EP1757709B1 - Heat resistant aluminium alloy - Google Patents

Heat resistant aluminium alloy Download PDF

Info

Publication number
EP1757709B1
EP1757709B1 EP06405085A EP06405085A EP1757709B1 EP 1757709 B1 EP1757709 B1 EP 1757709B1 EP 06405085 A EP06405085 A EP 06405085A EP 06405085 A EP06405085 A EP 06405085A EP 1757709 B1 EP1757709 B1 EP 1757709B1
Authority
EP
European Patent Office
Prior art keywords
max
aluminium alloy
alloy according
alloy
polygon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06405085A
Other languages
German (de)
French (fr)
Other versions
EP1757709A1 (en
Inventor
Rüdiger Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminium Rheinfelden GmbH
Original Assignee
Aluminium Rheinfelden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Rheinfelden GmbH filed Critical Aluminium Rheinfelden GmbH
Publication of EP1757709A1 publication Critical patent/EP1757709A1/en
Application granted granted Critical
Publication of EP1757709B1 publication Critical patent/EP1757709B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates to an aluminum alloy of the type AIMgSi with good durability for the production of thermally and mechanically stressed cast components.
  • the alloy contains, in addition to conventional additives, 0.6 to 4.5% by weight of Si, 2.5 to 11% by weight of Mg, of which 1 to 4.5% by weight of free Mg, and 0.6 to 1.8% by weight of Mn.
  • the WO-A-9615281 discloses an aluminum alloy having 3.0 to 6.0 wt% Mg, 1.4 to 3.5 wt% Si, 0.5 to 2.0 wt% Mn, max. 0.15 wt.% Fe, max. 0.2 wt .-% of Ti and aluminum as a remainder with further impurities individually max. 0.02 wt .-%, a total of max. 0.2% by weight.
  • the alloy is suitable for the production of components with high demands on the mechanical properties.
  • the alloy is preferably processed by die casting, thixocasting or thixoforging.
  • a similar aluminum alloy is known for the manufacture of safety components in the die casting, squeeze casting, thixoforming or thixoforging process.
  • the alloy contains 2.5 to 7.0 wt.% Mg, 1.0 to 3.0 wt.% Si, 0.3 to 0.49 wt.% Mn, 0.1 to 0.3 wt .-% Cr, max. 0.15% by weight of Ti, max. 0.15% by weight of Ti, max. 0.15 wt.% Fe, max. 0.00005 wt.% Ca, max. 0.00005 wt.% Na, max. 0.0002 wt.% P, other impurities individually max. 0.02 wt .-% and aluminum as the remainder.
  • One from the EP-A-1 234 893 known casting alloy of the type AlMgSi contains 3.0 to 7.0 wt .-% Mg, 1.7 to 3.0 wt .-% Si, 0.2 to 0.48 wt .-% Mn, 0.15 to 0 , 35 wt.% Fe, max. 0.2 wt .-% Ti, optionally 0.1 to 0.4 wt .-% Ni and aluminum as balance and production-related impurities individually max. 0.02 wt .-%, a total of max.
  • magnesium and silicon in the alloy substantially in a weight ratio Mg: Si of 1.7: 1 corresponding to the composition of the quasi-binary eutectic with the solid phases Al and Mg 2 Si present.
  • the alloy is suitable for the production of safety parts in vehicle construction by die casting, rheo- and thixocasting.
  • the invention has for its object to provide an aluminum alloy with good Treasurewarmfesttechnik for the production of thermally and mechanically stressed components.
  • the alloy should be suitable above all for die casting, but also for gravity die casting, low pressure die casting and sand casting.
  • the components cast from the alloy should have a high strength combined with high ductility.
  • the mechanical properties sought in the component are defined as follows: yield strength Rp0.2> 170 MPa tensile strenght Rm> 230 MPa elongation A5> 6%
  • the castability of the alloy should be comparable to the castability of currently used AlSiCu casting alloys, and the alloy should show no tendency to crack.
  • the contents of the alloying elements magnesium and silicon in% by weight in a Cartesian coordinate system are represented by a polygon A with the coordinates [Mg; Si] [8.5; 2.7] [8.5; 4,7] [6,3; 2,7] [6,3; 3,4] are limited and the alloy continues 0.1 to 1 wt .-% manganese Max. 1 wt .-% iron Max. 3% by weight of copper Max. 2 wt .-% nickel Max. 0.5% by weight of chromium Max. 0.6% by weight of cobalt Max. 0.2% by weight of zinc Max. 0.2% by weight of titanium Max. 0.5% by weight zirconium Max. 0.008% by weight of beryllium Max. 0.5% by weight of vanadium and aluminum as a remainder with further elements and production-related impurities individually max. 0.05% by weight, in total max. Contains 0.2 wt .-%.
  • the following content ranges prefers: mg 6.9 to 7.9 wt .-%, in particular 7.1 to 7.7 wt .-% Si 3.0 to 3.7% by weight, in particular 3.1 to 3.6% by weight
  • alloys whose contents of the alloying elements magnesium and silicon in% by weight in a Cartesian coordinate system are represented by a polygon B with the coordinates [Mg; Si] [7,9; 3.0] [7.9; 3.7] [6.9; 3.0] [6.9; 3,7], in particular by a polygon C with the coordinates [Mg; Si] [7,7; 3,1] [7,7; 3,6] [7,1; 3,1] [7,1; 3.6] are limited.
  • the alloying elements Mn and Fe With the alloying elements Mn and Fe, the gluing of the castings in the mold can be prevented. High iron content leads to increased heat resistance at the expense of reduced elongation. Mn also contributes significantly to the heat curing. Depending on the field of application, therefore, the alloying elements Fe and Mn are preferably matched as follows:
  • a content of 0.4 to 1 wt .-% Fe, in particular 0.5 to 0.7 wt .-% Fe a content of 0.1 to 0.5 wt .-% Mn, in particular 0.3 adjusted to 0.5 wt .-% Mn.
  • a content of max. 0.2 wt .-% Fe, in particular max. 0.15 wt .-% Fe a content of 0.5 to 1 wt .-% Mn, in particular 0.5 to 0.8 wt .-% Mn is set.
  • the following content ranges are preferred: Cu 0.2 to 1.2 wt .-%, preferably 0.3 to 0.8 wt .-%, in particular 0.4 to 0.6 wt .-% Ni 0.8 to 1.2% by weight Cr max 0.2 wt.%, preferably max. 0.05% by weight Co 0.3 to 0.6% by weight Ti 0.05 to 0.15% by weight Fe Max. 0.15% by weight Zr 0.1 to 0.4% by weight
  • the shaping behavior of the alloy can be further improved.
  • Titanium and zirconium are used for grain refining. Good grain refining contributes significantly to the improvement of casting properties and mechanical properties.
  • Beryllium in combination with vanadium reduces dandruff.
  • 0.02 to 0.15 wt .-% V preferably 0.02 to 0.08 wt .-% V, in particular 0.02 to 0.05 wt .-% V less than 60 ppm Be are sufficient.
  • a preferred field of application of the aluminum alloy according to the invention is the production of thermally and mechanically stressed components as pressure, mold or sand casting, in particular for cylinder crankcases produced in the die casting process in the automotive industry.
  • the alloy according to the invention fulfills the mechanical properties required for structural components in vehicle construction after a one-stage heat treatment without separate solution annealing.
  • the polygon A shown in FIG. 1 defines the content range for the alloying elements Mg and Si, the polygons B and C relate to preferred ranges.
  • the straight line E corresponds to the composition of the quasi-binary eutectic Al-Mg 2 Si. The novel alloy compositions are thus on the side with a magnesium excess.
  • the alloy according to the invention was cast to give pressure casting plates with different wall thicknesses. Tensile samples were produced from the die cast plates. On the tensile specimens the mechanical properties yield strength (Rp0.2), tensile strength (Rm) and elongation at break (A) in the state F cast state Water / F Cast condition, quenched in water after molding F> 24 h Cast condition,> 24 h storage at room temperature Water / F> 24 Cast condition, quenched in water after molding,> 24 h storage at room temperature and after various single-stage heat treatments at temperatures ranging from 250 ° C to 380 ° C and after long-term storage at temperatures ranging from 150 ° C to 250 ° C.
  • Rp0.2 mechanical properties yield strength
  • Rm tensile strength
  • A elongation at break
  • the investigated alloys are summarized in Table 1.
  • the reference number A refers to alloys with added copper
  • the reference number B to alloys without added copper.
  • Table 2 summarizes the results of the mechanical properties found on tensile specimens of the alloys of Table 1.
  • An alloy with good continuous heat resistance not considered in Tables 1 and 2 had the following composition (in% by weight): 3.4 Si, 0.6 Fe, 0.42 Cu, 0.32 Mn, 7.4 Mg, o, 07 Ti, 0.9 Ni, 0.024 V and 0.004 Be
  • Table 1 chemical composition of the alloys in wt .-% alloy variant Wall thickness flat sample Si Fe Cu Mn mg Ti V Be 1 3 mm 3,469 .1138 0.787 7,396 0.106 0.0221 0.0025 1A 3mm 3.4 0,117 0.527 0.781 7.151 0,119 0.0223 0.0019 2 2 mm 3.366 0.0936 0.774 7,246 0,117 0.0263 0.0024 2A 2mm 3,251 0.0841 0.507 0.76 7,499 0.1 0.0246 0.0023 3 4 mm 3,352 0.0917 0.774 7,221 0.118 0.026 0.0024 3A 4 mm 3,198 0.0848 0.522 0.747 7,351 0,101 0.0255 0.0023 4 6 mm 3.28 .0921 0.766 7,024 0,119 0.0268 0.0024 4A 6 mm 3,181 0.0862 0.535 0.745 7,273 0.1 0.0257 0.0023 alloy variant initial state heat treatment Rp0.2 [MPa] Rm [MPa] A5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Continuous Casting (AREA)
  • Mold Materials And Core Materials (AREA)
  • Body Structure For Vehicles (AREA)
  • Cookers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Secondary Cells (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Heat resistant Al alloy of type AlMgSi of long lasting heat resistance for production of thermally and mechanically strained cast components, where the contents of alloying elements Mg and Si in wt.% in a Cartesian coordinate system is restricted by a polygon A with specific coordinates and the alloy contains (wt.%):Mn (0.1-1), and maximum amounts of Fe (1.0), Cu (3.0), Ni (2.0), Cr (0.5), Co (0.6), Zn (0.2), Ti (0.2), Zr (0.5), Be (0.008), V (.5), remainder Al and impurities to an individual maximum of 0.05 wt.5 and total maximum of 0.2 wt.%.

