EP1751482B1 - Bio-thermal method and system for stabilising timber - Google Patents

Bio-thermal method and system for stabilising timber Download PDF

Info

Publication number
EP1751482B1
EP1751482B1 EP05770880.2A EP05770880A EP1751482B1 EP 1751482 B1 EP1751482 B1 EP 1751482B1 EP 05770880 A EP05770880 A EP 05770880A EP 1751482 B1 EP1751482 B1 EP 1751482B1
Authority
EP
European Patent Office
Prior art keywords
treatment
gas
wood
load
kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05770880.2A
Other languages
German (de)
French (fr)
Other versions
EP1751482A1 (en
Inventor
Jean-Pierre Bernon
Alain Dulac
Raymond Guyomarc'h
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio3D Applications
Original Assignee
Bio3D Applications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio3D Applications filed Critical Bio3D Applications
Publication of EP1751482A1 publication Critical patent/EP1751482A1/en
Application granted granted Critical
Publication of EP1751482B1 publication Critical patent/EP1751482B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/0085Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus

Definitions

  • the present invention relates to a method for stabilizing timber.
  • Timber refers here to wood intended for use in secondary wood processing industries, in particular for industry, construction, carpentry, or urban and industrial interior, industrial, collective and domesticated.
  • the currently developed stabilization processes all have their particularities. It is particularly possible to mention the high temperature wood treatment process disclosed in the document FR 2757097 .
  • This treatment method uses a generation of treatment gas flow inserted into the wood load treatment furnace.
  • the object of the present invention is to provide a method of stabilizing lumber, which provides guarantees of safety and treatment in perfect harmony with the environment and ecology.
  • the method according to the invention may advantageously comprise a recycling of the charged gas stream to recover gas suitable for use in the treatment gas stream.
  • the thermal gas stream is preferably a stream comprising CO 2 carbon dioxide.
  • the gas used for the gaseous treatment stream is advantageously obtained from a combustion gas at the outlet of the thermal generation means.
  • the method according to the invention comprises a prior phase of condensation of elements contained in the combustion gas, to recover a residual gas containing carbon dioxide.
  • the residual gas can pass through a heat exchanger to acquire the treatment temperature, and is then reintroduced into the treatment cycle to be used in a phase of drying the wood.
  • compression of the residual gas is provided to condense and recover the carbon dioxide in the liquid phase.
  • the method according to the invention may also advantageously comprise, at the end of the treatment phase, a phase of lowering the temperature of the wood load during which the treatment gas is introduced into the treatment volume at the end of the treatment phase. a progressively lower temperature.
  • the thermal generation means comprise for example at least one grate hearth and a heat exchanger in which the energy produced by the combustion of a fuel with an oxidant is recovered.
  • the stabilization system further comprises means for reintroducing into a treatment cycle the residual gas at the outlet of the thermal generation means, these reintroduction means comprising means for condensing the water vapor H 2 O present in said residual gas, and means for passing said residual gas by the heat exchanger where said residual gas acquires the temperature of the treatment in progress.
  • the system may further include means for compressing the residual gas to condense and recover liquid phase carbon dioxide and means for concentrating the carbon dioxide in the residual gas.
  • the wood treatment means comprise at least one oven module comprising two removable end walls to allow a transfer of wood loads to be treated, by one and / or the other of said two ends.
  • the furnace module may be of substantially parallelepipedal shape and comprise fixed vertical side walls having double walls to provide a space in which the treatment gas and the gas extracted after treatment are conveyed.
  • the outer walls of the vertical side walls are thermally insulated.
  • intermediate end movable partitions are arranged to be removable, the removable end partitions of the module assembly being kept closed during the treatment.
  • Intermediate movable partitions may be installed to define a plurality of separate treatment zones including for example a drying zone and a high temperature stabilization zone.
  • the furnace module preferably has a double-walled ceiling between which a process gas distribution system is arranged.
  • This gas distribution system comprises means for receiving hot treatment gas from the thermal generation means and means for extracting the gas after passing inside the furnace module and treating the wood load.
  • the inner wall of the ceiling can be adjustable in height so as to compensate for a variable height of the wood load to be stabilized.
  • the system according to the invention may also comprise means for discharging the gas extracted from the furnace module after treatment to reactor means within the thermal generation means, for being purified there, as well as exhaust fan means for maintaining depression the processing volume of the oven module.
  • the gas distribution system comprises, for example, means for alternating the extraction of the gases charged by one and the other of the side walls of the furnace module.
  • These alternating means comprise a four-way mechanism disposed at the junction of the connections of the pipe carrying the hot gas, the extraction pipe of the charged gas after treatment, and pipes communicating with the fixed vertical walls of the furnace module. .
  • the stabilization method of the invention utilizes a completely neutral gas at process temperatures and pressures, which allows the temperature of the wood to be raised well beyond its self-ignition limits.
  • This gas is advantageously carbon dioxide CO 2 .
  • CO 2 is the ultimate phase of carbon combustion, and is therefore nonflammable.
  • the CO 2 carbon dioxide used in the process according to the invention is advantageously derived from the heat production mode used in the thermal generator.
  • a wood including a timber, having the characteristics of a wood that has been subjected to the stabilization process according to the invention.
  • the stabilization system S comprises, with reference to the figure 1 , a heat generator 2 and one or more high temperature treatment furnaces 1.
  • the heat generator 2 and the treatment furnaces 1 are independent and can be installed at a distance from each other, and they communicate by means of a control system. gas exchange, ebb and flow back and forth.
  • the entire stabilization system according to the invention is for example controlled and managed by a metrological system and a numerical control computer program.
  • the thermal generator 2 is a compound system, with reference to the figure 4 , one or more grate fires 20 and a heat exchanger 21 where all the energy produced by the combustion is recovered. This recovery allows the condensation 22 of all the elements contained in the combustion gas (which are recovered and recycled) including the condensation of H 2 O which, in the process, is condensed between 80 and 60 ° C. After the combustion gases have been removed from the elements, other than CO 2 and non-condensable elements at this temperature, the CO 2 is recovered at the output of the generator 2.
  • the concentration of CO 2 in the residual gas is higher or lower. If the combustion is carried out under combustion air, the residual gas comprises a significant percentage of nitrogen: approximately 4 volumes of nitrogen per 1 volume of CO 2 . If the combustion is carried out under O 2 , the residual gas is composed of more than 95% of CO 2 .
  • the oxidant may be ambient air as it is, air enriched with O 2 , at a higher or lower percentage, industrial O 2 , or even the three combustion modes in succession, during a cycle, depending on the temperature rise and the safety guarantee.
  • the thermal efficiency is different: the minimum efficiency with combustion air at maximum efficiency with industrial O 2 . It is the combustion mode that determines the CO 2 recovery procedure.
  • the solid fuel is preferably densified biomass [Bio-D] ® which, because of its densification process, is a concentrate of carbon (85% instead of 50% for biomass "energy") and therefore a concentrate energy.
  • the densified biomass [Bio-D] ® makes it possible to harvest more CO 2 during a cycle.
  • the oxidant used is preferably industrial oxygen, especially if the system is to be used in a complex with co-generation of energy. The thermal ratio is then much larger.
  • the oxidant can also be "atmospheric" enriched air or not, in installations where only the stabilization of the wood is sought.
  • the energy recovered in the heat exchanger 21 makes it possible to heat the CO 2 intended to be used for the treatment of wood, it is also used to produce high pressure steam for the cogeneration of electricity 26.
  • This electricity is used for the stabilization process according to the invention, which makes it autonomous.
  • the stabilization process according to the invention is used to also achieve the co-combustion of waste, the energy produced is more important than the needs of the system.
  • the surplus of cogenerated energies can be marketed and used in annexes of the complex.
  • This feature allows, with reference to the figure 3 the assembly of several furnace modules 10.1, 10.2, 10.3, 10.4 to produce customized length processing units.
  • the fixed vertical partitions 16.1, 16.2 of the module 10 are double-walled to provide a space in which the GT treatment gas is conveyed and the gas loaded GC extracted after treatment.
  • the outer wall is preferably insulated to control heat losses.
  • the ends 11, 12 are movable and removable, and they close the treatment volume VT when the load of wood B is entered.
  • the ends 11.1, 11.4 of the assembly are closed, as illustrated by FIG. figure 3 .
  • intermediate movable partitions can be installed to allow two separate treatment zones ZS, ZT, for example: drying on one side, stabilization at high temperature on the other.
  • the ceiling 13 of the oven module 10; 10.1, 10.2, 10.3, 10.4 is also double-walled 130, 131 between which is organized the SD gas distribution system; SD1, SD2, SD3, SD4.
  • This distribution system is designed to receive the GT hot gas from the heat generator 2 and extract the GC loaded gas after its passage in the technical volume VT treatment.
  • the low / inner wall, which relates to the technical volume of treatment, is movable to be adjusted to a suitable height, to compensate for varying heights of the wood load B to be stabilized.
  • the floor of the oven module 10 is equipped with rails 15A, 15B, with reference to Figures 2A and 2B , for the rolling of the carriage 14, carrying the load of wood B to stabilize.
  • deflectors 140 equip the carriage 14 on both sides to clear the technical ride height.
  • the gas extracted GC is discharged to the reactor 23 of the thermal generator 2 to be purified before reuse. This extracted gas is then loaded with gasified elements during the raising of the temperature of the wood to be treated.
  • the CO 2 gas used for the treatment of wood is thus recycled continuously. It is recovered at the output of the generator 2 with the CO 2 produced by the combustions in the reactor (combustion of the solid fuel and elements of the wood which have been gasified during the treatment).
  • the gas extracted after treatment of the wood is composed of the CO 2 introduced, water vapor from the wood, and combustible volatile molecules, gasified during the rise in temperature of the wood load.
  • the combustible gas parts will be reduced to the native elements in the thermal reactor, where all their available energy will be realized.
  • the steam is purified by passing through the reactor 23 of solid fuel, it will be condensed in pure water after recovery of thermal energy.
  • the recovered thermal energy produces a quality of water vapor that will be used for the cogeneration of electricity 26.
  • the treatment volume VT of the oven module 10 is kept under vacuum by an extraction fan 50 independent of the oven. It is located outside on the gas extraction pipe 5 of the furnace module 10 and back to the thermal generator 2. It is this extraction of the GC charged gases which creates the vacuum in the treatment volume VT of the furnace. furnace module 10.
  • the charged gas GC is discharged to the reactor 23 of the generator 2 which purifies this gas in a permanent recycling.
  • the CO 2 is recovered at the output of the generator 2 by the methods described above.
  • the CO 2 recovered is in the liquid phase, its temperature is between -85 and -100 ° C.
  • the gaseous / liquid phase change requires a large amount of energy. This same amount of energy is restored during the change of liquid / gaseous phase, it is during this phase change that the condensation of the water vapor contained in the extracted gas is carried out.
  • the CO 2 to be introduced for the treatment captures its appropriate heat in the heat exchanger 21 according to the temperature programmed by the treatment cycle.
  • the CO 2 is thus tempered and adapted to a new treatment cycle, it is sucked by the vacuum created in the technical volume VT of the furnace module 10, via the SD gas distribution system and so on.
  • a compensation system of the pressure losses, related to a large distance between the generator 2 and the furnace module 10, can be installed on the GT gas treatment pipe 4.
  • the heat generator 2, the oven module 1 and the gas pipes 4, 5, connecting these two units, are thermally insulated, effectively to reduce energy losses and secure the surroundings.
  • CO 2 is a strategic gas in the emerging economy, with its neutral gas properties for the preservation of certain foodstuffs in the agri-food industry, the substitution of gases for prohibited refrigerants, and the raw material in technological materials.
  • This mechanism 4 comprises a movable wall60, centered on its vertical axis 61, which hides the diagonals of the parallelepiped by pivoting on the axis 61. This action alternates the incoming and outgoing gas communications to the walls of the right 16.2 or left 16.1.
  • louvers are equipped with movable baffles, which can be mechanized to distribute the flow of treatment.
  • An upper part of these baffles is composed of elements that can be closed independently, to allow to adjust the height of the ceiling in the VT treatment volume.
  • the GT treatment gas flow is adjusted by varying the vacuum in the treatment volume VT of the furnace module 10 by the power variation of the extraction motor 50.
  • This heat transfer mode is intended to make the aerodynamics of gases more fluid and thus avoid overheating of areas.
  • the constant vacuum ensures the impossibility of gas concentration inside the oven module.
  • Means for injecting water vapor into the treatment gas stream are arranged to control the drying of the wood under the best technical conditions. Indeed, drying too fast would result in creating physical damage to treated wood.
  • the deflectors fixed vertical walls can completely close the vents, it allows to provide neutral areas when the load of wood to be treated does not occupy all the technical space of the oven module.
  • a removable and adjustable partition separates the neutral zone from the active one to save the energy used and reduce the cost of treatment.
  • the furnace module 10 may also be arranged so that the movable end walls can also be displaced in horizontal translation so as to be placed in close proximity to the ends of the load of wood B.
  • the volume of the load is thus minimized.
  • VT treatment for a given load of wood which gives a better efficiency of the stabilization process and a saving of energy.
  • the load of wood B is at a temperature too high to be output. This temperature must be lowered so as not to risk self-ignition in the air and to secure handling of the load B. To achieve this temperature drop, the cycle continues until the load can be safely exited.
  • the CO 2 is introduced at a progressively lower temperature under the control of the programming, so as not to create thermal shocks that are detrimental to the wood load. The condition of CO 2 recovery in the liquid phase makes it possible to lower the temperature of the wood load very significantly.
  • the gas used for cooling the wood load B, before leaving the furnace module 10, is also recycled in the generator 2. There is therefore a large amount of energy available during and at the end of the cycle. treatment. This energy can be used in related processes, especially for drying wood, energy that can be used in the stabilization process.
  • the operation of the system can be sustained and made more profitable by using certain wastes as co-fuels with [Bio-D] ®, for example, Used Non-Reusable Tires (RUNs) or polluted woods, which benefit from elimination tax that comes to the profit of the exploitation.
  • RUNs Used Non-Reusable Tires
  • polluted woods which benefit from elimination tax that comes to the profit of the exploitation.

