EP1714298B1 - Modular x-ray tube and method for the production thereof - Google Patents

Modular x-ray tube and method for the production thereof Download PDF

Info

Publication number
EP1714298B1
EP1714298B1 EP03773415A EP03773415A EP1714298B1 EP 1714298 B1 EP1714298 B1 EP 1714298B1 EP 03773415 A EP03773415 A EP 03773415A EP 03773415 A EP03773415 A EP 03773415A EP 1714298 B1 EP1714298 B1 EP 1714298B1
Authority
EP
European Patent Office
Prior art keywords
ray tube
anode
acceleration
electrons
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03773415A
Other languages
German (de)
French (fr)
Other versions
EP1714298A1 (en
Inventor
Mark Mildner
Kurt Holm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comet Holding AG
Original Assignee
Comet Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comet Holding AG filed Critical Comet Holding AG
Publication of EP1714298A1 publication Critical patent/EP1714298A1/en
Application granted granted Critical
Publication of EP1714298B1 publication Critical patent/EP1714298B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor

Definitions

  • the present invention relates to an X-ray tube for high dose rates, a corresponding method for generating high dose rates with X-ray tubes and a method for producing corresponding X-ray devices, in which an anode and a cathode in a vacuumized interior are arranged opposite to each other, wherein electrons by means of applying high voltage the anode will be accelerated.
  • X-ray tubes are widely used in scientific and technical applications. X-ray tubes are found not only in medicine, e.g. in diagnostic systems or in therapeutic systems for irradiation of diseased tissue use, but they are e.g. also used for the sterilization of substances such as blood or food or for sterilization (infertility) of living things such as insects. Other applications are further found in traditional x-ray technology, such as e.g. the scanning of luggage and / or transport containers or the non-destructive inspection of workpieces, e.g. Concrete reinforcements, etc. Various methods and devices for X-ray tubes are described in the prior art.
  • FIG. 1 shows schematically an example of such a conventional X-ray tube from a glass composite.
  • FIG. 2 and 3 show conventional x-ray tubes made of metal-ceramic composites.
  • x-ray tubes In the X-ray tubes, electrons pass through an electric field in a vacuumized tube. They are thereby accelerated to their final energy and convert them to a target surface in X-radiation. That is to say, x-ray tubes comprise an anode and a cathode, which are arranged opposite one another in a vacuumized interior, and which in the metal-ceramic tubes are arranged opposite a cylindrical metal part (FIG.
  • FIG. 1 Figure 2/3 ) and glass tubes of a glass cylinder ( FIG. 1 ) are enclosed.
  • the glass acts as an insulator.
  • the anode and / or cathode are usually electrically insulated by means of a ceramic insulator, the ceramic insulator (s) being arranged axially to the metal cylinder behind the anode and / or cathode and closing the vacuum space at the respective end.
  • the ceramic insulators are typically disk-shaped (annular) or conical. In principle, any type of insulator geometry would be possible with this type of tube, with field peaks being taken into account at high voltages.
  • the ceramic insulators have in their middle an opening in which a high voltage supply to the anode or the cathode, are used vacuum-tight.
  • These types of x-ray tubes are also referred to in the art as bipolar or bipolar x-ray tubes ( FIG. 3 ).
  • unipolar devices FIG. 2
  • the electron source cathode
  • HV negative high voltage
  • the target anode
  • HV positive high voltage
  • the secondary electron emission is known for the impairment of the X-ray tube operation.
  • secondary electron emission when the electron beam impinges on the anode, in addition to the X-rays, undesired but unavoidable secondary electrons propagate in the interior of the X-ray tube on tracks corresponding to the field lines. These secondary electrons can reach the insulator surface through various scattering and impact processes and there reduce the HV insulation properties.
  • secondary electrons also result from the fact that the insulators are hit at the anode and / or cathode during operation of unavoidable field emission electrons and trigger secondary electrons there.
  • the electric field is generated when the high voltage is switched on at the anode and cathode, ie: during operation of the x-ray tube, in the interior and the interior facing surfaces. This also includes the surfaces of the insulator.
  • the shielding electrodes can be used, for example, in pairs, wherein they are usually arranged coaxially at a certain distance in a rotationally symmetrical shape of the x-ray tube in order to optimally prevent the propagation of the secondary electrons. As has been shown, however, such devices can no longer be used at very high voltage. In addition, the material and manufacturing costs in such structures is greater than in X-ray tubes with only insulators. Another possibility of the prior art is eg in DE6946926 shown. In order to reduce the attack surface, a conical ceramic insulator is used in these solutions. The ceramic insulator has a substantially constant wall thickness and is coated, for example, with a vulcanized rubber layer. The layer should contribute to the fact that secondary electrons occur less strongly.
  • the electric field inside the vacuum space also senses the surfaces of the insulators.
  • the field accelerates an electron impinging on the insulators or a scattered electron triggered by an impinging electron away from the surface in the direction of the anode.
  • the insulation cones are shaped such that the normal vector of the electric field accelerates the electrons away from the insulator surface. If the anode-side insulator, like the cathode-side insulator, is designed as a truncated cone protruding into the interior, then an electron impinging on the insulator (for example an electron triggered from the metal piston) is likewise accelerated towards the anode.
  • the anode-side cone of the insulator is shaped so that the normal vector faces away from the surface.
  • the electron moves along the insulator surface, because no electric field acting on the insulator surface acts on the electron.
  • the significant disruption possibly even gas eruptions or even a breakdown of the insulator can cause.
  • the higher the voltage the more significant this effect becomes. At very high voltages, this type of insulators can therefore no longer be used.
  • the geometric length increases with increasing applied electric field.
  • an X-ray source is to be proposed which allows several times higher electrical powers than conventional X-ray sources.
  • the tubes should be built modular and easy and inexpensive to manufacture. Further, any defective parts of the X-ray tube should be interchangeable without having to replace the whole X-ray tube.
  • an X-ray tube an anode and a cathode are arranged opposite each other in a vacuumized interior, wherein at the cathode electrons are generated, are accelerated by means of applying high voltage to the anode and X-rays at the anode means
  • the x-ray tube comprises a plurality of complementary acceleration modules, the acceleration modules each comprising at least one potential-carrying electrode, wherein the first acceleration module comprises the cathode with primary electron generation and the last acceleration module comprises the anode with the x-ray generation, and wherein the x-ray tube at least one further acceleration module comprising a potential-carrying electrode, which acceleration module for the acceleration of electrons is repeatedly reproducible in series switchable, and wherein the x-ray tube is modular buildable.
  • the anode may comprise a target for X-ray generation with an exit window or be formed as a transmission anode, which closes the vacuumized interior of the X-ray tube to the outside.
