EP1722143A1 - Differenzdruckventil - Google Patents

Differenzdruckventil Download PDF

Info

Publication number
EP1722143A1
EP1722143A1 EP06009248A EP06009248A EP1722143A1 EP 1722143 A1 EP1722143 A1 EP 1722143A1 EP 06009248 A EP06009248 A EP 06009248A EP 06009248 A EP06009248 A EP 06009248A EP 1722143 A1 EP1722143 A1 EP 1722143A1
Authority
EP
European Patent Office
Prior art keywords
throttle
differential pressure
valve
pressure
pressure valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06009248A
Other languages
English (en)
French (fr)
Other versions
EP1722143B1 (de
Inventor
Achim Dr.-Ing. Wiebelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1722143A1 publication Critical patent/EP1722143A1/de
Application granted granted Critical
Publication of EP1722143B1 publication Critical patent/EP1722143B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/04Means in valves for absorbing fluid energy for decreasing pressure or noise level, the throttle being incorporated in the closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/06Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure
    • F16K17/065Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure with differential piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/10Control of fluid pressure without auxiliary power the sensing element being a piston or plunger
    • G05D16/103Control of fluid pressure without auxiliary power the sensing element being a piston or plunger the sensing element placed between the inlet and outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2505Fixed-differential control valves