Description

La présente invention concerne un procédé pour stabiliser des bois d'oeuvre.The present invention relates to a method for stabilizing timber.

Elle vise également un système pour la mise en oeuvre de ce procédé. On entend ici par bois d'oeuvre du bois destiné à l'emploi dans les filières de seconde transformation du bois, notamment pour l'industrie, le bâtiment, la menuiserie, ou pour l'aménagement extérieur et intérieur urbain, industriel, collectif et domestique.It also relates to a system for implementing this method. The term "timber" refers here to wood intended for use in secondary wood processing industries, in particular for industry, construction, carpentry, or urban and industrial interior, industrial, collective and domesticated.

Passer le bois à la flamme pour le chauffer à la limite d'inflammation afin de le rendre imputrescible, voire inattaquable par ses prédateurs naturels, est une pratique séculaire. C'est pour homogénéiser ces effets sur des masses de bois plus importantes que des recherches dans le chauffage du bois sont menées.Flame wood to heat it to the limit of ignition to make it rot or even unassailable by its natural predators, is a secular practice. It is to homogenize these effects on larger masses of wood that research in wood heating is conducted.

Les procédés de stabilisation actuellement développés ont tous leurs particularités. On peut notamment citer le procédé de traitement de bois à haute température divulgué dans le document FR 2757097 . Ce procédé de traitement met en oeuvre une génération de flux gazeux de traitement inséré dans le four de traitement de la charge de bois.The currently developed stabilization processes all have their particularities. It is particularly possible to mention the high temperature wood treatment process disclosed in the document FR 2757097 . This treatment method uses a generation of treatment gas flow inserted into the wood load treatment furnace.

Les procédés actuels sont trop souvent en difficulté pour atteindre l'objectif qui est d'élever la température de manière à ce qu'elle soit homogène jusqu'au coeur d'une masse de bois, au point de rendre ce bois stable et imputrescible sans agent chimique ajouté. Ce point de température se situe aux environs de 230°C. Il faut nécessairement l'atteindre et le maintenir sans risque pour la charge ni pour le système, étant donné que la température d'auto inflammation du bois se situe autour de 120/160°C.Current processes are too often in difficulty to achieve the objective of raising the temperature so that it is homogeneous to the heart of a mass of wood, to the point of making this wood stable and rot-proof without chemical agent added. This temperature point is around 230 ° C. It must necessarily be reached and maintained safely for the load and for the system, since the wood's self-ignition temperature is around 120/160 ° C.

Le but de la présente invention est de proposer un procédé de stabilisation du bois d'oeuvre, qui procure des garanties de sécurité et de traitement en parfaite harmonie avec l'environnement et l'écologie.The object of the present invention is to provide a method of stabilizing lumber, which provides guarantees of safety and treatment in perfect harmony with the environment and ecology.

Cet objectif est atteint avec un procédé bio-thermique pour stabiliser une charge de bois, notamment du bois d'oeuvre, comprenant :

  • une phase de traitement de la charge de bois dans un four de traitement par un flux gazeux de traitement, comprenant du CO 2 obtenu par combustion de biomasse végétale,
  • une génération d'un flux gazeux de traitement à haute température à partir de moyens de génération thermique indépendants dudit four de traitement, et
  • une récupération du flux gazeux chargé après traitement.
This objective is achieved with a bio-thermal process for stabilizing a load of wood, especially timber, comprising:
  • a phase of treatment of the wood load in a treatment furnace with a treatment gas stream, comprising CO 2 obtained by combustion of plant biomass,
  • a generation of a high temperature treatment gas stream from thermal generation means independent of said treatment furnace, and
  • recovery of the charged gas stream after treatment.

L'indépendance des moyens de génération thermique par rapport au four de traitement contribue significativement à la sécurisation du procédé de traitement de bois selon l'invention. Par ailleurs, ce procédé peut être mis en oeuvre simultanément avec plusieurs fours de traitement tout en n'utilisant qu'une seule génération de flux de gazeux de traitement.The independence of the thermal generation means with respect to the treatment furnace contributes significantly to the security of the wood treatment method according to the invention. Moreover, this method can be implemented simultaneously with multiple process furnaces while using only one generation of process gas streams.

Le procédé selon l'invention peut avantageusement comprendre un recyclage du flux gazeux chargé pour récupérer du gaz apte à être utilisé dans le flux gazeux de traitement. Le flux gazeux thermique est de préférence un flux comprenant du dioxyde de carbone CO2. Le gaz employé pour le flux gazeux de traitement est avantageusement obtenu à partir d'un gaz de combustion en sortie des moyens de génération thermique.The method according to the invention may advantageously comprise a recycling of the charged gas stream to recover gas suitable for use in the treatment gas stream. The thermal gas stream is preferably a stream comprising CO 2 carbon dioxide. The gas used for the gaseous treatment stream is advantageously obtained from a combustion gas at the outlet of the thermal generation means.

Dans un mode particulier de réalisation, le procédé selon l'invention comprend une phase préalable de condensation d'éléments contenus dans le gaz de combustion, pour récupérer un gaz résiduel contenant du dioxyde de carbone.In a particular embodiment, the method according to the invention comprises a prior phase of condensation of elements contained in the combustion gas, to recover a residual gas containing carbon dioxide.

Le gaz résiduel peut transiter par un échangeur thermique pour y acquérir la température de traitement, puis est réintroduit dans le cycle de traitement, pour être utilisé dans une phase de séchage du bois. On prévoit en outre une compression du gaz résiduel, pour condenser et récupérer le dioxyde de carbone en phase liquide.The residual gas can pass through a heat exchanger to acquire the treatment temperature, and is then reintroduced into the treatment cycle to be used in a phase of drying the wood. In addition, compression of the residual gas is provided to condense and recover the carbon dioxide in the liquid phase.

Le procédé selon l'invention peut en outre avantageusement comprendre, à l'issue de la phase de traitement, une phase de baisse de la température de la charge de bois au cours de laquelle le gaz de traitement est introduit dans le volume de traitement à une température progressivement plus basse.The method according to the invention may also advantageously comprise, at the end of the treatment phase, a phase of lowering the temperature of the wood load during which the treatment gas is introduced into the treatment volume at the end of the treatment phase. a progressively lower temperature.

