EP1749969A1 - Die Kontrolle der Schauffelblätter einer Turbine - Google Patents

Die Kontrolle der Schauffelblätter einer Turbine Download PDF

Info

Publication number
EP1749969A1
EP1749969A1 EP06015205A EP06015205A EP1749969A1 EP 1749969 A1 EP1749969 A1 EP 1749969A1 EP 06015205 A EP06015205 A EP 06015205A EP 06015205 A EP06015205 A EP 06015205A EP 1749969 A1 EP1749969 A1 EP 1749969A1
Authority
EP
European Patent Office
Prior art keywords
blade
angle
percentage
value
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06015205A
Other languages
English (en)
French (fr)
Other versions
EP1749969B1 (de
Inventor
Alain Henri Daniel Bouron
Jean Francois Escuret
Didier Merville
Laurent Christophe Francis Villaines
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1749969A1 publication Critical patent/EP1749969A1/de
Application granted granted Critical
Publication of EP1749969B1 publication Critical patent/EP1749969B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/305Tolerances

Definitions

  • the present invention relates to the control of turbomachine blades.
  • a turbomachine blade After its manufacture and before mounting on a rotor disc or a housing, a turbomachine blade is controlled, that is to say inspected to determine if this blade manufactured industrially corresponds to a reference blade, that is to say say at dawn theoretically desired.
  • This essential control makes it possible to check the main deviations from the definition and to sanction any possible dispersion of performance.
  • An essential step common to different control techniques is to perform a three-dimensional map in Cartesian coordinates of a plurality of points of an inspected blade.
  • the measurement is carried out automatically by means of a device, known to those skilled in the art, comprising a support on which a blade to be measured is immobilized and at least one probe for measuring the geometric coordinates at different points in the field. 'dawn.
  • the support is stationary and the probe is movable mechanically.
  • the support is movable mechanically and the probe is stationary.
  • the support and the probe are both mechanically mobile.
  • the document US5047966 describes various common techniques for three-dimensional geometric measurement of a blade.
  • the document US4653011 is a contact technique in which the end of a probe comes into contact with the object to be measured.
  • Other non-contact techniques use X-ray sources ( US6041132 ) or laser ( US4724525 ).
  • This reference model defines an ideal dawn by different geometric points stored on a computer recording medium.
  • Such a model is illustrated in the document EP 1498577 describing a table having the Cartesian coordinates of a reference blade.
  • a tolerance of plus or minus 0.150 inches in a direction normal to the surface of any point of the controlled blade is set. A controlled blade deviating from the reference blade can thus be discarded.
  • Tolerances can also take into account translational or angular misalignments, as described in the document US6748112 , without distinction of more relevant points compared to others.
  • the prior art therefore uses exclusively geometric criteria to validate or discard a controlled dawn.
  • the present invention aims to solve the aforementioned problems.
  • the blade control method according to the invention proposes to control the blades according to relevant aerodynamic parameters in essential points for the aerodynamic qualities of the dawn.
  • Another object of the invention is to synthesize the mass of information, consisting essentially of the Cartesian coordinates of all the points measured, so that it is processed more easily and more quickly.
  • the term "nominal parameter" is intended to mean the parameter as intended.
  • the aerodynamic parameters can notably be the angle of wedging of the blade, the angle at the entrance or the exit of the vane on the skeleton, the extrados or the intrados, the entry and the exit of dawn corresponding to areas respectively close to the leading edge BA and the trailing edge BF.
  • control is preferably carried out on a limited number of cross-sections with respect to the so-called radial axis, these sections being situated near the base, in the middle and near the apex of the dawn .
  • a computer program ie a sequence of instructions and data recorded on a medium and capable of being processed by a computer.
  • the present invention thus also relates to a computer program, directly loadable in the memory of a computer, for implementing the method according to the invention.