Description

Die Erfindung betrifft eine Aluminiumlegierung vom Typ AIMgSi mit guter Dauerwarmfestigkeit zur Herstellung thermisch und mechanisch beanspruchter Gussbauteile.The invention relates to an aluminum alloy of the type AIMgSi with good durability for the production of thermally and mechanically stressed cast components.

Die Weiterentwicklung von Dieselmotoren mit dem Ziel einer verbesserten Verbrennung des Dieselkraftstoffes und einer höheren spezifischen Leistung führt u. a. zu erhöhtem Explosionsdruck und in der Folge zu einer auf das Zylinderkurbelgehäuse pulsierend einwirkenden mechanischen Last, die an den Werkstoff höchste Anforderungen stellt. Neben einer hohen Dauerfestigkeit ist eine Hochtemperatur-Wechselfestigkeit des Werkstoffes eine weitere Voraussetzung für dessen Verwendung zur Herstellung von Zylinderkurbelgehäusen.The further development of diesel engines with the aim of improved combustion of the diesel fuel and a higher specific power leads u. a. to increased explosion pressure and as a result to a pulsating on the cylinder crankcase mechanical load, which places the highest demands on the material. In addition to a high fatigue strength, a high-temperature fatigue strength of the material is another prerequisite for its use for the production of cylinder crankcases.

Für thermisch beanspruchte Bauteile werden heute üblicherweise AlSi-Legierungen eingesetzt, wobei die Warmfestigkeit durch Zulegieren von Cu erreicht wird. Kupfer erhöht allerdings auch die Warmrissneigung und wirkt sich negativ auf die Giessbarkeit aus. Anwendungen, bei denen insbesondere Warmfestigkeit gefordert wird, findet man hauptsächlich im Bereich der Zylinderköpfe im Automobilbau, siehe z.B. F. J. Feikus, "Optimierung von Aluminium-Silicium-Gusslegierungen für Zylinderköpfe", Giesserei-Praxis, 1999, Heft 2, S. 50-57 .For thermally stressed components today AlSi alloys are commonly used, the hot strength is achieved by alloying of Cu. However, copper also increases the tendency of hot cracking and has a negative effect on the castability. Applications in which, in particular, hot strength is required, are found mainly in the field of cylinder heads in the automotive industry, see, for example FJ Feikus, "Optimization of aluminum-silicon casting alloys for cylinder heads", foundry practice, 1999, No. 2, pp. 50-57 ,

Aus der US-A-3 868 250 ist eine warmfeste AlMgSi-Legierung zur Herstellung von Zylinderköpfen bekannt. Die Legierung enthält, nebst üblichen Zusätzen, 0,6 bis 4,5 Gew.-% Si, 2,5 bis 11 Gew.-% Mg, davon 1 bis 4,5 Gew.-% freies Mg, und 0,6 bis 1,8 Gew.-% Mn.From the US-A-3,868,250 is known a heat-resistant AlMgSi alloy for the production of cylinder heads. The alloy contains, in addition to conventional additives, 0.6 to 4.5% by weight of Si, 2.5 to 11% by weight of Mg, of which 1 to 4.5% by weight of free Mg, and 0.6 to 1.8% by weight of Mn.