  • At least one of the electrodes may include spherically shaped ends for reducing or minimizing the field enhancement at the respective electrode.
  • the electrodes can be connected, for example, by means of potential connections, for example, to a high-voltage cascade.
  • One advantage of the invention is, inter alia, that very high power X-ray radiation can be generated, with the geometrical size of the X-ray tube being small, especially with tubes of the prior art.
  • the invention enables an X-ray tube which is stably operable over a very wide electric potential range without changing performance characteristics.
  • Another advantage of the invention is, inter alia, a much lower load on the insulator by the E field. This is especially true in comparison to the conventional disk insulators.
  • the inventive X-ray tube can be produced, for example, in a single-stage vacuum brazing process. This has the particular advantage that the subsequent evacuation of the X-ray tube can be omitted by means of high vacuum pumps. It is a further advantage that the X-ray tubes according to the invention are particularly suitable for the one-shot method due to their simple and modular construction, since the fields inside the tube are much smaller than in conventional tubes and the tube according to the invention is therefore less susceptible to contamination and / or leaks.
  • the potential difference between each two potential-carrying electrodes of adjacent acceleration modules is chosen to be constant for all acceleration modules, the final energy of the accelerating electrons being an integer multiple of the energy of an acceleration module.
  • At least one of the acceleration modules has a resealable vacuum valve.
  • the acceleration modules can be provided on one or both sides with a vacuum seal to allow an air-tight closure between the individual acceleration modules.
  • This variant has u.a. the advantage that by means of the vacuum valve, individual parts of the X-ray tube can be replaced without, as in conventional X-ray tubes, the same whole tube must be replaced. Since the tube has a modular design, the tube can also be subsequently easily adapted to changing operating conditions by using additional acceleration modules or removing existing modules. This is not possible with any of the prior art tubes.
  • the acceleration modules comprise a cylindrical insulating ceramic.
  • This variant has u.a. the advantage that the mechanical design effort at moderate load through the electric field is low, exceptionally high performance characteristics can be achieved.
  • the insulation ceramic has a high-resistance inner coating.
  • This variant has u.a. the advantage that disturbing charges by scattered electrons, caused on the one hand by field-related processes in the insulator material, on the other hand by the backscattered by the anode target secondary electrons and by field emission electrons, is avoided.
  • the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased.
  • the insulation ceramic 53 comprises a rib-shaped outer structure. Due to the shape of the insulation ceramic 53, the insulation distance on the outside (atmosphere side) of the insulator can be extended. This variant has the advantage, among other things, that it has a high-voltage correspondingly shaped external structure. This exterior structure additionally allows for improved efficient cooling of the x-ray tube.
  • the electrodes of the acceleration modules comprise a shield for suppressing the scattered electron flow to the insulating ceramic.
  • At least one of the shields may include spherically shaped ends for reducing or minimizing field elevation at the respective shield.
  • the x-ray tube according to the invention is produced by the one-shot method.
  • This has u.a. the advantage that the subsequent evacuation of the X-ray tube 10 can be omitted by means of high vacuum pumps.
  • Another advantage of the one-shot method i.
  • the one-step manufacturing process is therefore more economically efficient, time-saving and cheaper. At the same time, contamination of the tube can be minimized in this process with suitable process control.
  • the tube is already largely free of impurities, which minimizes the dielectric strength of the insulating ceramics in the rule.
  • Vacuum tightness requirements for the tubes 10 are the same in most cases in the one-shot process as in multi-stage manufacturing processes.
  • the present invention relates not only to the method according to the invention but also to a device for carrying out this method and to a method for producing such a device.
  • it also relates to irradiation systems which comprise at least one X-ray tube according to the invention with one or more high-voltage cascades for supplying voltage to the at least one X-ray tube.
  • FIGS. 4 to 10 illustrate architectures that can be used to implement the invention.
  • an anode 20 and a cathode 30 are placed in a vacuumized interior 40 opposite one another.
  • the electrons e - are generated at the cathode 30, wherein the cathode 30 serves as an electron emitter.
  • the cathode 30 thus serves on the one hand for generating the electric field E, on the other hand also for electron generation. Therefore, all materials are in principle suitable for this application, the electrons e - can emit. This process can be achieved by thermal emission, but also by field emission (cold emitter).
  • any type of microtiparrays with mostly diamond-like structures or, for example, also nanotubes can be used.
  • the cold emission in this tube type can also be exploited by utilizing the Penning effect on suitably shaped metals.
  • thermal emitters which can also be used in this emitter concept, for example tungsten (W), lanthanum hexaboride (LaB 6 ), dispenser cathodes (La in W) and / or oxide cathodes (for example ZrO).
  • the electrons e - are accelerated by means of applying high voltage to the anode 20 and generate x-rays ⁇ On an object surface of the anode 20.
  • the anodes 20 perform two functions in the X-ray tubes 10. First, they serve as a positive electrode 20 for generating an electric field E for accelerating the electrons e - .
  • the anodes 20 or the target material embedded in the anodes 20 serve as a location where the electron energy is converted into X-radiation ⁇ . This conversion depends on the one hand on the particle energy, but also on the atomic number of the target material. Firstly, according to the Bethe formula, the energy loss of the particles is quadratic with the atomic number Z of the target material / dW dx ⁇ Z 2
  • the anode 20 is thermally stressed.
  • the anode or the target material must therefore be able to survive this thermal stress.
  • the vapor pressure of the target material at the operating temperature of the target should be sufficiently small so as not to negatively influence the vacuum necessary for the operation of the X-ray tube 10. Therefore, for example, target materials can be preferably used which are resistant to high temperatures or can be cooled well.
  • the target material for example, be embedded in a good heat conductive material (eg copper), which can be well cooled ie good thermal conductivity.
  • a good heat conductive material eg copper
  • the characteristic lines (K ⁇ ) are suitable for the specific application.
  • the x-ray tube 10 further comprises a plurality of complementary acceleration modules 41, ..., 45.
  • Each acceleration module 41,..., 45 comprises at least one potential-carrying electrode 20/30/423/433/443 with the corresponding potential connections 421/431/441.
  • a first acceleration module 41 comprises the cathode 30 with the electron production e - , ie with the electron emitter.
  • a second acceleration module 45 comprises the anode 20 with the X-radiation ⁇ .
  • the x-ray tube comprises at least one further acceleration module 42,..., 44 with a potential-carrying electrode 423/433/443.
  • the vacuumized interior 40 may be closed, for example, by means of insulating ceramic 51 to the outside.
  • the insulating materials should also be suitable for producing a metal-ceramic connection.
