EP1719318A1 - Navigation processing in host based satellite positioning solution methods and systems - Google Patents

Navigation processing in host based satellite positioning solution methods and systems

Info

Publication number
EP1719318A1
EP1719318A1 EP04709100A EP04709100A EP1719318A1 EP 1719318 A1 EP1719318 A1 EP 1719318A1 EP 04709100 A EP04709100 A EP 04709100A EP 04709100 A EP04709100 A EP 04709100A EP 1719318 A1 EP1719318 A1 EP 1719318A1
Authority
EP
European Patent Office
Prior art keywords
message
tracker
checksum
entering
hardware device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04709100A
Other languages
German (de)
French (fr)
Inventor
Clifford Yamamoto
Sebastian Nonis
Ashutosh Pande
Nikola Bulatovic
Stefan Witanis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSR Technology Inc
Original Assignee
Sirf Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sirf Technology Inc filed Critical Sirf Technology Inc
Publication of EP1719318A1 publication Critical patent/EP1719318A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion

Definitions

  • This invention relates to satellite positioning systems.
  • this invention relates to satellite positioning systems implemented using the processing power of a host in communication with satellite positioning tracker hardware device over a predefined interface.
  • SPS satellite positioning systems
  • GPS Global Positioning System
  • PDAs Personal Digital Assistants
  • Methods and systems consistent with the present invention provide a message interface between a computer host and a hardware tracker in a host based SPS solution.
  • the SPS is described as a GPS solution.
  • a wide variety of electronic devices may incorporate GPS functionality with less expense using less development time.
  • a host based positioning system includes host computer system that connects through a tracker hardware interface to a dedicated hardware space vehicle tracker.
  • the tracker hardware interface formats and decodes messages from the hardware tracker a more logical division of the tracking function from the location data formatting.
  • Figure 1 is a diagram of an exemplary positioning system implemented as a layered host computer based GPS solution having tracker hardware device in communication with a host.
  • Figure 2 is a block diagram of the exemplar position system of Figure 1.
  • Figure 3 illustrates the tracker hardware device of Figure 2.
  • Figure 4 is a diagram of a protocol stack that enables data transfer across the hardware tracker interface link of Figure 3.
  • Figure 5 is an illustration of the message format according to the protocol stack of Figure 4.
  • Figure 6 is a flowchart of the process for formatting a message according to the message format of Figure 5.
  • FIG. 1 a diagram of an exemplary positioning system 100 implemented as a layered host based satellite positioning system with a GPS solution having tracker hardware device 102 in communication with a host computer 104 is shown.
  • the tracker hardware device 102 is connected to a GPS antenna 106 capable of receiving multiple GPS signals 108 from a plurality of satellites.
  • the tracker hardware device 102 is also depicted as being connected to a DC power supply 110.
  • the tracker hardware device 102 communicates with the host computer 104 over a hardware tracker interface link 112.
  • Examples of the hardware tracker interface link 112 includes, but are not limited to, a serial connection (including a universal serial bus (USB), a small computer serial interface (SCSI)), a parallel connection, and a wireless connection (including RF connections and infrared connections).
  • a serial connection including a universal serial bus (USB), a small computer serial interface (SCSI)
  • SCSI small computer serial interface
  • parallel connection including a parallel connection
  • wireless connection including RF connections and infrared connections.
  • the tracker hardware device 102 may be receive power from the DC power supply 110 that is separate from the power supply of the host computer 104, or in an alternate embodiment may receive power from the host computer 104 via the hardware tracker interface link 112. Further, the GPS antenna 106 may be separate from the tracker hardware device 102 or integrated within the same housing as the tracker hardware device 102.
  • the computer host 104 includes a central processing unit (CPU) 202, a hardware tracker interface link 112, and a memory 208.
  • the CPU 202 is a controller and may be implemented as a microprocessor, embedded controller, application specific integrated circuit (ASIC), discrete logic circuits acting as a controller, analog circuits acting as a controller, and a combination of discrete logic and analog circuits.
  • the host computer 104 also includes a secondary storage device 210, and a display 212, and an input interface 214 (e.g., a mouse, keyboard, and the like).
  • An operating system 216 (e.g., Windows CE, Palm OS, UNIX, QNX, or the like) is a plurality of instructions that reside and are executed from memory 208.
  • a plurality of user applications 218 communicates with a positioning library 220 and he operating system 216.
  • One of the user applications 218 may receive position information from the positioning library, and may also communicate commands to the positioning library.
  • the user application 218 may be virtually any program that uses positioning information, including, as examples, a mapping program, course charter, location aid, and the like.
  • the host computer 104 connects through the hardware tracker interface 214 and the interface connection 112 to the tracker hardware device 102.
  • the hardware tracker interface 214 may be virtually any type of data transfer interface (as examples, a serial, parallel, PCMCIA card, USB, PC Card, or network interface).
  • the hardware tracker interface 214 is an RS232 port running at 38,400 bps, N-8-1 that communicates up to 2KB of data per second between the tracker hardware device 102 and the computer host 104.
  • the tracker hardware device (as illustrated by the reference numeral 222) is more closely incorporated into the host computer 104.
  • the tracker hardware device 222 may be directly coupled to the host computer 104 address, data, and control buses 224.
  • the host computer 104 receives and processes navigation information from the hardware tracker 102, or in an alternate embodiment 222 in order to provide the plurality of user applications 218 with position information.
  • the tracker hardware device 102 acquires and tracks GPS satellites and sends raw measurement data to the host computer 104 for position calculation.
  • the tracker hardware device 102 includes an antenna 106 for receiving GPS satellite signals 108 that are filtered by a radio frequency (RF) filter 304 for passing the signals to the RF interface circuit 302.
  • the RF interface circuit 302 processes the signals, produces 2-bit Inphase and Quadrature (I/Q) signals and recovers GPS clocks.
  • the RF interface circuit 302 provides the I/Q signals and GPS clocks to the location processing circuit 306 for digital processing.
  • a reference frequency source 308 e.g., a crystal oscillator
  • RTC real time clock
  • the tracker hardware device 102 may be implemented with components available from SiRF Technology, Inc. of San Jose California.
  • the RF interface circuit 302 may be implemented as a GRF2-/LP integrated circuit.
  • the location processing circuit may be implemented, as examples, as a GSP2t integrated circuit or GSP2e integrated circuit.
  • the tracker hardware device 102 minimizes the overhead on the host computer 104 and operating system 216 by keeping low the maximum transmission rate of raw measurements to the host computer 104 (e.g., one measurement per second).
  • FIG 4 a diagram of a protocol stack 400 that enables data transfer across the hardware tracker interface link 112 of Figure 3 is shown.