Die WO-A-9615281 offenbart eine Aluminiumlegierung mit 3,0 bis 6,0 Gew.-% Mg, 1,4 bis 3,5 Gew.-% Si, 0,5 bis 2,0 Gew.-% Mn, max. 0,15 Gew.-% Fe, max. 0,2 Gew.-% Ti und Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%. Die Legierung eignet sich zur Herstellung von Bauteilen mit hohen Anforderungen an die mechanischen Eigenschaften. Die Verarbeitung der Legierung erfolgt bevorzugt durch Druckgiessen, Thixocasting oder Thixoschmieden.The WO-A-9615281 discloses an aluminum alloy having 3.0 to 6.0 wt% Mg, 1.4 to 3.5 wt% Si, 0.5 to 2.0 wt% Mn, max. 0.15 wt.% Fe, max. 0.2 wt .-% of Ti and aluminum as a remainder with further impurities individually max. 0.02 wt .-%, a total of max. 0.2% by weight. The alloy is suitable for the production of components with high demands on the mechanical properties. The alloy is preferably processed by die casting, thixocasting or thixoforging.

Aus der WO-A-0043560 ist eine ähnliche Aluminiumlegierung zur Herstellung von Sicherheitsbauteilen im Druckguss-, Squeezecasting-, Thixoforming- oder Thixoforging-Verfahren bekannt. Die Legierung enthält 2,5 - 7,0 Gew.-% Mg, 1,0 - 3,0 Gew.-% Si, 0,3 - 0,49 Gew.-% Mn, 0,1 - 0,3 Gew.-% Cr, max. 0,15 Gew.-% Ti, max. 0,15 Gew.-% Ti, max. 0,15 Gew.-% Fe, max. 0,00005 Gew.-% Ca, max. 0,00005 Gew.-% Na, max. 0,0002 Gew.-% P, sonstige Verunreinigungen einzeln max. 0,02 Gew.-% und Aluminium als Rest.From the WO-A-0043560 a similar aluminum alloy is known for the manufacture of safety components in the die casting, squeeze casting, thixoforming or thixoforging process. The alloy contains 2.5 to 7.0 wt.% Mg, 1.0 to 3.0 wt.% Si, 0.3 to 0.49 wt.% Mn, 0.1 to 0.3 wt .-% Cr, max. 0.15% by weight of Ti, max. 0.15% by weight of Ti, max. 0.15 wt.% Fe, max. 0.00005 wt.% Ca, max. 0.00005 wt.% Na, max. 0.0002 wt.% P, other impurities individually max. 0.02 wt .-% and aluminum as the remainder.

Eine aus der EP-A-1 234 893 bekannte Gusslegierung vom Typ AlMgSi enthält 3,0 bis 7,0 Gew.-% Mg, 1,7 bis 3,0 Gew.-% Si, 0,2 bis 0,48 Gew.-% Mn, 0,15 bis 0,35 Gew.-% Fe, max. 0,2 Gew.-% Ti, wahlweise noch 0,1 bis 0,4 Gew.-% Ni sowie Aluminium als Rest und herstellungsbedingte Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%, mit der weiteren Massgabe, dass Magnesium und Silizium in der Legierung im wesentlichen in einem Gewichtsverhältnis Mg : Si von 1,7 : 1 entsprechend der Zusammensetzung des quasi-binären Eutektikums mit den festen Phasen Al und Mg2Si vorliegen. Die Legierung eignet sich zur Herstellung von Sicherheitsteilen im Fahrzeugbau durch Druckgiessen, Rheo- und Thixocasting.One from the EP-A-1 234 893 known casting alloy of the type AlMgSi contains 3.0 to 7.0 wt .-% Mg, 1.7 to 3.0 wt .-% Si, 0.2 to 0.48 wt .-% Mn, 0.15 to 0 , 35 wt.% Fe, max. 0.2 wt .-% Ti, optionally 0.1 to 0.4 wt .-% Ni and aluminum as balance and production-related impurities individually max. 0.02 wt .-%, a total of max. 0.2 wt.%, With the further proviso that magnesium and silicon in the alloy substantially in a weight ratio Mg: Si of 1.7: 1 corresponding to the composition of the quasi-binary eutectic with the solid phases Al and Mg 2 Si present. The alloy is suitable for the production of safety parts in vehicle construction by die casting, rheo- and thixocasting.

Der Erfindung liegt die Aufgabe zugrunde, eine Aluminiumlegierung mit guter Dauerwarmfestigkeit zur Herstellung thermisch und mechanisch beanspruchter Bauteile zu schaffen. Die Legierung soll sich vor allem für den Druckguss, aber auch für den Schwerkraft-Kokillenguss, den Niederdruck-Kokillenguss und den Sandguss eignen.The invention has for its object to provide an aluminum alloy with good Dauerwarmfestigkeit for the production of thermally and mechanically stressed components. The alloy should be suitable above all for die casting, but also for gravity die casting, low pressure die casting and sand casting.

Ein spezielles Ziel der Erfindung ist die Bereitstellung einer Aluminiumlegierung für im Druckgiessverfahren hergestellte Zylinderkurbelgehäuse von Verbrennungsmotoren, insbesondere Dieselmotoren.It is a specific object of the invention to provide an aluminum alloy for die-cast cylinder crankcases of internal combustion engines, especially diesel engines.

Die aus der Legierung gegossenen Bauteile sollen eine hohe Festigkeit in Verbindung mit hoher Duktilität aufweisen. Die im Bauteil angestrebten mechanischen Eigenschaften sind wie folgt definiert: Dehngrenze Rp0.2 > 170 MPa Zugfestigkeit Rm > 230 MPa Bruchdehnung A5 > 6% The components cast from the alloy should have a high strength combined with high ductility. The mechanical properties sought in the component are defined as follows: yield strength Rp0.2> 170 MPa tensile strenght Rm> 230 MPa elongation A5> 6%

Die Giessbarkeit der Legierung sollte mit der Giessbarkeit der derzeit angewendeten AlSiCu-Gusslegierungen vergleichbar sein, und die Legierung sollte keine Tendenz zu Warmrissen zeigen.The castability of the alloy should be comparable to the castability of currently used AlSiCu casting alloys, and the alloy should show no tendency to crack.

