandes performances de pénétration. La bombe comporte un corps 21 à l'intérieur duquel est placé un tube 22. Le tube 22 comporte par exemple un cône de coincement 221 faisant la transition entre une première section 222 de tube et une section de sortie 223 de calibre plus réduit, orientée vers l'avant du corps de bombe. Le corps de bombe 21 étant à symétrie de révolution, l'axe 20 du tube 22 se confond par exemple avec l'axe du corps 21. Le chargement pyrotechnique 23 est disposé à l'intérieur du corps de bombe 21 autour du tube 22. La charge 23 est contenue à l'intérieur d'une gaine 24, placée entre la face intérieure du corps de bombe 21 et le tube 22. Un relais d'amorçage 25, par exemple de forme torique, situé à l'intérieur de la charge pyrotechnique 23 permet d'enclencher la mise à feu de cette dernière. L'arrière de la charge pyrotechnique 23 et fermée par une paroi 27 occupant l'espace entre la face intérieure du corps de bombe et le tube. Un culot 20 vient fermer l'arrière du corps de bombe 21. Un percuteur 26 est placé dans le culot en regard du relais d'amorçage 25, à travers la paroi 27. Le percuteur 26 est commandé par un bloc électronique 28, par exemple de forme torique, lui aussi contenu dans le culot 20. Un atténuateur de choc 29 est placé à l'avant de la charge pyrotechnique, coincée entre la gaine 24 et l'intérieur du corps de bombe 21. A l'intérieur du tube est disposé un projectile perforateur hyper véloce 30 à charge pyrotechnique. Ce perforateur permet notamment la création préalable d'un conduit dans la paroi à traverser. A cet effet, à l'approche de la paroi le perforateur sort du tube, grâce à ses moyens de propulsion propre, avec une vitesse nettement supérieure à celle du corps de bombe 21. Puis il détonne une fois introduit à l'intérieur de la paroi.The figure 1 represents the structure of a rocket 1. As indicated above, it consists essentially of three parts 2, 3, 4. The front of the rocket comprises the guide means 2 and the rear comprises the means 3. Between the two is the penetrating projectile 4, for example a military load such as a bomb. The fact that the envelope of the rocket is frozen as well as the overall mass results in the volume and the mass devoted to the penetrating projectile 4 are also fixed, to the extent that it is also not possible to reduce the allocated parts the guide means and the propulsion means. The structural mechanical strength of the penetrating body can not therefore be significantly increased. Likewise the speed of the penetrating body is fixed by the speed of the rocket 1. The figure 2 presents, by a cross-sectional view, an exemplary embodiment of a projectile according to the invention. For the rest of the description, it is considered that the projectile is a bomb. The figure 2 so has a bomb 10 that can be contained in the space allocated to the penetrating body 4 in the rocket of the figure 1 while having great penetration performance. The bomb comprises a body 21 inside which a tube 22 is placed. The tube 22 comprises, for example, a wedging cone 221 making the transition between a first tube section 222 and an outlet section 223 of smaller caliber, oriented forward of the bomb body. The bomb body 21 being symmetrical with revolution, the axis 20 of the tube 22 merges for example with the axis of the body 21. The pyrotechnic charge 23 is disposed inside the bomb body 21 around the tube 22. The load 23 is contained inside a sheath 24, placed between the inner face of the bomb body 21 and the tube 22. A priming relay 25, for example of toric shape, located inside the pyrotechnic charge 23 allows to start the firing of the latter. The rear of the pyrotechnic charge 23 and closed by a wall 27 occupying the space between the inner face of the bomb body and the tube. A base 20 closes the rear of the bomb body 21. A striker 26 is placed in the base opposite the ignition relay 25, through the wall 27. The striker 26 is controlled by an electronic block 28, for example of toric form, also contained in the base 20. A shock attenuator 29 is placed in front of the pyrotechnic charge, wedged between the sheath 24 and the inside of the bomb body 21. Inside the tube is arranged a projectile puncher hyper velocity 30 pyrotechnic charge. This perforator allows in particular the prior creation of a conduit in the wall to be crossed. For this purpose, at the approach of the wall, the perforator leaves the tube, thanks to its own propulsion means, with a speed much higher than that of the bomb body 21. Then it detonates once introduced inside the wall.