  • the ceramic should be applicable for Hochvaku umananden. Suitable materials are thus, for example, pure oxide ceramics, such as aluminum, magnesium, beryllium and zirconium oxide. Also monocrystalline Al 2 O 3 (sapphire) is suitable in principle. Furthermore, so-called glass ceramics, such as Macor, or similar materials are conceivable. In particular, mixed ceramics (eg doped Al 2 O 3 ) are of course suitable if they have the appropriate properties.
  • the insulation ceramics 51 may be designed, for example, outward in rib shape or the like, in order to extend insulating distance of the insulation jacket 51, which is not vacuum-side, that is, for example, is located in insulating oil. In the same way, however, any other embodiment, for example, a pure cylindrical shape, the insulating ceramic 51 conceivable without the core of the invention would be affected.
  • the insulation ceramic 51 may, for example, also have a high-resistance inner coating in order to dissipate possible charges that can be caused by various electronic processes, at the same time ensuring that the acceleration voltage can be applied.
  • FIG. 8 shows the basic structure of a modular metal-ceramic tube of two such further acceleration modules 42/43 with insulation ceramic 51, acceleration electrodes 423/433 and potential terminals 421/431.
  • the principle described here for the construction of X-ray tubes 10, which for example consists of a metal-ceramic composite can according to the invention are switched as often repeatable in series and so to accelerate electrons e.
  • the last potential-carrying electrode of the acceleration structure is the anode 20 required for the production.
  • the cathode 30 necessary for electron generation constitutes the first electrode of the acceleration structure This is in the embodiments of the FIGS. 4 to 9 shown.
  • X-ray tubes 10 can be built with a total energy up to 800 kilovolts or more (eg FIG. 5 ).
  • conventional X-ray tubes have been produced with a maximum total energy of 200 to 450 kilovolts.
  • An essential advantage of this concept is that it achieves very high energies with small designs at the same time.
  • Another advantage over existing concepts is the almost homogeneous loading of the segments of the insulating ceramics 51 by the electric field. This has the advantage, inter alia, that the X-ray tube 10 can be configured by segmentation so that the field-moderate loading of the insulating ceramics 51 remains below a limit value necessary for high-voltage flashovers.
  • FIG. 9 schematically shows the potential distribution in an inventive modular X-ray tube 10 of an embodiment with an 800kV tube.
  • the X-ray tubes used in the prior art there is a strong radial stress on the insulating ceramics because the tubes are constructed substantially similar to a cylindrical capacitor.
  • These radial fields lead to very high field strengths at the interface between the insulator inner radius and the axially arranged acceleration electrodes (anode, cathode).
  • This enormous field elevation at the so-called triple point (insulator-electrode-vacuum) leads to field emissions of electrons, which generate high-voltage flashovers and can lead to the destruction of the tube, as already described above.
  • FIG. 12 schematically shows an architecture of such a conventional X-ray tube 10 of the prior art.
  • electrons e- from an electron emitter that is a cathode 20
  • a hot tungsten filament emitted accelerated by an applied high voltage to a target, wherein X-rays ⁇ from the target, ie the anode 30 is emitted through a window 301.
  • Triple points field increases the to field emission of electrons e - lead) incurred while both the cathode side and the anode side.
  • the potential difference between in each case two potential-carrying electrodes 20/30/423/433/443 of adjacent acceleration modules 41,..., 45 may, for example, also be constant for all acceleration modules 41,. wherein the final energy of the accelerated electrons e - is an integer multiple of the energy of an acceleration module 41, ..., 45.
  • At least one of the acceleration modules 41,..., 45 may further comprise a resealable vacuum valve 531.
  • This has the advantage that by means of the vacuum valve 531 individual parts of the X-ray tube 10 can be replaced without, as in conventional X-ray tubes, the same whole tube must be replaced. Since the tube 10 according to the invention has a modular design, the tube 10 can subsequently also be easily adapted to changed operating conditions by using further acceleration modules or by removing existing modules. This is not possible with any of the prior art tubes.
  • the increase of the beam energy of X-ray tubes 10 can be achieved by adding one or more acceleration segments 41, ..., 45 or acceleration modules 41, ..., 45 ,
  • at least one of the acceleration modules 41,..., 45 can be designed such that it carries a resealable vacuum valve 531.
  • the acceleration modules 41,..., 45 could additionally comprise vacuum seals on one or both sides.
  • the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes 20/30/423/433/443 can be additionally increased.
  • the simple and modular construction of the x-ray tube 10 according to the invention is particularly suitable for production processes in the one-shot method, or this construction allows the one-shot process only efficiently.
  • the soldering of the entire tube 10 takes place in a single-stage vacuum brazing process. This has the advantage, inter alia, that the subsequent evacuation of the x-ray tube 10 by means of high-vacuum pumps can be dispensed with.
  • Another advantage of the one-shot process ie the one-step production process by the total soldering of the tube in vacuum (one-shot method), is, among other things, that one has a single manufacturing process and not three as usual: 2. Assemble assemblies (eg soldering or welding) / 3. Evacuate tube by means of vacuum pump.
  • the one-step manufacturing process is therefore more economically efficient, time-saving and cheaper.
  • the contamination of the tube can be minimized.
  • the tube is already largely free of impurities, which minimizes the dielectric strength of the insulating ceramics in the rule.
  • Vacuum tightness requirements for the tubes 10 are the same in most cases in the one-shot process as in multi-stage manufacturing processes.
  • the inventive tube 10 is less susceptible to contamination and / or leaks.
  • the X-ray tube 10 according to the invention can also be used excellently for producing entire radiation systems and / or individual radiation devices 60 (see FIG. 12 ).
  • the tube 10 may be mounted in a housing 65, for example, in insulating oil.
  • the shielding housing 65 may include an exit window 61 for X-radiation ⁇ .
  • the radiation device 60 comprises for the tube 10 a corresponding high-voltage cascade 62, for example with an associated high-voltage transformer 63 and voltage terminals 64 to the outside.
  • Such radiation devices 60 or monobloc 60 can then be used, for example, to produce larger radiation systems.
  • inventive tube 10 without a target or transmission anode is also outstandingly suitable as an electron emitter and / or electron gun with the corresponding industrial fields of application due to its simple, modular construction and its high powers.
  • the shields 422/432/442 are shaped so that the electron beam does not "see" an insulator surface 51 (FIG. FIG. 13 ).
  • Charging effects of the ceramic insulators 51 may occur, which need not necessarily be caused by scattered and secondary electron emission.
  • FIG. 13 illustrated geometry or a similar geometry such charging effects can be prevented or minimized.
  • a coating of the insulation ceramic can also be used, in particular, to supply the potential if, for example, a suitable conductive layer is attached to the outside of the insulators, so that the layer acts as a voltage divider.
  • a suitable coating could also replace the metallic electrodes 423/433/443 against the vacuumized interior.

