EP1736589B1 - Washing machine with unbalance detector - Google Patents

Washing machine with unbalance detector Download PDF

Info

Publication number
EP1736589B1
EP1736589B1 EP06011034.3A EP06011034A EP1736589B1 EP 1736589 B1 EP1736589 B1 EP 1736589B1 EP 06011034 A EP06011034 A EP 06011034A EP 1736589 B1 EP1736589 B1 EP 1736589B1
Authority
EP
European Patent Office
Prior art keywords
drum
washing machine
values
machine according
imbalance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06011034.3A
Other languages
German (de)
French (fr)
Other versions
EP1736589A3 (en
EP1736589A2 (en
Inventor
Guido Schellenberg
Sven Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V-Zug AG
Original Assignee
V-Zug AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37198914&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1736589(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by V-Zug AG filed Critical V-Zug AG
Priority to PL06011034T priority Critical patent/PL1736589T3/en
Priority to SI200631866T priority patent/SI1736589T1/en
Publication of EP1736589A2 publication Critical patent/EP1736589A2/en
Publication of EP1736589A3 publication Critical patent/EP1736589A3/en
Application granted granted Critical
Publication of EP1736589B1 publication Critical patent/EP1736589B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/22Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
    • D06F37/225Damping vibrations by displacing, supplying or ejecting a material, e.g. liquid, into or from counterbalancing pockets
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/20Mops
    • A47L13/24Frames for mops; Mop heads
    • A47L13/254Plate frames
    • A47L13/258Plate frames of adjustable or foldable type
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/14Bags or the like; Rigid filtering receptacles; Attachment of, or closures for, bags or receptacles
    • A47L9/149Emptying means; Reusable bags
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/16Imbalance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/26Imbalance; Noise level

Definitions

  • the invention relates to a washing machine according to the preamble of claim 1.
  • Such a washing machine is eg in EP 1 391 549 described. It has a drum which rotates about an axis of rotation, a measuring device for detecting an imbalance in the drum in the spinning operation, with which as a function of the rotation angle of the drum measured values can be generated, and a controller for determining the position and / or size of the imbalance the measured values. Because of the unbalance parameters thus obtained, the unbalance can be compensated for and / or the spin program can be interrupted if there is too much imbalance, eg to redistribute the laundry to be spun in the drum.
  • the washing machine includes a memory for storing calibration values, wherein the controller of the washing machine is configured to determine the position and / or size of the imbalance by calculating the measured values with the calibration values.
  • idle measurements are stored in memory as a function of the angle of rotation, i. the measured values, as determined during a calibration measurement with an empty drum.
  • the controller calculates from the measured values, e.g. quotient corrected quantities from which e.g. By subtraction with the idle measurement values from this, the position and / or size of the imbalance can be determined.
  • the phase shift between the measured values and the position of the imbalance as a function of the rotational speed of the drum is stored in the memory of the washing machine. Since this phase shift is speed-dependent, the position of the imbalance can be determined by calculating the measured values with the phase shift as a function of the rotational speed of the drum.
  • the washing machine shown has a drum 1 with a horizontal axis of rotation 2.
  • the drum 1 is arranged in a tub 3.
  • a motor 4 is fixed, which drives the drum via a belt 5 and a pulley 6 in a known manner for rotation.
  • the tub 3 is mounted with a suspension swinging in the washing machine.
  • acceleration sensors 7 are mounted at the front and, opposite, at the rear end of the tub 3, which allow to determine a pivoting and / or tumbling movement of the tub.
  • an angular velocity sensor 8 is provided, with which in the manner described below, the instantaneous angular velocity can be measured as a function of the rotational angle of the drum.
  • distance sensors can also be used.
  • the sensors make it possible to detect an imbalance in the drum when spinning or at the beginning of the spin program.
  • the spinning process can also be interrupted, as already mentioned.
  • three tanks 10 are provided for unbalance compensation, which are arranged in the ribs 11 of the drum 1.
  • Each tank 10 extends e.g. with its longitudinal axis over the entire axial length of the drum 1.
  • three filling rings 13a, b and c are arranged at the rear end face 12 of the drum 1.
  • the filling rings are coaxial, wherein filling ring 13a has the smallest diameter, filling ring 13b has the next largest diameter and filling ring 13c has the largest diameter.
  • Each of the filling rings is connected via a filling tube 14 with one of the tanks 10 in combination.
  • a stationary injector 16 is provided to inject water into the packing rings. It comprises a water inlet 17 which supplies water to three valves 18. From the valves 18, the water passes through a drop section 19 to a respective tube 19 a, wherein the drop section 19, a backflow of water into the water inlet 17 prevented.
  • the hoses 19a terminate in nozzles 19b, of which the water is injected into the individual filling rings 13a, b, c.
  • the nozzles 19b are mounted on the tub 3 and on the oscillating system of the washing machine.
  • Fig. 2 schematically shows again the mechanical structure of the washing machine and the controller 20th
  • Fig. 2 the drum 1 and its axis of rotation 2.
  • a rotary body 21 which, as from Fig. 1 can be configured, for example, as a disc which is arranged on the pulley 6.
  • the rotary body 21 rotates with the drum. He carries a variety of markings, which are configured in the embodiment shown as regularly distributed over the periphery of the rotating body teeth 22.
  • the stationary on the rotary body 21 arranged angular velocity sensor 8 is able to detect the markings.
  • the angular velocity sensor 8 is designed as a light barrier whose light path is interrupted by the teeth 22.
  • optical detector which detects the optically detectable markings on the rotary body 21. It may also be non-optical, e.g. Magnetic measurement methods are used in conjunction with appropriately designed markings.
  • Fig. 3 shows a corresponding series of measured values of periods t0 when the drum is idling, ie when the drum is empty. Since in the present example, the teeth are all the same size and equally spaced, the measured times are all about the same size. In the Fig. 3 The variations shown are due to asymmetries in the structure of the rotating parts and inaccuracies in the manufacture of the teeth 22.
  • Each of the time values thus determined is inversely proportional to the instantaneous angular velocity of the drum 1.
  • the instantaneous angular velocity of the drum 1 is dependent on the current angle of rotation.
  • a corresponding measurement series of durations t is in Fig. 4 shown. As can be seen, the angular velocity is varied approximately sinusoidally.
  • the magnitude of the imbalance is reflected in the amplitude of the sinusoidal variation in Fig. 4 down, the position in the phase position of the signal.
  • the sectors i In order to deduce the angular position of the imbalance from a given phase position of the measuring signal, the sectors i must be in accordance with Fig. 3 or 4 each can be assigned to a rotation angle of the drum.
  • a zero point sensor is provided which emits a signal when the drum is in a specific zero position.
  • the idling measured values t0 (i) are according to Fig. 3 stored as a function of the rotation angle ⁇ and the sector i in a memory 23 of the controller 20, and the controller 20 is designed to readjust the position and / or size of the unbalance by calculating the measured values t (i) measured Fig. 4 with the idling measured values t0 (i).
  • the difference d i t i / ⁇ t j - t ⁇ 0 i / ⁇ t ⁇ 0 j are formed for the measured value of each sector or angle of rotation i, the sums extending over all sectors j. For the determination of amplitude and phase of the unbalance, the difference d (i) thus obtained is then used.
  • the calibration values t0 (i) can be stored by the manufacturer in the memory 23, e.g. as part of the final test of a device. However, they may also be detected, at least in part, at a later time by the controller 20 and stored, e.g. by starting a particular calibration program during which measurements are performed on an empty drum. This is particularly useful when the angular velocity sensor 8 or the rotating body 21 must be replaced during maintenance or repair work.
  • the embodiment shown has Fig. 1
  • two acceleration sensors 7 Preferably, these different sensor types are used in addition. It turns out that at lower angular velocities, the angular velocity sensor 8 provides the most accurate results while the signals from the acceleration sensors 7 are relatively weak. At higher angular speeds, the signals of the acceleration sensors 7 become stronger, while those of the angular velocity sensor 8 lose their meaningfulness.
  • the signals of the acceleration sensors 7 measured at certain times must be associated with the angular position of the drum 1.
  • the already mentioned zero point transmitter can be provided which emits a signal when the drum is in a specific zero position.
  • the instantaneous speed D of the drum 1 which can be determined, for example, via the zero point encoder
  • it is possible to measure the acceleration sensors at a given time tx Angular position ⁇ according to the formula ⁇ t ⁇ x - t ⁇ n ⁇ D ⁇ 360 ° assigned.
  • FIG. 5 A corresponding course of the phase shift is in Fig. 5 shown.
  • the course of the phase shift differs in practice from a simple arctan behavior, since the suspension has several resonance frequencies and several degrees of freedom.
  • the phase shift between the signals of the acceleration sensors 7 and the position of the imbalance as a function of the speed is in a memory 25 of the controller 20 the drum 1 is stored. This can be done eg in the form of individual values according to Fig. 5 or in the form of the parameters according to the values according to Fig. 5 adjusted curve.
  • the phase shift stored in the memory 25 as a function of the rotational speed of the drum 1 forms calibration values with which the position measurements can be corrected.
  • the microprocessor 24 of the controller 20 determines the phase position of the measured acceleration values, for example by means of Fourier transformation or cosine transformation, wherein the amplitude can also be determined in the same calculation step. To the determined phase position, the microprocessor 24 adds the phase shift according to the calibration values from memory 25 to this speed, resulting in the angular position of the imbalance. Depending on this angular position, for example, the tanks 10 can now be filled. For this purpose, the controller 20 outputs control signals corresponding to a valve control 26.
  • acceleration sensors 7 which measure axial and / or radial accelerations of the drum 1 or of the oscillating system
  • position sensors which measure the axial or radial deflections of the drum 1, the tub 3 or other parts of the oscillating system
  • the mean value of the signals of the acceleration sensors 7 is used for processing. This produces a signal independent of tilting of the drum.
  • the calibration values ie the course of the phase shift according to Fig. 5 , can be stored by the manufacturer in the memory 25 by measurements on a drum with a known, attached to a defined position imbalance can be performed. In this case, the same calibration values can be used per se for all devices of the same type of the same type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Description