Zur erfindungsgemässen Lösung der Aufgabe führt, dass die Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon A mit den Koordinaten [Mg; Si] [8,5; 2,7] [8,5; 4,7] [6,3; 2,7] [6,3; 3,4] begrenzt sind und die Legierung weiter
0,1 bis 1 Gew.-% Mangan
max. 1 Gew.-% Eisen
max. 3 Gew.-% Kupfer
max. 2 Gew.-% Nickel
max. 0,5 Gew.-% Chrom
max. 0,6 Gew.-% Kobalt
max. 0,2 Gew.-% Zink
max. 0,2 Gew.-% Titan
max. 0,5 Gew.-% Zirkonium
max. 0,008 Gew.-% Beryllium
max. 0,5 Gew.-% Vanadium
sowie Aluminium als Rest mit weiteren Elementen und herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,2 Gew.-% enthält.
To achieve the object according to the invention, the contents of the alloying elements magnesium and silicon in% by weight in a Cartesian coordinate system are represented by a polygon A with the coordinates [Mg; Si] [8.5; 2.7] [8.5; 4,7] [6,3; 2,7] [6,3; 3,4] are limited and the alloy continues
0.1 to 1 wt .-% manganese
Max. 1 wt .-% iron
Max. 3% by weight of copper
Max. 2 wt .-% nickel
Max. 0.5% by weight of chromium
Max. 0.6% by weight of cobalt
Max. 0.2% by weight of zinc
Max. 0.2% by weight of titanium
Max. 0.5% by weight zirconium
Max. 0.008% by weight of beryllium
Max. 0.5% by weight of vanadium
and aluminum as a remainder with further elements and production-related impurities individually max. 0.05% by weight, in total max. Contains 0.2 wt .-%.

Für die Hauptlegierungselemente Mg und Si werden die folgenden Gehaltsbereiche bevorzugt: Mg 6,9 bis 7,9 Gew.-%, insbesondere 7,1 bis 7,7 Gew.-% Si 3,0 bis 3,7 Gew.-%, insbesondere 3,1 bis 3,6 Gew.-% For the main alloying elements Mg and Si, the following content ranges prefers: mg 6.9 to 7.9 wt .-%, in particular 7.1 to 7.7 wt .-% Si 3.0 to 3.7% by weight, in particular 3.1 to 3.6% by weight

Besonders bevorzugt werden Legierungen, deren Gehalte der Legierungselemente Magnesium und Silizium in Gew.-% in einem kartesischen Koordinatensystem durch ein Polygon B mit den Koordinaten [Mg; Si] [7,9; 3,0] [7,9; 3,7] [6,9; 3,0] [6,9; 3,7], insbesondere durch ein Polygon C mit den Koordinaten [Mg; Si] [7,7; 3,1] [7,7; 3,6] [7,1; 3,1] [7,1; 3,6] begrenzt sind.Particular preference is given to alloys whose contents of the alloying elements magnesium and silicon in% by weight in a Cartesian coordinate system are represented by a polygon B with the coordinates [Mg; Si] [7,9; 3.0] [7.9; 3.7] [6.9; 3.0] [6.9; 3,7], in particular by a polygon C with the coordinates [Mg; Si] [7,7; 3,1] [7,7; 3,6] [7,1; 3,1] [7,1; 3.6] are limited.

Mit den Legierungselementen Mn und Fe kann das Kleben der Gussteile in der Form verhindert werden. Ein hoher Eisengehalt führt zu einer erhöhten Warmfestigkeit auf Kosten einer verminderten Dehnung. Mn trägt auch wesentlich zur Warmhärtung bei. Je nach Anwendungsbereich werden deshalb die Legierungselemente Fe und Mn bevorzugt wie folgt aufeinander abgestimmt:With the alloying elements Mn and Fe, the gluing of the castings in the mold can be prevented. High iron content leads to increased heat resistance at the expense of reduced elongation. Mn also contributes significantly to the heat curing. Depending on the field of application, therefore, the alloying elements Fe and Mn are preferably matched as follows:

Bei einem Gehalt von 0,4 bis 1 Gew.-% Fe, insbesondere 0,5 bis 0,7 Gew.-% Fe, wird ein Gehalt von 0,1 bis 0,5 Gew.-% Mn, insbesondere 0,3 bis 0,5 Gew.-% Mn eingestellt.At a content of 0.4 to 1 wt .-% Fe, in particular 0.5 to 0.7 wt .-% Fe, a content of 0.1 to 0.5 wt .-% Mn, in particular 0.3 adjusted to 0.5 wt .-% Mn.

Bei einem Gehalt von max. 0,2 Gew.-% Fe, insbesondere max. 0,15 Gew.-% Fe, wird ein Gehalt von 0,5 bis 1 Gew.-% Mn, insbesondere 0,5 bis 0,8 Gew.-% Mn eingestellt.At a content of max. 0.2 wt .-% Fe, in particular max. 0.15 wt .-% Fe, a content of 0.5 to 1 wt .-% Mn, in particular 0.5 to 0.8 wt .-% Mn is set.

Für die weiteren Legierungselemente werden die folgenden Gehaltsbereiche bevorzugt: Cu 0,2 bis 1,2 Gew.-%, vorzugsweise 0,3 bis 0,8 Gew.-%, insbesondere 0,4 bis 0,6 Gew.-% Ni 0,8 bis 1,2 Gew.-% Cr max 0,2 Gew.-%, vorzugsweise max. 0,05 Gew.-% Co 0,3 bis 0,6 Gew.-% Ti 0,05 bis 0,15 Gew.-% Fe max. 0,15 Gew.-% Zr 0,1 bis 0,4 Gew.-% For the other alloying elements, the following content ranges are preferred: Cu 0.2 to 1.2 wt .-%, preferably 0.3 to 0.8 wt .-%, in particular 0.4 to 0.6 wt .-% Ni 0.8 to 1.2% by weight Cr max 0.2 wt.%, preferably max. 0.05% by weight Co 0.3 to 0.6% by weight Ti 0.05 to 0.15% by weight Fe Max. 0.15% by weight Zr 0.1 to 0.4% by weight

Kupfer führt zu einer zusätzlichen Festigkeitssteigerung, verschlechtert aber mit zunehmendem Gehalt des Korrosionsverhalten der Legierung.Copper leads to an additional increase in strength, but deteriorates with increasing content of the corrosion behavior of the alloy.

Durch Zugabe von Kobalt kann das Ausformverhalten der Legierung weiter verbessert werden.By adding cobalt, the shaping behavior of the alloy can be further improved.

Titan und Zirkonium dienen der Kornfeinung. Eine gute Kornfeinung trägt wesentlich zur Verbesserung der Giesseigenschaften und der mechanischen Eigenschaften bei.Titanium and zirconium are used for grain refining. Good grain refining contributes significantly to the improvement of casting properties and mechanical properties.

Beryllium in Verbindung mit Vanadium vermindert die Krätzebildung. Bei einer Zugabe von 0.02 bis 0.15 Gew.-% V, vorzugsweise 0.02 bis 0.08 Gew.-% V, insbesondere 0.02 bis 0.05 Gew.-% V sind weniger als 60 ppm Be ausreichend.Beryllium in combination with vanadium reduces dandruff. With an addition of 0.02 to 0.15 wt .-% V, preferably 0.02 to 0.08 wt .-% V, in particular 0.02 to 0.05 wt .-% V less than 60 ppm Be are sufficient.