Definitions

  • the invention relates to a differential pressure valve (delta-P valve), in particular for an expansion element of an automotive air conditioning system, according to the preamble of claim 1.
  • delta-P valve differential pressure valve
  • a known differential pressure valve 101 is shown as a schematic diagram.
  • the flow of refrigerant through a throttle point 102 by means of a valve pin 103 with a presently conical head 104 is controlled in conjunction with a spring 105 schematically indicated in the drawing.
  • the pressures in the spaces or flow channels separated by the restriction 102 are indicated by HD (high pressure side) and SD (suction pressure side), with the normal flow direction from the high pressure side HD to the suction pressure side SD.
  • the head 104 is in this case arranged suction pressure side and the shaft of the valve pin 103 penetrates the throttle opening.
  • the spring 105 is arranged on the high pressure side according to the representation of FIG. 7, but suction pressure side arrangements are also known.
  • a disadvantage of this known differential pressure valve is that a nearly linear relationship between the free flow cross-section and the applied pressure difference exists, which is not desirable in all applications.
  • an expansion valve with two throttle points and an electronic control which is particularly suitable for operated with CO 2 as a refrigerant vehicle air conditioning systems.
  • the valve has a valve housing with an inlet opening and a drain opening, an electrically actuated device for displacing a valve member, in particular in the opening direction, with respect to a arranged between inflow and outflow opening, a flow opening for the refrigerant valve seat and an acting in the opposite direction restoring device, in particular a return spring, which is provided to reduce the size and the current required for actuation in addition to the valve member and valve seat formed first throttle at least one further, arranged in series with the first throttle restriction between the inlet and the outlet opening of the expansion valve, whose passage cross section coupled is adjustable with the passage cross section of the first throttle point.
  • the expansion valve is opened by opening the control valve, then refrigerant flows from the second piston chamber via the control valve in the outflow channel and from there out of the expansion valve. Due to the decrease in pressure in the second piston chamber, the pressure prevails in the first piston chamber. As soon as this difference is so great that the force of the spring is overcome, the piston shifts in the sense of a reduction of the second piston chamber. That is, the piston lifts off the valve seat and releases the first throttle. Now the refrigerant flows via the first throttle point into the drainage channel and out of the expansion valve. This results in a pressure gradient between inlet pressure (high pressure side) and the pressure in the first piston chamber, and outlet pressure. The pressure in the second piston chamber is between the pressure in the first piston chamber and the outlet pressure, resulting in a total pressure gradient. This pressure gradient is controlled by the control valve.
  • Such a valve is relatively complicated and leaves nothing to be desired, including with regard to the flow characteristics.
  • a shut-off and throttle valve with a high duty ratio known.
  • a two-stage valve is provided, wherein the two-stage valve seat consists of a tubular member having at one end a first valve seat and at the other end a second valve seat is formed, which is fitted into the pipe section.
  • the actuator carries at its free end a valve body which is guided in a guide bushing of a lateral connecting piece.
  • the first valve seat cooperates with a first spherical surface formed on the valve body, which extends over extends about 120 °.
  • the second valve seat has a through-bore defining its passage cross-section which terminates in an annular abutment surface from which an extension extends with a bore extended from the bore.
  • a second spherical surface is formed, which extends over an angle of about 300 °; in the closed position of the Ventüs the extension extends beyond the middle of the second spherical surface and together with this determines a throttle gap.
  • the first and second spherical surfaces are connected by a transition piece, wherein the whole valve body may be formed in one piece.
  • the extension is followed by an extended intermediate space (pressure chamber) formed between the two valve seats. The flow as a function of the opening of the valve by this two-stage vent has no abrupt changes.
  • From the DE 520 987 A is a multi-stage poppet valve for compressible media with deflections in intervals known in which in the closed position of the valve overlap, in the first phase of opening a throttle zone and in the open position a continuous, energy-reducing flow path is provided, the flow energy in the open state multiple deflection in the labyrinthine spaces or spaces is reduced.
  • a plate-like shut-off body which can interact with a valve seat, and at least one cylindrical plate, opposite to the direction of flow of the medium, the lateral surface of which forms a cover in the closed position with a cylindrical bore of the valve body that in the throttled in the first phase of the opening passage of the flowing medium is not in the seating area of the subsequently arranged shut-off body, but between the plate and the bore.
  • the free flow cross sections in this case increase steadily in the flow direction, so that the velocity of the medium flowing through in the valve seat zone lowest is, so no throttling takes place, whereby the valve seat and the shut-off are spared.
  • a differential pressure valve is provided, in particular for an expansion element of an automotive air conditioning system, for controlling a flow of a fluid in response to a pressure difference, which is applied between the high pressure side and the suction pressure side of the differential pressure valve, wherein the differential pressure valve, a throttle element which regulates the flow through a throttle point, and a spring biasing the throttle element in the closing direction, a throttle element is provided which extends over at least two throttle points and the flow of the fluid through the throttle bodies, between which a pressure chamber is formed controls.
  • the effective throttle cross-section is disproportionately larger in this case with large pressure differences than at small pressure differences, so that at maximum power requirement and sufficient fluid can flow through the differential pressure valve.
  • This differential pressure valve behaves at low differential pressures according to conventional differential pressure valves, but also allows for high pressure differences due to the disproportionately large flow cross-section and a larger. Cooling capacity.
  • the characteristic curve of the effective throttle cross section above the differential pressure in this case has a kink, particularly preferably at a relatively high differential pressure, particularly preferably at a value of 70 to 90%, most preferably at 75 to 85% of the at given operating conditions maximum occurring differential pressure. It is only slightly more expensive than conventional differential pressure valves. In particular, it is also possible to form the valvesregelnd. This means that the valve can open and close automatically depending on the pressure difference applied to it. It is therefore not necessary to resort to an external control, which controls, for example, a control valve, a pilot valve, a servomotor or the like. This can bring corresponding cost advantages,
  • the throttle element is preferably formed in one piece. This increases the reliability in an advantageous manner.
  • the throttle element is preferably a valve needle extending over at least two throttle points. This preferably has, at least one region with a changing cross-section, in particular at least one conical region, which cooperates with a throttle opening.
  • the spring is preferably arranged spatially between two throttle points. This allows a simple centering of the throttle element. However, the spring can also be mounted high or suction pressure side.
  • a pressure chamber is preferably formed.
  • the spring which exerts the spring force on the throttle element, arranged in this pressure chamber, but it can also be arranged outside with a correspondingly long configuration of the throttle element.
  • the fluid can pass exclusively through the two throttle points in or out of the pressure chamber. If, however, a minimum flow must always be fixed during circulation of the fluid, then - as an alternative to an always present, small opening in the region of Throttling - be provided a bypass of correspondingly small diameter and / or a high-pressure side intake and suction pressure side outlet with a fixed diameter.
  • the valve stem of the throttle element at a position which is arranged in each position of the throttle element within the pressure chamber, a cross-sectional enlargement, particularly preferably in the radial direction with respect to the longitudinal extension of the valve stem extending paragraph, wherein the cross-sectional area of the valve stem at the first throttle point is smaller than the cross-sectional area of the valve stem at the second orifice, and the diameter of the valve stem increases from the first orifice to the second orifice.
  • the ring surface supports the opening action against the closing force of the spring at particularly high pressure differences, so that the characteristic according to the invention are supported, i.
  • the differential pressure valve allows for high pressure differences due to the disproportionately large flow cross-section and a correspondingly large cooling capacity.
  • the cross-sectional enlargement is preferably at most + 50%, in particular 10 to 50%, particularly preferably 20 to 50%, particularly preferably 30 to 45%, of the end face of the valve stem in the region of the first throttle point.
  • a differential pressure valve 1 serving as an expansion element in a motor vehicle air conditioning system has a first throttle point 2a and a second throttle point 2b for controlling the refrigerant flow rate (refrigerant R744), both throttle points 2a and 2b projecting through or into the corresponding throttle openings or valve seats as Throttle element serving valve pin 3 are formed.
  • the valve pin 3 is formed substantially in one piece and has a cylindrical end in the region of the first throttle point 2a, so that an annular gap is formed, and a conical head 4 in the region of the second throttle point 2b, so that the conventional variable valve corresponding Slit is formed on.
  • a spring 5 is attached with its one end in a region between the two throttle bodies 2a, 2b, which exerts a closing force on the valve pin 3, so that in the absence or low pressure difference at least the second throttle opening through the valve pin 3 in Consequence of an at least substantially fluid-tight contact of the corresponding conical region of the valve pin 3 is closed at the valve seats (see highly schematic representation of Fig. 1).
  • the closed state of the differential pressure valve 1 thus protrudes the Ventilstififi 3 with its head 4 opposite the cylindrical end into the first throttle opening to form a small annular gap, and the conical portion of the head 4 is located at the second throttle opening.
  • a pressure chamber 6 is formed, in which also the spring 5 is arranged, which centers the valve pin 3 and biases in the closing direction.
  • the pressure chamber 6 is also referred to as the medium-pressure side MD on account of the mean pressure prevailing here as a rule, compared to the high-pressure-side and suction-pressure-side pressure.
  • differential pressure throttle 1 the differential pressure between the high pressure side HD and medium pressure side MD as the differential pressure throttle 1 and the differential pressure between the medium pressure side MD and suction pressure side SD is referred to as differential pressure throttle 2.
  • the spring 5 completely closes the second throttle 2 b at standstill, while the first throttle 2 a is slightly opened, so that the pressure in the pressure chamber 6 corresponds to the high-pressure side pressure.
  • the mean pressure in the pressure chamber 6 adjusts in a range between the input-side high pressure and the output-side suction pressure, wherein the pressure curve strongly depends on the fluid flow, so that in the present case it ranges up to approximately 70 bar Pressure difference between high-pressure side HD and suction pressure side SD is about constant, but then increases linearly - compared to the increase on the high-pressure side HD at a constant pressure on the suction pressure side SD significantly steeper.
  • the curves of the differential pressures throttle 1 and 2 at about 70 bar differential pressure between high pressure side HD and suction pressure side SD also have a kink, the differential pressure throttle 1 then drops sharply, while the differential pressure throttle 2 increases sharply.
  • Values between 50 bar and 80 bar, in particular 50, 55, 60, 65, 70, 75 and 80 bar are customary in this context.
  • a differential pressure valve 1 serving as an expansion element in a motor vehicle air conditioning system is provided for regulating the refrigerant flow rate (refrigerant R744) which, according to the first exemplary embodiment, has a first throttle point 2a and a second throttle point 2b, wherein both throttle bodies 2a and 2b are formed by or in the corresponding throttle openings or valve seats projecting, serving as a throttle element, biased by a spring 5 in the closing direction of the valve pin 3.
  • refrigerant flow rate refrigerant R744
  • valve pin 3 in the closed state approximately centrally disposed in the pressure chamber 6, a cross-sectional enlargement 7, wherein the facing in the direction of the high pressure side HD annular surface is present slightly smaller than the circular end face of the valve pin 3 on the high pressure side HD ,
  • This annular surface serves as additional thrust surface to the opening effect of the fluid flow to increase counter to the spring force of the spring 5 and is only in the so-called "boost region", so when the pressure in the pressure chamber 6 (in Fig. 3 referred to as mean pressure) much greater than the pressure on the suction pressure side SD (in Fig. 3rd referred to as suction pressure), ie at very large (total) pressure differences.
  • the suction pressure side of the valve pin 3 is conical in accordance with the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Lift Valve (AREA)