Die Erfindung betrifft eine Waschmaschine gemäss Oberbegriff von Anspruch 1.The invention relates to a washing machine according to the preamble of claim 1.

Eine derartige Waschmaschine wird z.B. in EP 1 391 549 beschrieben. Sie besitzt eine Trommel, die sich um eine Drehachse dreht, eine Messvorrichtung zur Detektion einer Unwucht in der Trommel im Schleuderbetrieb, mit welcher als Funktion des Drehwinkels der Trommel Messwerte erzeugbar sind, und eine Steuerung zum Bestimmen der Position und/oder Grösse der Unwucht aus den Messwerten. Aufgrund der so gewonnenen Parameter der Unwucht kann die Unwucht kompensiert werden und/oder das Schleuderprogramm kann bei zu grosser Unwucht unterbrochen werden, z.B. um die zu schleudernde Wäsche neu in der Trommel zu verteilen.Such a washing machine is eg in EP 1 391 549 described. It has a drum which rotates about an axis of rotation, a measuring device for detecting an imbalance in the drum in the spinning operation, with which as a function of the rotation angle of the drum measured values can be generated, and a controller for determining the position and / or size of the imbalance the measured values. Because of the unbalance parameters thus obtained, the unbalance can be compensated for and / or the spin program can be interrupted if there is too much imbalance, eg to redistribute the laundry to be spun in the drum.

Es zeigt sich, dass die Ermittlung von genauen Messwerten in derartigen Waschmaschinen nicht ganz einfach ist. Aufgabe der vorliegenden Erfindung ist somit eine Verbesserung der Messgenauigkeit.It turns out that the determination of accurate readings in such washing machines is not easy. Object of the present invention is thus an improvement of the measurement accuracy.

Diese Aufgabe wird durch die Waschmaschine nach Anspruch 1 gelöst. Demgemäss enthält die Waschmaschine einen Speicher zum Speichern von Kalibrationswerten, wobei die Steuerung der Waschmaschine ist dazu ausgestaltet, die Position und/oder Grösse der Unwucht durch Verrechnen der gemessenen Messwerte mit den Kalibrationswerten zu ermitteln.This object is achieved by the washing machine according to claim 1. Accordingly, the washing machine includes a memory for storing calibration values, wherein the controller of the washing machine is configured to determine the position and / or size of the imbalance by calculating the measured values with the calibration values.