Suivant un autre aspect de l'invention, il est proposé un système bio-thermique pour stabiliser une charge de bois, notamment de bois d'oeuvre, mettant en oeuvre le procédé selon l'invention, comprenant :

  • des moyens de four de traitement prévus pour recevoir la charge de bois et pour soumettre ladite charge au flux gazeux de traitement,
  • des moyens pour générer un flux gazeux de traitement à haute température, comprenant à plus de 95% du CO 2 obtenu par combustion de biomasse végétale sous O 2 , ces moyens étant indépendants desdits moyens de four de traitement, et
  • des moyens d'échange gazeux, prévus pour réaliser une communication entre les moyens de génération thermique et les moyens de four de traitement.
According to another aspect of the invention, there is provided a bio-thermal system for stabilizing a load of wood, especially timber, implementing the method according to the invention, comprising:
  • processing furnace means for receiving the wood load and for subjecting said feedstock to the treatment gas stream,
  • means for generating a high temperature treatment gas stream, comprising more than 95% of the CO 2 obtained by burning plant biomass under O 2 , these means being independent of said furnace means, and
  • gaseous exchange means for providing communication between the thermal generating means and the treatment furnace means.

Les moyens de génération thermique comprennent par exemple au moins un foyer à grille et un échangeur de chaleur dans lequel l'énergie produite par la combustion d'un combustible avec un comburant est récupérée.The thermal generation means comprise for example at least one grate hearth and a heat exchanger in which the energy produced by the combustion of a fuel with an oxidant is recovered.

Dans une forme particulière de mise en oeuvre, le système de stabilisation selon l'invention comprend en outre des moyens pour réintroduire dans un cycle de traitement le gaz résiduel en sortie des moyens de génération thermique, ces moyens de réintroduction comprenant des moyens pour condenser la vapeur d'eau H2O présente dans ledit gaz résiduel, et des moyens pour faire transiter ledit gaz résiduel par l'échangeur thermique où ledit gaz résiduel acquiert la température du traitement en cours.In a particular embodiment, the stabilization system according to the invention further comprises means for reintroducing into a treatment cycle the residual gas at the outlet of the thermal generation means, these reintroduction means comprising means for condensing the water vapor H 2 O present in said residual gas, and means for passing said residual gas by the heat exchanger where said residual gas acquires the temperature of the treatment in progress.

Ce système peut en outre comprendre des moyens pour comprimer le gaz résiduel, de façon à condenser et récupérer le dioxyde de carbone en phase liquide, ainsi que des moyens pour concentrer le dioxyde de carbone dans le gaz résiduel.The system may further include means for compressing the residual gas to condense and recover liquid phase carbon dioxide and means for concentrating the carbon dioxide in the residual gas.

Dans un exemple pratique de réalisation du système de stabilisation selon l'invention, les moyens de traitement du bois comprennent au moins un module de four comprenant deux cloisons d'extrémité amovibles pour permettre un transfert de charges de bois à traiter, par l'une et/ou l'autre desdites deux extrémités.In a practical example of embodiment of the stabilization system according to the invention, the wood treatment means comprise at least one oven module comprising two removable end walls to allow a transfer of wood loads to be treated, by one and / or the other of said two ends.

Le module de four peut être de forme sensiblement parallélépipédique et comprendre des cloisons latérales verticales fixes comportant des doubles parois pour ménager un espace dans lequel sont véhiculés le gaz de traitement et le gaz extrait après traitement. Les parois extérieures des cloisons latérales verticales sont isolées thermiquement.The furnace module may be of substantially parallelepipedal shape and comprise fixed vertical side walls having double walls to provide a space in which the treatment gas and the gas extracted after treatment are conveyed. The outer walls of the vertical side walls are thermally insulated.

On peut avantageusement prévoir un assemblage d'une pluralité de modules de four, caractérisé en ce que des cloisons mobiles d'extrémité intermédiaires sont agencées pour pouvoir être retirées, les cloisons amovibles d'extrémité de l'assemblage de modules étant maintenues fermées pendant le traitement. Des cloisons mobiles intermédiaires peuvent être installées pour définir plusieurs zones de traitement distinctes comprenant par exemple une zone de séchage et une zone de stabilisation à haute température.It is advantageous to provide an assembly of a plurality of oven modules, characterized in that intermediate end movable partitions are arranged to be removable, the removable end partitions of the module assembly being kept closed during the treatment. Intermediate movable partitions may be installed to define a plurality of separate treatment zones including for example a drying zone and a high temperature stabilization zone.

Le module de four comporte de préférence un plafond à doubles parois entre lesquelles un système de distribution des gaz de traitement est disposé. Ce système de distribution des gaz comprend des moyens pour recevoir du gaz chaud de traitement en provenance des moyens de génération thermique et des moyens pour extraire ce gaz après passage à l'intérieur du module de four et traitement de la charge de bois. La paroi intérieure du plafond peut être réglable en hauteur de façon à compenser une hauteur variable de la charge de bois à stabiliser.The furnace module preferably has a double-walled ceiling between which a process gas distribution system is arranged. This gas distribution system comprises means for receiving hot treatment gas from the thermal generation means and means for extracting the gas after passing inside the furnace module and treating the wood load. The inner wall of the ceiling can be adjustable in height so as to compensate for a variable height of the wood load to be stabilized.

Le système selon l'invention peut aussi comprendre des moyens pour refouler le gaz extrait du module de four après traitement vers des moyens réacteurs au sein des moyens de génération thermique, pour y être épuré, ainsi que des moyens ventilateurs d'extraction pour maintenir en dépression le volume de traitement du module de four.The system according to the invention may also comprise means for discharging the gas extracted from the furnace module after treatment to reactor means within the thermal generation means, for being purified there, as well as exhaust fan means for maintaining depression the processing volume of the oven module.

On peut aussi prévoir un système de compensation de pertes de charge installé sur une conduite de gaz de traitement entre les moyens de génération thermique et les moyens de traitement de charge de bois.It is also possible to provide a system for compensation of pressure drops installed on a treatment gas pipe between the thermal generation means and the wood load processing means.

Le système de distribution des gaz comprend par exemple des moyens pour alterner l'extraction des gaz chargés par l'une et l'autre des parois latérales du module de four. Ces moyens d'alternance comprend un mécanisme à quatre voies disposé à la jonction des raccordements de la conduite amenant le gaz chaud, de la conduite d'extraction du gaz chargé après traitement, et des conduites communiquant avec les parois verticales fixes du module de four.The gas distribution system comprises, for example, means for alternating the extraction of the gases charged by one and the other of the side walls of the furnace module. These alternating means comprise a four-way mechanism disposed at the junction of the connections of the pipe carrying the hot gas, the extraction pipe of the charged gas after treatment, and pipes communicating with the fixed vertical walls of the furnace module. .

Le procédé de stabilisation selon l'invention utilise un gaz totalement neutre, aux températures et pressions du procédé, ce qui permet d'élever la température du bois bien au delà de ses limites d'auto inflammation. Ce gaz est avantageusement du dioxyde de carbone CO2. Le CO2 est la phase ultime de la combustion du Carbone, et est donc ininflammable.The stabilization method of the invention utilizes a completely neutral gas at process temperatures and pressures, which allows the temperature of the wood to be raised well beyond its self-ignition limits. This gas is advantageously carbon dioxide CO 2 . CO 2 is the ultimate phase of carbon combustion, and is therefore nonflammable.

Le dioxyde de carbone est utilisé dans le procédé comme :

  • vecteur de la chaleur; la température du CO2 étant élevée, au juste degré pour le programme en cours, dans l'échangeur thermique du générateur,
  • neutralisant, aucune inflammation dans un espace occupé par ce gaz n'étant possible, ce qui contribue à sécuriser le volume de traitement du procédé durant la stabilisation du bois,
  • moyen pour empêcher toute entrée d'air par les zones sensibles du système de stabilisation, donc d'oxygène comburant indispensable pour toute combustion.
Carbon dioxide is used in the process as:
  • vector of heat; the CO 2 temperature being high, at the right degree for the current program, in the generator heat exchanger,
  • neutralizing, no ignition in a space occupied by this gas is possible, which helps to secure the processing volume of the process during the stabilization of the wood,
  • means to prevent any entry of air by the sensitive zones of the stabilization system, therefore oxidizing oxygen essential for any combustion.

Le dioxyde de carbone CO2 utilisé dans le procédé selon l'invention est avantageusement issu du mode de production de chaleur exploité dans le générateur thermique.The CO 2 carbon dioxide used in the process according to the invention is advantageously derived from the heat production mode used in the thermal generator.

Suivant encore un autre aspect de l'invention, il est proposé un bois, notamment un bois d'oeuvre, présentant les caractéristiques d'un bois qui a été soumis au procédé de stabilisation selon l'invention.According to yet another aspect of the invention, it is proposed a wood, including a timber, having the characteristics of a wood that has been subjected to the stabilization process according to the invention.

D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en oeuvre nullement limitatif, et des dessins annexés sur lesquels :

  • la figure 1 est un schéma synoptique d'un système de stabilisation selon l'invention ;
  • les figures 2A et 2B sont respectivement une vue en coupe longitudinales et une vue en coupe transversale d'un module de four mis en oeuvre dans un système de stabilisation selon l'invention ;
  • la figure 3 illustre un assemblage de modules de four tels que représentés en figure 2 ;
  • la figure 4 illustre schématiquement la structure d'un système de génération thermique mis en oeuvre dans un système de stabilisation selon l'invention ;
  • les figures 5A et 5B sont respectivement une vue en coupe longitudinale et une vue de dessus d'un module de four ; et
  • les figures 6A et 6B représentent schématiquement les deux états caractéristiques du système de distribution équipant un module de four dans un système de stabilisation selon l'invention.
Other advantages and characteristics of the invention will appear on examining the detailed description of an embodiment which is in no way limiting, and the appended drawings in which:
  • the figure 1 is a block diagram of a stabilization system according to the invention;
  • the Figures 2A and 2B are respectively a longitudinal sectional view and a cross-sectional view of a furnace module used in a stabilization system according to the invention;
  • the figure 3 illustrates an assembly of oven modules as shown in figure 2 ;
  • the figure 4 schematically illustrates the structure of a thermal generation system implemented in a stabilization system according to the invention;
  • the Figures 5A and 5B are respectively a longitudinal sectional view and a top view of a furnace module; and
  • the Figures 6A and 6B schematically represent the two characteristic states of the distribution system equipping a furnace module in a stabilization system according to the invention.

On va maintenant décrire, en référence aux figures précitées, un exemple de réalisation d'un système de stabilisation selon l'invention, en même temps que le procédé mis en oeuvre dans ce procédé.We will now describe, with reference to the above figures, an embodiment of a stabilization system according to the invention, at the same time as the method used in this method.