Abstract

Die Erfindung betrifft ein Differenzdruckventil (1), insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite (HD) und der Saugdruckseite (SD) des Differenzdruckventils (1) anliegt, wobei das Differenzdruckventil ein Drosselelement (3), das den Durchfluss durch eine Drosselstelle (2a, 2b) regelt, und eine das Drosselelement (3) in Schließrichtung vorspannende Feder (5) aufweist, ein Drosselelement (3) vorgesehen ist, das derart ausgebildet ist, dass es sich über mindestens zwei Drosselstellen (2a, 2b) erstreckt und den Durchfluss des Fluids durch die Drosselstellen (2a, 2b), zwischen denen eine Druckkammer (6) ausgebildet ist, regelt, und wobei der effektive Drosselquerschnitt bei großen Druckdifferenzen überproportional größer als bei kleinen Druckdifferenzen ist.

Description

  • Die Erfindung betrifft ein Differenzdruckventil (Delta-P-Ventil), insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, gemäß dem Oberbegriff des Anspruchs 1.
  • In Fig. 7 ist ein bekanntes Differenzdruckventil 101 als Prinzipskizze dargestellt. Hierbei wird der Durchfluss von Kältemittel durch eine Drosselstelle 102 mit Hilfe eines Ventilstifts 103 mit einem vorliegend konischen Kopf 104 in Verbindung mit einer in der Zeichnung schematisch angedeuteten Feder 105 geregelt. Die Drücke in den durch die Drosselstelle 102 getrennten Räumen oder Strömungskanälen sind durch HD (Hochdruckseite) und SD (Saugdruckseite) bezeichnet, wobei die normale Strömungsrichtung von der Hochdruckseite HD zur Saugdruckseite SD verläuft. Der Kopf 104 ist hierbei saugdruckseitig angeordnet und der Schaft des Ventilstifts 103 durchdringt die Drosselöffnung. Die Feder 105 ist gemäß der Darstellung von Fig. 7 hochdruckseitig angeordnet, jedoch sind auch saugdruckseitige Anordnungen bekannt.
  • Nachteilig bei diesem bekannten Differenzdruckventil ist, dass ein nahezu linearer Zusammenhang zwischen dem freien Strömungsquerschnitt und der anliegenden Druckdifferenz besteht, welcher nicht in allen Anwendungsfällen erwünscht ist.
  • Aus der DE 102 19 667 A1 ist ein ferner ein Expansionsventil mit zwei Drosselstellen und einer elektronischen Regelung bekannt, das insbesondere für mit CO2 als Kältemittel betriebene Fahrzeugklimaanlagen geeignet ist. Das Ventil weist ein Ventilgehäuse mit einer Zuflussöffnung und einer Abflussöffnung, einer elektrisch betätigten Einrichtung zum Verschieben eines Ventilglieds, insbesondere in Öffnungsrichtung, in Bezug auf einen zwischen Zuflussöffnung und Abflussöffnung angeordneten, eine Durchflussöffnung für das Kältemittel aufweisenden Ventilsitz und einer in Gegenrichtung wirkenden Rückstelleinrichtung, insbesondere einer Rückstellfeder, wobei zur Verringerung der Baugröße und des zur Betätigung erforderlichen Stromes zusätzlich zu der von Ventilglied und Ventilsitz gebildeten ersten Drosselstelle mindestens eine weitere, mit der ersten Drosselstelle in Reihe angeordnete Drosselstelle zwischen der Zuflussöffnung und der Abflussöffnung des Expansionsventils vorgesehen ist, deren Durchtrittsquerschnitt gekoppelt mit dem Durchtrittsquerschnitt der ersten Drosselstelle verstellbar ist.
  • Die Funktionsweise des bekannten Drosselventils ist Folgende:
  • Bei geschlossenem Expansionsventil, das heißt, bei auf dem Ventilsitz aufsitzendem Kolben ist die als Hauptdrossel wirkende zweite Drosselstelle geschlossen. Die als Vordrossel wirkende erste Drosselstelle zwischen Mündung des Zuflusskanals und Mantelfläche des Kolbens ist dagegen geringfügig geöffnet. Kältemittel hohen Drucks strömt daher durch die Zuflussöffnung und den Zuflusskanal durch die erste Drosselstelle und gelangt in den ersten Kolbenraum. Von hier strömt das Kältemittel über die Drosselbohrung in den zweiten Kolbenraum, Da bei geschlossenem Expansionsventil das Regelventil geschlossen ist, kann das Kältemittel aus dem Kolbenraum nicht abfließen, so dass sich hier bei geschlossenem Expansionsventil der gleiche Druck aufbaut wie im ersten Kolbenraum und vor der zweiten Drosselstelle. Auf der anderen Seite der ersten Drosselstelle, also im Abflusskanal, herrscht niedriger Druck (Saugdruckseite).
  • Wird nun das Expansionsventil durch Öffnen des Regelventils geöffnet, so fließt Kältemittel aus dem zweiten Kolbenraum über das Regelventil in den Abflusskanal und von dort aus dem Expansionsventil heraus. Auf Grund der Abnahme des Drucks im zweiten Kolbenraum überwiegt der Druck im ersten Kolbenraum. Sobald diese Differenz so groß ist, dass die Kraft der Feder überwunden wird, verschiebt sich der Kolben im Sinne einer Verkleinerung des zweiten Kolbenraums. Das heißt, der Kolben hebt vom Ventilsitz ab und gibt die erste Drosselstelle frei. Nun fließt das Kältemittel über die erste Drosselstelle in den Abflusskanal und aus dem Expansionsventil heraus. Damit ergibt sich ein Druckgefälle zwischen Eingangsdruck (Hochdruckseite) und dem Druck im ersten Kolbenraum, und Ausgangsdruck. Der Druck im zweiten Kolbenraum liegt zwischen dem Druck im ersten Kolbenraum und dem Ausgangsdruck, so dass sich insgesamt ein Druckgefälle ergibt. Diese Druckgefälle wird über das Regelventil kontrolliert.
  • Ein derartiges Ventil ist relativ kompliziert aufgebaut und lässt noch Wünsche offen, unter anderem in Hinblick auf die Durchflusscharakteristik.