  • FIG. 1 schematically represents a section of blade 10.
  • a tolerance 4 determined as a function of the geometric difference between the reference blade and the measured blade makes it possible to define the extreme differences 2 and 3 that can take this controlled dawn.
  • These gaps 2 and 3 define a space in which the controlled dawn 1 must be located so as not to be discarded.
  • FIG. 2 shows a controlled blade section 10 according to the invention, reconstituted from its Cartesian coordinates measured for a given height of the blade. Given the dawn on the support, it is possible to define reference axes on this dawn.
  • the motor axis m represents the axis of rotation of the engine if the blade was installed on the rotor disk.
  • the axis r represents a radial axis with respect to the axis of rotation of the motor.
  • the axis t represents the tangential axis, normal to the two other axes m and r.
  • the various points of a section of the blade 10 make it possible by calculation to determine the rope 14 and the skeleton 11 of the blade.
  • the rope 14 On an aerodynamic part, such as a blade or a wing, the rope 14 is the segment which has the leading edge end BA and the trailing edge BF, the leading edge BA being the most upstream point on the dawn profile compared to a flow of air on this profile and the trailing edge BF being the most downstream point on the blade profile with respect to an air flow on this profile.
  • the skeleton 11 of the dawn also called skeleton or midline, is the set of equidistant points of the extrados 12 and the underside 13. All parameters are calculated for a given blade section 10.
  • a first controlled parameter may be the wedging angle ⁇ , that is to say the angle defined by the rope 14 of the blade and the motor axis m, as illustrated. in Figure 2.
  • curvilinear abscissa is reduced, which means that the length of the curve delimited by its two ends has no dimension and a distance, calculated on this curve starting from one of its ends, varies according to a scale of 0 For reasons of simplicity, distances are expressed as a percentage of the total length of the curve from one of its ends.
  • This percentage P must be between 1% and 20%, the optimal percentage P being 7.2%, as in the example of Figure 2. It is not necessary to control the parameters over the entire length. Indeed, it has been found that a correct parameter for this percentage P often implies that this parameter is correct over a large part of the length. A saving of additional time is thus obtained by judiciously choosing the value of this percentage P.
  • angles ⁇ as , ⁇ ae , ⁇ ai , ⁇ fs , ⁇ fe and ⁇ fi also called angles at the entry or exit of the vane on the skeleton 11, the extrados 12 or the intrados 13, allow to account for how air flows in and out of dawn.
  • An eighth controlled parameter may be a thickness E a of the blade section 10 at a distance corresponding to a percentage P of the total length of the skeleton 11 starting from the leading edge BA as a curvilinear abscissa, as illustrated in FIG.
  • the thickness E a is calculated according to a segment perpendicular to the skeleton 11 in the plane of the blade section 10.
  • a ninth controlled parameter may be a thickness E f of the blade section 10 at a distance corresponding to a percentage P of the total length of the skeleton 11 starting from the trailing edge BF as a curvilinear abscissa, as illustrated in FIG. 2.
  • the thickness E f is calculated according to a segment perpendicular to the skeleton 11 in the plane of the blade section 10.
  • a tenth controlled parameter may be a maximum thickness E max of the blade section 10, as illustrated in FIG. 2.
  • the thickness E max is calculated according to a segment perpendicular to the skeleton 11 in the plane of the blade section 10 , at the point of the skeleton having the greatest thickness of the blade section 10.
  • FIG. 5 illustrates the intervals defined by the values P1 and P2 as well as the points P3.
  • the method of calculating the angles involved is identical to the calculation mode of the angles ⁇ as , ⁇ ai , ⁇ ae , ⁇ fs , ⁇ fe and ⁇ fi .
  • a seventeenth controlled parameter may be a value MOYß as representing the average value of the angle ⁇ as on a portion between a percentage P1 and a percentage P2 of the total length of the skeleton 11 starting from the leading edge BA in curvilinear abscissa.