Landscapes

  • X-Ray Techniques (AREA)
  • Peptides Or Proteins (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Modular X-ray tube ( 10 ) and method for the production of such an X-ray tube, in which an anode ( 20 ) and a cathode ( 30 ) are arranged in a vacuumized inner space ( 40 ) situated opposite each other, electrons (e<SUP>-</SUP>) being produced at the cathode ( 30 ) and X-rays (y) at the anode ( 20 ). The X-ray tube ( 10 ) according to the invention comprises a multiplicity of acceleration modules ( 41, . . . , 45 ), complementing one another, and each acceleration module ( 41, . . . , 45 ) comprises at least one potential-carrying acceleration electrode ( 20/30/423/433/443 ). A first acceleration module ( 41 ) thereby comprises the cathode ( 30 ), a second acceleration module ( 45 ) the anode ( 20 ). The X-ray tube ( 10 ) further comprises at least one other acceleration module ( 42, . . . , 44 ). In particular, the X-ray tube according to the invention can possess a re-closeable vacuum valve, enabling individual defective parts of the tube ( 10 ) to be replaced in a simple manner or enabling the tube ( 10 ) to be modified in a modular way.

Description

Die vorliegende Erfindung betrifft eine Röntgenröhre für hohe Dosisleistungen, ein entsprechendes Verfahren zur Erzeugung von hohen Dosisleistungen mit Röntgenröhren sowie ein Verfahren zur Herstellung entsprechender Röntgenvorrichtungen, bei welchem eine Anode und eine Kathode in einem vakuumisierten Innenraum einander gegenüberliegend angeordnet sind, wobei Elektronen mittels anlegbarer Hochspannung auf die Anode beschleunigt werden.The present invention relates to an X-ray tube for high dose rates, a corresponding method for generating high dose rates with X-ray tubes and a method for producing corresponding X-ray devices, in which an anode and a cathode in a vacuumized interior are arranged opposite to each other, wherein electrons by means of applying high voltage the anode will be accelerated.

Die Nutzung von Röntgenröhren ist in wissenschaftlichen und technischen Anwendungen weit verbreitet. Röntgenröhren finden nicht nur in der Medizin, z.B. in diagnostischen Systemen oder bei therapeutischen Systemen zur Bestrahlung von krankem Gewebe Verwendung, sondern sie werden z.B. auch zur Sterilisation von Stoffen wie Blut oder Lebensmittel oder zur Sterilisation (Unfruchtbarmachung) von Lebewesen wie Insekten eingesetzt. Andere Anwendungsgebiete finden sich weiter in der traditionellen Röntgentechnik wie z.B. das Durchleuchten von Gepäckstücken und/oder Transportcontainern oder die zerstörungsfreie Überprüfung von Werkstücken z.B. Betonarmierungen etc. Im Stand der Technik sind diverse Verfahren und Vorrichtungen für Röntgenröhren beschrieben. Diese reichen von miniaturisierten Röhren in Form eines Transistorgehäuses, bis hin zu Hochleistungsröhren mit einer Beschleunigungsspannung von bis zu 450 Kilovolt. Besonders in neuerer Zeit wurde viel Aufwand und Mühe von Industrie und Technik darauf verwendet, die Leistung und/oder Effizienz und/oder Lebensdauer und/oder Wartungsmöglichkeiten von Bestrahlungssystemen zu verbessern. Diese Anstrengungen wurden insbesondere durch neue Anforderungen bei Sicherheitssystemen, wie z.B. beim Durchleuchten von grossen Frachtcontainern im Flugverkehr etc., und ähnlichen Vorrichtungen ausgelöst.The use of X-ray tubes is widely used in scientific and technical applications. X-ray tubes are found not only in medicine, e.g. in diagnostic systems or in therapeutic systems for irradiation of diseased tissue use, but they are e.g. also used for the sterilization of substances such as blood or food or for sterilization (infertility) of living things such as insects. Other applications are further found in traditional x-ray technology, such as e.g. the scanning of luggage and / or transport containers or the non-destructive inspection of workpieces, e.g. Concrete reinforcements, etc. Various methods and devices for X-ray tubes are described in the prior art. These range from miniaturized tubes in the form of a transistor package, to high-performance tubes with an acceleration voltage of up to 450 kilovolts. Particularly recently, much effort and effort has been made by industry and technology to improve the performance and / or efficiency and / or life and / or maintenance capabilities of irradiation systems. These efforts have been made particularly by new requirements in safety systems, such as e.g. when scanning large cargo containers in air traffic, etc., and similar devices triggered.