  • the transport layer 402 of the protocol stack 400 encapsulates a GPS message within two start characters and two stop characters. The values are chosen to be easily identifiable and such that they are unlikely to occur frequently in the data.
  • the transport layer prefixes the message with a two-byte (15-bit) message length and a two-byte (15-bit) check sum.
  • the values of the start and stop characters and the choice of a 15-bit values for length and check sum are designed such that both message length and check sum can not alias with either the stop or start code.
  • the transport layer 402 does not depend on the payload data, and it does not escape any payload data. Therefore the payload can contain legal start and stop code sequences.
  • the transport layer is constructed such that given a lossless environment all messages will be correctly received. Nonetheless, if data is lost synchronization should be easily regained.
  • the validation layer 404 is of part of the transport layer 402, but operates independently. The purpose of the validation layer 404 is to make transmission errors detectable by a receiving device (tracker hardware device 102 or hardware tracker interface 214).
  • the validation layer 404 has a byte count that refers to the payload byte length.
  • the check sum is a sum on the payload.
  • the check sum is a 15-bit byte check sum of the payload data 406.
  • the payload data 406 is assumed to consist of a single byte message identifier and the remaining data bytes and is encapsulated by the message validation layer 404 and transport protocol layer 402.
  • the tracker hardware device 102 is busy with other applications it may opt not to acknowledge messages from the tracker hardware device 102. In order to maintain synchronization, the messages from the host computer 104 to the tracker hardware device 102 are acknowledged by the tracker hardware device 102.
  • the tracker hardware device 102 and associated software is robust to missing messages and does not have to reset the tracker interface link 112 or the tracker hardware device
  • FIG. 5 an illustration of the message format 500 according to the protocol stack of Figure 4 is shown.
  • the message format 500 starts with a start sequence 502.
  • the start sequence is shown as OxAO, 0xA2, but in alternate embodiments different values may be chosen.
  • the message length 504 follows the start sequence 502.
  • the message length is transmitted high order byte first, followed by the low byte. This is the so-called big-endian order.
  • the High Byte must be less or equal to 0x7F.
  • the protocol has a maximum length of (2 ⁇ 15 - 1) bytes, practical considerations require the implementation to limit this value to a smaller number.
  • the receiving programs may limit the actual size to something less than this maximum.
  • the payload 506 follows the message length 504.
  • the payload 506 may contain any
  • the hardware tracker interface 112 may include an API that includes methods for reading unaligned data into larger processor types.
  • the check sum 508 follows the payload 506 and is transmitted with the high order byte first followed by the low order byte. This is the so-called big-endian order.
  • the check sum is 15-bit check sum of the bytes in the payload data.
  • the receiving device to insure receipt of uncorrupted messages uses the check sum 508 derived by the sending device.
  • the last part of the message format 500 is an end sequence 510.
  • the end sequence 510 is OxBO and 0xB3.
  • end sequence values other than OxBO and 0xB3 may be used.
  • Examples of message sent from the tracker hardware device 102 to the host computer 104 that may be defined by a message identification code (MID) and length carried in the payload 506 include, but is not limited to:
  • MEASURED DATA (MID: 0x20, Len: 85 bytes) One message for every currently tracking channel (0 to 12) tracked by the tracker hardware device 102 and is sent every one second.
  • COMPLETE (MID: 0x23, Len: 36 bytes) Contains tracker status and RTC data. Once a second after initial acquisition to prompt scheduling of one second task. Prior to initial acquisition, whenever location data is not being processed.
  • NAN DATA MID: 0x21 , Len: 49 bytes
  • SBAS DATA (MID: 0x22, Len: 20 bytes) One message per second is sent. 5.
  • ADC/ODOMETER DATA (MID: 0x2D, Len: 111 bytes @ 1Hz or 12 bytes @ 10Hz) Contains 50Hz ADC measurement averaged every lOOmilliSeconds at tracker interrupt along with odometer counter and GPIO inputs (e.g. for reverse input sensing, etc.) Message is sent at 1Hz rate with ten lOOmillisecond measurements or lOHz rate with single measurement. 6.
  • ACKNOWLEDGE (MID: OxOB, Len: 3) If feature is enabled, this is sent in response to a received command from navigation that has been successfully parsed and processed.
  • NO-ACKNOWLEDGE (MID: OxOC, Len: 2) Sent in response to a received command from navigation that is not recognized, or is a valid tracker command but has improperly formatted data fields.
  • Messages may also be sent from a host computer 104 to the tracker hardware device
  • TRACK COMMAND (MID: 0x26, Len: 60 bytes) Command to acquire or reacquire satellites with the sent parameters. Sent as needed.
  • TRACK RESET (MID: 0x27, Len: 9 bytes) Command to cause a reset of tracker software based on parameters sent. Sent as needed.
  • DOWNLOAD MESSAGE (MID: 0x28, Len: variable) Message to cause tracker to write data at a specified address for a specified byte count, or to cause the tracker software to vector to a specified address. Sent as needed.
  • RTC CONTROL (MID: 0x24, Len: variable) Command to control RTC rollover and low power operation using the RTC for timed wakeup and sleep duration.
  • PPS MESSAGE (MID: 0x2A, Len: 9 bytes) One Pulse Per Second interface from Navigation to Tracker software that is sent as needed.
  • the payload 506 for the above messages may contain binary messages, such as:
  • Tracker to Nav - MEASURED DATA Description This data block is sent from the Tracker software to the Navigation software. This message will go out for every channel tracking and is output at a 1 Hz rate. This message will be followed by the COMPLETE Message.
  • 16bit msec_number represents time in units of msec range: 0 to 19
  • 32bit CodeOffset Represents time in units of cycles units: 1/2**10 cycles range: 0 - 1540*1023*2**10 cycles
  • 16bit trk_status Status of the tracker Bit 0: Acq/Reacq successful Bit 1 : Delta carrier phase valid Bit 2: Bit sync complete Bit 3: Subframe sync completed Bit 4: Carrier pullin done Bit 5: Code locked Bit 6: Acq/Reacq failed flag l ⁇ bit CtoN_ratio[10] Carrier to noise ratio each one is collected in 100 ms l ⁇ bit correl_interval Correlation interval units: ms l ⁇ bit search_cnt # of times to search for a SV l ⁇ bit lock_status Lock or not lock flag for each 100ms l ⁇ bit power_bad_count Count of Power in 20 ms below 31 dB-Hz l ⁇ bit phase_bad_count Count of Power in 20 ms below 31 dB-Hz l ⁇ bit delta_car_interval Count of ms contained in delta_carrier phase l ⁇ bit TimelnTrack Count of ms since track started
  • the satellite message structure has a basic format of a 1500 bit long frame made up of 5 subframes, each subframe being 300 bits long. Each subframe consists of 10 words, each 30 bits long. The MSB of all words shall be transmitted first. This message goes out for every channel approximately every 6 seconds.
  • This message is sent at a rate of 1Hz (default) or 10Hz whenever it is enabled by the control words in the Track Reset message. Both ADC channels are sampled in a round-robin fashion at 50Hz whose raw measurements are then averaged every lOOmSeconds in the tracker interrupt along with the current odometer counter value and GPIO states. In 1Hz mode, there are 10 data measurements blocks in one single message. In 10Hz mode, there is a single data measurement per message.
  • This feature can be enabled by the control words in the Track Reset message. If enabled, this message is sent in response to any legal received command from navigation (except Download) that has been successfully parsed and processed.