Le système de stabilisation S comprend, en référence à la figure 1, un générateur thermique 2 et un ou plusieurs fours de traitement à haute température 1. Le générateur thermique 2 et les fours de traitement 1 sont indépendants et peuvent être installés à distance l'un de l'autre, et ils communiquent par un système d'échange gazeux, flux et reflux en aller/retour. L'ensemble du système de stabilisation selon l'invention est par exemple contrôlé et géré par un système métrologique et un programme informatique de commandes numériques.The stabilization system S comprises, with reference to the figure 1 , a heat generator 2 and one or more high temperature treatment furnaces 1. The heat generator 2 and the treatment furnaces 1 are independent and can be installed at a distance from each other, and they communicate by means of a control system. gas exchange, ebb and flow back and forth. The entire stabilization system according to the invention is for example controlled and managed by a metrological system and a numerical control computer program.

Le générateur thermique 2 est un système composé, en référence à la figure 4, d'un ou plusieurs foyers à grille 20 et d'un échangeur de chaleur 21 où toute l'énergie produite par la combustion est récupérée. Cette récupération permet la condensation 22 de tous les éléments contenus dans le gaz de combustion (qui sont récupérés et recyclés) y compris la condensation de H2O qui, dans le procédé, est condensé entre 80 et 60°C. Après que les gaz de combustion aient été débarrassés des éléments, autres que le CO2 et ceux non condensables à cette température, le CO2 est récupéré à la sortie du générateur 2.The thermal generator 2 is a compound system, with reference to the figure 4 , one or more grate fires 20 and a heat exchanger 21 where all the energy produced by the combustion is recovered. This recovery allows the condensation 22 of all the elements contained in the combustion gas (which are recovered and recycled) including the condensation of H 2 O which, in the process, is condensed between 80 and 60 ° C. After the combustion gases have been removed from the elements, other than CO 2 and non-condensable elements at this temperature, the CO 2 is recovered at the output of the generator 2.

Selon le principe de combustion qui est appliqué, la concentration de CO2 dans le gaz résiduel est plus ou moins élevée. Si la combustion est réalisée sous air comburant, le gaz résiduel comporte un pourcentage d'azote important : environ 4 volumes d'azote pour 1 volume de CO2. Si la combustion est réalisée sous O2, le gaz résiduel est composé à plus de 95% de CO2.According to the combustion principle that is applied, the concentration of CO 2 in the residual gas is higher or lower. If the combustion is carried out under combustion air, the residual gas comprises a significant percentage of nitrogen: approximately 4 volumes of nitrogen per 1 volume of CO 2 . If the combustion is carried out under O 2 , the residual gas is composed of more than 95% of CO 2 .

Selon le typé d'installation et sa finalité le comburant peut être l'air ambiant en l'état, de l'air enrichi d'O2, à un pourcentage plus ou moins élevé, de l'O2 industriel, ou bien encore les trois modes de combustion à la suite, au cours d'un cycle, en fonction de la montée en température et de la garantie de sécurité.Depending on the type of installation and its purpose, the oxidant may be ambient air as it is, air enriched with O 2 , at a higher or lower percentage, industrial O 2 , or even the three combustion modes in succession, during a cycle, depending on the temperature rise and the safety guarantee.

Compte tenu du mode de combustion choisi, le rendement thermique est différent: du rendement minimum avec de l'air comburant au rendement maximum avec de l'O2 industriel. C'est le mode de combustion qui détermine la procédure de récupération du CO2.Given the combustion mode chosen, the thermal efficiency is different: the minimum efficiency with combustion air at maximum efficiency with industrial O 2 . It is the combustion mode that determines the CO 2 recovery procedure.

Si le gaz résiduel après la condensation de H2O est composé à plus de 90% de CO2, il est récupéré tel quel pour :

  • être réintroduit dans le cycle de traitement après avoir transité par l'échangeur thermique 21, où il acquiert la température du traitement en cours (contrôlée par le programme électronique). Ce cas est utilisé pour la phase de séchage du bois durant laquelle il n'y a pas de risque d'auto inflammation ;
  • être comprimé à 25 Bars, cette opération permettant de condenser et récupérer le CO2 en phase liquide. Le gaz résiduel n'étant plus que de l'azote et des éléments non pollués ni polluants, il peut être rejeté à l'extérieur. Par cette méthode, le CO2 condensé a toutes les qualités requises par le procédé ;
  • être refroidi par un système réfrigérant, en basse pression et à la température de condensation du CO2 aux alentours de moins cent degrés (-100°C) Par cette méthode le CO2 condensé a toutes les qualités requises par le procédé et pour être commercialisé a toute fin utile.
If the residual gas after the condensation of H 2 O is composed of more than 90% of CO 2 , it is recovered as such for:
  • to be reintroduced into the treatment cycle after passing through the heat exchanger 21, where it acquires the temperature of the current treatment (controlled by the electronic program). This case is used for the drying phase of wood where there is no risk of self-ignition;
  • to be compressed at 25 bars, this operation making it possible to condense and recover the CO 2 in the liquid phase. Since the residual gas is nothing more than nitrogen and elements that are not polluted or polluting, it can be discharged to the outside. By this method, the condensed CO 2 has all the qualities required by the process;
  • be cooled by a refrigerant system, at low pressure and at the CO 2 condensation temperature at around one hundred degrees (-100 ° C) By this method the condensed CO 2 has all the qualities required by the process and to be marketed for all practical purposes.

Lorsque le gaz résiduel après la condensation de H2O est composé à moins de 30% de CO2 il faut mettre en oeuvre les deux méthodes pour concentrer le CO2. Le résiduel gazeux est recyclé dans le générateur 2 au cours du cycle de traitement. La méthode de concentration du CO2 est appliquée jusqu'à ce que la quantité recueillie soit suffisante pour la phase haute température. Le CO2 liquide est stocké 25 pour être employé dans le procédé. Le stock de CO2 s'accroît au fil des cycles de traitement, et il y a donc un intérêt économique à écouler le trop plein en qualité commercialisable.When the residual gas after the condensation of H 2 O is composed of less than 30% of CO 2, both methods must be used to concentrate the CO 2 . The gaseous residual is recycled in the generator 2 during the treatment cycle. The CO 2 concentration method is applied until the amount collected is sufficient for the high temperature phase. Liquid CO 2 is stored for use in the process. The CO 2 stock increases over the course of treatment cycles, and there is therefore an economic interest in selling the overflow in marketable quality.

Dans le ou les foyers à grilles 20, des "biomasses végétales" sont brûlées, sous toutes les formes de combustibles solides CB (de dimensions supérieures aux sciures et broyats). Ce sont toutes les formes dites de "bois énergie" (bûches, rondins, plaquettes forestières, dosses, délignures, briquettes reconstituées stables à la combustion, granulés, etc.).In the grate or hearths 20, "vegetable biomasses" are burned, in all forms of CB solid fuels (larger in size than sawdust and crushed products). These are all forms of "wood energy" (logs, logs, wood chips, slabs, delignures, briquettes reconstituted stable to combustion, granules, etc.).

Le combustible solide est de préférence de la biomasse densifiée [Bio-D]® qui, du fait de son procédé de densification, est un concentré de carbone (85% au lieu de 50% pour la biomasse "énergie") et donc un concentré d'énergie. La biomasse densifiée [Bio-D]® permet de réaliser une récolte plus importante de CO2 au cours d'un cycle.The solid fuel is preferably densified biomass [Bio-D] ® which, because of its densification process, is a concentrate of carbon (85% instead of 50% for biomass "energy") and therefore a concentrate energy. The densified biomass [Bio-D] ® makes it possible to harvest more CO 2 during a cycle.

Le cumul de CO2 récupéré permet une exploitation dans des procédés annexes divers. Le retrait de son équivalent atmosphérique en gaz à effet de serre, dans chaque emploi et chaque utilisation, est un gain énorme pour l'écosystème. Le dioxyde de carbone CO2 est produit une fois et utilisé plusieurs fois dans des processus qui en auraient produit d'une autre façon.The accumulated CO 2 recovered allows exploitation in various auxiliary processes. The removal of its atmospheric equivalent in greenhouse gases, in every job and every use, is a huge gain for the ecosystem. Dioxide CO 2 carbon is produced once and used several times in processes that would have produced it in another way.

Le comburant utilisé est de préférence de l'oxygène industriel, surtout si le système doit être utilisé dans un complexe avec co-génération d'énergie. Le rapport thermique est alors nettement plus important. Le comburant peut aussi être de l'air "atmosphérique" enrichi ou non, dans des installations où seule la stabilisation du bois est recherchée.The oxidant used is preferably industrial oxygen, especially if the system is to be used in a complex with co-generation of energy. The thermal ratio is then much larger. The oxidant can also be "atmospheric" enriched air or not, in installations where only the stabilization of the wood is sought.

L'énergie récupérée dans l'échangeur 21 permet de réchauffer le CO2 destiné à être utilisé pour le traitement du bois, elle est aussi utilisée pour produire de la vapeur d'eau à haute pression pour la cogénération d'électricité 26. Cette électricité est utilisée pour le procédé de stabilisation selon l'invention, ce qui le rend autonome.The energy recovered in the heat exchanger 21 makes it possible to heat the CO 2 intended to be used for the treatment of wood, it is also used to produce high pressure steam for the cogeneration of electricity 26. This electricity is used for the stabilization process according to the invention, which makes it autonomous.

Si le procédé de stabilisation selon l'invention est exploité pour réaliser aussi de la co-combustion de déchets, l'énergie produite est plus importante que les besoins du système. L'excédent des énergies cogénérées peut être commercialisé et utilisé dans des annexes du complexe.If the stabilization process according to the invention is used to also achieve the co-combustion of waste, the energy produced is more important than the needs of the system. The surplus of cogenerated energies can be marketed and used in annexes of the complex.

Le four de traitement du bois 10 est par exemple réalisé, en référence aux figures 2A et 2B, sous la forme d'un module parallélépipédique rectangle de 6 mètres de long pour une section technique interne de l x h = 150 x 220 cm, dont les deux extrémités 11, 12 sont amovibles pour permettre le transfert des matières traitées par les deux extrémités.The wood treatment furnace 10 is for example made with reference to the Figures 2A and 2B , in the form of a rectangular parallelepiped module 6 meters long for an internal technical section lxh = 150 x 220 cm, the two ends 11, 12 are removable to allow the transfer of the treated materials from both ends.