La figure 3 présente, par une coupe transversale, un exemple de réalisation possible du projectile perforateur 30. Ce projectile comporte un corps 31. Ce corps présente par exemple à l'avant une pointe 32 pour faciliter la pénétration. A l'intérieur du corps est placé une charge pyrotechnique 33. Un relais d'amorçage 34 est placé à l'intérieur de la charge 33. Un support 35 ferme l'espace à l'arrière de la charge pyrotechnique 33. Ce support 35 comporte un percuteur 39 situé en regard du relais d'amorçage 34 pour réaliser un amorçage par percussion qui entraîne la mise à feu de la charge pyrotechnique 33. Le percuteur 39 est commandé par un bloc électronique 36 lui aussi placé dans le support 35. Un couvercle 37 ferme l'arrière du corps. Un corps propulseur 301 est placé à l'arrière du corps du projectile 31. Ce corps propulseur 301 est maintenu au corps du projectile au moyen de goupilles 38. Pour cela la paroi extérieure du corps propulseur 301 se prolonge à l'intérieur d'une partie de paroi du corps du projectile se prolongeant elle-même au-delà du couvercle 37. Les goupilles traversent les deux parois en regard l'une de l'autre grâce à des trous prévus à cet effet. Le corps propulseur comporte à l'intérieur de son enveloppe 303 une charge pyrotechnique 302. Cette charge 302 est par exemple composée de pains de plastique. Un bouchon 304 ferme l'arrière du corps propulseur. Le bouchon 304 vient par exemple se visser sur l'enveloppe 303 du corps propulseur. Un ou plusieurs opercules 305 sont percés dans le bouchon pour laisser passer une liaison de commande 306. Cette liaison est par exemple reliée à une pastille d'allumage 307 placée au contact de la charge pyrotechnique 302. Des moyens de calage 308 sont par exemple placés entre le bouchon 304 et le chargement du corps propulseur 302.The figure 3 presents, by a cross section, an exemplary embodiment of the projectile projectile 30. This projectile comprises a body 31. This body has for example at the front a tip 32 to facilitate penetration. Inside the body is placed a pyrotechnic charge. ignition relay 34 is placed inside the load 33. A support 35 closes the space at the rear of the pyrotechnic charge 33. This support 35 comprises a striker 39 located opposite the ignition relay 34 for performing a percussion initiation which causes the ignition of the pyrotechnic charge 33. The striker 39 is controlled by an electronic block 36 also placed in the support 35. A cover 37 closes the rear of the body. A propellant body 301 is placed behind the body of the projectile 31. This propellant body 301 is held in the body of the projectile by means of pins 38. For this purpose, the outer wall of the propellant body 301 is extended inside a body. wall portion of the body of the projectile extending itself beyond the cover 37. The pins pass through the two walls facing each other through holes provided for this purpose. The propellant body has inside its envelope 303 a pyrotechnic charge 302. This load 302 is for example composed of plastic loaves. A cap 304 closes the rear of the propulsion body. The cap 304 comes for example to screw on the casing 303 of the propellant body. One or more lids 305 are pierced in the plug to pass a control link 306. This connection is for example connected to an ignition pad 307 placed in contact with the pyrotechnic charge 302. Calibration means 308 are for example placed between the cap 304 and the loading of the propulsion body 302.

La mise à feu du corps propulseur 301 entraîne l'éjection hors du tube du corps 31 du projectile perforateur 30.The firing of the propulsion body 301 causes the tube 31 to be ejected from the tube of the piercing projectile 30.

La figure 4 présente la roquette 1 en deux endroits de sa trajectoire vers une paroi en béton 42 dans un système d'axes x, y. Les positions par rapport au sol sont indiquées sur un axe des abscisses x. L'axe des ordonnées y représente l'altitude de la roquette. Pour des questions de facilité de représentation, les échelles des distances et des altitudes sont réduites par rapport aux échelles de représentation de la roquette et de la dalle. A la position de départ, position d'abscisse 0, la roquette munie de sa bombe 10 est placée en vue de son lancement. La paroi en béton est située à une distance x1 de la position de départ. La roquette est propulsée par ses moyens de propulsion 3 situés à l'arrière. A une distance x0 inférieure à x1 la bombe est séparée de la roquette. La distance x1 - x0 est par exemple de l'ordre de 20 mètres. La séparation s'effectue par une mise à feu interne, la bombe 10 se trouve alors éjectée de la roquette. La position de la roquette par rapport à la paroi 42 est par exemple déterminée par un capteur de proximité situé à l'avant de la roquette avec les moyens de guidage.The figure 4 presents the rocket 1 in two places of its trajectory to a concrete wall 42 in an x, y axis system. The positions relative to the ground are indicated on an x-axis. The y-axis represents the altitude of the rocket. For questions of ease of representation, the scales of distances and altitudes are reduced compared to the scales of representation of the rocket and the slab. At the starting position, abscissa position 0, the rocket with its bomb 10 is placed for launching. The concrete wall is located at a distance x 1 from the starting position. The rocket is propelled by its propulsion means 3 located at the rear. At a distance x 0 less than x 1 the bomb is separated from the rocket. The distance x 1 - x 0 is, for example, the order of 20 meters. The separation is carried out by an internal firing, the bomb 10 is then ejected from the rocket. The position of the rocket relative to the wall 42 is for example determined by a proximity sensor located at the front of the rocket with the guide means.