  • Low power, non-autonomous operation requires re-issuing this command after each wakeup cycle to perpetuate forthcoming low power cycles unless retries have been disabled.
  • Selection of autonomous or non-autonomous mode at startup alters the existing autonomous mode setting previously configured with Track Reset message.
  • Sub message 1 - Sets the tracker to periodically power up and optionally power down after a specified time.
  • Sub message 2 - Sets the tracker to periodically power up in autonomous mode and optionally power down after a specified time.
  • Sub message 3 - Sets the tracker to power up at a specific time of the week in GPS time and optionally power down after a specified time. Time is accurate to about 6 seconds. Setting a field to an illegal value sets it to a don't care state. 8bit seconds match time in seconds (0-59) to wake up
  • Sub message 4 - Sets the tracker to power up in autonomous mode at a specific time of the week in GPS time and optionally power down after a specified time. Time is accurate to about 6 seconds. Setting a field to an illegal value sets it to a don't care state.
  • Sub message 5 Cancel any scheduled RTC controlled power cycling
  • Sub message 6 Instructs the tracker to set the RTC to a time of week close to GPS time. The accuracy is about 6 seconds. This sub message should be issued prior to using sub message 3 or 4 in order to correctly set the RTC for accurate wake up. It will attempt to sync for 2 minutes in the event no satellites are being tracked when the command is issued.
  • the Navigation software will fill this data block to command the tracking process to Acquire and Reacquire satellites.
  • 32bit StartCodeP hase initial code phase in chips
  • 32bit FirstDopSearchSize Size of first Doppler search 32bit half doppler range Size of largest Doppler search
  • 32bit cbin carrier doppler Doppler of initial search bin l ⁇ bit coherent time
  • Coherent integration time 1 obit noncoherent time cnt noncoherent (ms) / coherent (ms)
  • 32bit channel Channel number Set by NAN only l ⁇ bit buf_status This buffer's status(interface) J. ⁇ av to Tracker - TRACK RESET Description: This message is sent from the Navigation Software to the Tracker software to cause a reset of the tracker software. Resets can be issued for the standard soft reset requests or to change the state/modes of the tracker software.
  • the field for commanded clock divisor rate is shared with the commanded ADC rate depending on the control word setting. If both clock rate and ADC control word bits are set, then the field defaults as the commanded clock divisor rate and the ADC rate will remain unchanged.
  • This message is sent from the Navigation Software to cause the Tracker to write data at a specified address for a specified byte count, or to cause the tracker software to vector to a specified address.
  • PPS Pulse Per Second
  • Other messages such as LOCK DATA may me defined to transfer data from the host computer 104 to the tracker hardware device 102 and aid in the trackers ability to acquire satellites and lock onto the GPS signals.
  • LOCK DATA may me defined to transfer data from the host computer 104 to the tracker hardware device 102 and aid in the trackers ability to acquire satellites and lock onto the GPS signals.
  • FIG. 6 is a flowchart of the process for formatting a message according to the message format of Figure 5.
  • the process starts 602 with the tracker hardware device 102 determining that a message to the host computer 104 needs to be formatted 604 (i.e. NAV DATA).
  • a stat sequence 502 OxAO and 0xA2 is entered into a message structure 606.
  • the message structure may be implemented as an array data structure of message format 500 in software located on the tracker hardware device 102.
  • the MID 0x21 associated with the message NAV DATA message that is being formatted and the length of the 49 bytes of data being transferred is inserted in the payload portion 506 of the message structure 608.
  • the end sequence 510 of OxBO and 0xB3 is entered into the message structure to signal the end of the message.
  • the length of the complete message 504 is then determined and entered into the message structure 612.
  • the length of the message is ascertainable because the length of the checksum is known to be 15 bits.
  • the checksum 508 for the message is calculated using a predefined algorithm, such as the algorithm previously described. The calculated checksum is then entered in the message structure 614.
  • the competed message in the message structure is then sent 616 from the tracker hardware device 102 to the host computer 104.
  • the tracker hardware device 102 waits a predetermined time, such as 5 s seconds, to receive an acknowledge message (a receive acknowledge message) from the host computer 104.
  • the host computer 104 may be busy and unable to send an acknowledge message to the tracker hardware device 102.
  • Synchronization of the message link between the fracker hardware device 102 and the tracker hardware interface 214 is maintained when expected acknowledge message are not received at the tracker hardware device 102.
  • the hardware tracker interface link 112 is monitored periodically to determine if synchronization is maintained 618 and processing is complete 622.
  • process shown in Figure 6 may selectively be implemented in hardware, software, or a combination of hardware and software.
  • An embodiment of the process steps employs at least one machine-readable signal bearing medium.
  • machine-readable signal bearing mediums include computer-readable mediums such as a magnetic storage medium (i.e.
  • floppy disks or optical storage such as compact disk (CD) or digital video disk (DND)), a biological storage medium, or an atomic storage medium, a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit having appropriate logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), a random access memory device (RAM), read only memory device (ROM), electronic programmable random access memory (EPROM), or equivalent.
  • PGA programmable gate array
  • FPGA field programmable gate array
  • RAM random access memory device
  • ROM read only memory
  • EPROM electronic programmable random access memory
  • the computer-readable medium could even be paper or another suitable medium, upon which the computer instruction is printed, as the program can be electronically captured, via for instance optical scanning of the paper or other medium, then compiled, interpreted or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
  • machine-readable signal bearing medium includes computer-readable signal bearing mediums.
  • Computer-readable signal bearing mediums have a modulated carrier signal transmitted over one or more wire based, wireless or fiber optic networks or within a system.
  • one or more wire based, wireless or fiber optic network such as the telephone network, a local area network, the Internet, or a wireless network having a component of a computer-readable signal residing or passing through the network.
  • the computer readable signal is a representation of one or more machine instructions written in or implemented with any number of programming languages.
  • the multiple process steps implemented with a programming language which comprises an ordered listing of executable instructions for implementing logical functions, can be embodied in any machine-readable signal bearing medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, controller-containing system having a processor, microprocessor, digital signal processor, discrete logic circuit functioning as a controller, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface (214) that connects to a dedicated hardware space vehicle tracker (102) to a host computer (104). The tracker hardware interface (214) receives positioning information from the space vehicle tracker (102) and communicates with the host computer (104) using predefined messages. The host based positioning system includes a layered protocol approach (400) to enable user applications (218) on a host computer to access data from tracker hardware device.