Die konventionellen im industriellen Umfeld angewandten Röntgenröhrentypen bestehen entweder aus Glas oder aus Metall-Keramik-Verbünden. Figur 1 zeigt schematisch ein Beispiel einer solchen konventionellen Röntgenröhre aus einem Glasverbund. Figur 2 und 3 zeigen konventionelle Röntgenröhren aus Metall-Keramik-Verbünden. In den Röntgenröhren durchlaufen Elektronen in einem vakuumisierten Rohr ein elektrisches Feld. Sie werden dabei auf ihre Endenergie beschleunigt und wandeln diese an einer TargetOberfläche in Röntgenstrahlung um. D.h. Röntgenröhren umfassen eine Anode und eine Kathode, die in einem vakuumisierten Innenraum einander gegenüberliegend angeordnet sind und die bei den Metall-Keramik-Röhren von einem zylindrischen Metallteil (Figur 2/3) und bei Glas-Röhren von einem Glaszylinder (Figur 1) umschlossen sind. Bei Glasröhren wirkt das Glas als Isolator. Bei den Metall-Keramik-Röhren werden hingegen Anode und/oder Kathode üblicherweise mittels eines Keramikisolators elektrisch isoliert, wobei der oder die Keramikisolatoren axial zum Metallzylinder hinter der Anode und/oder Kathode angeordnet sind und den Vakuumraum auf dem jeweiligen Ende beschliessen. Die Keramikisolatoren sind typischerweise scheibenförmig (ringförmig) oder konusförmig ausgeführt. Prinzipiell wäre bei dieser Röhrenart eine beliebige Isolatorgeometrie möglich, wobei bei hohen Spannungen Feldüberhöhungen zu berücksichtigen sind. In der Regel besitzen die Keramikisolatoren in ihrer Mitte eine Öffnung, in die eine Hochspannungszuführung zur Anode oder die Kathode, vakuumdicht eingesetzt sind. Diese Art von Röntgenröhren werden im Stand der Technik auch als zweipolige oder bipolare Röntgenröhren bezeichnet (Figur 3). Davon unterscheiden sich sog. unipolare Vorrichtungen (Figur 2), bei welchen die Anode, d.h. das Target, auf Erdpotential gesetzt wird. Bei den bipolaren Systemen wird die Elektronenquelle (Kathode) auf eine negative Hochspannung (HV) gesetzt und das Target (Anode) auf eine positive Hochspannung gesetzt. Bei allen Bauformen des Standes der Technik liegt jedoch die volle Beschleunigungsspannung zur Beschleunigung von Elektronen (einstufig) zwischen Anode und Kathode an. Zu beachten ist auch, dass es Lösungen gibt, bei denen eine auf Erdpotential befindliche Blende (Zwischenblende) zwischen Anode und Kathode montiert ist. Diese Zwischenblende kann zum einen als elektronenoptische Linse, aber auch als mechanische Blende für vom Target zurückgestreute Elektronen dienen.Conventional X-ray tube types used in industrial environments consist of either glass or metal-ceramic composites. FIG. 1 shows schematically an example of such a conventional X-ray tube from a glass composite. FIG. 2 and 3 show conventional x-ray tubes made of metal-ceramic composites. In the X-ray tubes, electrons pass through an electric field in a vacuumized tube. They are thereby accelerated to their final energy and convert them to a target surface in X-radiation. That is to say, x-ray tubes comprise an anode and a cathode, which are arranged opposite one another in a vacuumized interior, and which in the metal-ceramic tubes are arranged opposite a cylindrical metal part (FIG. Figure 2/3 ) and glass tubes of a glass cylinder ( FIG. 1 ) are enclosed. In glass tubes, the glass acts as an insulator. In the case of the metal-ceramic tubes, on the other hand, the anode and / or cathode are usually electrically insulated by means of a ceramic insulator, the ceramic insulator (s) being arranged axially to the metal cylinder behind the anode and / or cathode and closing the vacuum space at the respective end. The ceramic insulators are typically disk-shaped (annular) or conical. In principle, any type of insulator geometry would be possible with this type of tube, with field peaks being taken into account at high voltages. In general, the ceramic insulators have in their middle an opening in which a high voltage supply to the anode or the cathode, are used vacuum-tight. These types of x-ray tubes are also referred to in the art as bipolar or bipolar x-ray tubes ( FIG. 3 ). Of these, so-called unipolar devices ( FIG. 2 ), in which the anode, ie the target, is set to ground potential. In the bipolar systems, the electron source (cathode) is set to a negative high voltage (HV) and the target (anode) is set to a positive high voltage. In all designs of the prior art, however, is the full acceleration voltage for the acceleration of electrons (one-stage) between the anode and the cathode. It should also be noted that there are solutions in which an earthed (diaphragm) between the anode and cathode is mounted. This intermediate diaphragm can serve on the one hand as an electron-optical lens, but also as a mechanical diaphragm for electrons backscattered by the target.