Les figures 5a à 5f illustrent le procédé selon l'invention en présentant différentes phases d'une bombe selon l'invention en phase d'approche et de traversée de la paroi 42.The Figures 5a to 5f illustrate the method according to the invention by presenting different phases of a bomb according to the invention in approach phase and through the wall 42.

La figure 5a présente l'instant de mise à feu du chargement 302 du corps propulseur du perforateur 30 à l'approche immédiate de la cible en l'occurrence la paroi 42. A cet instant, la bombe est à une distance d inférieure à la distance x1 - x0. Cette distance d est par exemple de l'ordre de 10 mètres. Eventuellement les distances x1 - x0 et d peuvent être sensiblement les mêmes. A l'instant de mise à feu, le perforateur 30 est donc éjecté du corps de bombe 21 avec une très grande vitesse relative à ce corps. A titre d'exemple, si la bombe se déplace à une vitesse de l'ordre de 300 m/s, le perforateur peut sortir avec une vitesse relative de cet ordre. Il en résulte une vitesse absolue par rapport à la paroi par exemple de l'ordre de 600 à 700 m/s. Plusieurs solutions sont possibles pour déterminer l'instant d'amorçage du corps propulseur du perforateur 30, c'est-à-dire l'instant d'éjection du perforateur du corps de bombe 21. Un temporisateur placé par exemple dans le bloc électronique 28 du corps de bombe peut par exemple calculer un délai entre l'instant d'éjection du corps de bombe de la roquette et l'instant d'amorçage du corps propulseur du perforateur, l'instant d'éjection du corps de bombe étant lui déterminé par exemple par les moyens de guidage 2 situés à l'avant de la roquette 1. Connaissant la vitesse du corps de bombe et la distance x1 - x0 de ce dernier à la paroi à l'instant d'amorçage, il est alors possible de déterminer la durée de temporisation pour que l'éjection du perforateur se produise sensiblement à la distance d souhaitée de la paroi. La commande du bloc électronique 28 au corps propulseur du perforateur se fait par exemple au moyen d'une liaison électrique 306. Un signal électrique active par exemple la pastille d'allumage 307 qui enclenche la mise à feu de la charge pyrotechnique 302.The figure 5a presents the moment of firing of the loading 302 of the propellant body of the perforator 30 to the immediate approach of the target in this case the wall 42. At this moment, the bomb is at a distance d less than the distance x 1 - x 0 . This distance d is for example of the order of 10 meters. Optionally, the distances x 1 - x 0 and d may be substantially the same. At the moment of firing, the perforator 30 is ejected from the bomb body 21 with a very high speed relative to this body. For example, if the bomb moves at a speed of the order of 300 m / s, the perforator can exit with a relative speed of this order. This results in an absolute speed with respect to the wall, for example of the order of 600 to 700 m / s. Several solutions are possible to determine the moment of initiation of the propellant body of the perforator 30, that is to say the instant of ejection of the perforator of the bomb body 21. A timer placed for example in the electronic block 28 the bomb body may for example calculate a delay between the moment of ejection of the bomb body of the rocket and the moment of priming of the propellant body of the perforator, the moment of ejection of the bomb body being determined him for example by the guide means 2 located in front of the rocket 1. Knowing the speed of the bomb body and the distance x 1 - x 0 of the latter to the wall at the moment of initiation, it is then It is possible to determine the delay time for the perforator ejection to occur substantially at the desired distance d from the wall. The control of the electronic unit 28 to the thruster body of the perforator is done for example by means of an electrical connection 306. An active electrical signal for example the ignition pad 307 which triggers the firing of the pyrotechnic charge 302.

La figure 5b présente le vol du perforateur 30 jusqu'à la paroi 42, suivi par le corps de bombe 21. La pastille d'allumage 307, la liaison électrique 306 et le bloc électronique composent un système permettant de commander la mise à feu du corps propulseur 301 avant l'impact de la bombe 10 sur une cible, la paroi 42 dans l'exemple des figures 5a à 5f. Un autre type système pourrait être utilisé.The figure 5b presents the flight of the perforator 30 to the wall 42, followed by the bomb body 21. The ignition pad 307, the electrical connection 306 and the electronic block compose a system for controlling the firing of the propulsion body 301 before the impact of the bomb 10 on a target, the wall 42 in the example of Figures 5a to 5f . Another type of system could be used.