Vorzugsweise sind im Speicher Leerlauf-Messwerte als Funktion des Drehwinkels abgespeichert, d.h. die Messwerte, wie sie bei einer Kalibrationsmessung mit leerer Trommel ermittelt wurden. Die Steuerung errechnet aus den Messwerten z.B. mittels Quotientenbildung korrigierte Grössen, aus denen z.B. durch Subtraktion mit den Leerlauf-Messwerten hieraus die Position und/oder Grösse der Unwucht ermittelt werden kann.Preferably, idle measurements are stored in memory as a function of the angle of rotation, i. the measured values, as determined during a calibration measurement with an empty drum. The controller calculates from the measured values, e.g. quotient corrected quantities from which e.g. By subtraction with the idle measurement values from this, the position and / or size of the imbalance can be determined.

Dadurch lassen sich inhärente Asymmetrien in den drehenden Teilen und der Messvorrichtung eliminieren. Dies ist besonders vorteilhaft, wenn ein Winkelgeschwindigkeits-Sensor zum Einsatz kommt, der Markierungen an einem Drehkörper detektiert. In diesem Fall kann der Einfluss von Ungenauigkeiten in Position und/oder Grösse der Markierungen durch das Verrechnen mit den Leerlauf-Messwerten eliminiert werden.This eliminates inherent asymmetries in the rotating parts and the measuring device. This is particularly advantageous when an angular velocity sensor is used which detects markings on a rotating body. In this case, the influence of inaccuracies in the position and / or size of the markings can be eliminated by the calculation with the idling measured values.

In einer weiteren bevorzugten Ausführung ist im Speicher der Waschmaschine die Phasenverschiebung zwischen den Messwerten und der Position der Unwucht als Funktion der Drehzahl der Trommel abgespeichert. Da diese Phasenverschiebung drehzahlabhängig ist, kann durch Verrechnen der Messwerte mit der Phasenverschiebung in Abhängigkeit der Drehzahl der Trommel die Position der Unwucht bestimmt werden.In a further preferred embodiment, the phase shift between the measured values and the position of the imbalance as a function of the rotational speed of the drum is stored in the memory of the washing machine. Since this phase shift is speed-dependent, the position of the imbalance can be determined by calculating the measured values with the phase shift as a function of the rotational speed of the drum.

Weitere bevorzugte Ausführungen ergeben sich aus den abhängigen Ansprüchen sowie aus der nun folgenden Beschreibung anhand der Figuren. Dabei zeigen:

  • Fig. 1 einen schematischen Schnitt durch eine Waschmaschine,
  • Fig. 2 eine schematische Ansicht der Trommel, des Winkelgeschwindigkeits-Sensors und der Steuerung,
  • Fig. 3 die vom Winkelgeschwindigkeits-Sensor gemessenen Zeitwerte im Leerlauf,
  • Fig. 4 die vom Winkelgeschwindigkeits-Sensor gemessenen Zeitwerte unter Last und
  • Fig. 5 die Phasenverschiebung zwischen Messsignal und Unwuchtposition in Abhängigkeit der Drehzahl.
Further preferred embodiments will become apparent from the dependent claims and from the following description with reference to FIGS. Showing:
  • Fig. 1 a schematic section through a washing machine,
  • Fig. 2 a schematic view of the drum, the angular velocity sensor and the controller,
  • Fig. 3 the idle time values measured by the angular velocity sensor,
  • Fig. 4 the time values measured by the angular velocity sensor under load and
  • Fig. 5 the phase shift between measuring signal and unbalance position as a function of the speed.

Die in Fig. 1 dargestellte Waschmaschine besitzt eine Trommel 1 mit horizontaler Drehachse 2. Die Trommel 1 ist in einem Bottich 3 angeordnet. Am Bottich 3 ist ein Motor 4 befestigt, der über einen Riemen 5 und ein Riemenrad 6 die Trommel in bekannter Weise zur Drehung antreibt. Der Bottich 3 ist mit einer Federung schwingend in der Waschmaschine gelagert.In the Fig. 1 The washing machine shown has a drum 1 with a horizontal axis of rotation 2. The drum 1 is arranged in a tub 3. On the tub 3, a motor 4 is fixed, which drives the drum via a belt 5 and a pulley 6 in a known manner for rotation. The tub 3 is mounted with a suspension swinging in the washing machine.

In der dargestellten Ausführung sind am vorderen und, gegenüberliegend, am hinteren Ende des Bottichs 3 Beschleunigungs-Sensoren 7 befestigt, die es erlauben, eine Schwenk- und/oder Taumelbewegung des Bottichs zu bestimmen. Zudem ist beim Riemenrad 6 ein Winkelgeschwindigkeits-Sensor 8 vorgesehen, mit welchem in weiter unten beschriebener Weise die momentane Winkelgeschwindigkeit als Funktion des Drehwinkels der Trommel gemessen werden kann. Anstelle von oder zusätzlich zu den Beschleunigungs-Sensoren 7 bzw. dem Winkelgeschwindigkeits-Sensor 8 können z.B. auch Abstands-Sensoren verwendet werden.In the illustrated embodiment, acceleration sensors 7 are mounted at the front and, opposite, at the rear end of the tub 3, which allow to determine a pivoting and / or tumbling movement of the tub. In addition, in the pulley 6, an angular velocity sensor 8 is provided, with which in the manner described below, the instantaneous angular velocity can be measured as a function of the rotational angle of the drum. Instead of or in addition to the acceleration sensors 7 and the angular velocity sensor 8, for example, distance sensors can also be used.

Die Sensoren erlauben es, eine Unwucht in der Trommel beim Schleudern bzw. zu Beginn des Schleuderprogramms festzustellen.The sensors make it possible to detect an imbalance in the drum when spinning or at the beginning of the spin program.