Description

NAVIGATION PROCESSING IN HOST BASED SATELLITE POSITIONING SOLUTION METHODS AND SYSTEMS
BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention
[0002] This invention relates to satellite positioning systems. In particular, this invention relates to satellite positioning systems implemented using the processing power of a host in communication with satellite positioning tracker hardware device over a predefined interface.
[0003] 2. Related Art
[0004] Worldwide use of satellite positioning systems (SPS), such as the Global Positioning System (GPS) is growing at a rapid pace. Current trends are calling for the incorporation of GPS services into a broad range of electronic devices and systems, including Personal Digital Assistants (PDAs), cellular telephones, portable computers, automobiles, and the like. At the same time, manufacturers constantly strive to reduce costs, simply designs and produce the most cost-attractive product possible for consumers.
[0005] In the past, providing a GPS solution, such as handheld GPS devices, often required expensive dedicated GPS signal reception and processing hardware, as well as dedicated post processing hardware for resolving location measurements, displaying location coordinates, updating map displays, and the like. However, given the rapid growth in speed, sophistication, and processing power of the host microprocessors present in the host computer devices (e.g., in a cell phone, personal digital assistant or automobile), the possibility exists for allowing the host computer to bear the burden not only of running its regular applications, but also to operate as part of the GPS solution. Such an approach is presented in U.S. Pat. No. 6,430,503, titled "Distributed GPS Navigation System", the entirety of which is incorporated herein by reference in its entirety.
[0006] Currently, however, there is a strong push toward incorporating GPS solutions in many electronic devices designed by numerous manufacturers. Of course, each device varies considerably in architecture, operating system, hardware interfaces, and the like. Prior GPS solutions did not provide the flexibility that allowed the solutions to be adapted to a wide range of electronic devices. Instead, expensive customized solutions were needed for each device, thereby undesirably increasing costs and delaying the introduction of GPS services into a wide range of devices. The prior GPS host solutions also rely on interrupts to the host computer in order to service a GPS function. The use of interrupts adversely impacts the performance of the host computer. Further, traditional protocols require acknowledgement of message exchanges impacting the performance of the host.
[0007] Some attempts to divide the processing of GPS location data between a host computer and tracker hardware device have been attempted. They often are limited to transferring formatted location data over a standard interface. The restraint of using a standard interface for transferring formatted location data limits the potential of the tracker hardware device in a host computer/tracker hardware device implementation.
[0008] Therefore, a need exists for implementations of GPS solutions that overcome the problems noted above and others previously experienced. SUMMARY
[0009] Methods and systems consistent with the present invention provide a message interface between a computer host and a hardware tracker in a host based SPS solution. The SPS is described as a GPS solution. As a result of separating the tracker hardware device from the host computer, a wide variety of electronic devices may incorporate GPS functionality with less expense using less development time.
[0010] In one implementation, a host based positioning system includes host computer system that connects through a tracker hardware interface to a dedicated hardware space vehicle tracker. The tracker hardware interface formats and decodes messages from the hardware tracker a more logical division of the tracking function from the location data formatting.
[0011] Other apparatus, methods, features and advantages of the present invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE FIGURES
[0012] The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views.
[0013] Figure 1 is a diagram of an exemplary positioning system implemented as a layered host computer based GPS solution having tracker hardware device in communication with a host. [0014] Figure 2 is a block diagram of the exemplar position system of Figure 1.
[0015] Figure 3 illustrates the tracker hardware device of Figure 2.
[0016] Figure 4 is a diagram of a protocol stack that enables data transfer across the hardware tracker interface link of Figure 3.
[0017] Figure 5 is an illustration of the message format according to the protocol stack of Figure 4.
[0018] Figure 6 is a flowchart of the process for formatting a message according to the message format of Figure 5.
DETAILED DESCRIPTION
[0019] The invention may be better understood with reference to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principals of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
[0020] In Figure 1, a diagram of an exemplary positioning system 100 implemented as a layered host based satellite positioning system with a GPS solution having tracker hardware device 102 in communication with a host computer 104 is shown. The tracker hardware device 102 is connected to a GPS antenna 106 capable of receiving multiple GPS signals 108 from a plurality of satellites. The tracker hardware device 102 is also depicted as being connected to a DC power supply 110. The tracker hardware device 102 communicates with the host computer 104 over a hardware tracker interface link 112. Examples of the hardware tracker interface link 112 includes, but are not limited to, a serial connection (including a universal serial bus (USB), a small computer serial interface (SCSI)), a parallel connection, and a wireless connection (including RF connections and infrared connections).
[0021] The tracker hardware device 102 may be receive power from the DC power supply 110 that is separate from the power supply of the host computer 104, or in an alternate embodiment may receive power from the host computer 104 via the hardware tracker interface link 112. Further, the GPS antenna 106 may be separate from the tracker hardware device 102 or integrated within the same housing as the tracker hardware device 102.
[0022] Turning to Figure 2, a block diagram of the exemplar position system of figure 1 is shown. The computer host 104 includes a central processing unit (CPU) 202, a hardware tracker interface link 112, and a memory 208. The CPU 202 is a controller and may be implemented as a microprocessor, embedded controller, application specific integrated circuit (ASIC), discrete logic circuits acting as a controller, analog circuits acting as a controller, and a combination of discrete logic and analog circuits. The host computer 104 also includes a secondary storage device 210, and a display 212, and an input interface 214 (e.g., a mouse, keyboard, and the like).
[0023] An operating system 216 (e.g., Windows CE, Palm OS, UNIX, QNX, or the like) is a plurality of instructions that reside and are executed from memory 208. A plurality of user applications 218 communicates with a positioning library 220 and he operating system 216. One of the user applications 218 may receive position information from the positioning library, and may also communicate commands to the positioning library. The user application 218 may be virtually any program that uses positioning information, including, as examples, a mapping program, course charter, location aid, and the like. [0024] The host computer 104 connects through the hardware tracker interface 214 and the interface connection 112 to the tracker hardware device 102. The hardware tracker interface 214 may be virtually any type of data transfer interface (as examples, a serial, parallel, PCMCIA card, USB, PC Card, or network interface). In one implementation, the hardware tracker interface 214 is an RS232 port running at 38,400 bps, N-8-1 that communicates up to 2KB of data per second between the tracker hardware device 102 and the computer host 104.
[0025] In other implementations, the tracker hardware device (as illustrated by the reference numeral 222) is more closely incorporated into the host computer 104. Thus, rather than connecting to the computer host 104 through the interface connection link 112, for example, the tracker hardware device 222 may be directly coupled to the host computer 104 address, data, and control buses 224. As will be explained in more detail below, the host computer 104 receives and processes navigation information from the hardware tracker 102, or in an alternate embodiment 222 in order to provide the plurality of user applications 218 with position information.
[0026] Although aspects of the present invention are depicted as being stored in memory 208, one skilled in the art will appreciate that all or part of systems and methods consistent with the present invention may be stored on or read from other machine-readable media, for example, secondary storage devices such as hard disks, floppy disks, and CD-ROMs; a signal received from a network; or other forms of ROM or RAM either currently known or later developed. Further, although specific components of positioning system 100 are described, one skilled in the art will appreciate that a positioning system suitable for use with methods, systems, and articles of manufacture consistent with the present invention may contain additional or different components. [0027] In Figure 3, the tracker hardware device 102 of Figure 2 is illustrated. The tracker hardware device 102 acquires and tracks GPS satellites and sends raw measurement data to the host computer 104 for position calculation. To that end, the tracker hardware device 102 includes an antenna 106 for receiving GPS satellite signals 108 that are filtered by a radio frequency (RF) filter 304 for passing the signals to the RF interface circuit 302. The RF interface circuit 302 processes the signals, produces 2-bit Inphase and Quadrature (I/Q) signals and recovers GPS clocks. The RF interface circuit 302 provides the I/Q signals and GPS clocks to the location processing circuit 306 for digital processing. A reference frequency source 308 (e.g., a crystal oscillator) provides a reference clock for the RF interface circuit 302, while the real time clock (RTC) source 310 provides a reference clock for the location processing circuit 306.