La figure 5c présente la pénétration du perforateur 30 dans la paroi 42. La vitesse relative de ce dernier par rapport au corps de bombe lui permet d'impacter en premier la paroi 42.The figure 5c the penetration of the perforator 30 in the wall 42. The relative speed of the latter relative to the bomb body allows it to firstly impact the wall 42.

La figure 5d présente la détonation du perforateur 30 à l'intérieur de la paroi, de préférence au milieu, créant un orifice 51 traversant la paroi 42. A cet effet, le perforateur comporte un système qui détermine sa position à l'intérieur de la paroi en fonction du temps et qui déclenche la détonation de sa charge pyrotechnique à un instant prédéterminé. Ce système est par exemple contenu dans le bloc électronique 36. La détonation est provoquée par la mise à feu de la charge pyrotechnique 33.The figure 5d has the detonation of the perforator 30 inside the wall, preferably in the middle, creating an orifice 51 passing through the wall 42. For this purpose, the perforator comprises a system which determines its position inside the wall in function of time and which triggers the detonation of its pyrotechnic charge at a predetermined time. This system is for example contained in the electronic block 36. The detonation is caused by the firing of the pyrotechnic charge 33.

L'invention utilise avantageusement le fait que les bétons ne tiennent pas la contrainte de traction. Ceci permet donc de les déstructurer relativement facilement par une détonation du perforateur à l'intérieur de la paroi, cette détonation intérieur créant de fortes contraintes de traction. Un processeur interne situé dans le bloc électronique 36 du perforateur peut déterminer l'instant de détonation du perforateur correspondant à sa position la plus efficace à l'intérieur de la paroi, par exemple au milieu de celle-ci. A cet effet une table est par exemple mémorisée dans le processeur. Cette table comporte les caractéristiques des niveaux de décélération d'un objet pénétrant dans un matériau. Elle peut prendre en compte plusieurs types de matériaux dont bien sûr le béton et même différents types de béton. Ainsi connaissant la vitesse initiale du perforateur 30 à l'entrée dans la paroi, au point d'impact, et la courbe de décélération du matériau de cette dernière, il est possible de connaître la distance de pénétration à l'intérieur de la paroi en fonction et donc sa position. Un module d'intelligence d'impact de type « caïman » est par exemple utilisé.The invention advantageously uses the fact that the concretes do not hold the tensile stress. This allows them to be destructured relatively easily by a detonation of the perforator inside the wall, this internal detonation creating high tensile stresses. An internal processor located in the electronic block 36 of the perforator can determine the moment of detonation of the perforator corresponding to its most effective position inside the wall, for example in the middle thereof. For this purpose a table is for example stored in the processor. This table contains the characteristics of the deceleration levels of an object penetrating into a material. It can take into account several types of materials including of course concrete and even different types of concrete. Thus knowing the initial speed of the perforator 30 at the entrance to the wall, at the point of impact, and the deceleration curve of the material of the latter, it is possible to know the distance of penetration inside the wall. function and therefore its position. An impact intelligence module of the "Cayman" type is for example used.

La figure 5e présente la pénétration du corps de bombe 21 dans l'orifice 51 créé par le perforateur. La détonation du perforateur 30, par exemple au milieu de la paroi 42, crée cet orifice 51. La quantité de charge véhiculée par le perforateur 30 peut-être calculé pour obtenir un orifice adapté au calibre du corps de bombe 21, c'est-à-dire en pratique proche du calibre du corps de bombe. L'invention permet ainsi de réduire considérablement les contraintes vues par le corps de bombe pendant sa phase de pénétration dans la paroi et par-là même permet donc à une bombe de relativement faible résistance mécanique structurale de traverser des parois de plus en plus épaisses ou résistantes. En diminuant la résistance de la structure mécanique du corps de bombe il est possible alors d'augmenter la masse d'explosif embarqué d'où un pouvoir de destruction plus fort après traversée de la paroi. Ainsi il est par exemple possible d'augmenter la masse d'explosif embarquée d'environ 20%, ce qui entraîne une masse et une vitesse d'éclats accrus de 15% par exemple.The figure 5e has the penetration of the bomb body 21 in the orifice 51 created by the perforator. The detonation of the perforator 30, for example in the middle of the wall 42, creates this orifice 51. The amount of charge conveyed by the perforator 30 may be calculated to obtain an orifice adapted to the caliber of the bomb body 21, that is, to say in practice close to the caliber of the body of bomb. The invention thus makes it possible to considerably reduce the stresses seen by the bomb body during its phase of penetration into the wall and therefore allows a bomb of relatively low structural mechanical strength to pass through walls that are thicker and thicker. resistant. By decreasing the resistance of the mechanical structure of the bomb body, it is then possible to increase the mass of explosive on board, resulting in a greater destructive power after passing through the wall. For example, it is possible, for example, to increase the on-board explosive mass by about 20%, which results in a mass and an increased chip speed of 15% for example.