Die Probleme bzw. die Nachteile, die durch diese einstufige Konstruktion entstehen, liegen darin, dass bei steigenden angelegten Spannungen ebenfalls die Wahrscheinlichkeit störender physikalischer Effekte steigt. Diese begrenzen zurzeit die Röntgenröhren des Standes der Technik bei unipolaren Röhren auf maximal ca. 200 bis 300 kV und bei bipolaren Vorrichtungen auf maximal ca. 450 kV angelegte Spannung. Wie eben erwähnt, sind es die neben der erwünschten Erzeugung von Röntgenstrahlen beim Betrieb einer Röntgenröhre auftretenden weiteren physikalischen Effekte, wie z.B. Feldemission, Sekundärelektronenemission und Photoeffekt, die die Funktionsfähigkeit der Röhre begrenzen. Diese Effekte stören jedoch nicht nur die Funktion der Röntgenröhre, sondern können zu einer Beeinträchtigung des Materials und damit zu einer vorzeitigen Ermüdung der Teile führen. Insbesondere die Sekundärelektronenemission ist bekannt für die Beeinträchtigung des Röntgenröhrenbetriebs. Bei der Sekundärelektronenemission entstehen beim Auftreffen des Elektronenstrahls auf der Anode neben den Röntgenstrahlen unerwünschte, aber unvermeidbare Sekundärelektronen, die sich im Inneren der Röntgenröhre auf Bahnen entsprechend den Feldlinien fortbewegen. Diese Sekundärelektronen können durch diverse Streu- und Stossprozesse auf die Isolatoroberfläche gelangen und dort die HV-Isolationseigenschaften herabsetzen. Sekundärelektronen entstehen jedoch auch dadurch, dass die Isolatoren bei der Anode und/oder Kathode bei Betrieb von unvermeidbaren Feldemissionselektronen getroffen werden und dort Sekundärelektronen auslösen. Das elektrische Feld wird bei eingeschalteter Hochspannung an der Anode und Kathode, d.h: bei Betrieb der Röntgenröhre, im Innenraum und den dem Innenraum zugewandten Oberflächen erzeugt. Dies umfasst auch die Oberflächen des Isolators. Je kürzer die Röntgenröhre ist und je breiter der Keramikisolator ist, desto grösser ist die Wahrscheinlichkeit, dass Sekundärelektronen und/oder Feldemissionselektronen auf den oder die Keramikteil(e) auftreffen. Dies führt dazu, dass die Hochspannungsfestigkeit und Lebensdauer der Vorrichtung auf unerwünschte Art herabgesetzt wird. Bei scheibenförmigen Isolatoren ist es deshalb aus dem Stand der Technik, z.B. aus DE2855905 bekannt, so genannte Abschirmelektroden zu verwenden. Die Abschirmelektroden können z.B. paarweise verwendet werden, wobei sie bei einer rotationssymmetrischen Gestalt der Röntgenröhre meist koaxial in einem bestimmten Abstand angeordnet sind, um die Ausbreitung der Sekundärelektronen optimal zu unterbinden. Wie sich gezeigt hat, können solche Vorrichtungen jedoch bei sehr hoher Spannung nicht mehr verwendet werden. Zudem ist der Material- und Herstellungsaufwand bei solchen Konstruktionen grösser, als bei Röntgenröhren mit nur Isolatoren. Eine andere Möglichkeit des Standes der Technik wird z.B. in DE6946926 gezeigt. Um die Angriffsfläche zu verringern, wird in diesen Lösungen ein konischer Keramikisolator verwendet. Der Keramikisolator weist eine im Wesentlichen konstante Wandstärke auf und ist z.B. mit einer auf vulkanisierten Gummischicht überzogen. Die Schicht soll dazu beitragen, dass Sekudärelektronen weniger stark auftreten. Wie erwähnt, erfasst das elektrische Feld im Innern des Vakuumraums ebenfalls die Oberflächen der Isolatoren. Insbesondere bei konischen Isolatoren wird durch das Feld ein auf den Isolatoren auftreffendes Elektron oder ein durch ein auftreffendes Elektron ausgelöstes Streuelektron von der Oberfläche weg in Richtung Anode beschleunigt. Prinzipiell sind die Isolationskoni so geformt, dass der Normalvektor des elektrischen Feldes die Elektronen von der Isolatorfläche wegbeschleunigt. Ist der anodenseitige Isolator wie der kathodenseitige Isolator als in den Innenraum hineinragender Kegelstumpf ausgebildet, dann wird ein auf den Isolator auftreffendes (beispielsweise ein aus dem Metallkolben ausgelöstes) Elektron ebenfalls zur Anode hin beschleunigt. Der anodenseitige Konus des Isolators ist z.B. so geformt, dass der Normalvektor von der Oberfläche wegzeigt. Anodenseitig bewegt das Elektron sich auf der Isolatoroberfläche entlang, weil kein von der Isolatorfläche wegweisendes elektrisches Feld auf das Elektron einwirkt. Nach Durchlaufen einer gewissen Strecke hat ein solches Elektron genügend Energie, um weitere Elektronen auszulösen, die ihrerseits wiederum Elektronen auslösen, so dass es zu einer auf der Isolatorenoberfläche zur Anode laufenden Elektronenlawine kommt, die eine erhebliche Störung, unter Umständen auch Gasausbrüche oder gar einen Durchschlag des Isolators hervorrufen kann. Je höher die Spannung ist, desto signifikanter wird dieser Effekt. Bei sehr hohen Spannungen kann diese Art der Isolatoren deshalb nicht mehr eingesetzt werden. Zudem ist anzumerken, dass die geometrische Länge mit zunehmendem angelegtem elektrischen Feld zunimmt. Elektronen können je nach Energie und Austrittswinkel auch in Richtung Kathode laufen, insbesondere bei gestreuten Elektronen, Kathodenseitig tritt der oben beschriebene Effekt jedoch weniger auf, da Elektronen, die kathodenseitig auf die Isolatoroberfläche gelangen oder aus dieser ausgelöst werden, sich durch das Vakuum in Richtung Metallzylinder und nicht entlang der Isolatoroberfläche bewegen. Um den Nachteil zu umgehen, sind im Stand der Technik verschiedene Lösungen bekannt, z.B. wird in der Offenlegungsschrift DE2506841 vorgeschlagen, kathodenseitig den Isolator derart auszugestalten, dass zwischen dem Isolator und der Röhre ein konischer Hohlraum entsteht. Eine andere Lösung des Standes der Technik wird z.B. in der Patentschrift EP0215034 gezeigt, wo der scheibenförmige Isolator gegen den Metallzylinder hin treppenförmig abgestuft ist. Es hat sich jedoch gezeigt, dass all die im Stand der Technik gezeigten Lösungen bei hohen Spannungen, d.h. beispielsweise oberhalb von 150 kV, Störungen aufweisen, die u.a. zu einer vorzeitigen Alterung des Materials führen und Gasausbrüche und/oder Durchbrüche des Isolators erzeugen können. Somit sind die im Stand der Technik bekannten Röntgenröhren für viele moderne Anwendungen mit sehr hohen Spannungen (>400 kV) nur schlecht bzw. gar nicht verwendbar.The problems and disadvantages of this one-step construction are that with increasing applied voltages, the probability of disturbing physical effects also increases. These currently limit the prior art X-ray tubes to unipolar ones Tubes to a maximum of about 200 to 300 kV and in bipolar devices to a maximum of about 450 kV voltage applied. As just mentioned, it is the additional physical effects, such as field emission, secondary electron emission, and photoelectric effect, that occur in addition to the desired generation of X-rays during operation of an X-ray tube that limit the performance of the tube. However, these effects not only disturb the function of the X-ray tube, but can lead to a deterioration of the material and thus to premature fatigue of the parts. In particular, the secondary electron emission is known for the impairment of the X-ray tube operation. In the case of secondary electron emission, when the electron beam impinges on the anode, in addition to the X-rays, undesired but unavoidable secondary electrons propagate in the interior of the X-ray tube on tracks corresponding to the field lines. These secondary electrons can reach the insulator surface through various scattering and impact processes and there reduce the HV insulation properties. However, secondary electrons also result from the fact that the insulators are hit at the anode and / or cathode during operation of unavoidable field emission electrons and trigger secondary electrons there. The electric field is generated when the high voltage is switched on at the anode and cathode, ie: during operation of the x-ray tube, in the interior and the interior facing surfaces. This also includes the surfaces of the insulator. The shorter the X-ray tube is and the wider the ceramic insulator, the greater the likelihood that secondary and / or field emission electrons impact the ceramic part (s). As a result, the high-voltage strength and life of the device are undesirably lowered. In disc-shaped insulators, it is therefore from the prior art, for example DE2855905 known to use so-called shielding electrodes. The shielding electrodes can be used, for example, in pairs, wherein they are usually arranged coaxially at a certain distance in a rotationally symmetrical shape of the x-ray tube in order to optimally prevent the propagation of the secondary electrons. As has been shown, however, such devices can no longer be used at very high voltage. In addition, the material and manufacturing costs in such structures is greater than in X-ray tubes with only insulators. Another possibility of the prior art is eg in DE6946926 shown. In order to reduce the attack surface, a conical ceramic insulator is used in these solutions. The ceramic insulator has a substantially constant wall thickness and is coated, for example, with a vulcanized rubber layer. The layer should contribute to the fact that secondary electrons occur less strongly. As mentioned, the electric field inside the vacuum space also senses the surfaces of the insulators. Particularly in the case of conical insulators, the field accelerates an electron impinging on the insulators or a scattered electron triggered by an impinging electron away from the surface in the direction of the anode. In principle, the insulation cones are shaped such that the normal vector of the electric field accelerates the electrons away from the insulator surface. If the anode-side insulator, like the cathode-side insulator, is designed as a truncated cone protruding into the interior, then an electron impinging on the insulator (for example an electron triggered from the metal piston) is likewise accelerated towards the anode. For example, the anode-side cone of the insulator is shaped so that the normal vector faces away from the surface. On the anode side, the electron moves along the insulator surface, because no electric field acting on the insulator surface acts on the electron. After passing through a certain distance such an electron has enough energy to trigger more electrons, which in turn trigger electrons, so that it comes to a running on the insulator surface to the anode electron avalanche, the significant disruption, possibly even gas eruptions or even a breakdown of the insulator can cause. The higher the voltage, the more significant this effect becomes. At very high voltages, this type of insulators can therefore no longer be used. It should also be noted that the geometric length increases with increasing applied electric field. Depending on the energy and the exit angle, electrons can also run in the direction of the cathode, in particular with scattered electrons. However, the effect described above is less pronounced on the cathode side because electrons that reach the insulator surface on the cathode side or are triggered by the vacuum move towards the metal cylinder and do not move along the insulator surface. To avoid the disadvantage, various solutions are known in the prior art, for example, in the published patent application DE2506841 proposed on the cathode side, the insulator such that between the insulator and the tube a conical Cavity arises. Another solution of the prior art, for example, in the patent EP0215034 shown where the disc-shaped insulator is stepped stepped against the metal cylinder. It has been found, however, that all the solutions shown in the prior art at high voltages, ie, for example, above 150 kV, have disturbances which, inter alia, lead to premature aging of the material and can produce gas eruptions and / or breakthroughs of the insulator. Thus, the X-ray tubes known in the art are poorly or not at all usable for many modern applications with very high voltages (> 400 kV).