[0028] The tracker hardware device 102 may be implemented with components available from SiRF Technology, Inc. of San Jose California. For example, the RF interface circuit 302 may be implemented as a GRF2-/LP integrated circuit. The location processing circuit may be implemented, as examples, as a GSP2t integrated circuit or GSP2e integrated circuit. The tracker hardware device 102 minimizes the overhead on the host computer 104 and operating system 216 by keeping low the maximum transmission rate of raw measurements to the host computer 104 (e.g., one measurement per second).
[0029] In Figure 4, a diagram of a protocol stack 400 that enables data transfer across the hardware tracker interface link 112 of Figure 3 is shown. The transport layer 402 of the protocol stack 400 encapsulates a GPS message within two start characters and two stop characters. The values are chosen to be easily identifiable and such that they are unlikely to occur frequently in the data. In addition the transport layer prefixes the message with a two-byte (15-bit) message length and a two-byte (15-bit) check sum. The values of the start and stop characters and the choice of a 15-bit values for length and check sum are designed such that both message length and check sum can not alias with either the stop or start code.
[0030] The transport layer 402 does not depend on the payload data, and it does not escape any payload data. Therefore the payload can contain legal start and stop code sequences. The transport layer is constructed such that given a lossless environment all messages will be correctly received. Nonetheless, if data is lost synchronization should be easily regained.
[0031] The validation layer 404 is of part of the transport layer 402, but operates independently. The purpose of the validation layer 404 is to make transmission errors detectable by a receiving device (tracker hardware device 102 or hardware tracker interface 214). The validation layer 404 has a byte count that refers to the payload byte length. Likewise, the check sum is a sum on the payload. The check sum is a 15-bit byte check sum of the payload data 406. The payload data 406 is assumed to consist of a single byte message identifier and the remaining data bytes and is encapsulated by the message validation layer 404 and transport protocol layer 402.
[0032] The protocol that enables tracker hardware device 102 and the computer host 104 maintains proper synchronization via acknowledgement messages. But, when the host computer
104 is busy with other applications it may opt not to acknowledge messages from the tracker hardware device 102. In order to maintain synchronization, the messages from the host computer 104 to the tracker hardware device 102 are acknowledged by the tracker hardware device 102. The tracker hardware device 102 and associated software is robust to missing messages and does not have to reset the tracker interface link 112 or the tracker hardware device
102 when the host computer 104 does not acknowledge one or more messages from the tracker hardware device 102. Thus, and advantage is achieved because of the messages from the tracker device 102 to a busy host computer 104 may not be acknowledged.
[0033] Turning to Figure 5 an illustration of the message format 500 according to the protocol stack of Figure 4 is shown. The message format 500 starts with a start sequence 502. The start sequence is shown as OxAO, 0xA2, but in alternate embodiments different values may be chosen. The message length 504 follows the start sequence 502. The message length is transmitted high order byte first, followed by the low byte. This is the so-called big-endian order. The High Byte must be less or equal to 0x7F. Even though the protocol has a maximum length of (2Λ15 - 1) bytes, practical considerations require the implementation to limit this value to a smaller number. Likewise, the receiving programs may limit the actual size to something less than this maximum.
[0034] The payload 506 follows the message length 504. The payload 506 may contain any
8-bit value. Where multi-byte values are in the payload 506 neither the alignment nor the byte order are defined as part of the transport; though, tracker hardware device 102 payloads use the big-endian order. It should be noted that some processors do not allow arbitrary byte alignment of multi-byte data and resulting in errors when reading data delivered as payload data. The hardware tracker interface 112 may include an API that includes methods for reading unaligned data into larger processor types.
[0035] The check sum 508 follows the payload 506 and is transmitted with the high order byte first followed by the low order byte. This is the so-called big-endian order. The check sum is 15-bit check sum of the bytes in the payload data. The following pseudo-code defines the algorithm used: Let message be the array of bytes to be sent by the transport. Let msgLen be the number of bytes in the message array to be transmitted. index = first _byte checksum = 0 while (index < msgLen) checksum = checkSum + message [index] checksum = checkSum AND (2A15 - 1)
The receiving device to insure receipt of uncorrupted messages uses the check sum 508 derived by the sending device.
[0036] The last part of the message format 500 is an end sequence 510. The end sequence 510 is OxBO and 0xB3. In an alternate embodiment, end sequence values other than OxBO and 0xB3 may be used. By monitoring for the start sequence 502 and end sequence 510, a receiving device is able to identify when complete messages are received.
[0037] Examples of message sent from the tracker hardware device 102 to the host computer 104 that may be defined by a message identification code (MID) and length carried in the payload 506 include, but is not limited to:
1. MEASURED DATA (MID: 0x20, Len: 85 bytes) One message for every currently tracking channel (0 to 12) tracked by the tracker hardware device 102 and is sent every one second. 2. COMPLETE (MID: 0x23, Len: 36 bytes) Contains tracker status and RTC data. Once a second after initial acquisition to prompt scheduling of one second task. Prior to initial acquisition, whenever location data is not being processed. 3. NAN DATA (MID: 0x21 , Len: 49 bytes) 50bps navigation message data sent once every 6 seconds for each channel. 4. SBAS DATA (MID: 0x22, Len: 20 bytes) One message per second is sent. 5. ADC/ODOMETER DATA (MID: 0x2D, Len: 111 bytes @ 1Hz or 12 bytes @ 10Hz) Contains 50Hz ADC measurement averaged every lOOmilliSeconds at tracker interrupt along with odometer counter and GPIO inputs (e.g. for reverse input sensing, etc.) Message is sent at 1Hz rate with ten lOOmillisecond measurements or lOHz rate with single measurement. 6. ACKNOWLEDGE (MID: OxOB, Len: 3) If feature is enabled, this is sent in response to a received command from navigation that has been successfully parsed and processed. 7. NO-ACKNOWLEDGE (MID: OxOC, Len: 2) Sent in response to a received command from navigation that is not recognized, or is a valid tracker command but has improperly formatted data fields.
[0038] Messages may also be sent from a host computer 104 to the tracker hardware device
102. For example:
1. TRACK COMMAND (MID: 0x26, Len: 60 bytes) Command to acquire or reacquire satellites with the sent parameters. Sent as needed. 2. TRACK RESET (MID: 0x27, Len: 9 bytes) Command to cause a reset of tracker software based on parameters sent. Sent as needed. 3. DOWNLOAD MESSAGE (MID: 0x28, Len: variable) Message to cause tracker to write data at a specified address for a specified byte count, or to cause the tracker software to vector to a specified address. Sent as needed. 4. RTC CONTROL (MID: 0x24, Len: variable) Command to control RTC rollover and low power operation using the RTC for timed wakeup and sleep duration. RTC rollover is sent as needed. Low power, non- autonomous operation requires re-issuing this command after each wakeup cycle to perpetuate forthcoming low power cycling. 5. PPS MESSAGE (MID: 0x2A, Len: 9 bytes) One Pulse Per Second interface from Navigation to Tracker software that is sent as needed.
[0039] The payload 506 for the above messages may contain binary messages, such as:
A. Tracker to Nav - MEASURED DATA Description: This data block is sent from the Tracker software to the Navigation software. This message will go out for every channel tracking and is output at a 1 Hz rate. This message will be followed by the COMPLETE Message.
8bit MESSAGE ID0x20
32bit channel Channel number that is tracking
32bit bit number Bits at 50 bps = 20 ms units: 20 ms range: 0 to 30,240,000
16bit msec_number Represents time in units of msec range: 0 to 19
32bit CarrierPhase Represents time in units of cycles units: 1/2**10 range: 0 - 1540*1023*2**10 cycles
32bit CodeOffset Represents time in units of cycles units: 1/2**10 cycles range: 0 - 1540*1023*2**10 cycles
32bit CarrierDopplerRate Current estimate of Doppler rate cy/iter**2 * 2**N