Cette particularité permet, en référence à la figure 3 l'assemblage de plusieurs modules de four 10.1, 10.2, 10.3, 10.4 pour réaliser des unités de traitement de longueur personnalisée. Les cloisons verticales fixes 16.1, 16.2 du module 10 sont à doubles parois pour ménager un espace dans lequel sont véhiculés le gaz de traitement GT et le gaz chargé GC extrait après traitement. La paroi extérieure est de préférence isolée pour contrôler les déperditions thermiques.This feature allows, with reference to the figure 3 the assembly of several furnace modules 10.1, 10.2, 10.3, 10.4 to produce customized length processing units. The fixed vertical partitions 16.1, 16.2 of the module 10 are double-walled to provide a space in which the GT treatment gas is conveyed and the gas loaded GC extracted after treatment. The outer wall is preferably insulated to control heat losses.

Les extrémités 11, 12 sont mobiles et amovibles, et elles ferment le volume de traitement VT lorsque la charge de bois B est entrée. Lorsque plusieurs modules de four 10.1, 10.2, 10.3, 10.4 sont assemblés, ce sont les extrémités 11.1, 11.4 de l'ensemble qui sont closes, comme l'illustre la figure 3. Dans ce mode de réalisation, des cloisons mobiles intermédiaires peuvent être installées pour permettre deux zones de traitement distinctes ZS, ZT, par exemple : séchage d'un côté, stabilisation à haute température de l'autre.The ends 11, 12 are movable and removable, and they close the treatment volume VT when the load of wood B is entered. When several furnace modules 10.1, 10.2, 10.3, 10.4 are assembled, the ends 11.1, 11.4 of the assembly are closed, as illustrated by FIG. figure 3 . In this embodiment, intermediate movable partitions can be installed to allow two separate treatment zones ZS, ZT, for example: drying on one side, stabilization at high temperature on the other.

Que ce soit pour un module de four ou plusieurs modules assemblés 10.1, 10.2, 10.3, 10.4, un seul générateur 2 avec ses périphériques spécifiques fournira le gaz de traitement GT t les énergies utiles au système.Whether for a furnace module or several assembled modules 10.1, 10.2, 10.3, 10.4, a single generator 2 with its specific peripherals will supply the treatment gas GT t the energies useful to the system.

Le plafond 13 du module de four 10; 10.1, 10.2, 10.3, 10.4 est aussi à doubles parois 130, 131 entre lesquelles est organisé le système de distribution des gaz SD ; SD1, SD2, SD3, SD4. Ce système de distribution est conçu pour recevoir le gaz chaud GT en provenance du générateur thermique 2 et extraire ce gaz chargé GC après son passage dans le volume technique de traitement VT. La paroi basse/intérieure, qui concerne le volume technique de traitement, est mobile afin d'être réglée à hauteur convenable, pour compenser des hauteurs variables de la charge de bois B à stabiliser.The ceiling 13 of the oven module 10; 10.1, 10.2, 10.3, 10.4 is also double-walled 130, 131 between which is organized the SD gas distribution system; SD1, SD2, SD3, SD4. This distribution system is designed to receive the GT hot gas from the heat generator 2 and extract the GC loaded gas after its passage in the technical volume VT treatment. The low / inner wall, which relates to the technical volume of treatment, is movable to be adjusted to a suitable height, to compensate for varying heights of the wood load B to be stabilized.

Le plancher du module de four 10 est équipé de rails 15A, 15B, en référence aux figures 2A et 2B, pour le roulage du chariot 14, porteur de la charge de bois B à stabiliser. Pour éviter des couloirs, qui créeraient des perturbations dans la répartition du gaz chaud dans la charge de bois B, des déflecteurs 140 équipent le chariot 14 de part et d'autre pour effacer la hauteur technique de roulement.The floor of the oven module 10 is equipped with rails 15A, 15B, with reference to Figures 2A and 2B , for the rolling of the carriage 14, carrying the load of wood B to stabilize. To avoid corridors, which would create disruptions in the distribution of hot gas in the load of wood B, deflectors 140 equip the carriage 14 on both sides to clear the technical ride height.

Le gaz extrait GC est refoulé vers le réacteur 23 du générateur thermique 2 pour être épuré avant son réemploi. Ce gaz extrait est alors chargé d'éléments gazéifiés lors de l'élévation de la température du bois à traiter. Le gaz CO2 utilisé pour le traitement du bois est ainsi recyclé en continu. Il est récupéré à la sortie du générateur 2 avec le CO2 produit par les combustions dans le réacteur (combustion du combustible solide et des éléments du bois qui ont été gazéifiés lors du traitement).The gas extracted GC is discharged to the reactor 23 of the thermal generator 2 to be purified before reuse. This extracted gas is then loaded with gasified elements during the raising of the temperature of the wood to be treated. The CO 2 gas used for the treatment of wood is thus recycled continuously. It is recovered at the output of the generator 2 with the CO 2 produced by the combustions in the reactor (combustion of the solid fuel and elements of the wood which have been gasified during the treatment).

Le gaz extrait après traitement du bois est composé du CO2 introduit, de la vapeur d'eau en provenance du bois, et de molécules volatiles combustibles, gazéifiées au cours de l'élévation de température de la charge de bois.The gas extracted after treatment of the wood is composed of the CO 2 introduced, water vapor from the wood, and combustible volatile molecules, gasified during the rise in temperature of the wood load.

Les parties de gaz combustibles vont être réduites aux éléments natifs dans le réacteur thermique, où toute leur énergie disponible sera réalisée. La vapeur d'eau est épurée en passant au travers du réacteur 23 de combustible solide, elle sera condensée en eau pure après récupération de l'énergie thermique. L'énergie thermique récupérée permet de produire une qualité de vapeur d'eau qui va être utilisée pour la cogénération d'électricité 26.The combustible gas parts will be reduced to the native elements in the thermal reactor, where all their available energy will be realized. The steam is purified by passing through the reactor 23 of solid fuel, it will be condensed in pure water after recovery of thermal energy. The recovered thermal energy produces a quality of water vapor that will be used for the cogeneration of electricity 26.

La chaleur résiduelle, après cogénération, est utilisée pour le processus de stabilisation. Le gaz de traitement étant recyclé en permanence, cette chaleur résiduelle est récupérée. Il y a un trop plein de chaleur au fur et à mesure des recyclages, cette chaleur peut être exploité dans les annexes d'un complexe, par exemple :

  • pour déshydrater des boues de station d'épuration dans un procédé clôt où le CO2 a aussi un rôle actif et neutralisant,
  • pour fournir électricité et chaleur à une industrie, une collectivité...
Residual heat, after cogeneration, is used for the stabilization process. Since the process gas is continuously recycled, this residual heat is recovered. There is too much heat during the recycling, this heat can be exploited in the annexes of a complex, for example:
  • for dewatering sludge from a treatment plant in a closed process where the CO 2 also has an active and neutralizing role,
  • to provide electricity and heat to an industry, a community ...

Le volume de traitement VT du module de four 10 est maintenu en dépression par un ventilateur d'extraction 50 indépendant du four. Il est situé à l'extérieur sur la conduite 5 d'extraction des gaz du module de four 10 et de refoulement vers le générateur thermique 2. C'est cette extraction des gaz chargés GC qui créée la dépression dans le volume de traitement VT du module de four 10. Le gaz chargé GC est refoulé vers le réacteur 23 du générateur 2 qui épure ce gaz en un recyclage permanent. Le CO2 est récupéré en sortie du générateur 2 par les méthodes décrites plus haut. Le CO2 récupéré est en phase liquide, sa température se situe entre -85 et -100 °C.The treatment volume VT of the oven module 10 is kept under vacuum by an extraction fan 50 independent of the oven. It is located outside on the gas extraction pipe 5 of the furnace module 10 and back to the thermal generator 2. It is this extraction of the GC charged gases which creates the vacuum in the treatment volume VT of the furnace. furnace module 10. The charged gas GC is discharged to the reactor 23 of the generator 2 which purifies this gas in a permanent recycling. The CO 2 is recovered at the output of the generator 2 by the methods described above. The CO 2 recovered is in the liquid phase, its temperature is between -85 and -100 ° C.

Le changement de phase gazeux/liquide nécessite une quantité d'énergie importante. Cette même quantité d'énergie est restituée lors du changement de phase liquide/gazeux, c'est au cours de ce changement de phase que se réalise la condensation de la vapeur d'eau contenue dans le gaz extrait.The gaseous / liquid phase change requires a large amount of energy. This same amount of energy is restored during the change of liquid / gaseous phase, it is during this phase change that the condensation of the water vapor contained in the extracted gas is carried out.

Le CO2 qui doit être introduit pour le traitement capte sa chaleur appropriée dans l'échangeur thermique 21 en fonction de la température programmée par le cycle de traitement. Le CO2 est ainsi tempéré et propre à un nouveau cycle de traitement, il est aspiré par la dépression créée dans le volume technique VT du module de four 10, via le système SD de distribution des gaz et ainsi de suite. Un système de compensation des pertes de charge, liées à une distance importante entre le générateur 2 et le module de four 10, peut être installé sur la conduite 4 de gaz de traitement GT.The CO 2 to be introduced for the treatment captures its appropriate heat in the heat exchanger 21 according to the temperature programmed by the treatment cycle. The CO 2 is thus tempered and adapted to a new treatment cycle, it is sucked by the vacuum created in the technical volume VT of the furnace module 10, via the SD gas distribution system and so on. A compensation system of the pressure losses, related to a large distance between the generator 2 and the furnace module 10, can be installed on the GT gas treatment pipe 4.

Le générateur thermique 2, le module de four 1 et les conduites de gaz 4, 5, raccordant ces deux unités, sont isolées thermiquement, de façon efficace pour réduire les pertes d'énergie et sécuriser les abords.The heat generator 2, the oven module 1 and the gas pipes 4, 5, connecting these two units, are thermally insulated, effectively to reduce energy losses and secure the surroundings.

La production continue de CO2 se cumule au CO2 recyclé, ce qui induit une surabondance de ce gaz. Le CO2 est un gaz stratégique dans l'économie en devenir, par ses propriétés de gaz neutre pour la conservation de certaines denrées dans l'agro-alimentaire, de gaz de substitution des gaz frigorigènes prohibés, de matière première dans des matériaux technologiques.Continuous CO 2 production is combined with recycled CO 2 , which leads to an overabundance of this gas. CO 2 is a strategic gas in the emerging economy, with its neutral gas properties for the preservation of certain foodstuffs in the agri-food industry, the substitution of gases for prohibited refrigerants, and the raw material in technological materials.