Es ist eine Aufgabe dieser Erfindung, eine neue Röntgenröhre und ein entsprechendes Verfahren zur Herstellung einer solchen Röntgenröhren vorzuschlagen, welche die oben beschriebenen Nachteile nicht aufweist. Insbesondere soll ein Röntgenstrahler vorgeschlagen werden, der mehrfach höhere elektrische Leistungen ermöglicht als konventionelle Röntgenstrahler. Ebenso sollen die Röhren modular aufbaubar und einfach und kostengünstig herzustellen sein. Weiter sollen eventuelle defekte Teile der Röntgenröhre austauschbar sein, ohne dass die ganze Röntgenröhre ersetzt werden muss.It is an object of this invention to propose a novel X-ray tube and a corresponding method for producing such an X-ray tube, which does not have the disadvantages described above. In particular, an X-ray source is to be proposed which allows several times higher electrical powers than conventional X-ray sources. Likewise, the tubes should be built modular and easy and inexpensive to manufacture. Further, any defective parts of the X-ray tube should be interchangeable without having to replace the whole X-ray tube.

Gemäss der vorliegenden Erfindung wird dieses Ziel insbesondere durch die Elemente der unabhängige Ansprüche erreicht. Weitere vorteilhafte Ausführungsformen gehen ausserdem aus den abhängigen Ansprüchen und der Beschreibung hervor.According to the present invention, this object is achieved in particular by the elements of the independent claims. Further advantageous embodiments are also evident from the dependent claims and the description.