  • Aus der DE 31 41 358 A1 ist ein Absperr- und Drosselventil mit einem hohen Stellverhältnis bekannt. Gemäß dem zweiten hierin beschriebenen Ausführungsbeispiel ist ein zweistufiges Ventil vorgesehen, wobei der zweistufige Ventilsitz aus einem rohrförmigen Bauteil besteht, an dessen einem Ende ein erster Ventilsitz und an dessen anderem Ende ein zweiter Ventilsitz ausgebildet ist, der in das Rohrstück eingepasst ist. Das Stellorgan trägt an seinem freien Ende einen Ventilkörper, der in einer Führungsbuchse eines seitlichen Anschlussstutzens geführt ist. Der erste Ventilsitz wirkt mit einer an dem Ventilkörper ausgebildeten, ersten Kugelfläche zusammen, die sich über ca. 120° erstreckt. Der zweite Ventilsitz hat eine seinen Durchtrittsquerschnitt bestimmende Durchbohrung, die in einer ringförmigen Anlagefläche endet, von welcher eine Verlängerung mit einer gegenüber der Durchbohrung erweiterten Bohrung ausgeht. Am Ventilkörper ist eine zweite Kugelfläche ausgebildet, die sich über einen Winkel von ca. 300° erstreckt; in der geschlossenen Stellung des Ventüs verläuft die Verlängerung über die Mitte der zweiten Kugelfläche hinweg und bestimmt mit dieser zusammen einen Drosselspalt. Die erste und zweite Kugelfläche sind durch ein Übergangsstück verbunden, wobei der ganze Ventilkörper aus einem Stück gebildet sein kann. An die Verlängerung schließt sich ein erweiterter, zwischen den beiden Ventilsitzen ausgebildeter Zwischenraum (Druckkammer) an. Der Durchfluss in Abhängigkeit von der Öffnung des Ventils durch dieses zweistufige Ventü weist keine aprupten Änderungen auf.
  • Aus der DE 520 987 A ist ein mehrstufiges Tellerventil für kompressible Medien mit Umlenkungen in Zwischenräumen bekannt, bei dem in der Schließstellung des Ventils eine Überdeckung, in der ersten Phase der Eröffnung eine Drosselzone und in der Offenstellung einen ununterbrochenen, energievermindemden Strömungsweg vorgesehen ist, wobei die Strömungsenergie im geöffneten Zustand durch mehrfache Ablenkung in dem oder den labyrinthartigen Zwischenräumen vermindert wird. Am Ventilschaft ist hierbei am Ende ein tellerartiger Absperrkörper, der mit einem Ventilsitz zusammenwirken kann, und - entgegen der Strömungsrichtung des Mediums etwas beabstandet hiervon - mindestens eine zylindrische Platte vorgesehen, deren Mantelfläche in der Schließstellung mit einer zylindrischen Bohrung des Ventilgehäuses eine Überdeckung bildet, so dass bei der in der ersten Phase der Eröffnung gedrosselte Durchtritt des strömenden Mediums nicht im Sitzbereich des nachfolgend angeordneten Absperrkörpers, sondern zwischen der Platte und der Bohrung erfolgt. Die freien Strömungsquerschnitte nehmen hierbei in der Strömungsrichtung stetig zu, so dass die Geschwindigkeit des durchströmenden Mediums in der Ventilsitzzone am geringsten ist, also keine Drosselung stattfindet, wodurch der Ventilsitz und der Absperrkörper geschont werden.
  • Es ist Aufgabe der Erfindung, ein verbessertes Ventil zur Verfügung zu stellen.
  • Diese Aufgabe wird gelöst durch ein Differenzdruckventil mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Erfindungsgemäß ist ein Differenzdruckventil vorgesehen, insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite und der Saugdruckseite des Differenzdruckventils anliegt, wobei das Differenzdruckventil ein Drosselelement, das den Durchfluss durch eine Drosselstelle regelt, und eine das Drosselelement in Schließrichtung vorspannende Feder aufweist, ein Drosselelement vorgesehen ist, welches sich mindestens über zwei Drosselstellen erstreckt und den Durchfluss des Fluids durch die Drosselstellen, zwischen denen eine Druckkammer ausgebildet ist, regelt. Der effektive Drosselquerschnitt ist hierbei bei großen Druckdifferenzen überproportional größer als bei kleinen Druckdifferenzen, so dass bei maximalem Leistungsbedarf auch ausreichend viel Fluid das Differenzdruckventil durchströmen kann. Dieses Differenzdruckventil verhält sich dabei bei geringen Differenzdrücken entsprechend herkömmlichen Differenzdruckventilen, ermöglicht jedoch bei hohen Druckdifferenzen auf Grund des überproportional großen Strömungsquerschnitts auch eine größere . Kälteleistung. Der Kennlinienverlauf des effektiven Drosselquerschnitts über dem Differenzdruck weist hierbei einen Knick auf, insbesondere bevorzugt bei einem relativ hohen Differenzdruck, insbesondere bevorzugt bei einem Wert von 70 bis 90%, ganz besonders bevorzugt bei 75 bis 85% des bei den gegebenen Betriebsbedingungen maximal auftretenden Differenzdruckes. Dabei ist es nur unwesentlich teurer als herkömmliche Differenzdruckventile. Insbesondere ist es auch möglich das Ventil selbstregelnd auszubilden. D. h., dass Ventil kann sich in Abhängigkeit der an ihm anliegenden Druckdifferenz selbsttätig öffnen und schließen. Es ist also nicht erforderlich, auf eine externe Regelung, die beispielsweise ein Regelventil, ein Pilotventil, einen Stellmotor oder ähnliches steuert, zurückzugreifen. Dies kann entsprechende Kostenvorteile mit sich bringen,
  • Das Drosselelement ist bevorzugt einstückig ausgebildet. Dies erhöht die Betriebssicherheit auf vorteilhafte Weise.