La figure 5f présente le corps de bombe 21 après franchissement de la paroi 42. A cet instant le corps de bombe peut par exemple détonner par mise à feu de son chargement pyrotechnique 23.The figure 5f presents the bomb body 21 after crossing the wall 42. At this time the bomb body can for example detonate by firing its pyrotechnic charge 23.

La figure 6 met en évidence un avantage apporté par le cône de coincement 221 du tube intérieur au corps de bombe. Plus particulièrement, la figure 6 montre le maintien du corps propulseur du perforateur 30, en particulier de l'enveloppe 303 du corps propulseur 301, dans le tube par coincement de cette dernière au niveau du cône de coincement 221. L'enveloppe 303 dont le diamètre est supérieur au calibre de la section de sortie du tube, sous l'effet de la vitesse, vient se souder par friction sur le cône de coincement interne du tube. Ceci permet d'éviter toute intrusion potentielle de gravats dans le corps de la bombe. Le maintien du corps propulseur est renforcé par le confinement au sein du tube de l'intégralité des gaz de propulsion. L'enveloppe 303 reste soudée au tube alors que le corps 31 du perforateur, adapté au calibre de sortie du tube 22, est éjectée du tube. Le corps 31 du perforateur se détache de l'enveloppe 303 du corps propulseur par cisaillement des goupilles 38 qui fixent les deux corps entre eux.The figure 6 highlights an advantage provided by the jamming cone 221 of the inner tube to the bomb body. In particular, the figure 6 shows the maintenance of the propellant body of the perforator 30, in particular of the casing 303 of the propellant body 301, in the tube by jamming of the latter at the jamming cone 221. The casing 303 whose diameter is greater than the caliber of the output section of the tube, under the effect of the speed, is soldered by friction on the internal jamming cone of the tube. This avoids any potential intrusion of rubble into the body of the bomb. The maintenance of the propellant body is reinforced by the confinement within the tube of all the propulsion gases. The envelope 303 remains welded to the tube while the body 31 of the perforator, adapted to the output caliber of the tube 22, is ejected from the tube. The body 31 of the perforator is detached from the casing 303 of the propulsion body by shearing the pins 38 which fix the two bodies together.

Avantageusement, l'enveloppe du corps propulseur forme donc une paroi de protection. En effet, comme cela vient d'être indiqué précédemment, elle empêche ainsi toute intrusion de gravats ou débris 52 à l'intérieur du corps de bombe pendant la phase de pénétration de ce dernier dans la paroi. De tels débris, générés notamment lors de la détonation du perforateur 30 à l'intérieur de la paroi comme l'illustre la figure 5 e, pourraient en effet provoquer des explosions parasites.Advantageously, the casing of the propellant body thus forms a protective wall. Indeed, as just indicated above, it thus prevents any intrusion of rubble or debris 52 inside the bomb body during the phase of penetration of the latter in the wall. Such debris, generated in particular during the detonation of the perforator 30 inside the wall as shown in FIG. figure 5 e , could indeed cause parasitic explosions.

Par ailleurs, la résistance de la paroi aux intrusions extérieures, en plus de l'effet de la soudure par friction, est renforcée par la pression interne générée par les gaz de combustion dans le tube 22. En d'autres termes, la fonction d'étanchéité apportée au corps propulseur permet de conserver les gaz de combustion au sein du tube qui, par leur poussée, renforcent la tenue de la soudure.On the other hand, the resistance of the wall to external intrusions, in addition to the effect of friction welding, is enhanced by the internal pressure generated by the combustion gases in the tube 22. In other words, the function of sealing provided to the propellant body keeps the combustion gases within the tube which, by their thrust, strengthen the strength of the weld.