  • An eighteenth controlled parameter may be a value MOY ⁇ ae representing the mean value of the angle ⁇ ae over a portion between a percentage P1 and a percentage P2 of the total length of the extrados 12 starting from the leading edge.
  • MOY ⁇ ae representing the mean value of the angle ⁇ ae over a portion between a percentage P1 and a percentage P2 of the total length of the extrados 12 starting from the leading edge.
  • a nineteenth parameter controlled can be a value MOYß ai representing the average value of the angle ⁇ ai on a portion between a percentage P1 and a percentage P2 of the total length of the intrados 13 starting from the leading edge BA in curvilinear abscissa.
  • a twentieth controlled parameter may be the value MOYß fs representing the mean value of the angle ⁇ fs over a portion between a percentage P1 and a percentage P2 of the total length of the skeleton 11 starting from the trailing edge BF as a curvilinear abscissa.
  • a twenty-first controlled parameter may be a value MOY ⁇ fe representing the average value of the angle ⁇ fe over a portion between a percentage P1 and a percentage P2 of the total length of the extrados 12 starting from the edge of BF leak in curvilinear abscissa.
  • a twenty-second controlled parameter may be a value MOY ⁇ fi representing the mean value of the angle ⁇ fi , over a portion between a percentage P1 and a percentage P2 of the total length of the intrados 13 starting from the trailing edge BF in curvilinear abscissa.
  • the values P1 and P2 belong to an interval [1%; 20%]. It is preferable that this interval relates to a representative portion of the skeleton, the extrados or the underside substantially upstream of the point AS, AE or AI with respect to the direction of flow of the air. Likewise, it is also preferable that this range relates to a representative portion of the skeleton, extrados or intrados substantially downstream of the FS, FE or FI point relative to the direction of airflow.
  • aerodynamic parameters are chosen simultaneously for the control of the blade, these parameters being: the angle of adjustment ⁇ , the angle ⁇ as , the angle ⁇ ae , the angle ⁇ fs , the angle ⁇ fe , the thickness E a , the thickness E f , the thickness E max , VAR ⁇ as , VAR ⁇ ae and VARß fe of the blade section 10.
  • Each nominal aerodynamic parameter defines with its associated tolerance a range of validity in which the measured aerodynamic parameter must be located to validate the blade. When the measured aerodynamic parameter does not belong to this range of validity, the measured dawn is deviated.
  • a section near the base can be a section between 0% and 30% of the height of a blade.
  • a section near the middle may be a section between 30% and 70% of the height of a blade.
  • a section near the top may be a section between 70% and 100% of the height of a blade.
  • the three sections are respectively located at 10%, 50% and 90% of the height of the blade, as illustrated in FIG.
  • a blade whose sections 10 to 10%, 50% and 90% of its height meet the criteria of the invention, fairly consistently presents valid sections over its entire height. Conversely, a blade, one of the three sections 10 does not meet the criteria described above, fairly consistently presents a plurality of incorrect sections over its entire height. An additional time saving is thus obtained by judiciously choosing significant sections.
  • the method according to the invention allows a considerable saving of time in the control of the blades, in particular after their manufacture.
  • each step of the method in particular the calculations of the various parameters, can advantageously be implemented by a computer program organized in modules 24, 25, 26 and 27, each module performing a step of the control method.
  • the invention also relates to a turbomachine blade control system, comprising means for measuring the geometrical coordinates of a plurality of points of a blade to be controlled, and a means for processing a computer program. intended to implement the control method of turbomachine blades.
  • the processing means 23 of a computer program may be a computer comprising a memory in which is loaded the computer program for implementing the control method of the turbomachine blades according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP06015205A 2005-07-28 2006-07-21 Kontrolle der Schauffelblätter einer Turbine Active EP1749969B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0508046A FR2889308B1 (fr) 2005-07-28 2005-07-28 Controle des aubes de turbomachine