  • Beim Drosselelement handelt es sich bevorzugt um eine sich über mindestens zwei Drosselstellen erstreckende Ventilnadel. Diese weist vorzugsweise, zumindest einen Bereich mit sich änderndem Querschnitt, insbesondere zumindest einen konisch ausgebildeten Bereich auf, welcher mit einer Drosselöffnung zusammenwirkt.
  • Die Feder ist vorzugsweise räumlich zwischen zwei Drosselstellen angeordnet. Dies ermöglicht eine einfache Zentrierung des Drosselelements. Die Feder kann jedoch auch hoch- oder saugdruckseitig angebracht sein.
  • Zwischen zwei Drosselstellen ist bevorzugt eine Druckkammer ausgebildet. Bevorzugt ist die Feder, welche die Federkraft auf das Drosselelement ausübt, in dieser Druckkammer angeordnet, jedoch kann sie bei entsprechend langer Ausgestaltung des Drosselelements auch außerhalb angeordnet sein.
  • Dabei kann vorzugsweise das Fluid ausschließlich über die beiden Drosselstellen in oder aus der Druckkammer heraus gelangen- Soll bei Umwälzen des Fluids jedoch stets ein Mindestdurchfluss fest vorgegeben sein, so kann - alternativ zu einer stets vorhandenen, kleinen Öffnung im Bereich der Drosselstellen - auch ein Bypass von entsprechend kleinem Durchmesser und/oder ein hochdruckseitiger Ein- und saugdruckseitiger Auslass mit festem Durchmesser vorgesehen sein.
  • Bevorzugt weist der Ventilschaft des Drosselelements an einer Stelle, die in jeder Stellung des Drosselelements innerhalb der Druckkammer angeordnet ist, eine Querschnittsvergrößerung, insbesondere bevorzugt einen in radialer Richtung bezüglich der Längserstreckung des Ventilschafts verlaufenden Absatz, auf, wobei die Querschnittsfläche des Ventilschafts an der ersten Drosselstelle kleiner als die Querschnittsfläche des Ventilschafts an der zweiten Drosselstelle ist, und sich der Durchmesser des Ventilschafts von der ersten Drosselstelle zur zweiten Drosselstelle vergrößert. Die Ringfläche unterstützt die Öffnungswirkung entgegen der Schließkraft der Feder bei besonders hohen Druckdifferenzen, so dass die erfindungsgemäße Charakteristik unterstützt werden, d.h. das Differenzdruckventil ermöglicht bei hohen Druckdifferenzen auf Grund des überproportional großen Strömungsquerschnitts auch eine entsprechend große Kälteleistung.
  • Die Querschnittsvergrößerung beträgt vorzugsweise maximal +50%, insbesondere 10 bis 50%, besonders bevorzugt 20 bis 50%, insbesondere bevorzugt 30 bis 45%, der Stirnfläche des Ventilschafts im Bereich der ersten Drosselstelle.
  • Im Folgenden wird die Erfindung anhand zweier Ausführungsbeispiele unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen:
  • Fig. 1
    eine Prinzipskizze eines erfindungsgemäßen Differenzdruckventils gemäß dem ersten Ausführungsbeispiel bei wirksamer erster Drossel,
    Fig. 2
    eine Prinzipskizze des Differenzdruckventils von Fig. 1 bei geöffneter erster Drossel,
    Fig. 3
    ein Diagramm zur Verdeutlichung der einzelnen Drücke über dem Differenzdruck (Hochdruck - Saugdruck),
    Fig. 4
    ein Diagramm des effektiven Drosselquerschnitts über dem Differenzdruck,
    Fig. 5
    eine Prinzipskizze eines erfindungsgemäßen Differenzdruckventils gemäß dem zweiten, besonders bevorzugten Ausführungsbeispiel in der geschlossenen Stellung,
    Fig. 6
    eine Prinzipskizze des Differenzdruckventils von Fig. 5 in geöffneter Stellung, und
    Fig. 7
    eine Prinzipskizze eines herkömmlichen Differenzdruckventils mit einer Drossel.
  • Ein als Expansionsorgan in einer Kraftfahrzeug-Klimaanlage dienendes Differenzdruckventil 1 weist zur Regelung des Kältemitteldurchflusses (Kältemittel vorliegend R744) eine erste Drosselstelle 2a und eine zweite Drosselstelle 2b auf, wobei beide Drosselstellen 2a und 2b durch bzw. in die entsprechenden Drosselöffnungen oder Ventilsitze ragenden, als Drosselelement dienenden Ventilstift 3 gebildet werden.
  • Der Ventilstift 3 ist im Wesentlichen einstückig ausgebildet und weist ein zylindrisches Ende im Bereich der ersten Drosselstelle 2a, so dass ein Ringspalt gebildet wird, und einen konischen Kopf 4 im Bereich der zweiten Drosselstelle 2b, so dass ein dem herkömmlichen variablen Ventil entsprechender Spalt gebildet wird, auf. Am Schaft des Ventilstifts 3 ist in einem Bereich zwischen den beiden Drosselstellen 2a, 2b eine Feder 5 mit ihrem einen Ende angebracht, welche eine Schließkraft auf den Ventilstift 3 ausübt, so dass bei fehlender oder geringer Druckdifferenz zumindest die zweite Drosselöffnung durch den Ventilstift 3 in Folge einer zumindest im Wesentlichen fluiddichten Anlage des entsprechenden konischen Bereiches des Ventilstifts 3 an den Ventilsitze geschlossen ist (vgl. stark schematisierte Darstellung von Fig. 1). Im geschlossenen Zustand des Differenzdruckventils 1 ragt somit der Ventilstififi 3 mit seinem dem Kopf 4 gegenüberliegenden zylinderförmigen Ende in die erste Drosselöffnung unter Bildung eines kleinen Ringspalts hinein, und der konische Bereich des Kopfes 4 liegt an der zweiten Drosselöffnung an.
  • Zwischen den beiden Drosselstellen 2a und 2b ist eine Druckkammer 6 ausgebildet, in welcher auch die Feder 5 angeordnet ist, welche den Ventilstift 3 zentriert und in Schließrichtung vorspannt. Auf die Druckkammer 6 wird im Folgenden auf Grund des hierin in der Regel herrschenden mittleren Drucks, verglichen mit dem hochdruckseitigen und saugdruckseitigen Druck, auch als Mitteldruckseite MD Bezug genommen.