En référence aux figures 2A, 2B, 5A, 5B, et 6A, 6B, le système SD de distribution des gaz, situé dans la double paroi du plafond 13 du module de four 10, est conçu pour alterner l'extraction des gaz chargés GC, tantôt par la paroi de gauche 16.1 et tantôt par la paroi de droite 16.2. Par conséquent, ceci assure l'alternance d'entrée des gaz chauds de traitement GT par la paroi opposée. Les effets du gaz chaud de traitement GT sur la masse de bois B à stabiliser sont ainsi répartis uniformément, la température de cette masse s'élevant ainsi de manière très homogène. Pour réaliser cette alternance, un mécanisme à quatre voies 6 est positionné à la jonction des raccordements :

  • de la conduite 4 amenant le gaz chaud GT pour la stabilisation,
  • de la conduite 5 extrayant le gaz chargé GC et,
  • des conduites 62.1, 62.2 communicant avec les parois verticales fixes 16.1, 16.2 du module de four 10.
With reference to Figures 2A, 2B , 5A, 5B , and 6A, 6B , the gas distribution system SD, located in the double wall of the ceiling 13 of the furnace module 10, is designed to alternate the extraction of the charged gas GC, sometimes by the left wall 16.1 and sometimes by the right wall 16.2 . Therefore, this ensures the alternating input of hot GT treatment gases through the opposite wall. The effects of the hot treatment gas GT on the mass of wood B to be stabilized are thus distributed uniformly, the temperature of this mass thus rising very homogeneous. To achieve this alternation, a four-way mechanism 6 is positioned at the junction of the connections:
  • of pipe 4 bringing hot gas GT for stabilization,
  • of the pipe 5 extracting the loaded gas GC and,
  • pipes 62.1, 62.2 communicating with the fixed vertical walls 16.1, 16.2 of the oven module 10.

Ce mécanisme 6 est commandé automatiquement par le programme électronique de conduite du traitement. Il transfère et alterne les flux/extraction de l'une à l'autre des parois verticales 16.1, 16.2. Ce mécanisme à quatre voies 6 est réalisé par exemple sous la forme d'un parallélépipède dont les quatre faces verticales sont raccordées en vis à vis :

  • aux parois droite et gauche 16.2, 16.1 du module de four 10,
  • à l'entrée 4 des gaz chauds de traitement GT en provenance du générateur thermique 2, ainsi qu'à la canalisation d'extraction 5 des gaz chargés GC qui sont refoulés vers le générateur thermique 2.
This mechanism 6 is automatically controlled by the electronic program for conducting the treatment. It transfers and alternates the flow / extraction from one to the other of the vertical walls 16.1, 16.2. This four-way mechanism 6 is made for example in the form of a parallelepiped whose four vertical faces are connected opposite:
  • at the right and left walls 16.2, 16.1 of the oven module 10,
  • at the inlet 4 of the hot treatment gases GT from the heat generator 2, as well as to the extraction pipe 5 of the charged gases GC which are discharged to the heat generator 2.

Ce mécanisme 4 comporte une paroi mobile60, centrée sur son axe vertical 61, qui occulte les diagonales du parallélépipède en pivotant sur l'axe 61. Cette action alterne les communications de gaz entrants et sortants vers les parois de droite 16.2 ou de gauche 16.1.This mechanism 4 comprises a movable wall60, centered on its vertical axis 61, which hides the diagonals of the parallelepiped by pivoting on the axis 61. This action alternates the incoming and outgoing gas communications to the walls of the right 16.2 or left 16.1.

Dans les faces intérieures des parois verticales fixes 16.1, 16.2 du module de four 10, sont aménagées des ouies verticales 52.1, 52.2 pour que les transferts des gaz, flux/extraction, puissent se faire dans le volume de traitement VT. Ces ouies sont munies de déflecteurs mobiles, qui peuvent êtres mécanisés pour bien répartir le flux de traitement. Une partie haute de ces déflecteurs est composé d'éléments qui peuvent être clos indépendamment, pour permettre d'ajuster la hauteur du plafond dans le volume de traitement VT.In the inner faces of the fixed vertical walls 16.1, 16.2 of the furnace module 10 are arranged vertical openings 52.1, 52.2 so that the gas transfers, flow / extraction, can be done in the treatment volume VT. These louvers are equipped with movable baffles, which can be mechanized to distribute the flow of treatment. An upper part of these baffles is composed of elements that can be closed independently, to allow to adjust the height of the ceiling in the VT treatment volume.

Le réglage du flux de gaz de traitement GT est réalisé en faisant varier la dépression dans le volume de traitement VT du module de four 10 par la variation de puissance du moteur d'extraction 50. Ce mode de transfert thermique a pour objet de rendre l'aérodynamique des gaz plus fluide et d'éviter ainsi des surchauffes de zones.The GT treatment gas flow is adjusted by varying the vacuum in the treatment volume VT of the furnace module 10 by the power variation of the extraction motor 50. This heat transfer mode is intended to make the aerodynamics of gases more fluid and thus avoid overheating of areas.

La constante dépression garantit l'impossibilité de concentration de gaz à l'intérieur du module de four. Des moyens d'injection de vapeur d'eau dans le flux de gaz de traitement sont aménagés pour maîtriser le séchage du bois dans les meilleures conditions techniques. En effet, un séchage trop rapide aurait pour conséquence de créer des dommages physiques aux bois traités.The constant vacuum ensures the impossibility of gas concentration inside the oven module. Means for injecting water vapor into the treatment gas stream are arranged to control the drying of the wood under the best technical conditions. Indeed, drying too fast would result in creating physical damage to treated wood.

Les déflecteurs des parois verticales fixes peuvent obturer totalement les ouies, cela permet de ménager des zones neutres quand la charge de bois à traiter n'occupe pas tout l'espace technique du module de four. Dans ce cas, une cloison amovible et ajustable sépare la zone neutre de celle active pour économiser l'énergie utilisée et réduire le coût du traitement.The deflectors fixed vertical walls can completely close the vents, it allows to provide neutral areas when the load of wood to be treated does not occupy all the technical space of the oven module. In this case, a removable and adjustable partition separates the neutral zone from the active one to save the energy used and reduce the cost of treatment.

Le module de four 10 peut aussi être agencé de façon à ce que les parois mobiles d'extrémité puissent également être déplacées en translation horizontale de façon à être placée à proximité étroite des extrémités de la charge de bois B. On minimise ainsi le volume de traitement VT pour une charge de bois donnée, ce qui procure une meilleure efficacité du processus de stabilisation et une économie d'énergie.The furnace module 10 may also be arranged so that the movable end walls can also be displaced in horizontal translation so as to be placed in close proximity to the ends of the load of wood B. The volume of the load is thus minimized. VT treatment for a given load of wood, which gives a better efficiency of the stabilization process and a saving of energy.

Lorsque la stabilisation est réalisée, la charge de bois B est à une température trop élevée pour être sortie. Cette température doit être descendue pour ne pas risquer l'auto inflammation à l'air et sécuriser les manipulations de la charge B. Pour réaliser cette baisse de température le cycle se poursuit jusqu'à ce que la charge puisse être sortie en toute sécurité. Le CO2 est introduit à température progressivement plus basse sous contrôle de la programmation, pour ne pas créer de chocs thermiques préjudiciables à la charge de bois. La condition de récupération du CO2 en phase liquide permet d'abaisser la température de la charge de bois de manière très significative.When the stabilization is performed, the load of wood B is at a temperature too high to be output. This temperature must be lowered so as not to risk self-ignition in the air and to secure handling of the load B. To achieve this temperature drop, the cycle continues until the load can be safely exited. The CO 2 is introduced at a progressively lower temperature under the control of the programming, so as not to create thermal shocks that are detrimental to the wood load. The condition of CO 2 recovery in the liquid phase makes it possible to lower the temperature of the wood load very significantly.

L'énergie qui est produite par le générateur thermique 2 , pour être transférée au gaz CO2 de traitement (qui en transfère une partie au bois à traiter) est récupérée en grande partie par le générateur 2, puisque le gaz de traitement GT est recyclé en continu, donc l'énergie qu'il véhicule l'est aussi.The energy that is produced by the heat generator 2, to be transferred to the treatment CO 2 gas (which transfers a portion to the wood to be treated) is recovered largely by the generator 2, since the GT treatment gas is recycled continuously, so the energy it conveys is too.

Le gaz utilisé pour le refroidissement de la charge de bois B, avant de le sortir du module de four 10, est recyclé aussi dans le générateur 2. Il y a donc une grande quantité d'énergie disponible au cours et à la fin du cycle de traitement. Cette énergie peut être utilisée dans des procédés annexes, notamment pour sécher le bois, énergie qui peut être utilisée dans le procédé de stabilisation.The gas used for cooling the wood load B, before leaving the furnace module 10, is also recycled in the generator 2. There is therefore a large amount of energy available during and at the end of the cycle. treatment. This energy can be used in related processes, especially for drying wood, energy that can be used in the stabilization process.

L'exploitation du système peut être pérennisée et mieux rentabilisée en utilisant certains déchets comme co-combustibles avec de la [Bio-D]®, par exemple, des Pneumatiques Usagés Non Réutilisables (PUNR) ou des bois pollués, qui bénéficient d'une taxe d'élimination qui vient au bénéfice de l'exploitation.The operation of the system can be sustained and made more profitable by using certain wastes as co-fuels with [Bio-D] ®, for example, Used Non-Reusable Tires (RUNs) or polluted woods, which benefit from elimination tax that comes to the profit of the exploitation.

Cette exploitation du système permet de l'intégrer dans un ensemble synergique où :

  • l'énergie initiale et la base thermique est de la biomasse végétale, donc une source d'énergie renouvelable,
  • une énergie supplémentaire est fournie par un ou des déchets combustibles dont la fabrication a nécessité une fourniture énergétique. Le déchet "co-combustible" contient donc un résiduel de l'énergie de fabrication qui est intégralement restituée dans le procédé. Il s'agit donc là aussi d'une source d'énergie renouvelable,
  • le cumul d'énergie produite peut être utilisé dans des systèmes annexes ayant leur propre rentabilité et qui achèteront cette énergie propre. Par exemple la déshydratation des boues de station d'épuration urbaines et industrielles pour rendre les matières sèches recyclables comme fertilisant organique si elles sont compatibles, ou comme co-combustible qui réalisera l'intégralité de son potentiel d'énergie dans le système. Dans cet exemple, l'élimination du déchet est assujettie d'une taxe qui participe à l'intérêt économique du système.
This exploitation of the system makes it possible to integrate it into a synergistic whole where:
  • the initial energy and the thermal base is plant biomass, therefore a source of renewable energy,
  • additional energy is provided by one or more combustible waste whose manufacture has required an energy supply. The "co-combustible" waste therefore contains a residual of the manufacturing energy which is completely restored in the process. This is also a source of renewable energy,
  • the cumulative energy produced can be used in additional systems having their own profitability and who will buy this clean energy. For example dewatering urban and industrial sewage sludge to make dry materials recyclable as an organic fertilizer if they are compatible, or as a co-fuel that will realize its full energy potential in the system. In this example, the elimination of waste is subject to a tax that contributes to the economic benefit of the system.