Wie z.B. in DE 43 13 819 beschrieben, kann einer Unwucht in der Trommel entgegengewirkt werden, indem in spezielle, an der Trommel angebrachte Tanks gezielt eine Flüssigkeit, im vorliegenden Fall Wasser, eingespritzt wird.Like in DE 43 13 819 described, can be counteracted an imbalance in the drum by targeted in a specific, attached to the drum tanks, a liquid, in the present case water injected.

Ist die Unwucht zu gross, kann der Schleudervorgang auch, wie bereits erwähnt, unterbrochen werden.If the imbalance is too great, the spinning process can also be interrupted, as already mentioned.

In der dargestellten Ausführung sind zur Unwuchtkompensation drei Tanks 10 vorgesehen, welche in den Rippen 11 der Trommel 1 angeordnet sind. Jeder Tank 10 erstreckt sich z.B. mit seiner Längsachse über die ganze achsiale Länge der Trommel 1. An der hinteren Stirnseite 12 der Trommel 1 sind drei Füllringe 13a, b und c angeordnet. Die Füllringe sind koaxial, wobei Füllring 13a den kleinsten Durchmesser, Füllring 13b den nächst grösseren Durchmesser und Füllring 13c den grössten Durchmesser aufweist.In the illustrated embodiment, three tanks 10 are provided for unbalance compensation, which are arranged in the ribs 11 of the drum 1. Each tank 10 extends e.g. with its longitudinal axis over the entire axial length of the drum 1. At the rear end face 12 of the drum 1, three filling rings 13a, b and c are arranged. The filling rings are coaxial, wherein filling ring 13a has the smallest diameter, filling ring 13b has the next largest diameter and filling ring 13c has the largest diameter.

Jeder der Füllringe steht über ein Füllrohr 14 mit je einem der Tanks 10 in Verbindung.Each of the filling rings is connected via a filling tube 14 with one of the tanks 10 in combination.

Eine stationäre Einspritzvorrichtung 16 ist vorgesehen, um Wasser in die Füllringe einzuspritzen. Sie umfasst einen Wasserzulauf 17, der Wasser an drei Ventile 18 liefert. Von den Ventilen 18 gelangt das Wasser über eine Fallstrecke 19 zu je einem Schlauch 19a, wobei die Fallstrecke 19 ein Rückfliessen von Wasser in den Wasserzulauf 17 verhindert. Die Schläuche 19a enden in Düsen 19b, von denen das Wasser in die einzelnen Füllringe 13a,b,c gespritzt wird. Die Düsen 19b sind am Bottich 3 bzw. am schwingenden System der Waschmaschine angebracht.A stationary injector 16 is provided to inject water into the packing rings. It comprises a water inlet 17 which supplies water to three valves 18. From the valves 18, the water passes through a drop section 19 to a respective tube 19 a, wherein the drop section 19, a backflow of water into the water inlet 17 prevented. The hoses 19a terminate in nozzles 19b, of which the water is injected into the individual filling rings 13a, b, c. The nozzles 19b are mounted on the tub 3 and on the oscillating system of the washing machine.

Fig. 2 zeigt schematisch nochmals den mechanischen Aufbau der Waschmaschine sowie deren Steuerung 20. Fig. 2 schematically shows again the mechanical structure of the washing machine and the controller 20th

Insbesondere zeigt Fig. 2 die Trommel 1 und deren Drehachse 2. Weiter gezeigt ist ein Drehkörper 21, welcher, wie aus Fig. 1 ersichtlich, z.B. als Scheibe ausgestaltet sein kann, die am Riemenrad 6 angeordnet ist. Der Drehkörper 21 dreht sich mit der Trommel mit. Er trägt eine Vielzahl von Markierungen, welche in der gezeigten Ausführung als regelmässig über die Peripherie des Drehkörpers verteilte Zähne 22 ausgestaltet sind. Der stationär am Drehkörper 21 angeordnete Winkelgeschwindigkeits-Sensor 8 ist in der Lage, die Markierungen zu detektieren. In der vorliegenden Ausführung ist der Winkelgeschwindigkeits-Sensor 8 als Lichtschranke ausgeführt, deren Lichtpfad durch die Zähne 22 unterbrochen wird.In particular shows Fig. 2 the drum 1 and its axis of rotation 2. Also shown is a rotary body 21, which, as from Fig. 1 can be configured, for example, as a disc which is arranged on the pulley 6. The rotary body 21 rotates with the drum. He carries a variety of markings, which are configured in the embodiment shown as regularly distributed over the periphery of the rotating body teeth 22. The stationary on the rotary body 21 arranged angular velocity sensor 8 is able to detect the markings. In the present embodiment, the angular velocity sensor 8 is designed as a light barrier whose light path is interrupted by the teeth 22.

Anstelle einer Lichtschranke kann auch ein anderer optischer Detektor verwendet werden, welcher die optisch erkennbaren Markierungen am Drehkörper 21 detektiert. Es können auch nicht-optische, z.B. magnetische Messmethoden im Zusammenhang mit entsprechend ausgestalteten Markierungen angewendet werden.Instead of a light barrier, it is also possible to use another optical detector which detects the optically detectable markings on the rotary body 21. It may also be non-optical, e.g. Magnetic measurement methods are used in conjunction with appropriately designed markings.

Aus den Signalen des Winkelgeschwindigkeits-Sensors 8 werden Zeitdauern zwischen den Markierungen ermittelt, z.B. in Form der Zeiten zwischen den Signalübergängen. Fig. 3 zeigt eine entsprechende Serie von Messwerten von Zeitdauern t0 im Leerlauf der Trommel, d.h. bei leerer Trommel. Da im vorliegenden Beispiel die Zähne alle gleich gross und gleich beabstandet sind, sind die gemessenen Zeiten alle ungefähr gleich gross. Die in Fig. 3 dargestellten Schwankungen sind auf Asymmetrien im Aufbau der rotierenden Teile sowie auf Ungenauigkeiten bei der Fertigung der Zähne 22 zurückzuführen.From the signals of the angular velocity sensor 8 time periods between the markers are determined, for example in the form of the times between the signal transitions. Fig. 3 shows a corresponding series of measured values of periods t0 when the drum is idling, ie when the drum is empty. Since in the present example, the teeth are all the same size and equally spaced, the measured times are all about the same size. In the Fig. 3 The variations shown are due to asymmetries in the structure of the rotating parts and inaccuracies in the manufacture of the teeth 22.