  • Auf Grund der Schließkraft der Feder 5 ergeben sich bei konstantem Saugdruck auf der Saugdruckseite SD und ansteigendem Hochdruck auf der Hochdruckseite HD die in Fig. 3 dargestellten Differenzdrücke, wobei der Differenzdruck zwischen Hochdruckseite HD und Mitteldruckseite MD als Differenzdruck Drossel 1 und der Differenzdruck zwischen Mitteldruckseite MD und Saugdruckseite SD als Differenzdruck Drossel 2 bezeichnet ist.
  • Wie zuvor erwähnt, schließt die Feder 5 im Stillstand die zweite Drosselstelle 2b vollständig, während die erste Drosselstelle 2a leicht geöffnet ist, so dass der Druck in der Druckkammer 6 dem hochdruckseitigen Druck entspricht.
  • Steigt bei Betrieb die Druckdifferenz zwischen Saugdruckseite SD und Hochdruckseite HD, so verschiebt sich der Ventilstift 3 entgegen der Federkraft in Richtung Saugdruckseite SD und die zweite Drosselstelle 2b öffnet sich allmählich. Da jedoch bei relativ geringer Druckdifferenz der freigegebene Strömungsquerschnitt der zweiten Drosselstelle 2b kleiner ist als derjenige der ersten Drosselstelle 2a, ist der Druck in der Druckkammer 6 näher am hochdruckseitig herrschenden Druck als am saugdruckseitigen Druck.
  • Mit weiter steigender Druckdifferenz übersteigt der freigegebene Strömungsquerschnitt der zweiten Drosselstelle 2b allmählich den freigegebenen Strömungsquerschnitt der ersten Drosselstelle 2a, wodurch der Druck in der Druckkammer 6 stagniert oder gar leicht abfällt.
  • Bei einer hohen Druckdifferenz ist der Ventilstift 3 so weit zur Saugdruckseite SD verschoben, dass die erste Drosselstelle 2a nahezu schlagartig einen deutlich größeren Strömungsquerschnitt freigibt, da das zylinderförmige Ende des Ventilstifts 3 die Drosselöffnung verlassen hat. Der Druck in der Druckkammer 6 steigt dann schlagartig an, was zur Folge hat, dass der Kältemittelstrom des gesamten Ventils ebenfalls stark ansteigt.
  • Wie aus Fig. 3 ersichtlich ist, stellt sich der Mitteldruck in der Druckkammer 6 in einem Bereich zwischen dem eingangsseitigen Hochdruck und dem ausgangsseitigen Saugdruck ein, wobei der Druckverlauf stark von dem Fluiddurchfluss abhängt, so dass er vorliegend in einem Bereich bis ca. 70 bar Druckdifferenz zwischen Hochdruckseite HD und Saugdruckseite SD etwa konstant ist, anschließend aber linear stark ansteigt - im Vergleich zum Anstieg auf der Hochdruckseite HD bei konstantem Druck auf der Saugdruckseite SD deutlich steiler. Entsprechend weisen die Verläufe der Differenzdrücke Drossel 1 und 2 bei etwa 70 bar Differenzdruck zwischen Hochdruckseite HD und Saugdruckseite SD ebenfalls einen Knick auf, wobei der Differenzdruck Drossel 1 danach stark abfällt, während der Differenzdruck Drossel 2 stark ansteigt. Üblich sind in diesem Zusammenhang Werte zwischen 50 bar und 80 bar, insbesondere 50, 55, 60, 65, 70, 75 und 80 bar.
  • Entsprechend dem (Gesamt-)Differenzdruck ergibt sich für den effektiven Drosselquerschnitt ein nichtlinearer Verlauf, wie aus Fig. 4 zu entnehmen ist. Vielmehr vergrößert sich der Drosselquerschnitt ab etwa 70 bar Differenzdruck in Abhängigkeit von dem Differenzdruck deutlich stärker als zuvor (Knick in der Kennlinie). Diese Charakteristik ermöglicht bei hohem Bedarf an Kältemitteldurchsatz, also im Hochlastbetrieb, eine deutlich verbesserte Kälteleistung. In Fig. 4 sind ferner eine Vielzahl optimaler Betriebspunkte (COP = Coefficient of performance) durch Kreuze dargestellt. Wie aus dem Verlauf der Kennlinie ersichtlich, liegt diese im entsprechenden Bereich.
  • Gemäß dem zweiten, in den Figuren 5 und 6 dargestellten Ausführungsbeispiel ist ein als Expansionsorgan in einer Kraftfahrzeug-Klimaanlage dienendes Differenzdruckventil 1 zur Regelung des Kältemitteldurchflusses (Kältemittel vorliegend R744) vorgesehen, welches - entsprechend dem ersten Ausführungsbeispiel - eine erste Drosselstelle 2a und eine zweite Drosselstelle 2b aufweist, wobei beide Drosselstellen 2a und 2b durch bzw. in die entsprechenden Drosselöffnungen oder Ventilsitze ragenden, als Drosselelement dienenden, durch eine Feder 5 in Schließrichtung vorgespannten Ventilstift 3 gebildet werden. Die in den Figuren 3 und 4 dargestellten Kennlinien gelten annähernd, d.h. abgesehen von sehr geringen Abweichungen, auch für das zweite Ausführungsbeispiel.
  • Im Unterschied zum ersten Ausführungsbeispiel weist der Ventilstift 3, im geschlossenen Zustand etwa mittig in der Druckkammer 6 angeordnet, eine Querschnittsvergrößerung 7 auf, wobei die in Richtung der Hochdruckseite HD weisende Ringfläche vorliegend etwas kleiner als die kreisförmige Endfläche des Ventilstifts 3 auf der Hochdruckseite HD ist. Diese Ringfläche dient aus zusätzliche Schubfläche, um die Öffnungswirkung des Fluidstroms entgegen der Federkraft der Feder 5 zu vergrößern und wird nur im sogenannten "Boost-Bereich", also wenn der Druck in der Druckkammer 6 (in Fig. 3 als Mitteldruck bezeichnet) viel größer als der Druck auf der Saugdruckseite SD (in Fig. 3 als Saugdruck bezeichnet) ist, also bei sehr großen (Gesamt-) Druckdifferenzen. Die Saugdruckseite des Ventilstifts 3 ist entsprechend dem ersten Ausführungsbeispiel konisch ausgebildet.