Claims (25)

  1. A thermal method for stabilizing a load of wood (B), in particular timber, comprising:
    - a phase of treatment of the load of wood (B) in a treatment kiln by a gaseous treatment flow (GT) comprising over 95% of CO2 obtained by the combustion of vegetable biomasses under O2,
    - generation of a gaseous treatment flow (GT) at high temperature from heat generation means (2) independent of said treatment kiln, and
    - recovery of the loaded gaseous flow (GC) after treatment.
  2. The method according to claim 1, characterized in that it moreover comprises a recycling of the loaded gaseous flow (GC) in order to recover gas capable of being used in the gaseous treatment flow (GT).
  3. The method according to claim 1 or 2, characterized in that it moreover comprises combustion under O2 of combustible volatile bodies, gasified during the treatment phase of the load of wood and recovered with the loaded gaseous flow (GC).
  4. The method according to claim 3, characterized in that the combustion of the recovered combustible volatile bodies contributes towards the generation of the gaseous treatment flow (GT).
  5. The method according to one of preceding claims, characterized in that the gas used for the gaseous treatment flow (GT) is obtained from a combustion gas of the biomass under combustive oxygen which is output from the heat generation means (2).
  6. The method according to claim 5, characterized in that it comprises a preliminary phase of condensation of elements contained in the combustion gas, in order to recover a residual gas containing carbon dioxide.
  7. The method according to claim 6, characterized in that the residual gas passes through a heat exchanger (21) in order to reach the treatment temperature there, and is then reintroduced into the treatment cycle, in order to be used in a wood-drying phase.
  8. The method according to claim 6 or 7, characterized in that it moreover comprises a compression (24) of the residual gas, in order to condense and recover the carbon dioxide in liquid phase.
  9. The method according to claim 8, characterized in that it moreover comprises a preliminary phase of concentration of the carbon dioxide from the residual gas.
  10. The method according to one of preceding claims, characterized in that it moreover comprises, at the end of the treatment phase, a phase of lowering the temperature of the load of wood during which the treatment gas is introduced into the treatment volume at a progressively lower temperature.
  11. A thermal system (S) for stabilizing a load of wood (B), in particular of timber, implementing the method according to any one of the preceding claims, comprising:
    - treatment kiln means (1, 10) provided for receiving the load of wood (B) and for subjecting said load (B) to the gaseous treatment flow (GT),
    - means (2) for heat generating a gaseous treatment flow (GT) at high temperature comprising over 95% of CO2 obtained by combustion of vegetable biomasses under O2, the said heat generation means being independent to the treatment kiln means, and
    - gas exchange means (4, 5), provided for producing a connection between the heat generation means (2) and the treatment kiln means (1, 10).
  12. The system (S) according to claim 11, characterized in that the heat generation means (2) comprise means for combustion under O2 (23) of the combustible volatile bodies, gasified during the treatment phase of the load of wood and recovered with the loaded gaseous flow (GC).
  13. The system according to one of claims 11 or 12, characterized in that it moreover comprises means for recovering the carbon dioxide from residual gases leaving the heat generation means (2).
  14. The system (S) according to one of claims 11 to 13, characterized in that the heat generation means (2) comprise at least one grate furnace (20) and a heat exchanger (21) in which the energy produced by the combustion of biomass and COV under O2 is recovered.
  15. The system (S) according to one of claims 13 or 14, characterized in that it moreover comprises means (24) for compressing the residual gas, so as to condense and recover the carbon dioxide in liquid phase.
  16. The system (S) according to one of claims 11 to 15, characterized in that the wood-treatment means comprise at least one kiln module (10) comprising two removable end partitions (11, 12) in order to allow a transfer of loads of wood (B) to be treated, through one and/or the other of said two ends.
  17. The system according to claim 16, comprising an assembly of a plurality of kiln modules (10.1, 10.2, 10.3, 10.4), characterized in that intermediate mobile end partitions are arranged so that they can be removed, the removable end partitions (11.1, 10.4) of the assembly of modules being kept closed during the treatment.
  18. The system according to claim 17, characterized in that the distinct treatment zones comprise a drying zone (ZS) and a high-temperature stabilization zone (ZT).
  19. The system according to one of claims 16 to 18, characterized in that the kiln module (10) comprises a ceiling (13) with double walls between which a treatment gas distribution system (SD) is arranged, this distribution system (SD) comprising means for receiving hot treatment gas (GT) originating from the heat generation means (2) and means for extracting this gas after passing inside the kiln module (10) and treatment of the load of wood (B).
  20. The system according to one of claims 16 to 19, characterized in that it moreover comprises means (50) for delivering the loaded gas (GC) extracted from the kiln module (10) after treatment to reactor means (23) within heat generation means (2), in order to be purified there.
  21. The system according to one of claims 16 to 20, characterized in that it moreover comprises exhaust fan means for maintaining the kiln module treatment volume under low pressure.
  22. The system according to one of claims 16 to 21 and claim 19, characterized in that the gas distribution system (SD) comprises means (6) for alternating the extraction of the loaded gases (GC) through one and the other of the side walls (16.1, 16.2) of the kiln module (10).
  23. The system according to one of claims 16 to 22, characterized in that the fixed vertical walls (16.1, 16.2) of the kiln module (10) are provided, on their internal walls, with vertical inlets (52.1, 52.2) provided in order to carry out transfers of the treatment gas (GT) and the loaded gas (GC) to be extracted, in the treatment volume (VT).
  24. The system according to claim 23, characterized in that the inlets are provided with mobile deflectors for distributing the treatment flow inside the treatment volume, these deflectors making it possible to block off said inlets in order to reduce the treatment volume when the load of wood does not occupy the whole length of the kiln module.
  25. The system according to one of claims 11 to 24, characterized in that it moreover comprises means for injecting steam into the treatment gas flow inside the treatment volume.
EP05770880.2A 2004-05-13 2005-05-13 Bio-thermal method and system for stabilising timber Not-in-force EP1751482B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405227A FR2870154B1 (en) 2004-05-13 2004-05-13 BIO-THERMAL METHOD AND SYSTEM FOR STABILIZING LUMBER
PCT/FR2005/001196 WO2005116551A1 (en) 2004-05-13 2005-05-13 Bio-thermal method and system for stabilising timber

Publications (2)

Publication Number Publication Date
EP1751482A1 EP1751482A1 (en) 2007-02-14
EP1751482B1 true EP1751482B1 (en) 2014-04-30

Family

ID=34945898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05770880.2A Not-in-force EP1751482B1 (en) 2004-05-13 2005-05-13 Bio-thermal method and system for stabilising timber

Country Status (5)

Country Link
US (1) US8857074B2 (en)
EP (1) EP1751482B1 (en)
CA (1) CA2566695A1 (en)
FR (1) FR2870154B1 (en)
WO (1) WO2005116551A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896033B1 (en) * 2006-01-10 2013-07-05 Bio 3D Applic SYSTEM AND METHOD FOR DRYING WOOD.
FR2907884B1 (en) * 2006-10-25 2012-12-21 Giat Ind Sa METHOD FOR THERMALLY TREATING A MATERIAL, IN PARTICULAR WOOD, AND THERMAL TREATMENT UNIT USING SUCH A METHOD
JP4994211B2 (en) * 2007-12-20 2012-08-08 大日本スクリーン製造株式会社 Substrate processing equipment
FR2970772B1 (en) * 2011-01-25 2017-06-23 Jcl Tech PROCESS FOR THE THERMAL TREATMENT OF WOOD WITH GASES DEHYDRATES AND DEOUSSIERS
FR2987435B1 (en) * 2012-02-24 2018-07-13 Cjs Technologie WOOD THERMAL TREATMENT SYSTEM WITH IMPROVED PERFORMANCE
FR3035190B1 (en) * 2015-04-20 2017-04-28 Degremont METHOD AND INSTALLATION FOR DRYING BY HYDROTHERMAL CARBONIZATION AND FILTRATION
US10317138B2 (en) 2015-06-11 2019-06-11 Westmill Industries Ltd. Baffle systems and methods of replacing baffle seal strips
CN106766844B (en) * 2015-11-23 2018-12-25 云南师范大学 Hot air circulation drying system with phase-change accumulation energy heat-exchanging tube bundle
US9726429B1 (en) * 2016-01-31 2017-08-08 EPCON Industrial Systems, LP Wood processing oven and method
FR3090835B1 (en) * 2018-12-19 2023-01-13 Ways [Process for thermal drying of wood under CO2 atmosphere, drying installation for the implementation of said process and product obtained]
US11619444B2 (en) * 2021-01-06 2023-04-04 Boldesign Inc. Lumber drying kiln including bidirectional push-pull air circulation
CN112973370A (en) * 2021-03-01 2021-06-18 北京林业大学 VOC (volatile organic compound) treatment and water recovery device and method for wood heat treatment
NO20220732A1 (en) * 2022-06-27 2023-12-28 Saga Wood Holding As Apparatus and method for modification and preservation treatment of wood