32bit CarrierDoppler Doppler frequency units: 1/2**19 cycles/msec range: 0 - (1/2**32 - 1)
32bit TimeOfMeasurement Measurement time tag units: ms, since power on
32bit delta_car_phase Current carrier phase - previous carrier phase units: 1/2**16 chips
16bit buf_status Status of this buffer(interface): 0 - nothing changed by tracker 1 - updated by tracker lόbit acquired_svid Acquired satellite ID
16bit trk_status Status of the tracker: Bit 0: Acq/Reacq successful Bit 1 : Delta carrier phase valid Bit 2: Bit sync complete Bit 3: Subframe sync completed Bit 4: Carrier pullin done Bit 5: Code locked Bit 6: Acq/Reacq failed flag lόbit CtoN_ratio[10] Carrier to noise ratio each one is collected in 100 ms lόbit correl_interval Correlation interval units: ms lόbit search_cnt # of times to search for a SV lόbit lock_status Lock or not lock flag for each 100ms lόbit power_bad_count Count of Power in 20 ms below 31 dB-Hz lόbit phase_bad_count Count of Power in 20 ms below 31 dB-Hz lόbit delta_car_interval Count of ms contained in delta_carrier phase lόbit TimelnTrack Count of ms since track started
32bit MeanDeltaRangeTime average time before time of DR measurement 32bit drStartTag Start time of dr Measurement time tag lόbit autoCorrStat Status of autocorrelation detection
B. Tracker to Nav - NAN DATA
Description: The following is the 50 bps subframe data collected by the Tracker. The satellite message structure has a basic format of a 1500 bit long frame made up of 5 subframes, each subframe being 300 bits long. Each subframe consists of 10 words, each 30 bits long. The MSB of all words shall be transmitted first. This message goes out for every channel approximately every 6 seconds.
8bit MESSAGE ID0x21
32bit channel Channel that the data belongs to
32bit data_50bps[10] Holds 10 words of data = 320 bits Each word contains 30 bits (32 here) lόbit buf status Buffer filled flag: 0 - no data in buffer (empty) 1 - filled by tracker lόbit Svid Satellite ID
C. Tracker hardware device to computer host - SB AS DATA
Description: Tracker SBAS data to the Navigation software.
8bit MESSAGE ID0x22 lόbit prn Satellite PRN lόbit newFrame flag to indicate good new frame lόbit visibilityWordl 0x80070046 lόbit visibilityWord2 0x80070048
8bit data[32] The data bits right justified in the word lόbit report 100ms The 100ms report 0x800d048c lόbit syncMeasure lόbit resync the number of resync since start
32bit systime_100ms System time since power on
D. Tracker to Nav - COMPLETE Description: This message is sent to the Navigation software once a second after initial acquisition to prompt scheduling of the Navigation 1 second task. Prior to initial acquisition, this message is sent whenever the tracker software is not processing data. This message contains the state of the tracker and RTC data.
8bit MESSAGE ID0x23 lόbit status Tracker Startup Status bit 0 - Νav command received since POR bit 1 - Initial acquisition mode bit 2 - Autonomous mode enabled bit 3 - GPS Data message disabled bit 4,5 - Multipath value bit 6 - ADC/Odometer message enabled
8bit sec RTC seconds
8bit min RTC minutes
8bit hr RTC hours
8bit day RTC days lόbit clkctr RTC clock counter lόbit segctr Current segment count within a msec
32bit tag Current ms time when RTC read lόbit segdelay
8bit accurate lόbit ASIC ChipNersion
32bit RTCok RTC block status
32bit RolloverComplete RTC Rollover Complete
32bit RolloverSeconds
32bit CurrentTimeCount Tracker Time, millisecond counts
E. Tracker to Νav - - ADC/ODOMETER DATA
Description: This message is sent at a rate of 1Hz (default) or 10Hz whenever it is enabled by the control words in the Track Reset message. Both ADC channels are sampled in a round-robin fashion at 50Hz whose raw measurements are then averaged every lOOmSeconds in the tracker interrupt along with the current odometer counter value and GPIO states. In 1Hz mode, there are 10 data measurements blocks in one single message. In 10Hz mode, there is a single data measurement per message.
8bit MESSAGE ID0x2D 32bit currentTime Tracker Time, millisecond counts lόbit adc2Avg Averaged measurement from ADC[2] input lόbit adc3Avg Averaged measurement from ADC[3] input lόbit odoCount Odometer counter measurement at the most recent lOOmSec tracker interrupt
8bit gpioStat GPIO input states at the most recent lOOmSec tracker interrupt: bit 0 - GPIO[0] input bit 1 - GPIO[2] input bit 2 - GPIO[3] input bit 3 - GPIO[4] input bit 4 - GPIO[5] input bit 5 - GPIO[7] input bit 6 - GPIO[8] input bit 7 - GPIO[12] input
Tracker to Nav - ACKNOWLEDGE
Description: This feature can be enabled by the control words in the Track Reset message. If enabled, this message is sent in response to any legal received command from navigation (except Download) that has been successfully parsed and processed.
8bit MESSAGE ID OxOB
8bit msglD acked ID of message being acknowledged
8bit msgID_chan Channel # specified in TRACK message, otherwise 0 for all other acknowledged messages
G. Tracker to Nav - NO ACKNOWLEDGE
Description: Sent in response to a received command from navigation that is not recognized, or is a valid tracker command but has improperly formatted data fields.
8bit MESSAGE ID OxOC
8bit msgID_nacked ID of message that was not recognized or was malformed
H. Host computer to tracker hardware device - RTC CONTROL
Description: Nav command to Tracker to control RTC rollover and low power operation using the RTC for timed wakeup and sleep duration. Low power, non-autonomous operation requires re-issuing this command after each wakeup cycle to perpetuate forthcoming low power cycles unless retries have been disabled. Selection of autonomous or non-autonomous mode at startup alters the existing autonomous mode setting previously configured with Track Reset message.
8bit MESSAGE ID0x24 8bit subMessage Optional Sub message field. If no sub message field is supplied, perform standard rollover function otherwise parse as follows: 0 - do selective rollover function 1 - RTC controlled sleep/awake duration power cycling 2 - RTC controlled sleep/awake duration power cycling with autonomous startup 3 - RTC controlled sleep duration and specific wakeup time power cycling 4 - RTC controlled sleep duration and specific wakeup time power cycling with autonomous startup 5 - cancel any RTC controlled power cycling 6 - force RTC time synchronize to GPS time
Message body varies with sub message as follows:
Sub message 0 - Do selective rollover function based on rollover type parameter
8bit rolloverType Select between complete RTC reset to zero or only adjust RTC days to fit within a week: 0 - do complete RTC rollover and reset 1 - only adjust RTC days to fit within a week
Sub message 1 - Sets the tracker to periodically power up and optionally power down after a specified time.
32bit sleepTime duration in seconds to sleep lόbit awakeTime duration in seconds to stay awake (powered up) 0 - stay awake after wakeup N - stay awake for N seconds after wakeup 8bit retries number of times to repeat power cycling without receiving any commands from host processor after which tracker will go to sleep indefinitely unless EIT1 or reset. N - retry N times before giving up (for N = 0 to 254) 255 - retry forever and don't give up
Sub message 2 - Sets the tracker to periodically power up in autonomous mode and optionally power down after a specified time.
32bit sleepTime duration in seconds to sleep
1 obit awakeTime duration in seconds to stay awake (powered up) 0 - stay awake after wakeup N - stay awake for N seconds after wakeup
Sub message 3 - Sets the tracker to power up at a specific time of the week in GPS time and optionally power down after a specified time. Time is accurate to about 6 seconds. Setting a field to an illegal value sets it to a don't care state. 8bit seconds match time in seconds (0-59) to wake up
8bit minutes match time in minutes (0-59) to wake up
8bit hours match time in hours (0-23) to wake up
8bit dayOfWeek match day of week (0-6) to wake up
16bit awakeTime duration in seconds to stay awake (powered up) 0 - stay awake after wakeup N - stay awake for N seconds after wakeup
8bit retries number of times to repeat power cycling without receiving any commands from host processor after which tracker will go to sleep indefinitely unless EIT1 or reset. N - retry N times before giving up (for N = 0 to 254) 255 - retry forever and don't give up
Sub message 4 - Sets the tracker to power up in autonomous mode at a specific time of the week in GPS time and optionally power down after a specified time. Time is accurate to about 6 seconds. Setting a field to an illegal value sets it to a don't care state.
8bit seconds match time in seconds (0-59) to wake up
8bit minutes match time in minutes (0-59) to wake up
8bit hours match time in hours (0-23) to wake up
8bit dayOfWeek match day of week (0-6) to wake up lόbit awakeTime duration in seconds to stay awake (powered up) 0 - stay awake after wakeup N - stay awake for N seconds after wakeup
Sub message 5 - Cancel any scheduled RTC controlled power cycling
No fields.
Sub message 6 - Instructs the tracker to set the RTC to a time of week close to GPS time. The accuracy is about 6 seconds. This sub message should be issued prior to using sub message 3 or 4 in order to correctly set the RTC for accurate wake up. It will attempt to sync for 2 minutes in the event no satellites are being tracked when the command is issued.
No fields.
Nav to Tracker - TRACK COMMAND
Description: The Navigation software will fill this data block to command the tracking process to Acquire and Reacquire satellites.
8bit MESSAGE ID8bit 0x26
8bit ReacqType Type of reacquisition 0 = REACQ_INITIAL 1 = REACQ_RESUME 2 = REACQ TRICKLE 8bit CodeSearchType Type of code search 1 = Use a Bounce type search 2 = Use a Sweep type search 8bit DopSearchType Type of Doppler search 1 = Use a Bounce type search 2 = Use a Sweep type search