Claims (10)

  1. Differenzdruckventil, insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite (HD) und der Saugdruckseite (SD) des Differenzdruckventils (1) anliegt, wobei das Differenzdruckventil ein Drosselelement (3), das den Durchfluss durch eine Drosselstelle (2a, 2b) regelt, und eine das Drosselelement (3) in Schließrichtung vorspannende Feder (5) aufweist, ein Drosselelement (3) vorgesehen ist, und wobei das Drosselelement (3) derart ausgebildet ist, dass es sich über mindestens zwei Drosselstellen (2a, 2b) erstreckt und den Durchfluss des Fluids durch die Drosselstellen (2a, 2b), zwischen denen eine Druckkammer (6) ausgebildet ist, regelt, dadurch gekennzeichnet, dass der effektive Drosselquerschnitt bei großen Druckdifferenzen überproportional größer als bei kleinen Druckdifferenzen ist.
  2. Differenzdruckventil nach Anspruch 1, dadurch gekennzeichnet, dass die Kennlinie des effektiven Drosselquerschnitts über dem Differenzdruck zwischen Hochdruck (HD) und Saugdruck (SD) einen Knick aufweist.
  3. Differenzdruckventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Drosselelement (3) eine sich über mindestens zwei Drosselstellen (2a, 2b) erstreckende Ventilnadel ist.
  4. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Drosselelement (3) zumindest einen Bereich (4) mit sich ändemden Querschnitt, insbesondere zumindest einen konisch ausgebildeten Bereich (4) aufweist.
  5. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Ende des Drosselelements (3) zylinderförmig ausgebildet ist und zusammen mit einer kreisförmigen Drosselöffnung eine der beiden Drosseistehen (2a) bildet, wobei der Außendurchmesser des Drosselelements (3) im Bereich der Drosselöffnung kleiner als der Innendurchmesser der Drosselöffnung ist, so dass auch im geschlossenen Zustand des Differenzdruckventils (1) stets ein Ringspalt im Bereich der Drosselstelle (2a) offen ist.
  6. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilschaft des Drosselelements (3) an einer Stelle, die in jeder Stellung des Drosselelements (3) innerhalb der Druckkammer (6) angeordnet ist, eine Querschnittsvergrößerung (7), insbesondere einen in radialer Richtung bezüglich der Längserstreckung des Ventilschafts verlaufenden Absatz, aufweist, wobei die Querschnittsfläche des Ventilschafts an der ersten Drosselstelle (2a) kleiner als die Querschnittsfläche des Ventilschafts an der zweiten Drosselstelle (2b) ist, und sich der Durchmesser des Ventilschafts von der ersten Drosselstelle (2) zur zweiten Drosselstelle (2b) vergrößert.
  7. Differenzdruckventil nach Anspruch 6, dadurch gekennzeichnet, dass die Querschnittsvergrößerung (7) maximal +50% der Stirnfläche des Ventilschafts im Bereich der ersten Drosselstelle (2a) beträgt.
  8. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Feder (5) räumlich zwischen zwei Drosselstellen (2a, 2b) angeordnet ist.
  9. Differenzdruckventil nach Anspruch 8, dadurch gekennzeichnet, dass das Fluid ausschließlich über die beiden Drosselstellen (2a, 2b) in oder aus der Druckkammer heraus gelangen kann.
  10. Verwendung eines Differenzdruckventil nach einem der vorhergehenden Ansprüche als Expansionsorgan einer Kraftfahrzeug-Klimaanlage.
EP06009248A 2005-05-12 2006-05-04 Differenzdruckventil Expired - Fee Related EP1722143B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005022776 2005-05-12