Ein bevorzugter Anwendungsbereich der erfindungsgemässen Aluminiumlegierung ist die Herstellung thermisch und mechanisch beanspruchter Bauteile als Druck-, Kokillen- oder Sandguss, insbesondere für im Druckgiessverfahren hergestellte Zylinderkurbelgehäuse im Automobilbau.A preferred field of application of the aluminum alloy according to the invention is the production of thermally and mechanically stressed components as pressure, mold or sand casting, in particular for cylinder crankcases produced in the die casting process in the automotive industry.

Die erfindungsgemässe Legierung erfüllt zudem die für Strukturbauteile im Fahrzeugbau geforderten mechanischen Eigenschaften nach einer einstufigen Wärmebehandlung ohne separate Lösungsglühung.In addition, the alloy according to the invention fulfills the mechanical properties required for structural components in vehicle construction after a one-stage heat treatment without separate solution annealing.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

Fig. 1
ein Diagramm mit den Gehaltsgrenzen für die Legierungselemente Mg und Si.
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawing; this shows in
Fig. 1
a diagram with the content limits for the alloying elements Mg and Si.

Das in Fig. 1 dargestellte Polygon A definiert den Gehaltsbereich für die Legierungselemente Mg und Si, die Polygone B und C betreffen Vorzugsbereiche. Die Gerade E entspricht der Zusammensetzung des quasi-binären Eutektikums Al-Mg2Si. Die erfindungsgemässen Legierungszusammensetzungen liegen somit auf der Seite mit einem Magnesiumüberschuss.The polygon A shown in FIG. 1 defines the content range for the alloying elements Mg and Si, the polygons B and C relate to preferred ranges. The straight line E corresponds to the composition of the quasi-binary eutectic Al-Mg 2 Si. The novel alloy compositions are thus on the side with a magnesium excess.

Die erfindungsgemässe Legierung wurde zu Druckgussplatten mit unterschiedlichen Wanddicken vergossen. Aus den Druckgussplatten wurden Zugproben gefertigt. An den Zugproben wurden die mechanischen Eigenschaften Dehngrenze (Rp0.2), Zugfestigkeit (Rm) und Bruchdehnung (A) im Zustand F Gusszustand Wasser/F Gusszustand, nach dem Ausformen in Wasser abgeschreckt F> 24 h Gusszustand, > 24 h Lagerung bei Raumtemperatur Wasser/F > 24 Gusszustand, nach dem Ausformen in Wasser abgeschreckt, > 24 h Lagerung bei Raumtemperatur sowie nach verschiedenen einstufigen Wärmebehandlungen bei Temperaturen im Bereich von 250 °C bis 380 °C und nach Langzeitlagerungen bei Temperaturen im Bereich von 150 °C bis 250 °C bestimmt.The alloy according to the invention was cast to give pressure casting plates with different wall thicknesses. Tensile samples were produced from the die cast plates. On the tensile specimens the mechanical properties yield strength (Rp0.2), tensile strength (Rm) and elongation at break (A) in the state F cast state Water / F Cast condition, quenched in water after molding F> 24 h Cast condition,> 24 h storage at room temperature Water / F> 24 Cast condition, quenched in water after molding,> 24 h storage at room temperature and after various single-stage heat treatments at temperatures ranging from 250 ° C to 380 ° C and after long-term storage at temperatures ranging from 150 ° C to 250 ° C.

Die untersuchten Legierungen sind in Tabelle 1 zusammengestellt. Die Kennziffer A verweist auf Legierungen mit Kupferzusatz, die Kennziffer B auf Legierungen ohne Kupferzusatz.The investigated alloys are summarized in Table 1. The reference number A refers to alloys with added copper, the reference number B to alloys without added copper.

In Tabelle 2 sind die Ergebnisse der an Zugproben der Legierungen von Tabelle 1 ermittelten mechanischen Eigenschaften zusammengestellt.Table 2 summarizes the results of the mechanical properties found on tensile specimens of the alloys of Table 1.

Eine in den Tabellen 1 und 2 nicht berücksichtigte Legierung mit guter Dauerwarmfestigkeit wies die folgende Zusammensetzung (in Gew.-%) auf:
3,4 Si, 0,6 Fe, 0,42 Cu, 0,32 Mn, 7,4 Mg, o,07 Ti, 0,9 Ni, 0,024 V und 0,004 Be
An alloy with good continuous heat resistance not considered in Tables 1 and 2 had the following composition (in% by weight):
3.4 Si, 0.6 Fe, 0.42 Cu, 0.32 Mn, 7.4 Mg, o, 07 Ti, 0.9 Ni, 0.024 V and 0.004 Be