8bit DataSyncType Type of data synchronization to use 1 = Bit sync and frame sync are not required 2 = Bit sync is required 3 = Bit sync and frame sync are required 8bit cmd type Command type 0x01 = Initial acquisition command 0x02 = Reacquisition command 0x04 = Force subframe command 0x08 = Put channel to IDLE mode (kill) 0x10 = Find cross correlated satellite 0x20 = Force bit sync command 0x40 = Cold Start - Initial acquisition command 0x80 = start channel as SBAS 32bit FirstCodeSearchSize Size of first code search 32bit half_code_range Size of largest code search
32bit StartCodePhase initial code phase in chips 32bit FirstDopSearchSize Size of first Doppler search 32bit half doppler range Size of largest Doppler search 32bit cbin carrier doppler Doppler of initial search bin lόbit coherent time Coherent integration time 1 obit noncoherent time cnt = noncoherent (ms) / coherent (ms) 32bit CodeStep Chips
32bit DopStep Reacq
32bit prepos_timetag Timetag at which prepositioning lόbit msec_number Represents time in units of msec 32bit bit_number Bits at 50 bps = 20 ms lόbit Svid Satellite ID (1-32)
32bit channel Channel number: Set by NAN only lόbit buf_status This buffer's status(interface) J. Νav to Tracker - TRACK RESET Description: This message is sent from the Navigation Software to the Tracker software to cause a reset of the tracker software. Resets can be issued for the standard soft reset requests or to change the state/modes of the tracker software. The field for commanded clock divisor rate is shared with the commanded ADC rate depending on the control word setting. If both clock rate and ADC control word bits are set, then the field defaults as the commanded clock divisor rate and the ADC rate will remain unchanged.
8bit MESSAGE ID 0x27 lόbit change control word control word indicating states/modes to be modified bit 0 - Autonomous Mode bit 1 - Debug Message bit 2 - GPS Data Message bit 3 - ADC/Odometer Message bit 4 - Acknowledge Reply Message bit 9 - Multipath Command bit 10 - Clock Rate Command bit 11 - Baud Rate Command bit 15 - Full Factory Reset lόbit set state word control word to set state to enable/disable: 0=Disable, l=Enable bit 0 - Autonomous Mode Default bit 1 - Debug Message bit 2 - GPS Data Message Off bit 3 - ADC/Odometer Message bit 4 - Acknowledge Reply Message
1 obit commanded baud rate configured baud rate [0 to 4], or divisor 0 or 0x1400 = 9600 baud l or OxOAOO = 19200 baud 2 or 0x0500 = 38400 baud Default 3 or 0x0350 = 57600 baud 4 or 0x01 B0 = 115200 baud 49075200 / divisor = user custom baud rate
8bit commanded clock divisor clock divider [0 to 7] 0 = 50 MHz 1 = 25 MHz 2 = 12 MHz Default 3 = 6 MHz Expect limited operation 4 = 3 MHz Expect limited operation OR commanded ADC rateADC message rate 0 = 10 Hz @ 5120x decimation 1 = 1 Hz @ 5120x decimation Default 128 = 10 Hz @ 512x decimation 129 = 1 Hz @ 512x decimation MSB in the ADC message rate enables the 512x decimation mode of the ADC 8bit commanded multipathmultipath mode 0=none, l=narrow, 2=sirfmultipath
K. Nav to Tracker - DOWNLOAD MESSAGE
Description: This message is sent from the Navigation Software to cause the Tracker to write data at a specified address for a specified byte count, or to cause the tracker software to vector to a specified address.
8bit MESSAGE ID0x28 8bit Format (3 or 7) Message type indicator: 3 = write address, 7 = vector address
8bit ByteCnt number of bytes to write 32bit Address address of data (data of variable length) data to write into an address specified above
L. Nav to Tracker - PPS MESSAGE
Description: One Pulse Per Second (PPS) message from Navigation to Tracker software to initiate a 1PPS output pulse on the time-mark output pin at the specified tag/delay. Internal PPS queue is three deep to accommodate preloading of tag/delay values 3 seconds in advance.
8bit MESSAGE ID0x2A
32bit tag
32bit delay
[0040] Other messages, such as LOCK DATA may me defined to transfer data from the host computer 104 to the tracker hardware device 102 and aid in the trackers ability to acquire satellites and lock onto the GPS signals. By defining a GPS protocol and interface between the tracker hardware device 102 and host computer 104, the prior limitations of stand interfaces is overcome.
[0041] In Figure 6 is a flowchart of the process for formatting a message according to the message format of Figure 5. The process starts 602 with the tracker hardware device 102 determining that a message to the host computer 104 needs to be formatted 604 (i.e. NAV DATA). A stat sequence 502 OxAO and 0xA2 is entered into a message structure 606. The message structure may be implemented as an array data structure of message format 500 in software located on the tracker hardware device 102.
[0042] The MID 0x21 associated with the message NAV DATA message that is being formatted and the length of the 49 bytes of data being transferred is inserted in the payload portion 506 of the message structure 608. In 610, the end sequence 510 of OxBO and 0xB3 is entered into the message structure to signal the end of the message. The length of the complete message 504 is then determined and entered into the message structure 612. The length of the message is ascertainable because the length of the checksum is known to be 15 bits. The checksum 508 for the message is calculated using a predefined algorithm, such as the algorithm previously described. The calculated checksum is then entered in the message structure 614.
[0043] The competed message in the message structure is then sent 616 from the tracker hardware device 102 to the host computer 104. The tracker hardware device 102 waits a predetermined time, such as 5 s seconds, to receive an acknowledge message (a receive acknowledge message) from the host computer 104. The host computer 104 may be busy and unable to send an acknowledge message to the tracker hardware device 102. Synchronization of the message link between the fracker hardware device 102 and the tracker hardware interface 214 is maintained when expected acknowledge message are not received at the tracker hardware device 102. The hardware tracker interface link 112 is monitored periodically to determine if synchronization is maintained 618 and processing is complete 622. Otherwise if the hardware tracker link 112 is not synchronized, then it is re-established 620. Thus, messages from the tracker hardware device sends messages that may not be acknowledged, even through the host computer 104 may optionally acknowledge receipt of a message. The order of the process steps may be changed while still resulting in a complete message. Further, the decoding of a message from the host computer 104 by the tracker hardware device 102 is accomplished by reversing the process of creating a message.
[0044] It is appreciated by those skilled in the art that the process shown in Figure 6 may selectively be implemented in hardware, software, or a combination of hardware and software. An embodiment of the process steps employs at least one machine-readable signal bearing medium. Examples of machine-readable signal bearing mediums include computer-readable mediums such as a magnetic storage medium (i.e. floppy disks, or optical storage such as compact disk (CD) or digital video disk (DND)), a biological storage medium, or an atomic storage medium, a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit having appropriate logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), a random access memory device (RAM), read only memory device (ROM), electronic programmable random access memory (EPROM), or equivalent. Note that the computer-readable medium could even be paper or another suitable medium, upon which the computer instruction is printed, as the program can be electronically captured, via for instance optical scanning of the paper or other medium, then compiled, interpreted or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
[0045] Additionally, machine-readable signal bearing medium includes computer-readable signal bearing mediums. Computer-readable signal bearing mediums have a modulated carrier signal transmitted over one or more wire based, wireless or fiber optic networks or within a system. For example, one or more wire based, wireless or fiber optic network, such as the telephone network, a local area network, the Internet, or a wireless network having a component of a computer-readable signal residing or passing through the network. The computer readable signal is a representation of one or more machine instructions written in or implemented with any number of programming languages.
[0046] Furthermore, the multiple process steps implemented with a programming language, which comprises an ordered listing of executable instructions for implementing logical functions, can be embodied in any machine-readable signal bearing medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, controller-containing system having a processor, microprocessor, digital signal processor, discrete logic circuit functioning as a controller, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
[0047] The foregoing description of an implementation of the invention has been presented for purposes of illustration and description. It is not exhaustive and does not limit the invention to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practicing of the invention. For example, the described implementation includes software but the present invention may be implemented as a combination of hardware and software or in hardware alone. Note also that the implementation may vary between systems. The invention may be implemented with both object-oriented and non-object-oriented programming systems. The claims and their equivalents define the scope of the invention.