Publications (2)

Publication Number Publication Date
EP1722143A1 true EP1722143A1 (de) 2006-11-15
EP1722143B1 EP1722143B1 (de) 2008-10-22

Family

ID=36808726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06009248A Expired - Fee Related EP1722143B1 (de) 2005-05-12 2006-05-04 Differenzdruckventil

Country Status (2)

Country Link
EP (1) EP1722143B1 (de)
DE (1) DE502006001866D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910601A1 (fr) * 2006-12-20 2008-06-27 Valeo Systemes Thermiques Dispositif de detente pour circuit de climatisation
EP2105684A2 (de) 2008-03-26 2009-09-30 Fujikoki Corporation Druckregelventil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472275A (en) * 1967-07-28 1969-10-14 Baker Oil Tools Inc Flow regulator apparatus
US3880399A (en) * 1974-04-01 1975-04-29 Fisher Controls Co Multistage noise reducing flow control valve
JPS5846277A (ja) * 1981-09-12 1983-03-17 Hidekuni Yokota 可変定流量弁装置
US4634095A (en) * 1985-07-26 1987-01-06 Taylor Julian S Multiple stage choke valve
DE3741120A1 (de) * 1987-12-04 1989-06-15 Gestra Ag Drosselventil
EP1353254A2 (de) * 2002-04-10 2003-10-15 Flow Design, Inc. Durchflussregelungsventil und Verfahren zur Regelung des Durchflusses einer Flüssigkeit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472275A (en) * 1967-07-28 1969-10-14 Baker Oil Tools Inc Flow regulator apparatus
US3880399A (en) * 1974-04-01 1975-04-29 Fisher Controls Co Multistage noise reducing flow control valve
JPS5846277A (ja) * 1981-09-12 1983-03-17 Hidekuni Yokota 可変定流量弁装置
US4634095A (en) * 1985-07-26 1987-01-06 Taylor Julian S Multiple stage choke valve
DE3741120A1 (de) * 1987-12-04 1989-06-15 Gestra Ag Drosselventil
EP1353254A2 (de) * 2002-04-10 2003-10-15 Flow Design, Inc. Durchflussregelungsventil und Verfahren zur Regelung des Durchflusses einer Flüssigkeit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 128 (M - 220) 3 June 1983 (1983-06-03) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910601A1 (fr) * 2006-12-20 2008-06-27 Valeo Systemes Thermiques Dispositif de detente pour circuit de climatisation
EP2105684A2 (de) 2008-03-26 2009-09-30 Fujikoki Corporation Druckregelventil
EP2105684A3 (de) * 2008-03-26 2010-08-25 Fujikoki Corporation Druckregelventil

Also Published As

Publication number Publication date
DE502006001866D1 (de) 2008-12-04
EP1722143B1 (de) 2008-10-22

Similar Documents

Publication Publication Date Title
EP0645343B1 (de) Pilotgesteuertes Ventil für Kraftfahrzeug-Tankanlagen
EP0976013B1 (de) Druckregelventil
EP1701042B1 (de) Hydraulische Steueranordnung
EP0902223A1 (de) Überströmventil
DE102009012174A1 (de) Drosselanordnung zur Verwendung in einer Fluiddruckvorrichtung
DE10019254C2 (de) Drucksteuerventil
DE102007010213B3 (de) Elektromagnetisches Regelventil und Verfahren zu dessen Steuerung
DE102013214861A1 (de) Verstellvorrichtung für eine hydrostatische Pumpe und hydrostatische Pumpe
DE102007005465A1 (de) Elektrisch ansteuerbares Ventil
EP1722143B1 (de) Differenzdruckventil
EP1090240B1 (de) Druckbegrenzungsventil
EP1812738A1 (de) Ventil
DE9310932U1 (de) Elektrohydraulische Steuervorrichtung
DE10219667A1 (de) Expansionsventil
WO2003087585A1 (de) Hydraulische steueranordnung in load-sensing technik
DE102005056029A1 (de) Hydrauliksystem mit wenigstens einem Hydraulikventil zum Ansteuern einer Komponente
EP2597337A2 (de) Hydraulikanordnung
EP1452744B1 (de) Hydraulische Steueranordnung
DE102006021008A1 (de) Differenzdruckventil
DE19505333C2 (de) Hydraulikantrieb
DE102022208306A1 (de) Druckwaagenanordnung mit Flow-Cut-Funktion
DE202005001417U1 (de) Hydraulische Steuervorrichtung
DE2855018C2 (de) Vorgesteuertes Zweiwege-Druckminderventil
EP1552140B1 (de) Volumenstromregelventil
WO2024088634A1 (de) Ventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070515

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20070621

R17C First examination report despatched (corrected)

Effective date: 20070717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006001866

Country of ref document: DE

Date of ref document: 20081204

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090519

Year of fee payment: 4

26N No opposition filed

Effective date: 20090723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100602

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100504

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001866

Country of ref document: DE

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201