Die Ergebnisse der Langzeitversuche belegen die gute Dauerwarmfestigkeit der erfindungsgemässen Legierung. Die mechanischen Eigenschaften nach einer einstufigen Wärmebehandlung bei 350 °C und 380 °C während 90 min lassen darüber hinaus erkennen, dass die erfindungsgemässe Legierung auch die an Strukturbauteile im Fahrzeugbau gestellten Anforderungen erfüllt. Tabelle 1: chemische Zusammensetzung der Legierungen in Gew.-.% Legierungsvariante Wanddicke Flachprobe Si Fe Cu Mn Mg Ti V Be 1 3 mm 3,469 0,1138 0,787 7,396 0,106 0,0221 0,0025 1A 3mm 3,4 0,117 0,527 0,781 7,151 0,119 0,0223 0,0019 2 2 mm 3,366 0,0936 0,774 7,246 0,117 0,0263 0,0024 2A 2mm 3,251 0,0841 0,507 0,76 7,499 0,1 0,0246 0,0023 3 4 mm 3,352 0,0917 0,774 7,221 0,118 0,026 0,0024 3A 4 mm 3,198 0,0848 0,522 0,747 7,351 0,101 0,0255 0,0023 4 6 mm 3,28 0,0921 0,766 7,024 0,119 0,0268 0,0024 4A 6 mm 3,181 0,0862 0,535 0,745 7,273 0,1 0,0257 0,0023 Tabelle 2: mechanische Eigenschaften der Legierungen Legierungsvariante Ausgangszustand Wärmebehandlung Rp0.2 [MPa] Rm [MPa] A5 [%] 1 F 210 359 8,6 Wasser / F 181 347 9,6 F>24h 204 353 8,9 Wasser / F>24h 176 347 13,4 F>24h 250°C/10min 216 352 7,4 250°C/20min 218 352 6,8 250°C/90min 207 349 10,8 350°C/10min 154 315 12,5 350°C/20min 158 315 10,6 350°C/90min 147 306 11,4 380°C/10min 145 304 14,1 380°C/20min 139 299 13,9 380°C/90min 137 299 16,7 150°C/100h 221 365 9,4 180°C/100h 214 346 6 200°C/100h 211 354 9,4 250°C/100h 184 336 11,7 150°C/500h 223 353 6 180°C/500h 216 357 9,7 200°C/500h 202 349 9,2 250°C/500h 170 327 12,3 1A F 234 345 4,2 Wasser/F 170 319 4,9 F>24h 205 355 7,1 Wasser / F>24h 188 340 5,6 F>24h 250°C/14min 227 355 6,6 250°C/20min 217 354 7,5 250°C/90min 213 350 7,9 350°C/10min 157 328 10,4 350°C/20min 151 317 9,3 350°C/90min 142 312 12,1 380°C/10min 141 315 12,6 380°C/20min 137 312 12,4 380°C/90min 133 309 12,2 150°C/100h 248 370 5 180°C/100h 249 373 6,3 200°C/100h 215 346 6,2 250°C/100h 185 329 7,6 150°C/500h 239 368 6,5 180°C/500h 227 352 6,9 200°C/500h 215 350 7,8 250°C/500h 162 317 8,9 2 F>24h 212 364 10,7 250°C/90min 223 358 9,9 350°C/90min 152 312 13,9 380°C/90min 139 297 17,9 2A F>24h 241 394 7,8 250°C/90min 234 375 8,5 350°C/90min 163 332 9 380°C/90min 144 328 13,7 3 F>24h 158 321 9,9 250°C/90min 164 324 10,4 350°C/90min 143 307 12 380°C/90min 129 292 16,4 3A F>24h 173 326 6 250°C/90min 181 325 5,9 350°C/90min 151 315 6,9 380°C/90min 137 312 9,5 4 F>24h 138 304 8,2 250°C/90min 145 309 9 350°C/90min 133 297 8,4 380°C/90min 123 286 12,7 4A F>24h 152 284 4,3 250°C/90min 163 278 3,7 350°C/90min 139 286 5,2 380°C/90min 131 285 5,7 The results of the long-term tests prove the good long-term heat resistance of the alloy according to the invention. The mechanical properties after a one-step heat treatment at 350 ° C. and 380 ° C. for 90 minutes moreover make it clear that the alloy according to the invention also meets the requirements imposed on structural components in vehicle construction. Table 1: chemical composition of the alloys in wt .-% alloy variant Wall thickness flat sample Si Fe Cu Mn mg Ti V Be 1 3 mm 3,469 .1138 0.787 7,396 0.106 0.0221 0.0025 1A 3mm 3.4 0,117 0.527 0.781 7.151 0,119 0.0223 0.0019 2 2 mm 3.366 0.0936 0.774 7,246 0,117 0.0263 0.0024 2A 2mm 3,251 0.0841 0.507 0.76 7,499 0.1 0.0246 0.0023 3 4 mm 3,352 0.0917 0.774 7,221 0.118 0.026 0.0024 3A 4 mm 3,198 0.0848 0.522 0.747 7,351 0,101 0.0255 0.0023 4 6 mm 3.28 .0921 0.766 7,024 0,119 0.0268 0.0024 4A 6 mm 3,181 0.0862 0.535 0.745 7,273 0.1 0.0257 0.0023 alloy variant initial state heat treatment Rp0.2 [MPa] Rm [MPa] A5 [%] 1 F 210 359 8.6 Water / F 181 347 9.6 F> 24 204 353 8.9 Water / F> 24h 176 347 13.4 F> 24 250 ° C / 10 min 216 352 7.4 250 ° C / 20min 218 352 6.8 250 ° C / 90min 207 349 10.8 350 ° C / 10min 154 315 12.5 350 ° C / 20min 158 315 10.6 350 ° C / 90min 147 306 11.4 380 ° C / 10 min 145 304 14.1 380 ° C / 20min 139 299 13.9 380 ° C / 90min 137 299 16.7 150 ° C / 100h 221 365 9.4 180 ° C / 100h 214 346 6 200 ° C / 100h 211 354 9.4 250 ° C / 100h 184 336 11.7 150 ° C / 500h 223 353 6 180 ° C / 500h 216 357 9.7 200 ° C / 500h 202 349 9.2 250 ° C / 500h 170 327 12.3 1A F 234 345 4.2 Water / F 170 319 4.9 F> 24 205 355 7.1 Water / F> 24h 188 340 5.6 F> 24 250 ° C / 14min 227 355 6.6 250 ° C / 20min 217 354 7.5 250 ° C / 90min 213 350 7.9 350 ° C / 10min 157 328 10.4 350 ° C / 20min 151 317 9.3 350 ° C / 90min 142 312 12.1 380 ° C / 10 min 141 315 12.6 380 ° C / 20min 137 312 12.4 380 ° C / 90min 133 309 12.2 150 ° C / 100h 248 370 5 180 ° C / 100h 249 373 6.3 200 ° C / 100h 215 346 6.2 250 ° C / 100h 185 329 7.6 150 ° C / 500h 239 368 6.5 180 ° C / 500h 227 352 6.9 200 ° C / 500h 215 350 7.8 250 ° C / 500h 162 317 8.9 2 F> 24 212 364 10.7 250 ° C / 90min 223 358 9.9 350 ° C / 90min 152 312 13.9 380 ° C / 90min 139 297 17.9 2A F> 24 241 394 7.8 250 ° C / 90min 234 375 8.5 350 ° C / 90min 163 332 9 380 ° C / 90min 144 328 13.7 3 F> 24 158 321 9.9 250 ° C / 90min 164 324 10.4 350 ° C / 90min 143 307 12 380 ° C / 90min 129 292 16.4 3A F> 24 173 326 6 250 ° C / 90min 181 325 5.9 350 ° C / 90min 151 315 6.9 380 ° C / 90min 137 312 9.5 4 F> 24 138 304 8.2 250 ° C / 90min 145 309 9 350 ° C / 90min 133 297 8.4 380 ° C / 90min 123 286 12.7 4A F> 24 152 284 4.3 250 ° C / 90min 163 278 3.7 350 ° C / 90min 139 286 5.2 380 ° C / 90min 131 285 5.7

Claims (17)