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1366225A (en) * 1917-10-06 1921-01-18 Burgess Lab Inc C F Method and apparatus for transforming wood
US1678559A (en) * 1927-05-28 1928-07-24 Joseph P Devine Drying materials
US2490855A (en) * 1944-09-11 1949-12-13 Hays Corp Stoker and air control, including differential pressure measuring means
US2725224A (en) * 1953-05-11 1955-11-29 Albert R Pierce Dry kiln apparatus
US3131034A (en) * 1961-03-02 1964-04-28 Marsh Julius Everett Process for drying lumber
BE672655A (en) * 1964-03-31 1900-01-01
US3456604A (en) * 1966-03-11 1969-07-22 American Design & Dev Corp Incinerator
DK122141B (en) * 1968-11-04 1972-01-24 Bruun & Soerensen Fireplace, in particular for incineration of waste.
US3627290A (en) * 1970-07-23 1971-12-14 George Price Grieve Industrial heating apparatus with airpollution control
US3675600A (en) * 1971-01-21 1972-07-11 Michel Lumber Co Recirculating dryer system
US4017254A (en) * 1975-12-15 1977-04-12 S. J. Agnew Recirculating furnace-dryer combination
US4098567A (en) * 1976-10-01 1978-07-04 Gladd Industries, Inc. Recirculating processing oven heater
US4203229A (en) * 1977-10-03 1980-05-20 Champion International Corporation Dryer system and method of controlling the same
US4233914A (en) * 1978-10-02 1980-11-18 Wellons, Inc. Pressurized waste wood furnace system
US4240787A (en) * 1979-06-19 1980-12-23 Jamaluddin Aziz A Drying oven with heat reclamation and air pollution control system
US4341167A (en) * 1980-10-29 1982-07-27 St John Eric P Energy conserving heating and cooling system for printing plant
US4431405A (en) * 1982-02-23 1984-02-14 Down River International, Inc. Gas pollution control apparatus and method and wood drying system employing same
US4520791A (en) * 1982-03-22 1985-06-04 Chamberlain Joseph G Jacketed wood stove
US4460331A (en) * 1983-05-12 1984-07-17 Haden Schweitzer Corporation Fume incineration for paint drying oven
US4450776A (en) * 1983-06-10 1984-05-29 Stevenson Robert L Industrial furnace
JPS62130801A (en) * 1985-12-01 1987-06-13 Kitsuchin House Kk Manufacture of particle board
US4761204A (en) * 1987-01-30 1988-08-02 Rockwell International Corporation Chemical recovery process using break up steam control to prevent smelt explosions
US4771708A (en) * 1988-01-11 1988-09-20 Douglass Jr Edward T Incinerator and heat recovery system for drying wood poles
JPH01215501A (en) * 1988-02-24 1989-08-29 Tokai Akua Nootsu:Kk Method of improving lumber with smoking and heating
US5351633A (en) * 1988-03-18 1994-10-04 Dovetech, Inc. Balanced pressure solid fuel heating unit
ZA901076B (en) * 1989-02-14 1990-11-28 Csr Ltd Improved production process and apparatus
EP0562026A4 (en) * 1990-12-17 1993-12-15 Dovetech, Inc. Balanced pressure solid fuel heating unit
ATE129803T1 (en) * 1991-03-23 1995-11-15 Brunner Reinhard DEVICE FOR DRYING WOOD.
US5133266A (en) * 1991-10-17 1992-07-28 Mountain Home Development Company Pellet burning heating device
WO1994027102A1 (en) * 1993-05-12 1994-11-24 Valtion Teknillinen Tutkimuskeskus Method for improving biodegradation resistance and dimensional stability of cellulosic products
FR2720969A1 (en) * 1994-06-14 1995-12-15 Herve Montornes Treatment of green wood
FI943225A0 (en) * 1994-07-06 1994-07-06 High Speed Tech Ltd Oy Apparatur Foer undertrycktorkning av materialet skaerskild virke ellyknand
AU702960B2 (en) * 1994-10-12 1999-03-11 Minoru Ando Pit membrane-broken wood
DE19522028C2 (en) * 1995-06-17 1999-12-16 Reinhard Brunner Method and device for drying sawn timber under negative pressure
JP2757170B2 (en) * 1996-04-09 1998-05-25 有限会社山本家具製作所 Wood treatment method and equipment
WO1998014404A1 (en) * 1996-06-05 1998-04-09 Vitaly Davidovich Ivanov Method for cleaning surfaces contaminated by crude oil or petroleum product spills, sorbant for cleaning surfaces and method for producing the same
FR2757097B1 (en) * 1996-12-13 1999-01-29 Bci DEVICE AND METHOD FOR HIGH-TEMPERATURE TREATMENT OF LIGNOCELLULOSIC MATERIAL
JPH10238734A (en) * 1997-02-20 1998-09-08 Shinnihonkai Jukogyo Kk Method for dividing discharged slag in rotary kiln type incinerator
JP3046776B2 (en) * 1997-02-27 2000-05-29 日本碍子株式会社 Driftwood and garbage disposal method
US5836086A (en) * 1997-05-21 1998-11-17 Elder; Danny J. Process for accelerated drying of green wood
US5893358A (en) * 1997-11-04 1999-04-13 Pyro Industries, Inc. Pellet fuel burner for heating and drying systems
JPH11209763A (en) * 1998-01-20 1999-08-03 Yamamiya:Kk Apparatus for recovering valuable substance from exhaust smoke of charcoal kiln
JP2000102907A (en) * 1998-09-30 2000-04-11 Takahashi Kikan:Kk Manufacture of inorganic charging timber and mineral charging timber
RU2134838C1 (en) * 1999-01-14 1999-08-20 Скроцкий Виктор Георгиевич Furnace
US6135035A (en) * 1999-03-02 2000-10-24 Masek; Tommy D. Animal waste disposal system
JP2000320815A (en) * 1999-05-10 2000-11-24 忠幸 ▲吉▼田 Method for treating refuse
DE19940371A1 (en) * 1999-08-25 2001-03-01 Messer Griesheim Gmbh Method and device for extracting carbon dioxide from exhaust gases
RU2153640C1 (en) * 1999-10-27 2000-07-27 Скроцкая Ольга Пантелеймоновна Drying complex and method of wood drying
BR9904982A (en) * 1999-10-29 2001-06-12 Aracruz Celulose Process to prevent or control the appearance of stains on wood
JP2002241762A (en) * 2001-02-19 2002-08-28 Taiheiyo Cement Corp Method for carbonizing lumber
US6425335B1 (en) * 2001-06-20 2002-07-30 Ying-Tsung Chen Miniature garbage incinerator
JP2004115688A (en) * 2002-09-27 2004-04-15 Jfe Plant & Service Corp Method and apparatus for gasifying waste
US7100303B2 (en) * 2002-11-20 2006-09-05 Pci Industries Inc. Apparatus and method for the heat treatment of lignocellulosic material
JP4136772B2 (en) * 2003-04-24 2008-08-20 太平洋セメント株式会社 Fuel containing wood and coal and method for producing the same
US7246452B1 (en) * 2003-06-20 2007-07-24 Jacques Roy Method for treating preservative-treated wood
JP4247892B2 (en) * 2003-10-08 2009-04-02 太平洋セメント株式会社 Organic sludge treatment method
FR2861009A1 (en) * 2003-10-15 2005-04-22 Alain Dulac Lingo-cellulosic material e.g. wood, drying and treating method, involves drying material at vaporization temperature of water, and gradually heating material to stabilized temperature by controlling pressure inside enclosure
US7754284B2 (en) * 2004-07-15 2010-07-13 Jacques Roy Method for treating lignocellulosic material
JP4670093B2 (en) * 2004-09-13 2011-04-13 東助 千葉 Batch type intermittent charcoal baking equipment and batch type intermittent charcoal burning method
US7370434B2 (en) * 2005-02-24 2008-05-13 Steely Lumber Company, Inc. Dry kiln heat retention system
US7963048B2 (en) * 2005-05-23 2011-06-21 Pollard Levi A Dual path kiln
US7621227B2 (en) * 2005-12-16 2009-11-24 Sterr Kevin K Granular biomass burning heating system
JP2007216163A (en) * 2006-02-17 2007-08-30 Nobuhiro Suzuki Resource utilization system
JP4961177B2 (en) * 2006-08-02 2012-06-27 一夫 吉田 Electric heat heating carbonization furnace and waste treatment equipment using the carbonization furnace
JP2008272545A (en) * 2006-08-09 2008-11-13 Taiheiyo Cement Corp Detoxification treatment method of asbestos-containing scrap wood
JP5067408B2 (en) * 2009-09-24 2012-11-07 住友大阪セメント株式会社 Biomass processing method

Also Published As

Publication number Publication date
EP1751482A1 (en) 2007-02-14
US20080277027A1 (en) 2008-11-13
US8857074B2 (en) 2014-10-14
FR2870154B1 (en) 2012-12-14
CA2566695A1 (en) 2005-12-08
WO2005116551A1 (en) 2005-12-08
FR2870154A1 (en) 2005-11-18

Similar Documents

Publication Publication Date Title
EP1751482B1 (en) Bio-thermal method and system for stabilising timber
US20090193679A1 (en) Method and system for roasting a biomass feedstock
US8887504B2 (en) Non-to-minimally fractionalized biomass-fueled renewable energy
RU2427773C2 (en) System and method to dry wood
CA1224045A (en) Method and device for the gasification of lignocellulosic materials
MX2011012286A (en) Method and plant for the thermal treatment of organic matter in order to produce charcoal or char.
EP1725812B1 (en) Oxygen-producing oxycombustion boiler
US20130067806A1 (en) Method And Apparatus For Processing Biomass Material
US20140082998A1 (en) Method And Apparatus For Pelletizing Blends Of Biomass Materials For Use As Fuel
CA2195742C (en) Method for recycling conditioned wood and installation for implementing the method
EP2189512A1 (en) Method of roasting biomass and control method thereof
CA2525431A1 (en) Thermal waste recycling system and method and application thereof in the treatment of high-water-content waste
US20130263501A1 (en) System and method for biomass fuel production and integrated biomass and biofuel production
CA2667333A1 (en) Process for the heat treatment of a material and heat treatment unit employing such a process
WO2007000548A2 (en) Method for distilling solid organic products
EP3963028A1 (en) Method for treating solid biomass by steam cracking integrating the energy of the co-products
EP0888416A1 (en) Method and plant for treating solid waste products by thermolysis
EP2912150B1 (en) Method and apparatus for pelletizing blends of biomass materials for use as fuel
RU2808872C1 (en) Method for producing charcoal and complex for producing charcoal
Mukhametzyanov et al. Alternative energy in vegetable and crushed wood raw materials drying processes
Solovyov et al. Energy generation from wood waste
US20130263499A1 (en) System and method for densification of renewable coal replacement fuel
FR3007829A1 (en) HEATING METHOD WITH GENERATION AND COMBUSTION OF SYNGAZ AND INSTALLATION FOR ITS IMPLEMENTATION
GB2322439A (en) Plant and process for carbonising vegetable matter
WO2015091492A1 (en) Method for roasting a carbonaceous feedstock comprising an optimised drying step

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071024

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 665421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005043452

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 665421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140430

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005043452

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005043452

Country of ref document: DE

Effective date: 20141202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150302

26N No opposition filed

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050513

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140513

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531