La figure 7 illustre un autre avantage de l'invention. En particulier cette figure montre que l'invention permet d'augmenter le domaine d'angle d'incidence d'arrivée du corps de bombe 21 sur une paroi 71. L'orifice 72 créé par le perforateur dans la paroi 71 crée par-là même une face d'entrée 73 normale au vecteur vitesse V du corps de la bombe. Cette face d'entrée 73 évite notamment les ricochets du corps de bombe sur la paroi lorsque l'angle d'incidence α de son vecteur vitesse sur la paroi est trop faible. Si cet angle α est malgré tout beaucoup trop faible il y aura néanmoins incidence. Le perforateur 30 qui est plus fin et plus rapide que le corps de bombe peut pénétrer la paroi y compris pour de faibles angles d'incidences, le corps de bombe bénéficiant de l'orifice créé par le perforateur et ayant de ce fait un domaine d'incidence élargi.The figure 7 illustrates another advantage of the invention. In particular this figure shows that the invention makes it possible to increase the angle of arrival angle range of the bomb body 21 on a wall 71. The orifice 72 created by the perforator in the wall 71 creates there even an entry face 73 normal to the speed vector V of the body of the bomb. This inlet face 73 in particular avoids the ricochets of the bomb body on the wall when the angle of incidence α of its velocity vector on the wall is too low. If this angle α is nevertheless much too weak, there will nevertheless be an incidence. The perforator 30 which is thinner and faster than the bomb body can penetrate the wall even for low angles of incidence, the bomb body benefiting from the orifice created by the perforator and thereby having a range of increased incidence.

L'invention a été décrite pour la réalisation d'une bombe de pénétration à l'intérieur d'une infrastructure. Elle peut néanmoins s'appliquer à d'autres types de projectiles destinés à pénétrer dans une infrastructure par traversée d'une paroi épaisse. L'invention permet en particulier de traverser des parois en béton à fort module de rupture à la compression, pouvant atteindre par exemple 200 Mpa.The invention has been described for the realization of a penetration bomb inside an infrastructure. It can, however, apply to other types of projectiles intended to penetrate into infrastructure through a thick wall. The invention makes it possible in particular to pass through concrete walls with a high modulus of rupture to compression, which can reach, for example, 200 MPa.

Claims (11)

  1. Penetrating projectile (10) comprising:
    - a body (21);
    - an internal tube (22), in which there is positioned a perforating projectile (30) which comprises at least one body (31) which is provided with a pyrotechnic charge (33), the body (31) of the perforating projectile being ejected out of the tube by a propulsion body (301) being ignited;
    - a system (28, 306, 307) which allows control of the ignition of the propulsion body (301) of the perforating projectile (30) before the impact of the penetrating projectile (10) at a target (42), the penetrating projectile (10) comprising a pyrotechnic charge (23) which is positioned between its body (21) and the tube (22);
    characterised in that the propulsion body (301) is contained in the perforating projectile, the tube (22) comprising at least two sections having different bore diameters, the section having the smaller bore diameter being orientated towards the outlet of the tube (22), the body (21) of the perforating projectile (30) being adapted to the outlet bore diameter of the tube, the propulsion body (301, 303) becoming wedged in the region of the transition (221) of the two sections when the body (21) of the perforating projectile is discharged, the transition between the two sections forming a cone (221) in such a manner that the shell (30) of the propulsion body is friction-welded to the cone.
  2. Projectile according to claim 1, characterised in that the perforating projectile (30) comprises a system (36) which determines its position inside the target in accordance with time and which triggers the detonation of the pyrotechnic charge (33) thereof at a predetermined time.
  3. Projectile according to claim 2, characterised in that the system determines the position of the perforator on the basis of the characteristics thereof in respect of the deceleration levels in the material of the target and the speed thereof at the point of impact at the target.
  4. Projectile according to any one of the preceding claims, characterised in that the body (31) of the perforating projectile (30) is fixed to the shell (303) of the propulsion body (301) by pins.
  5. Projectile according to any one of the preceding claims, characterised in that an actuation relay (34) is positioned inside the pyrotechnic charge (33) of the perforating projectile (30).
  6. Projectile according to claim 5, characterised in that the perforating projectile (30) comprises a support (35) which closes the space at the rear of the pyrotechnic charge (33), this support comprising a striking pin (39) which is located facing the actuation relay (34).
  7. Projectile according to any one of claims 2 to 6, characterised in that the perforating projectile (30) comprises an electronic unit (36) which incorporates the system for determining the position of the perforator in the target (42), the electronic unit further controlling the actuation of the pyrotechnic charge (33).
  8. Projectile according to claims 6 and 7, characterised in that the electronic unit (36) of the perforating projectile (30) is positioned on the support (35).
  9. Projectile according to any one of the preceding claims, characterised in that the system which allows control of the ignition of the propulsion body (301) of the perforating projectile (30) comprises an electronic unit (28) and at least one ignition pellet (307), an electrical signal being transmitted from the electronic unit (28) to the ignition pellet (307) by an electrical connection (306).
  10. Projectile according to claim 9, characterised in that the electronic unit (28) is in the form of a torus and is positioned in a cap (20) which closes the body (21) of the projectile.
  11. Projectile according to any one of the preceding claims, characterised in that, having symmetry of revolution, the axis of symmetry thereof is in alignment with the axis (20) of the tube.
EP05752648A 2004-06-08 2005-05-31 Projectile, in particular an anti-infrastructure penetrating bomb and method for penetration of said projectile through a wall Expired - Fee Related EP1766323B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406184A FR2871226B1 (en) 2004-06-08 2004-06-08 PROJECTILE, IN PARTICULAR ANTI-INFRASTRUCTURE PENETRATION BOMB AND METHOD OF PENETRATING SUCH A PROJECTILE THROUGH A WALL
PCT/EP2005/052483 WO2005124270A1 (en) 2004-06-08 2005-05-31 Projectile, in particular an anti-infrastructure penetrating bomb and method for penetration of said projectile through a wall