  1. Aluminium alloy of type AlMgSi with good creep strength at elevated temperatures for the production of castings subject to high thermal and mechanical stresses,
    characterized in that
    the contents of the alloying elements magnesium and silicon in % w/w in a Cartesian coordinate system are limited by a polygon A with the coordinates [Mg; Si] [8.5; 2,7] [8.5; 4,7] [6.3; 2,7] [6.3; 3.4] and that the alloy also contains
    0.1 to 1% w/w manganese
    max. 1% w/w iron
    max. 3% w/w copper
    max. 2% w/w nickel
    max. 0.5% w/w chromium
    max. 0.6% w/w cobalt
    max. 0.2% w/w zinc
    max. 0.2% w/w titanium
    max. 0.5% w/w zirconium
    max. 0.008% w/w beryllium
    max. 0.5% w/w vanadium
    as well as aluminium as remainder with further elements and manufacturing-related impurities of individually max. 0.05% w/w and max. 0.2% w/w in total.
  2. Aluminium alloy according to Claim 1, characterized by 6.9 to 7.9% w/w Mg, preferably 7,1 to 7,7% w/w Mg.
  3. Aluminium alloy according to Claim 1 or 2, characterized by 3.0 to 3.7% w/w Si, preferably 3.1 to 3.6% w/w Si.
  4. Aluminium alloy according to Claim 1, characterized in that the contents of the alloying elements magnesium and silicon in % w/w in a Cartesian coordinate system are limited by a polygon B with the coordinates [Mg; Si] [7.9; 3,0] [7.9; 3,7] [6.9; 3,0] [6.9; 3,7].
  5. Aluminium alloy according to Claim 4, characterized in that the contents of the alloying elements magnesium and silicon in % w/w in a Cartesian coordinate system are limited by a polygon C with the coordinates [Mg; Si] [7.7; 3.1] [7.7; 3,6] [7.1; 3,1] [7.1; 3,6].
  6. Aluminium alloy according to one of Claims 1 to 5, characterized by 0.4 to 1% w/w Fe, preferably 0.5 to 0.7% w/w Fe, and 0.1 to 0.5% w/w Mn, preferably 0.3 to 0.5% w/w Mn.
  7. Aluminium alloy according to one of Claims 1 to 5, characterized by max. 0.20% w/w Fe, preferably max. 0.15% w/w Fe, and 0.5 to 1% w/w Mn, preferably 0.5 to 0.8% w/w Mn.
  8. Aluminium alloy according to one of Claims 1 to 7, characterized by 0.2 to 1.2% w/w Cu, preferably 0.3 to 0.8% w/w Cu, in particular 0.4 to 0.6% w/w Cu.
  9. Aluminium alloy according to one of Claims 1 to 8, characterized by 0.8 to 1.2% w/w Ni.
  10. Aluminium alloy according to one of Claims 1 to 9, characterized by max. 0.2% w/w Cr, preferably max. 0.05% w/w Cr.
  11. Aluminium alloy according to one of Claims 1 to 10, characterized by 0.3 to 0.6% w/w Co.
  12. Aluminium alloy according to one of Claims 1 to 11, characterized by 0.05 to 0.15% w/w Ti.
  13. Aluminium alloy according to one of Claims 1 to 12, characterized by 0.1 to 0.4% w/w Zr,
  14. Aluminium alloy according to one of Claims 1 to 13, characterized by 0.02 to 0.15% w/w V, preferably 0.02 to 0.08% w/w V, in particular 0.02 to 0.05% w/w V, and less than 60 ppm Be.
  15. Use of an aluminium alloy according to one of Claims 1 to 14 for components subject to high thermal and mechanical stresses produced by pressure die casting, mould casting or sand casting.
  16. Use according to Claim 15 for cylinder crank-cases produced by the pressure die casting method in automotive engine construction
  17. Use of an aluminium alloy according to one of Claims 1 to 14 for safety components produced by the pressure die casting method in automotive construction.
EP06405085A 2005-08-22 2006-02-28 Heat resistant aluminium alloy Active EP1757709B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH13712005 2005-08-22

Publications (2)

Publication Number Publication Date
EP1757709A1 EP1757709A1 (en) 2007-02-28
EP1757709B1 true EP1757709B1 (en) 2007-10-17

Family

ID=34980327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06405085A Active EP1757709B1 (en) 2005-08-22 2006-02-28 Heat resistant aluminium alloy

Country Status (11)

Country Link
US (1) US20100074796A1 (en)
EP (1) EP1757709B1 (en)
JP (1) JP5007086B2 (en)
KR (1) KR101409586B1 (en)
CN (1) CN100999797B (en)
AT (1) ATE376075T1 (en)
BR (1) BRPI0603394B1 (en)
CA (1) CA2556645C (en)
DE (1) DE502006000145D1 (en)
MX (1) MXPA06009523A (en)
NO (1) NO343257B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014590A1 (en) 2011-01-27 2012-08-02 Volkswagen Aktiengesellschaft Preparation of aluminum alloy for manufacturing aluminum cast, involves alloying base alloy containing aluminum, copper and titanium, adding zirconium and alloying
EP3670689A1 (en) 2018-12-20 2020-06-24 Rheinfelden Alloys GmbH & Co. KG Heat-resistant aluminium alloy