Claims

CLAIMS What is claimed is:
1. A tracker hardware device, comprising: a connection in the tracker hardware device adapted to connect the tracker hardware device to a tracker interface link; a radio frequency interface for reception of location signals; and a location processing circuit having a plurality of message formats that formats one message from the plurality of message formats for transmission over the tracker interface link in response to receipt of the locations signals by the radio frequency interface.
2. The tracker hardware device of claim 1 , wherein each of the plurality of message formats starts with a start message sequence of OxOA and 0xA2.
3. The tracker hardware device of claim 1 , wherein each of the plurality of message formats ends with an end sequence of OxBO and 0xB3.
4. The tracker hardware device of claim 1 , further comprising a check sum algorithm that generates a check sum for each of the messages in the plurality of messages.
-2^
5. The tracker hardware device of claim 4, wherein the check sum algorithm is index = f-rst_byte checkSum = 0 while (index < msgLen) checkSum = checkSum + message[index] checkSum = checkSum AND (2Λ15 - 1) where message is the array of bytes to be sent and msgLen is the number of bytes in the message array to be transmitted.
6. The tracker hardware device of claim 1 , wherein at lease one message in the plurality of message formats has a payload defined by at least a message ID, a bit number, a millisecond number, a carrier phase, a code offset, a carrier doppler rate, carrier Doppler frequency units, time of measurement.
7. The fracker hardware device of claim 1, wherein a received message at the location processing circuit 306 is acknowledged by transmission of an transmitted acknowledge message that has an acknowledge format defined in the plurality of message formats; and a plurality of messages associated with a plurality of message formats that when each is transmitted result in the tracker interface expecting to receive an associated acknowledge message, wherein failure to receive some of the associated receive acknowledge message does not impact operation of the tracker hardware device.
8. A method of communication between a tracker hardware device a computer host, comprising: identifying a message to be formatted; entering a start sequence into a message structure that defines the message; entering a message identification and a message payload length in the message structure; entering an end sequence into the message structure; entering a length of the message derived from information in the message structure; calculating a checksum for inclusion in the message structure based on information in the message structure; and sending the message from the tracker hardware device via a tracker hardware link.
9. The method of claim 8, wherein entering the start sequence further includes: placing OxAO and 0xA2 into the message structure for the start sequence.
10. The method of claim 8, wherein entering the end sequence further includes: placing OxBO and 0xB3 into the message structure for the end sequence.
11. The method of claim 8, wherein calculating a checksum further includes: solving an algorithm defined by: index = first_byte checkSum = 0 while (index < msgLen) checkSum = checkSum + message[index] checksum = checkSum AND (2Λ15 - 1) Where message is the array of bytes to be sent and msgLen is the number of bytes in the message array to be transmitted.
12. The method of claim 8, further comprises: entering measurement data into the payload of the message structure having a message identification of 0x20; and encoding in the payload data a channel number, bit number, millisecond number, carrier phase, code offset carrier Doppler rate, carrier Doppler frequency units, and time of measurement.
13. The method of claim 8, further comprising: waiting for receipt of an acknowledge message in response to the message sent by the tracker hardware link that may optionally be sent by the host compute.
14. The method of claim 8, wherein identifying further includes: determining the message to be formatted is an acknowledge message that is sent in response to receipt of another message at the tracker hardware device.
15. A method of communication between a tracker hardware device a computer host, comprising:, comprising: means for identifying a message to be formatted; means for entering a start sequence into a message structure that defines the message; means for entering a message identification and a message payload length in the message structure; means for entering an end sequence into the message structure; means for entering a length of the message derived from information in the message structure; means for calculating a checksum for inclusion in the message structure based on information in the message structure; and means for sending the message from the tracker hardware device via a tracker hardware link.
16. The system of claim 15, wherein means for entering the start sequence further includes: means for placing OxAO and 0xA2 into the message structure for the start sequence.
17. The system of claim 15, wherein means for entering the end sequence further includes: means for placing OxBO and 0xB3 into the message structure for the end sequence.
18. The system of claim 15, wherein means for calculating a checksum further includes: means for solving an algorithm defined by: index = first_byte checkSum = 0 while (index < msgLen) checkSum = checkSum + message[index] checkSum = checkSum AND (2Λ15 - 1) Where message is the array of bytes to be sent and msgLen is the number of bytes in the message array to be transmitted.
19. The system of claim 15, further comprises: means for entering measurement data into the payload of the message structure having a message identification of 0x20; and means for encoding in the payload data a channel number, bit number, millisecond number, carrier phase, code offset carrier Doppler rate, carrier Doppler frequency units, and time of measurement.
20. The method of claim 15, further comprising: means for expecting receipt of an acknowledge message in response to the message sent by the tracker hardware link that may optionally be sent by the host compute.
21. The method of claim 15, wherein identifying further includes: means for determining the message to be formatted is an acknowledge message that is sent in response to receipt of another message at the tracker hardware device.
22. A signal bearing medium with machine readable instructions for formatting a message in a tracker hardware device, comprising: a first set of machine readable instructions for identifying the message to be formatted; a second set of machine readable instructions for entering a start sequence into a message structure that defines the message; a third set of machine readable instructions for entering a message identification and a message payload length in the message structure; a fourth set of machine readable instructions for entering an end sequence into the message structure; a fifth set of machine readable instructions for entering a length of the message derived from information in the message structure; a sixth set of machine readable instructions for calculating a checksum for inclusion in the message structure based on information in the message structure; and a seventh set of machine readable instructions for sending the message from the tracker hardware via a tracker hardware link.
23. The system of claim 22, wherein entering the start sequence further includes: an eighth set of machine readable instructions for placing OxAO and 0xA2 into the message structure for the start sequence.
24. The system of claim 22, wherein entering the end sequence further includes: an eighth set of machine readable instructions for placing OxBO and 0xB3 into the message structure for the end sequence.
25. The system of claim 22, wherein calculating a checksum further includes: an eighth set of machine readable instructions for solving an algorithm defined by: index = first_byte checkSum = 0 while (index < msgLen) checkSum = checkSum + message[index] checkSum = checkSum AND (2Λ15 - 1) Where message is the array of bytes to be sent and msgLen is the number of bytes in the message array to be transmitted.
26. The system of claim 22, further comprises: an eighth set of machine readable instructions for entering measurement data into the payload of the message structure having a message identification of 0x20; and a ninth set of machine readable instructions for encoding in the payload data a channel number, bit number, millisecond number, carrier phase, code offset carrier Doppler rate, carrier Doppler frequency units, and time of measurement.
EP04709100A 2004-02-06 2004-02-06 Navigation processing in host based satellite positioning solution methods and systems Withdrawn EP1719318A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/003664 WO2005086460A1 (en) 2004-02-06 2004-02-06 Navigation processing in host based satellite positioning solution methods and systems

Publications (1)

Publication Number Publication Date
EP1719318A1 true EP1719318A1 (en) 2006-11-08

Family

ID=34920918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04709100A Withdrawn EP1719318A1 (en) 2004-02-06 2004-02-06 Navigation processing in host based satellite positioning solution methods and systems

Country Status (2)

Country Link
EP (1) EP1719318A1 (en)
WO (1) WO2005086460A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9164176B2 (en) * 2007-06-01 2015-10-20 Novatel, Inc. GNSS receiver and antenna system including a digital communication subsystem
US11614545B2 (en) 2020-03-26 2023-03-28 Novatel Inc. Systems and methods for utilizing a connector with an external antenna to utilize multifrequency GNSS functionality of a mobile device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497339A (en) * 1993-11-15 1996-03-05 Ete, Inc. Portable apparatus for providing multiple integrated communication media
US5831545A (en) * 1995-08-25 1998-11-03 Motorola, Inc. Method and apparatus for adjusting a communication strategy in a radio communication system using location
US5832247A (en) * 1995-12-28 1998-11-03 Trimble Navigation Limited PCI card for receiving a GPS signal
US6209090B1 (en) * 1997-05-29 2001-03-27 Sol Aisenberg Method and apparatus for providing secure time stamps for documents and computer files
US6430503B1 (en) * 1998-01-06 2002-08-06 Trimble Navigation Ltd. Distributed GPS navigation system
US6611755B1 (en) * 1999-12-19 2003-08-26 Trimble Navigation Ltd. Vehicle tracking, communication and fleet management system
AU2002211720A1 (en) * 2000-10-12 2002-04-22 Cyterra Corporation User tracking application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005086460A1 *

Also Published As

Publication number Publication date
WO2005086460A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US7577524B2 (en) Method and system for data detection in a global positioning system satellite receiver
US7348921B2 (en) GPS receiver using stored navigation data bits for a fast determination of GPS clock time
EP1564564B1 (en) Asynchronous assisted GPS position determination
WO2022156481A1 (en) Ephemeris forecasting method and apparatus
EP0958530B1 (en) Method and apparatus for satellite positioning system based time measurement
US6275185B1 (en) GPS receiver using coarse orbital parameters for achieving a fast time to first fix
US6788249B1 (en) System for setting coarse GPS time in a mobile station within an asynchronous wireless network
US6430503B1 (en) Distributed GPS navigation system
KR101247808B1 (en) Determining position without use of broadcast ephemeris information
US7365681B2 (en) GPS receiver having a prescribed time-of-entry into an operation mode
EP2872922B1 (en) Reduced sampling low power gps
GB2347035A (en) Satellite based positioning system
EP2082251A2 (en) Time-based ephemeris identity in assistance data and assistance data request messages
WO2022156480A1 (en) Clock error predicting method and device
JP5101281B2 (en) GPS receiver and related methods and apparatus
EP2329288A1 (en) Managing the measurement of signals
US7546395B2 (en) Navagation processing between a tracker hardware device and a computer host based on a satellite positioning solution system
US6369753B1 (en) Host-independent monolithic integrated circuit for RF downconversion and digital signal processing of GPS signals
JP3512068B2 (en) Time synchronization method and GPS receiver in positioning system
WO2007129263A2 (en) Gps rf front end and related method of providing a position fix, storage medium and apparatus for the same
EP1952172B1 (en) A method of determining a gps position fix and a gps receiver for the same
JP3344470B2 (en) Data synchronization method and data receiving device
US20120154217A1 (en) Method and program of acquiring navigation message, gnss receiving apparatus, and mobile terminal
EP1719318A1 (en) Navigation processing in host based satellite positioning solution methods and systems
US20150323677A1 (en) Position calculation method and position calculation apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PANDE, ASHUTOSH

Inventor name: WITANIS, STEFAN

Inventor name: YAMAMOTO, CLIFFORD

Inventor name: NONIS, SEBASTIAN

Inventor name: BULATOVIC, NIKOLA

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE IT

17Q First examination report despatched

Effective date: 20071023

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIRF TECHNOLOGY, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110901