Publications (2)

Publication Number Publication Date
EP1766323A1 EP1766323A1 (en) 2007-03-28
EP1766323B1 true EP1766323B1 (en) 2012-04-11

Family

ID=34948899

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05752648A Expired - Fee Related EP1766323B1 (en) 2004-06-08 2005-05-31 Projectile, in particular an anti-infrastructure penetrating bomb and method for penetration of said projectile through a wall

Country Status (5)

Country Link
US (1) US8151712B2 (en)
EP (1) EP1766323B1 (en)
FR (1) FR2871226B1 (en)
IL (1) IL179902A (en)
WO (1) WO2005124270A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2496908B1 (en) * 2009-11-04 2013-09-11 Diehl BGT Defence GmbH & Co.KG Aircraft bomb
BG66449B1 (en) * 2010-01-28 2014-09-30 Любомир ТОМОВ Aerodynamically stabilized munition
RU2514014C2 (en) * 2012-07-17 2014-04-27 Константин Сергеевич Колобов Armour-piercer
IL221460A (en) * 2012-08-14 2016-11-30 Rafael Advanced Defense Systems Ltd Shell accelerator
US11573068B1 (en) * 2020-06-19 2023-02-07 The United States Of America As Represented By The Secretary Of The Army Payload protection and deployment mechanism
US11867487B1 (en) * 2021-03-03 2024-01-09 Wach Llc System and method for aeronautical stabilization

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR865939A (en) * 1940-02-16 1941-06-09 High penetrating power projectile
US3740837A (en) * 1954-04-02 1973-06-26 Us Navy Process for making a toroidal inductance coil
US3754507A (en) * 1972-05-30 1973-08-28 Us Navy Penetrator projectile
DE2427680A1 (en) * 1974-06-07 1975-12-18 Dynamit Nobel Ag MOBILE LAUNCH DEVICE FOR TANK-BREAKING BODIES
US3961580A (en) * 1975-02-27 1976-06-08 The United States Of America As Represented By The Secretary Of The Navy Energy-absorbing sabot
DE2948542A1 (en) * 1979-12-03 1984-04-12 Rheinmetall GmbH, 4000 Düsseldorf BULLET TO FIGHT MULTILAYERED, PREFERRED, ACTIVE ARMOR
FR2472168A1 (en) * 1979-12-19 1981-06-26 Serat Outer casing for projectile - includes auxiliary charge to boost speed before impact to ensure penetration of target
DE3004047C2 (en) * 1980-02-05 1984-10-31 Rheinmetall GmbH, 4000 Düsseldorf Armor-piercing projectile
US4375192A (en) * 1981-04-03 1983-03-01 The United States Of America As Represented By The Secretary Of The Navy Programmable fuze
DE3209593A1 (en) * 1982-03-17 1983-09-29 Rheinmetall GmbH, 4000 Düsseldorf LOW-CALIBRAL ARMORED BULLET RIFLE (PENETRATOR)
US4597333A (en) * 1983-07-08 1986-07-01 Rheinmetall G.M.B.H. Two-part armor-piercing projectile
DE3414414A1 (en) * 1984-04-17 1985-10-17 Dynamit Nobel Ag, 5210 Troisdorf Missile with a remote-action warhead
US4586436A (en) * 1984-09-13 1986-05-06 The United States Of America As Represented By The Secretary Of The Navy Electronic assembly for moderate hard target penetrator fuze
FR2615937B1 (en) * 1987-05-27 1989-09-08 Ladriere Serge IMPROVEMENTS TO PERFORATING PROJECTILES
DE3833751C1 (en) * 1988-10-05 1999-06-10 Diehl Stiftung & Co Release device for the ignition of an anti-shelter projectile
ATE168768T1 (en) * 1990-01-16 1998-08-15 Tda Armements Sas PENETRATOR AMMUNITION FOR TARGETS WITH HIGH MECHANICAL RESISTANCE
GB9117581D0 (en) * 1991-08-15 2000-09-06 Secr Defence Torpedo warhead
DE19535218C1 (en) * 1995-09-22 1997-02-27 Diehl Gmbh & Co Ballistic projectile
US6276277B1 (en) * 1999-04-22 2001-08-21 Lockheed Martin Corporation Rocket-boosted guided hard target penetrator
NO995142A (en) * 1999-06-04 2000-10-16 Nammo Raufoss As Propulsion device for a projectile in a missile
EP1167914A1 (en) * 2000-06-19 2002-01-02 SM Schweizerische Munitionsunternehmung AG Self-propelled projectile with armour-piercing core
US6845718B2 (en) * 2002-12-18 2005-01-25 Lockheed Martin Corporation Projectile capable of propelling a penetrator therefrom and method of using same