Publications (2)

Publication Number Publication Date
EP1749969A1 true EP1749969A1 (de) 2007-02-07
EP1749969B1 EP1749969B1 (de) 2008-09-10

Family

ID=36117661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06015205A Active EP1749969B1 (de) 2005-07-28 2006-07-21 Kontrolle der Schauffelblätter einer Turbine

Country Status (7)

Country Link
US (1) US7774157B2 (de)
EP (1) EP1749969B1 (de)
JP (1) JP4795885B2 (de)
CA (1) CA2553880C (de)
DE (1) DE602006002688D1 (de)
FR (1) FR2889308B1 (de)
RU (1) RU2360224C2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697462A (zh) * 2015-03-24 2015-06-10 武汉克诺德智能科技有限公司 一种基于中轴线的航空叶片型面特征参数提取方法
CN109470196A (zh) * 2018-11-27 2019-03-15 中国航发沈阳黎明航空发动机有限责任公司 一种基于模型的航空发动机叶片型面数据评价方法
WO2021028637A1 (fr) * 2019-08-13 2021-02-18 Safran Aero Composite Procede de calcul de l'epaisseur des bords de fuite et d'attaque sur un profil d'aube

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8631577B2 (en) 2011-07-22 2014-01-21 Pratt & Whitney Canada Corp. Method of fabricating integrally bladed rotor and stator vane assembly
US9017037B2 (en) * 2012-01-24 2015-04-28 United Technologies Corporation Rotor with flattened exit pressure profile
US20150037164A1 (en) * 2012-04-03 2015-02-05 Delta Corporation Airfoil for fan blade
JP5907791B2 (ja) * 2012-04-23 2016-04-26 三菱日立パワーシステムズ株式会社 翼形状の評価方法、この方法を実行するためのプログラム、この方法を実行する装置
EP2971535A4 (de) 2013-03-15 2017-02-15 United Technologies Corporation Turbogebläsemotor mit reduzierter anzahl von gebläseschaufeln und verbesserter akustik
FR3021993B1 (fr) * 2014-06-06 2016-06-10 Snecma Procede de dimensionnement d'une turbomachine
RU2592946C2 (ru) * 2014-07-25 2016-07-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Устройство для контроля в эксплуатации деградации материала и защитных покрытий турбинных лопаток газотурбинных двигателей
FR3033885B1 (fr) * 2015-03-17 2019-06-07 Safran Aircraft Engines Procede de controle de la calibration geometrique d'un organe profile, notamment d'un organe de turbomachine
FR3051897B1 (fr) * 2016-05-30 2020-06-19 Safran Aircraft Engines Procede de controle de la deformation, par exemple la deformation due au flambage, d'un element profile de turbomachine
GB201609858D0 (en) 2016-06-06 2016-07-20 Rolls Royce Plc A method of manufacturing and inspecting gas washed components in a gas turbine engine
GB201609860D0 (en) * 2016-06-06 2016-07-20 Rolls Royce Plc A Method of manufacturing and inspecting gas washed components in a gas turbine engine
EA032992B1 (ru) * 2016-12-21 2019-08-30 Национальная Академия Авиации Способ контроля поверхности лопаток газотурбинного двигателя
CN109800442B (zh) * 2017-11-16 2023-05-16 中国航发商用航空发动机有限责任公司 航空发动机叶片模型重构方法
CN108127347B (zh) * 2017-12-27 2019-05-24 哈尔滨汽轮机厂有限责任公司 检测叶片用工艺弧段量具体的加工方法
KR102037076B1 (ko) * 2018-04-13 2019-10-29 두산중공업 주식회사 블레이드의 변형 여부를 판별하는 방법, 이를 위한 압축기 및 상기 압축기를 포함하는 가스터빈
GB201813937D0 (en) * 2018-08-28 2018-10-10 Rolls Royce Plc Blade sentencing
CN110823323B (zh) * 2019-09-17 2021-01-19 中国航发沈阳发动机研究所 一种涡轮转子叶片水流量测量值的修正方法
CN111382482B (zh) * 2020-03-29 2022-02-15 华中科技大学 基于割线旋转迭代的航空叶片叶型弦长检测方法和***
CN111914359B (zh) * 2020-07-09 2022-09-02 吉林重通成飞新材料股份公司 一种风电叶片后缘间隙模拟方法、***、设备及存储介质
CN114543731A (zh) * 2020-11-25 2022-05-27 中国航发商用航空发动机有限责任公司 叶片检测方法和装置
CN113268828B (zh) * 2021-05-12 2022-12-09 西北工业大学 基于均匀设计的涡轮叶片非对称前缘结构的优化设计方法