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031473B (en) * 2009-03-03 2015-01-21 中国科学院苏州纳米技术与纳米仿生研究所 Processing method of high-toughness Al-Si system die-casting aluminum alloy
JP5482787B2 (en) * 2009-03-31 2014-05-07 日立金属株式会社 Al-Mg-Si aluminum alloy for casting having excellent proof stress and cast member comprising the same
CN102041415A (en) * 2009-10-26 2011-05-04 浙江艾默樱零部件有限公司 Alloy of high temperature resisting aluminum alloy furnace end and manufacturing method thereof
KR101271004B1 (en) * 2010-12-13 2013-06-04 자동차부품연구원 Work hardened wrought aluminum including Co-Ni solid solution and method for manufacturing the same
AT511397B1 (en) * 2011-05-03 2013-02-15 Sag Motion Ag METHOD OF REFINING AND PERMITTING MODIFICATION OF AIMGSI ALLOYS
CN102296218A (en) * 2011-08-24 2011-12-28 吴江市精工铝字制造厂 High-strength heat-resistant magnalium alloy
CN103421992B (en) * 2013-07-16 2015-07-22 沈军 Manufacturing technique of timing sprocket device for ultralight aluminium alloy valve camshaft
KR101583887B1 (en) * 2013-12-18 2016-01-08 현대자동차주식회사 Aluminum alloy and vehicle part using the same
GB201402323D0 (en) * 2014-02-11 2014-03-26 Univ Brunel A high strength cast aluminium alloy for high pressure die casting
GB201415420D0 (en) * 2014-09-01 2014-10-15 Univ Brunel A casting al-mg-zn-si based aluminium alloy for improved mechanical performance
KR101620204B1 (en) * 2014-10-15 2016-05-13 현대자동차주식회사 Alloy for die-casted automotive parts and manufacturing method thereof
KR101606525B1 (en) * 2014-10-29 2016-03-25 주식회사 케이엠더블유 Aluminum alloy for die casting having excellent corrosion resistance
CN105132756A (en) * 2015-09-18 2015-12-09 张家港市和伟五金工具厂 Heat-resisting aluminium alloy
ES2684614T3 (en) * 2016-04-19 2018-10-03 Rheinfelden Alloys Gmbh & Co. Kg Alloy for pressure molding
EP3235916B1 (en) 2016-04-19 2018-08-15 Rheinfelden Alloys GmbH & Co. KG Cast alloy
CN107022704A (en) * 2017-04-11 2017-08-08 浙江洋铭工贸有限公司 A kind of high-strength alloy for die-casting aluminum heating radiator
CN107557624B (en) * 2017-08-29 2019-03-26 河南明泰科技发展有限公司 A kind of aluminium alloy container aluminium sheet and its production method
CN107739923A (en) * 2017-11-08 2018-02-27 宁波市海曙兴达铝业有限公司 Al Mg Si aluminium alloys and preparation method thereof
CN108034861B (en) * 2017-11-27 2020-02-21 宁波华源精特金属制品有限公司 Robot cover plate and preparation process thereof
CN108330350A (en) * 2018-01-26 2018-07-27 安徽省鸣新材料科技有限公司 A kind of foamed aluminium material and preparation method thereof with high-intensity magnetic field shielding properties
CN108754256B (en) * 2018-07-16 2019-12-06 上海交通大学 Non-heat treatment reinforced high-strength high-toughness die-casting aluminum-magnesium-silicon alloy and preparation method thereof
DE102019214740B3 (en) * 2019-09-26 2021-02-04 Daimler Ag Process for manufacturing a component from an aluminum alloy
CN112575226A (en) * 2019-09-27 2021-03-30 丹阳盛龙电热化工有限公司 Wear-resistant high-temperature-resistant nickel-chromium alloy and preparation method thereof
CN111607725A (en) * 2020-07-17 2020-09-01 山西瑞格金属新材料有限公司 High-toughness corrosion-resistant aluminum alloy and heat treatment mode thereof
CN112626391B (en) * 2021-01-07 2022-05-03 重庆慧鼎华创信息科技有限公司 Low-silicon high-heat-conductivity die-casting aluminum alloy and preparation method thereof
CN113293328B (en) * 2021-05-26 2023-09-19 重庆慧鼎华创信息科技有限公司 Al-Mg high-strength and toughness die-casting aluminum alloy and preparation method thereof
CN116005050B (en) * 2023-03-24 2023-06-20 中信戴卡股份有限公司 Aluminum-magnesium-silicon alloy and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129352C3 (en) 1971-06-14 1982-03-18 Honsel-Werke Ag, 5778 Meschede Use of AlMgSi casting alloys for cylinder heads subject to alternating thermal loads
US5178686A (en) * 1988-12-20 1993-01-12 Metallgesellschaft Aktiengesellschaft Lightweight cast material
JP2541412B2 (en) * 1991-12-13 1996-10-09 日本軽金属株式会社 Aluminum alloy for die casting
JPH06212334A (en) * 1993-01-12 1994-08-02 Nissan Motor Co Ltd Aluminum alloy for thin casting
DE59505226D1 (en) 1994-11-15 1999-04-08 Rheinfelden Aluminium Gmbh ALUMINUM CAST ALLOY
AT407533B (en) 1999-01-22 2001-04-25 Aluminium Lend Gmbh ALUMINUM ALLOY
EP1234893B1 (en) 2001-02-21 2004-11-24 Alcan Technology & Management AG Cast alloy of the type AlMgSi
WO2004031424A1 (en) * 2002-10-01 2004-04-15 Asahi Tec Corporation Aluminum alloy for casting-forging, aluminum cast/forged article, and method for manufacture thereof
DE10352932B4 (en) * 2003-11-11 2007-05-24 Eads Deutschland Gmbh Cast aluminum alloy
US20050173032A1 (en) * 2004-02-11 2005-08-11 Hubert Koch Casting of an aluminium alloy
CN1317410C (en) * 2005-03-09 2007-05-23 沈阳工业大学 Abrasion resistant, heat resistant high silicone aluminium alloy and its shaping technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014590A1 (en) 2011-01-27 2012-08-02 Volkswagen Aktiengesellschaft Preparation of aluminum alloy for manufacturing aluminum cast, involves alloying base alloy containing aluminum, copper and titanium, adding zirconium and alloying
EP3670689A1 (en) 2018-12-20 2020-06-24 Rheinfelden Alloys GmbH & Co. KG Heat-resistant aluminium alloy
WO2020126198A1 (en) 2018-12-20 2020-06-25 Rheinfelden Alloys Gmbh & Co. Kg Heat-resistant aluminium alloy
EP3670689B1 (en) * 2018-12-20 2023-10-18 Aluminium Rheinfelden Alloys GmbH Heat-resistant aluminium alloy

Also Published As

Publication number Publication date
JP2007084922A (en) 2007-04-05
CN100999797A (en) 2007-07-18
CN100999797B (en) 2011-01-26
MXPA06009523A (en) 2007-03-01
CA2556645C (en) 2014-01-14
KR20070022610A (en) 2007-02-27
CA2556645A1 (en) 2007-02-22
ATE376075T1 (en) 2007-11-15
NO20063736L (en) 2007-02-23
BRPI0603394A (en) 2007-04-27
EP1757709A1 (en) 2007-02-28
DE502006000145D1 (en) 2007-11-29
NO343257B1 (en) 2019-01-02
BRPI0603394B1 (en) 2014-07-29
KR101409586B1 (en) 2014-06-20
JP5007086B2 (en) 2012-08-22
US20100074796A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
EP1757709B1 (en) Heat resistant aluminium alloy
EP1997924B1 (en) High-temperature aluminium alloy
EP1564308B1 (en) Casting of an aluminium alloy
DE602004008934T2 (en) AL-SI-CU ALUMINUM ALLOY FORMING HIGH WARM PROOF RESISTANCE
US9193134B2 (en) Automobile body part
DE102007023323B4 (en) Use of an Al-Mn alloy for high-temperature products
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
EP1516072B1 (en) Part cast from aluminium alloy with high hot strength
WO2009010264A2 (en) Cast aluminum alloy, and use thereof
EP2735621A1 (en) Aluminium die casting alloy
DE102009012073A1 (en) Aluminum alloy, useful for producing casting a component of motor vehicle e.g. cylinder heads for internal combustion engines of automobiles, comprises e.g. silicon, magnesium, copper, zirconium, titanium, strontium, sodium and iron
EP1917372B1 (en) Aluminium casting alloy
DE102019205267B3 (en) Die-cast aluminum alloy
DE10323741B3 (en) Aluminum casting alloy for the production of e.g. pistons of IC engines contains alloying additions of silicon, magnesium, zirconium, hafnium and titanium
US5055255A (en) Aluminum alloy suitable for pistons
KR20230043868A (en) New 6XXX aluminum alloy and its manufacturing method
EP2425030B1 (en) Aluminium-silicon die-casting alloy for thin-walled structural components
DE602004005529T2 (en) Wrought aluminum alloy
EP3670689B1 (en) Heat-resistant aluminium alloy
EP1972696A1 (en) Cast aluminium alloy
RU2385358C1 (en) Cast alloy on aluminium base
EP1229141A1 (en) Cast aluminium alloy
DE102006059899A1 (en) High temperature resistant aluminum casting alloy for use in engine core construction units, ingot pouring, engine block, cylinder head, crankcase and in automotive industry, consists of various metals
JPH0734169A (en) Wear resistant aluminum alloy excellent in strength
EP1657319B1 (en) Use of an Aluminium casting alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006000145

Country of ref document: DE

Date of ref document: 20071129

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071211

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

26N No opposition filed

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20160217

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 19

Ref country code: CH

Payment date: 20240301

Year of fee payment: 19

Ref country code: GB

Payment date: 20240219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240228

Year of fee payment: 19

Ref country code: FR

Payment date: 20240220

Year of fee payment: 19