Also Published As

Publication number Publication date
US20080072782A1 (en) 2008-03-27
WO2005124270A1 (en) 2005-12-29
FR2871226B1 (en) 2006-08-18
IL179902A (en) 2013-08-29
US8151712B2 (en) 2012-04-10
EP1766323A1 (en) 2007-03-28
FR2871226A1 (en) 2005-12-09
IL179902A0 (en) 2007-05-15

Similar Documents

Publication Publication Date Title
EP1766323B1 (en) Projectile, in particular an anti-infrastructure penetrating bomb and method for penetration of said projectile through a wall
EP3102906B1 (en) Hollow charge and use for separating two floors of an aeronautical vehicle or for the neutralization thereof
FR2534369A1 (en) EXPLOSIVE PROJECTILE PERFORANT ENCARTOUCHE
EP0084007B1 (en) Dual stage penetrator bomb
FR2599134A1 (en) MILITARY HEAD FOR MACHINE
FR2844348A1 (en) UNIVERSAL JET BOMB AND LOAD CONE
EP0438343B1 (en) Penetrator ammunition for targets with high mechanical resistance
FR2545923A1 (en) PROJECTILE ENSURING THE DRILLING OF SHIELDS
EP1893936A1 (en) Penetration assisting kit equipping a bomb, in particular anti-infrastructure, penetrating projectile equipped with such a kit, and method for penetrating into a target
FR2691794A1 (en) Multicomponent shell for use against laminar armoured targets
FR2975079A1 (en) Method for fabricating spherical propellant tank i.e. hydrazine tank, of e.g. artificial observation satellite, involves arranging detonator on cutting device for detonating cutting device when detonator reaches detonation temperature
EP1521053B1 (en) Anti-bunker ammunition
EP3136043B1 (en) Warhead rocket with striker
EP1000312B1 (en) Countermeasure ammunition
FR2601763A1 (en) SUB-CALIBER PROJECTILE OF ARRAY TYPE FOR ACTIVE SHIELDS
FR2833341A1 (en) Weapon system for attacking underwater objects, particularly sea mines, comprises projectile launching device open at its foremost end and has projection charge at its rearmost end
EP0294263B1 (en) Method for increasing the impact sensitivity of a projectile fitted with an impact fuse
FR2775770A1 (en) Explosive mine clearance munition
FR2859275A1 (en) Explosive shell for penetrating concrete structures includes additional sub-caliber charge that can be detonated by second primer
EP1870640B1 (en) Warhead generating an explosively formed tubular projectile
FR2727512A1 (en) Armour piercing projectile
FR2863699A1 (en) Polyvalent bomb for attacking e.g. bridge, has module comprising penetration charge cone with high explosives contained in metallic shell including holes, each inclined outwards at angle with respect to longitudinal axis of bomb
EP1217326A1 (en) Ignition device for explosive charge and explosive charge comprising such a device
FR2715466A1 (en) Armour-piercing projectile
GB2350172A (en) Torpedo warhead

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20070918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005033627

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F42C0011060000

Ipc: F42B0012620000

RIC1 Information provided on ipc code assigned before grant

Ipc: F42C 11/06 20060101ALI20110902BHEP

Ipc: F42B 12/62 20060101AFI20110902BHEP

Ipc: F42B 15/36 20060101ALI20110902BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LESNE, DOMINIQUE

Inventor name: SALIGNON, DENIS

Inventor name: GEORGET, CLAUDE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005033627

Country of ref document: DE

Effective date: 20120606

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005033627

Country of ref document: DE

Effective date: 20130114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170516

Year of fee payment: 13

Ref country code: DE

Payment date: 20170523

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005033627

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531