CN114234773B (zh) * 2021-12-10 2023-09-05 铜陵有色金属集团股份有限公司金威铜业分公司 一种铜及铜合金板带材侧边弯曲度检测装置
CN114320774A (zh) * 2021-12-24 2022-04-12 北京金风慧能技术有限公司 风力发电机组的叶片检测方法、装置、***、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795312A (en) * 1982-01-19 1989-01-03 Purcaru Bebe Titu Turbo-machine blade
US5047966A (en) * 1989-05-22 1991-09-10 Airfoil Textron Inc. Airfoil measurement method
US5277549A (en) * 1992-03-16 1994-01-11 Westinghouse Electric Corp. Controlled reaction L-2R steam turbine blade
EP0937862A2 (de) * 1998-02-20 1999-08-25 BMW Rolls-Royce GmbH Axialturbinenschaufelform
US6041132A (en) * 1997-07-29 2000-03-21 General Electric Company Computed tomography inspection of composite ply structure
EP1498577A2 (de) * 2003-07-18 2005-01-19 General Electric Company Schaufelprofil einer Turbinenschaufel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3570304A (en) * 1969-07-28 1971-03-16 Avco Corp Probe holder assembly for ultrasonic testing of turbomachine blades
FR2492527A1 (fr) * 1980-10-16 1982-04-23 Snecma Dispositif pour le controle in situ d'aubes de turbomachine
JPS61105411A (ja) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd 多次元測定機の測定方法
US4724525A (en) * 1984-12-12 1988-02-09 Moore Special Tool Co., Inc. Real-time data collection apparatus for use in multi-axis measuring machine
US4803639A (en) * 1986-02-25 1989-02-07 General Electric Company X-ray inspection system
US5088892A (en) * 1990-02-07 1992-02-18 United Technologies Corporation Bowed airfoil for the compression section of a rotary machine
US6856941B2 (en) * 1998-07-20 2005-02-15 Minebea Co., Ltd. Impeller blade for axial flow fan having counter-rotating impellers
US6748112B1 (en) * 1998-07-28 2004-06-08 General Electric Company Method and apparatus for finding shape deformations in objects having smooth surfaces
US6943570B2 (en) * 2003-09-26 2005-09-13 Honeywell International, Inc. Device for detecting a crack on a turbine blade of an aircraft engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795312A (en) * 1982-01-19 1989-01-03 Purcaru Bebe Titu Turbo-machine blade
US5047966A (en) * 1989-05-22 1991-09-10 Airfoil Textron Inc. Airfoil measurement method
US5277549A (en) * 1992-03-16 1994-01-11 Westinghouse Electric Corp. Controlled reaction L-2R steam turbine blade
US6041132A (en) * 1997-07-29 2000-03-21 General Electric Company Computed tomography inspection of composite ply structure
EP0937862A2 (de) * 1998-02-20 1999-08-25 BMW Rolls-Royce GmbH Axialturbinenschaufelform
EP1498577A2 (de) * 2003-07-18 2005-01-19 General Electric Company Schaufelprofil einer Turbinenschaufel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILLI BOHL: "Strömungsmachinen 2 (3. Auflage)", 1988, VOGEL, WÜRZBURG, XP009064990 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697462A (zh) * 2015-03-24 2015-06-10 武汉克诺德智能科技有限公司 一种基于中轴线的航空叶片型面特征参数提取方法
CN104697462B (zh) * 2015-03-24 2017-07-28 武汉克诺德智能科技有限公司 一种基于中轴线的航空叶片型面特征参数提取方法
CN109470196A (zh) * 2018-11-27 2019-03-15 中国航发沈阳黎明航空发动机有限责任公司 一种基于模型的航空发动机叶片型面数据评价方法
WO2021028637A1 (fr) * 2019-08-13 2021-02-18 Safran Aero Composite Procede de calcul de l'epaisseur des bords de fuite et d'attaque sur un profil d'aube
US12005666B2 (en) 2019-08-13 2024-06-11 Safran Aero Composite Method for calculating the thickness of the trailing and leading edges on a blade profile