Jeder der so ermittelten Zeitwerte ist umgekehrt proportional zur momentanen Winkelgeschwindigkeit der Trommel 1.Each of the time values thus determined is inversely proportional to the instantaneous angular velocity of the drum 1.

Wird die Trommel unter Last gedreht und ist die Last so verteilt, dass es zu einer Unwucht kommt, so ist die momentane Winkelgeschwindigkeit der Trommel 1 abhängig vom momentanen Drehwinkel. Eine entsprechende Messreihe von Zeitdauern t ist in Fig. 4 dargestellt. Wie ersichtlich, ist die Winkelgeschwindigkeit ungefähr sinusförmig variiert.If the drum is rotated under load and the load is distributed so that it comes to an imbalance, the instantaneous angular velocity of the drum 1 is dependent on the current angle of rotation. A corresponding measurement series of durations t is in Fig. 4 shown. As can be seen, the angular velocity is varied approximately sinusoidally.

Die Grösse der Unwucht schlägt sich in der Amplitude der sinusförmigen Variation in Fig. 4 nieder, die Position in der Phasenlage des Signals.The magnitude of the imbalance is reflected in the amplitude of the sinusoidal variation in Fig. 4 down, the position in the phase position of the signal.

Um aus einer gegebenen Phasenlage des Messsignals auf die Winkelposition der Unwucht zu schliessen, müssen die Sektoren i gemäss Fig. 3 bzw. 4 jeweils einem Drehwinkel der Trommel zugeordnet werden können. Hierzu ist z.B. als Teil des Winkelgeschwindigkeits-Sensors 8 ein Nullpunktgeber vorgesehen, welcher ein Signal abgibt, wenn die Trommel sich in einer bestimmten Nullposition befindet. Die einem Sektor i zugehörige Drehposition α der Trommel 1 kann in diesem Falle aus α = 360 ° i / N

Figure imgb0001
errechnet werden, wobei N die Zahl der Sektoren ist.In order to deduce the angular position of the imbalance from a given phase position of the measuring signal, the sectors i must be in accordance with Fig. 3 or 4 each can be assigned to a rotation angle of the drum. For this example, as part of the angular velocity sensor 8, a zero point sensor is provided which emits a signal when the drum is in a specific zero position. The one sector i associated rotational position α of the drum 1 can in this case α = 360 ° i / N
Figure imgb0001
where N is the number of sectors.

Für eine genaue Messung von Amplitude und Phase ist es von Vorteil, den Einfluss der genannten Leerlauf-Schwankungen gemäss Fig. 3 zu berücksichtigen. Wie erwähnt, sind diese auf Asymmetrien der drehenden Teile und des Winkelgeschwindigkeits-Sensors 8 zurückzuführen und führen deshalb auch zu Fehlern bei den Messungen unter Last.For an accurate measurement of amplitude and phase, it is advantageous to determine the influence of said idling fluctuations Fig. 3 to take into account. As mentioned, these are due to asymmetries of the rotating parts and the angular velocity sensor 8 and therefore also lead to errors in the measurements under load.

Deshalb sind in einer vorteilhaften Ausführung der Erfindung die Leerlauf-Messwerte t0(i) gemäss Fig. 3 als Funktion des Drehwinkels α bzw. des Sektors i in einem Speicher 23 der Steuerung 20 abgespeichert, und die Steuerung 20 ist dazu ausgestaltet, die Position und/oder Grösse der Unwucht durch Verrechnen der gemessenen Messwerte t(i) nach Fig. 4 mit den Leerlauf-Messwerten t0(i) zu ermitteln.Therefore, in an advantageous embodiment of the invention, the idling measured values t0 (i) are according to Fig. 3 stored as a function of the rotation angle α and the sector i in a memory 23 of the controller 20, and the controller 20 is designed to readjust the position and / or size of the unbalance by calculating the measured values t (i) measured Fig. 4 with the idling measured values t0 (i).

Für eine drehzahlunabhängige Korrektur kann z.B. die Differenz d i = t i / t j t 0 i / t 0 j

Figure imgb0002
für den Messwert jedes Sektors bzw. Drehwinkels i gebildet werden, wobei sich die Summen über alle Sektoren j erstrecken. Für die Bestimmung von Amplitude und Phase der Unwucht wird sodann die so erhaltene Differenz d(i) verwendet.For a speed-independent correction, for example, the difference d i = t i / Σ t j - t 0 i / Σ t 0 j
Figure imgb0002
are formed for the measured value of each sector or angle of rotation i, the sums extending over all sectors j. For the determination of amplitude and phase of the unbalance, the difference d (i) thus obtained is then used.

Denkbar ist auch die Berechnung der Quotienten q i = t i / t 0 i .

Figure imgb0003
It is also conceivable to calculate the quotients q i = t i / t 0 i ,
Figure imgb0003

Diese Quotienten q(i) sind, wie die Differenzen d(i), ebenfalls unabhängig von den Leerlauf-Schwankungen.These quotients q (i), like the differences d (i), are also independent of the no-load fluctuations.

Die Kalibrationswerte t0(i) können herstellerseitig im Speicher 23 abgelegt werden, z.B. im Rahmen der Endprüfung eines Geräts. Sie können jedoch auch, zumindest teilweise, zu einem späteren Zeitpunkt von der Steuerung 20 ermittelt und gespeichert werden, z.B. durch Start eines bestimmten Kalibrationsprogramms, während welchem Messungen an einer leeren Trommel durchgeführt werden. Dies ist insbesondere dann sinnvoll, wenn der Winkelgeschwindigkeits-Sensor 8 oder der Drehkörper 21 bei Wartungs- oder Reparaturarbeiten ersetzt werden müssen.The calibration values t0 (i) can be stored by the manufacturer in the memory 23, e.g. as part of the final test of a device. However, they may also be detected, at least in part, at a later time by the controller 20 and stored, e.g. by starting a particular calibration program during which measurements are performed on an empty drum. This is particularly useful when the angular velocity sensor 8 or the rotating body 21 must be replaced during maintenance or repair work.