Also Published As

Publication number Publication date
RU2360224C2 (ru) 2009-06-27
JP4795885B2 (ja) 2011-10-19
DE602006002688D1 (de) 2008-10-23
CA2553880A1 (fr) 2007-01-28
RU2006127373A (ru) 2008-02-10
US7774157B2 (en) 2010-08-10
FR2889308A1 (fr) 2007-02-02
JP2007032570A (ja) 2007-02-08
CA2553880C (fr) 2013-10-22
US20070025855A1 (en) 2007-02-01
EP1749969B1 (de) 2008-09-10
FR2889308B1 (fr) 2007-10-05

Similar Documents

Publication Publication Date Title
EP1749969B1 (de) Kontrolle der Schauffelblätter einer Turbine
EP1693572B1 (de) Luftentnahme bei den rotierenden Schaufelspitzen eines Hochdruckverdichters eines Turbinentriebwerks
EP2075721B1 (de) Auswahlverfahren für die Anordnung von Sektoren eines Leitkranzes für Turbomaschinen
FR3043775A1 (fr) Dispositif de mesure de grandeurs aerodynamiques destine a etre place dans une veine d'ecoulement d'une turbomachine
FR2965201A1 (fr) Procede et dispositif d'usinage du bord d'attaque d'une aube de turbomachine
FR2882393A1 (fr) Procede et dispositif pour assembler des machines tournantes
EP4013951A1 (de) Verfahren zur berechnung der dicke der hinterkante und der vorderkante an einem schaufelprofil
EP3473813A1 (de) Turbotriebwerk, das eine gleichausrichtungsanordnung umfasst
EP2976507B1 (de) Schaufel und schaufeldihedralwinkel
EP3303850B1 (de) Verfahren zur herstellung eines turbomaschinengebläses mit reduziertem geräuschpegel bei mehreren drehfrequenzen der turbomaschine
EP3963282B1 (de) Verfahren zur dimensionskontrolle einer turbomaschinenkomponente
FR2905413A1 (fr) Zone de raccordement entre deux parties d'une piece
EP3578929B1 (de) Verfahren und system zur bestimmung der winkelposition der laufradschaufeln eines schaufelrads eines turbotriebwerks
FR3096031A1 (fr) Recalage de modèle par segment ou plan dans une turbomachine
WO2023021258A1 (fr) Pièce statorique d'une turbomachine comprenant une pale et une ailette définissant entre elles une surface décroissante d'amont en aval selon le sens d'écoulement des gaz
WO2023110701A1 (fr) Turbomachine non carénée comprenant des aubes de stator présentant des cordes différentes
CA2994912A1 (fr) Aube de rotor de turbomachine
FR3126487A1 (fr) Contrôle dimensionnel par projection
FR3040069A1 (fr) Procede de detection d'une augmentation du regime d'une turbine basse pression d'un reacteur d'un aeronef au cours d'une phase de croisiere et dispositif et procede de regulation du debit d'air de refroidissement d'une turbine basse pression associes
WO2024149951A1 (fr) Procédé de contrôle de conformité d'un revêtement abradable dans un carter extérieur de turboréacteur d'avion
FR3119195A1 (fr) Mesure des déformations dynamiques d’une aube mobile
FR3130320A1 (fr) Turbomachine non carénée comprenant des aubes de stator présentant des cordes différentes
FR3130321A1 (fr) Turbomachine non carénée comprenant des aubes de stator présentant des cordes différentes
BE1023295B1 (fr) Aube statorique
WO2020095002A1 (fr) Ensemble de redresseur de flux comprenant une platine de centrage et de fixation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006002688

Country of ref document: DE

Date of ref document: 20081023

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090611

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230621

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 19