Wie bereits erwähnt, besitzt das gezeigte Ausführungsbeispiel gemäss Fig. 1 nebst dem Winkelgeschwindigkeits-Sensor 8 auch zwei Beschleunigungs-Sensoren 7. Vorzugsweise werden diese verschiedenen Sensortypen ergänzend eingesetzt. Es zeigt sich, dass bei tieferen Winkelgeschwindigkeiten der Winkelgeschwindigkeits-Sensor 8 die genauesten Resultate liefert, während die Signale von den Beschleunigungs-Sensoren 7 relativ schwach sind. Bei höheren Winkelschwindigkeiten werden die Signale der Beschleunigungs-Sensoren 7 stärker, während jene des Winkelgeschwindigkeits-Sensors 8 an Aussagekraft verlieren.As already mentioned, the embodiment shown has Fig. 1 In addition to the angular velocity sensor 8, two acceleration sensors 7. Preferably, these different sensor types are used in addition. It turns out that at lower angular velocities, the angular velocity sensor 8 provides the most accurate results while the signals from the acceleration sensors 7 are relatively weak. At higher angular speeds, the signals of the acceleration sensors 7 become stronger, while those of the angular velocity sensor 8 lose their meaningfulness.

Soll mit den Beschleunigungs-Sensoren 7 die Position der Unwucht ermittelt werden, müssen zuerst die zu gewissen Zeiten gemessenen Signale der Beschleunigungs-Sensoren 7 mit der Winkelposition der Trommel 1 in Verbindung gebracht werden. Hierzu kann z.B. der bereits genannte Nullpunktgeber vorgesehen werden, welcher ein Signal abgibt, wenn die Trommel sich in einer bestimmten Nullposition befindet. Ausgehend vom Zeitpunkt tn, an welchem diese Nullposition zum letzten Mal erreicht wurde, und der momentanen Drehzahl D der Trommel 1 (welche z.B. auch über den Nullpunktgeber ermittelt werden kann) ist es möglich, einer Messung der Beschleunigungs-Sensoren zu einer gegebenen Zeit tx eine Winkelposition α gemäss der Formel α = t x t n D 360 °

Figure imgb0004
zuzuordnen.If the position of the imbalance is to be determined with the acceleration sensors 7, first the signals of the acceleration sensors 7 measured at certain times must be associated with the angular position of the drum 1. For this purpose, for example, the already mentioned zero point transmitter can be provided which emits a signal when the drum is in a specific zero position. Starting from the time tn at which this zero position was reached for the last time, and the instantaneous speed D of the drum 1 (which can be determined, for example, via the zero point encoder), it is possible to measure the acceleration sensors at a given time tx Angular position α according to the formula α = t x - t n D 360 °
Figure imgb0004
assigned.

Weiter ist aber zu berücksichtigen, dass die Phasenverschiebung z.B. zwischen dem Winkel α0, bei welchem das Signal eines der Beschleunigungs-Sensoren 7 z.B. sein Maximum hat, und der Winkelposition αU der Unwucht, abhängig von der Winkelgeschwindigkeit der Trommel 1 ist:

  • Bei tiefen Winkelgeschwindigkeiten der Trommel, d.h. wenn die Winkelgeschwindigkeit so gross ist, dass die Wäsche in der Trommel nicht mehr fällt sondern an die Trommelwand angedrückt ist, aber die Drehzahl noch deutlich unter der tiefsten Resonanzfrequenz der elastischen Aufhängung von Trommel und Bottich ist, so beträgt die Phasenverschiebung zwischen dem Maximum des Signals α0 und der Lage der Unwucht αU beispielsweise ca. -90°.
  • Bei sehr hohen Winkelgeschwindigkeiten deutlich über der.stärksten Resonanzfrequenz der Aufhängung der Trommel 1 dreht sich die Phasenverschiebung um 180°, d.h. im vorliegenden Beispiel auf ca. +90°.
However, it should also be taken into account that the phase shift, for example, between the angle α 0 , at which the signal of one of the acceleration sensors 7 has its maximum, and the angular position α U of the imbalance, is dependent on the angular velocity of the drum 1:
  • At low angular velocities of the drum, ie when the angular velocity is so high that the laundry in the drum no longer falls but is pressed against the drum wall, but the speed is still well below the lowest resonance frequency of the elastic suspension of the drum and tub is so the phase shift between the maximum of Signal α0 and the position of the unbalance αU, for example, about -90 °.
  • At very high angular velocities clearly above the highest resonance frequency of the suspension of the drum 1, the phase shift rotates by 180 °, ie in the present example to about + 90 °.

Ein entsprechender Verlauf der Phasenverschiebung ist in Fig. 5 dargestellt. Wie hieraus ersichtlich, weicht der Verlauf der Phasenverschiebung dabei in der Praxis von einem einfachen arctan-Verhalten ab, da die Aufhängung mehrere Resonanzfrequenzen und mehrere Freiheitsgrade besitzt.A corresponding course of the phase shift is in Fig. 5 shown. As can be seen, the course of the phase shift differs in practice from a simple arctan behavior, since the suspension has several resonance frequencies and several degrees of freedom.

Um aus der Phasenlage der sinusförmigen Variation der Signale der Beschleunigungs-Sensoren 7 auf die Lage der Unwucht schliessen zu können, ist in einem Speicher 25 der Steuerung 20 die Phasenverschiebung zwischen den Signalen der Beschleunigungs-Sensoren 7 und der Position der Unwucht als Funktion der Drehzahl der Trommel 1 abgespeichert. Dies kann z.B. in Form von einzelnen Werten gemäss Fig. 5 oder in Form der Parameter einer an die Werte gemäss Fig. 5 angepassten Kurve erfolgen. Die im Speicher 25 abgespeicherte Phasenverschiebung in Abhängigkeit der Drehzahl der Trommel 1 bildet Kalibrationswerte, mit denen die Positionsmessungen korrigiert werden können.In order to be able to deduce the position of the unbalance from the phase position of the sinusoidal variation of the signals of the acceleration sensors 7, the phase shift between the signals of the acceleration sensors 7 and the position of the imbalance as a function of the speed is in a memory 25 of the controller 20 the drum 1 is stored. This can be done eg in the form of individual values according to Fig. 5 or in the form of the parameters according to the values according to Fig. 5 adjusted curve. The phase shift stored in the memory 25 as a function of the rotational speed of the drum 1 forms calibration values with which the position measurements can be corrected.

Zur Durchführung der Korrektur ermittelt der Mikroprozessor 24 der Steuerung 20 die Phasenlage der gemessenen Beschleunigungswerte, z.B. mittels FourierTransformation oder Cosinus-Transformation, wobei im gleichen Rechenschritt auch die Amplitude bestimmt werden kann. Zu der ermittelten Phasenlage addiert der Mikroprozessor 24 die Phasenverschiebung gemäss den Kalibrationswerten aus Speicher 25 zu dieser Drehzahl, woraus sich die Winkelposition der Unwucht ergibt. Abhängig von dieser Winkelposition können nun z.B. die Tanks 10 gefüllt werden. Hierzu gibt die Steuerung 20 an eine Ventilsteuerung 26 entsprechende Steuersignale ab.To carry out the correction, the microprocessor 24 of the controller 20 determines the phase position of the measured acceleration values, for example by means of Fourier transformation or cosine transformation, wherein the amplitude can also be determined in the same calculation step. To the determined phase position, the microprocessor 24 adds the phase shift according to the calibration values from memory 25 to this speed, resulting in the angular position of the imbalance. Depending on this angular position, for example, the tanks 10 can now be filled. For this purpose, the controller 20 outputs control signals corresponding to a valve control 26.

Anstelle von Beschleunigungs-Sensoren 7, welche achsiale und/oder radiale Beschleunigungen der Trommel 1 bzw. des schwingenden Systems messen, können auch Positionssensoren eingesetzt werden, welche die achsialen oder radialen Auslenkungen der Trommel 1, des Bottichs 3 oder anderer Teile des schwingenden Systems messen. Auch hier ist jedoch wieder die oben erwähnte Phasenkorrektur zum erzielen genauer Messungen durchzuführen.Instead of acceleration sensors 7, which measure axial and / or radial accelerations of the drum 1 or of the oscillating system, it is also possible to use position sensors which measure the axial or radial deflections of the drum 1, the tub 3 or other parts of the oscillating system , Again, however, the above-mentioned phase correction is again to achieve accurate measurements.

Vorzugsweise wird zur Verarbeitung der Mittelwert der Signale der Beschleunigungs-Sensoren 7 verwendet. Dadurch wird ein von Verkippungen der Trommel unabhängiges Signal erzeugt.Preferably, the mean value of the signals of the acceleration sensors 7 is used for processing. This produces a signal independent of tilting of the drum.

Die Kalibrationswerte, d.h. der Verlauf der Phasenverschiebung gemäss Fig. 5, können herstellerseitig in den Speicher 25 abgelegt werden, indem Messungen an einer Trommel mit einer bekannten, an definierter Position angebrachten Unwucht durchgeführt werden. Dabei können an sich für alle baugleichen Geräte eines bestimmten Typs die gleichen Kalibrationswerte verwendet werden.The calibration values, ie the course of the phase shift according to Fig. 5 , can be stored by the manufacturer in the memory 25 by measurements on a drum with a known, attached to a defined position imbalance can be performed. In this case, the same calibration values can be used per se for all devices of the same type of the same type.

Claims (10)

  1. Washing machine with
    a drum (1) rotating about a rotation axis (2),
    a measurement device (7, 8) for detecting an imbalance in the drum (1), by means of which measurement values are generated as a function of the rotation position (α) of the drum, and
    a controller (20) for determining a position and/or magnitude of the imbalance from the measurement values,
    characterized by a memory (23, 25) for storing calibration values, wherein the controller (20) is adapted to determine the position and/or magnitude of the imbalance by calculative recombination of the measured values with the calibration values.
  2. Washing machine according to claim 1, characterized in that idle measurements values (t0) are stored in the memory (23, 25) as function of the rotation position (α) and in that the controller (20) is adapted to determine the position and/or the magnitude of the imbalance by calculative recombination of the measured values with the idle values.
  3. Washing machine according to claim 2, characterized in that the controller (20) is adapted to determine a quotient (q) of the measured values (t) and the corresponding idle values (t0).
  4. Washing machine according to one of the preceding claims, characterized in that a phase shift (phi) between the measurement values and the position of the imbalance is stored in the memory (23, 25) as a function of the angular speed (D) of the drum and in that the controller (20) is adapted to determine the position of the imbalance by calculative recombination of the measurement values with the phase shift (phi).
  5. Washing machine according to one of the preceding claims, characterized in that the controller (20) is adapted to determine at least a part of the calibration values during a calibration measurement when the drum (1) is empty.
  6. Washing machine according to one of the preceding claims, characterized in that the measurement device has at least an angular speed sensor (8, 21, 22) which measures the current angular speed as a function of the rotation position of the drum.
  7. Washing machine according to claim 6, characterized in that the angular speed sensor (8, 21, 22) has a rotating body (21) and a detector (8), wherein the rotating body (21) rotates with the drum (1) and carries a number of marks (22), and wherein the detector (8) is arranged stationarily at the rotating body (21) and detects the marks (22).
  8. Washing machine according to claim 7, characterized in that the detector (8) is an optical detector and the marks (22) are optically readable marks, and particularly in that the detector (8) is a light barrier with a light path which is interruptible by the marks (22).
  9. Washing machine according to one of the preceding claims, characterized in that the measurement device has at least an acceleration sensor (7) and/or a position sensor for measuring a radial and/or an axial acceleration or position variation of the drum (1) or of a vat (3) surrounding the drum and non-rotating and at least a part of the measurement values are acceleration signals and/or position signals.
  10. Washing machine according to claim 9, characterized in that at least two acceleration sensors (7) are provided at the opposed ends of the vat (3), wherein a mean value of the signals of the acceleration sensors (7) is determined.
EP06011034.3A 2005-06-24 2006-05-30 Washing machine with unbalance detector Active EP1736589B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL06011034T PL1736589T3 (en) 2005-06-24 2006-05-30 Washing machine with unbalance detector
SI200631866T SI1736589T1 (en) 2005-06-24 2006-05-30 Washing machine with unbalance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH10772005 2005-06-24

Publications (3)

Publication Number Publication Date
EP1736589A2 EP1736589A2 (en) 2006-12-27
EP1736589A3 EP1736589A3 (en) 2009-06-17
EP1736589B1 true EP1736589B1 (en) 2014-10-01

Family

ID=37198914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06011034.3A Active EP1736589B1 (en) 2005-06-24 2006-05-30 Washing machine with unbalance detector

Country Status (4)

Country Link
EP (1) EP1736589B1 (en)
DK (1) DK1736589T3 (en)
PL (1) PL1736589T3 (en)
SI (1) SI1736589T1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017284B4 (en) 2008-04-04 2020-06-25 BSH Hausgeräte GmbH Washing machine with analog pressure sensor and method for its operation
US9145634B2 (en) 2013-06-04 2015-09-29 Whirlpool Corporation Method of operating a laundry treating appliance
CH710592A1 (en) 2015-01-06 2016-07-15 V-Zug Ag Washing with unbalance compensation.
JP2017113232A (en) * 2015-12-24 2017-06-29 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Control method of washing machine
WO2019127459A1 (en) * 2017-12-29 2019-07-04 陈坚胜 Water agitating device of washing machine, and washing machine
DE102018104018A1 (en) 2018-02-22 2019-08-22 Miele & Cie. Kg The invention relates to an aggregate for a washing machine according to the preamble of claim 1 and a washing machine, which is equipped with such an aggregate
EP3904581A1 (en) 2020-04-30 2021-11-03 Haier Deutschland GmbH Laundry treatment machine and method to operate a laundry treatment machine
JP2022010784A (en) * 2020-06-29 2022-01-17 青島海爾洗衣机有限公司 washing machine
JP7503266B2 (en) * 2020-06-29 2024-06-20 青島海爾洗衣机有限公司 washing machine
DE102021203780A1 (en) 2021-04-16 2022-10-20 BSH Hausgeräte GmbH System for determining washing-mechanical data in a laundry treatment device and method for its operation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2915815A1 (en) * 1979-04-19 1980-11-06 Bauknecht Gmbh G DEVICE FOR DETECTING THE SPEED AND THE BALANCE OF AN AGGREGATE IN A HOUSING VIBRATINGLY
US5280660A (en) * 1992-10-05 1994-01-25 Pellerin Milnor Corporation Centrifugal extracting machine having balancing system
ES2151332B1 (en) * 1997-01-31 2001-06-16 Fagor S Coop BALANCING METHOD OF A CLOTHING WASHER.
KR100306989B1 (en) * 1997-03-21 2001-10-19 다카노 야스아키 Drum type centrifugal dehydrating apparatus
EP1391549A1 (en) * 2001-03-28 2004-02-25 Sanyo Electric Co., Ltd. Washing machine

Also Published As

Publication number Publication date
DK1736589T3 (en) 2014-11-17
PL1736589T3 (en) 2015-03-31
EP1736589A3 (en) 2009-06-17
SI1736589T1 (en) 2015-01-30
EP1736589A2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
EP1736589B1 (en) Washing machine with unbalance detector
DE68907322T2 (en) METHOD FOR BALANCING A CONTAINER WHICH ROTATES ABOUT AN ESSENTIAL HORIZONTAL AXIS.
EP2047024B1 (en) Method of determining a loading quantity for a laundry-treatment appliance, and laundry-treatment appliance suitable therefor
DE69525335T2 (en) ADAPTIVE IMPROVEMENT OF THE PROFILE FOR ROTATING POSITIONERS IN FLOATING MACHINES
DE2462129B2 (en) DEVICE FOR DETECTING IMPROPER WORKING OF SPINNING MACHINES
DE60110306T2 (en) Method for limiting the imbalance in a laundry washing machine
DE102012017445B4 (en) System and method for measuring the moisture and the consistency of the mix of a drum mixer
DE102006017530A1 (en) Combined washing machine and spin drier has axle with multi-axis imbalance sensors linked to control unit
EP3294941A1 (en) Method for determining the mass as a laundry batch is introduced into a laundry drum, and laundry treatment machine for performing the method
DE102015106849A1 (en) Washing machine with an acceleration sensor and method for operating a washing machine
EP0307644A2 (en) Method and apparatus for detecting the speed of yarn in textile machines
EP0344150A1 (en) Navigation process for vehicles equipped with an electronic compass.
DE10104682B4 (en) Process for measuring unbalance and loading in washing machines
DE102012200783B4 (en) Rolling elements and rolling bearings
EP3019878B1 (en) Rotational speed measuring device for a transmission and method for measuring rotational speed
DE60303414T2 (en) Control method for a turntable filling machine
EP0349975B2 (en) Process for checking and controlling of a conveyor belt feeder or a conveyor belt weight feeder and processing apparatus
DE10100299A1 (en) Measuring arrangement in a rolling bearing for the detection of physical quantities
DE10335862B4 (en) Method for calibrating an incremental angle sensor on a rotating component
DE102012100682A1 (en) torque sensor
DE102004039739A1 (en) Measurement of the rotational speed of a shaft, whereby two adjoining sensors are used to detect impulses from markings on the shaft with the known sensor separation and time between the impulses used to calculate the speed
EP3191637B1 (en) Method for operating a washing machine having a pressure sensor and washing machine suitable therefor
DE69724930T2 (en) Method for automatically checking the calibration of a measuring device
DE102013110632B4 (en) Method for measuring the expansion of a rotating rotor
DE4331603A1 (en) Method for determining laundry-specific parameters in household washing machines and device for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20091211

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 689619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013998

Country of ref document: DE

Effective date: 20141113

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20141110

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502006013998

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BSH HAUSGERAETE GMBH

Effective date: 20150625

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150530

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150530

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 689619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150530

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060530

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: V-ZUG AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20180518

Year of fee payment: 13

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: V-ZUG AG; CH

Effective date: 20180628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180514

Year of fee payment: 13

Ref country code: PL

Payment date: 20180419

Year of fee payment: 13

Ref country code: FR

Payment date: 20180522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 13

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190531

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502006013998

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20210419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230519

Year of fee payment: 18

Ref country code: SE

Payment date: 20230519

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 19