Insbesondere werden diese Ziele durch die Erfindung dadurch erreicht, dass in einer Röntgenröhre eine Anode und eine Kathode in einem vakuumisierten Innenraum einander gegenüberliegend angeordnet sind, wobei bei der Kathode Elektronen erzeugt werden, mittels anlegbarer Hochspannung auf die Anode beschleunigt werden und Röntgenstrahlen bei der Anode mittels der Elektronen erzeugt werden, wobei die Röntgenröhre mehrere einander ergänzende Beschleunigungsmodule umfasst, welche Beschleunigungsmodule jeweils mindestens eine potentialtragende Elektrode umfassen, wobei das erste Beschleunigungsmodul die Kathode mit primärer Elektronenerzeugung und das letzte Beschleunigungsmodul die Anode mit der Röntgenstrahlungserzeugung umfasst, und wobei die Röntgenröhre mindestens ein weiteres Beschleunigungsmodul mit einer potentialtragenden Elektrode umfasst, welches Beschleunigungsmodul zur Beschleunigung von Elektronen beliebig oft wiederholbar in Serie schaltbar ist, und wobei die Röntgenröhre modular aufbaubar ist. Die Anode kann ein Target zur Röntgenstrahlungserzeugung mit einem Austrittsfenster umfassen oder als eine Transmissionsanode ausgebildet sein, welche den vakuumisierten Innenraum der Röntgenröhre nach Aussen abschliesst. Mindestens eine der Elektroden kann kugelförmig bzw. konusförmig ausgebildete Enden zur Herabsetzung oder Minimierung der Feldüberhöhung an der jeweiligen Elektrode umfassen. Die Elektroden können z.B. mittels Potentialanschlüsse zum Beispiel an eine Hochspannungskaskade anschliessbar sein. Ein Vorteil der Erfindung ist u.a., dass Röntgenstrahlung sehr hoher Leistung erzeugt werden kann, wobei die geometrische Baugrösse der Röntgenröhre insbesondere zu Röhren des Standes der Technik klein ist. Gleichzeitig ermöglicht die Erfindung eine Röntgenröhre, die stabil über einen sehr weiten elektrischen Potentialbereich betreibbar ist, ohne dass sich Leistungscharakteristiken verändern. Ein weiterer Vorteil der Erfindung ist u.a. eine weitaus geringere Belastung des Isolators durch das E-Feld. Dies gilt besonders im Vergleich zu den herkömmlichen Scheibenisolatoren. Die erfindungsgemässe Röntgenröhre kann z.B. in einem einstufigen Vakuumlötprozess hergestellt werden. Dies hat insbesondere den Vorteil, dass die anschliessende Evakuierung der Röntgenröhre mittels Hochvakuumpumpen entfallen kann. Es ist ein weiterer Vorteil, dass sich die erfindungsgemässe Röntgenröhren durch ihren einfachen und modularen Aufbau besonders für das One-Shot-Verfahren eignet, da die Felder innerhalb der Röhre viel kleiner sind als bei konventionellen Röhren und die erfindungsgemässe Röhre dadurch weniger anfällig auf Verunreinigungen und/oder undichte Stellen ist.In particular, these objects are achieved by the invention in that in an X-ray tube, an anode and a cathode are arranged opposite each other in a vacuumized interior, wherein at the cathode electrons are generated, are accelerated by means of applying high voltage to the anode and X-rays at the anode means wherein the x-ray tube comprises a plurality of complementary acceleration modules, the acceleration modules each comprising at least one potential-carrying electrode, wherein the first acceleration module comprises the cathode with primary electron generation and the last acceleration module comprises the anode with the x-ray generation, and wherein the x-ray tube at least one further acceleration module comprising a potential-carrying electrode, which acceleration module for the acceleration of electrons is repeatedly reproducible in series switchable, and wherein the x-ray tube is modular buildable. The anode may comprise a target for X-ray generation with an exit window or be formed as a transmission anode, which closes the vacuumized interior of the X-ray tube to the outside. At least one of the electrodes may include spherically shaped ends for reducing or minimizing the field enhancement at the respective electrode. The electrodes can be connected, for example, by means of potential connections, for example, to a high-voltage cascade. One advantage of the invention is, inter alia, that very high power X-ray radiation can be generated, with the geometrical size of the X-ray tube being small, especially with tubes of the prior art. At the same time, the invention enables an X-ray tube which is stably operable over a very wide electric potential range without changing performance characteristics. Another advantage of the invention is, inter alia, a much lower load on the insulator by the E field. This is especially true in comparison to the conventional disk insulators. The inventive X-ray tube can be produced, for example, in a single-stage vacuum brazing process. This has the particular advantage that the subsequent evacuation of the X-ray tube can be omitted by means of high vacuum pumps. It is a further advantage that the X-ray tubes according to the invention are particularly suitable for the one-shot method due to their simple and modular construction, since the fields inside the tube are much smaller than in conventional tubes and the tube according to the invention is therefore less susceptible to contamination and / or leaks.

In einer Ausführungsvariante wird die Potentialdifferenz zwischen jeweils zwei potentialtragenden Elektroden benachbarter Beschleunigungsmodule für alle Beschleunigungsmodule konstant gewählt, wobei die Endenergie der beschleunigen Elektronen ein ganzzahliges Vielfaches der Energie eines Beschleunigungsmoduls ist. Diese Ausführungsvariante hat u.a. den Vorteil, dass die Belastung der Isolatoren über die Strecke konstant ist und keine Feldüberhöhungen auftreten, die sich nachteilig auf die Betriebsfähigkeit der Röhre auswirken können.In one embodiment variant, the potential difference between each two potential-carrying electrodes of adjacent acceleration modules is chosen to be constant for all acceleration modules, the final energy of the accelerating electrons being an integer multiple of the energy of an acceleration module. This variant has the advantage, inter alia, that the load on the insulators over the distance is constant and no field increases occur, which can adversely affect the operability of the tube.

In einer anderen Ausführungsvariante weist mindestens eines der Beschleunigungsmodule ein wiederverschliessbares Vakuumventil auf. Der Beschleunigungsmodule können dabei einseitig oder zweiseitig mit einem einer Vakuumdichtung versehen sein, um eine Luftdichte Schliessung zwischen den einzelnen Beschleunigungsmodulen zu erlauben. Diese Ausführungsvariante hat u.a. den Vorteil, dass mittels des Vakuumventils einzelne Teile der Röntgenröhre ersetzt werden können, ohne dass, wie bei herkömmlichen Röntgenröhren, gleich die ganze Röhre ersetzt werden muss. Da die Röhre modular aufgebaut ist, lässt sich die Röhre nachträglich auch problemlos an veränderte Betriebsvoraussetzungen anpassen, indem weitere Beschleunigungsmodule eingesetzt oder bestehende Module entfernt werden. Dies ist bei keiner der Röhren im Stand der Technik so möglich.In another embodiment variant, at least one of the acceleration modules has a resealable vacuum valve. The acceleration modules can be provided on one or both sides with a vacuum seal to allow an air-tight closure between the individual acceleration modules. This variant has u.a. the advantage that by means of the vacuum valve, individual parts of the X-ray tube can be replaced without, as in conventional X-ray tubes, the same whole tube must be replaced. Since the tube has a modular design, the tube can also be subsequently easily adapted to changing operating conditions by using additional acceleration modules or removing existing modules. This is not possible with any of the prior art tubes.

In einer weiteren Ausführungsvariante umfassen die Beschleunigungsmodule eine zylinderförmige Isolationskeramik. Diese Ausführungsvariante hat u.a. den Vorteil, dass der mechanische konstruktive Aufwand bei moderater Belastung durch das elektrische Feld gering ist, wobei ausserordentlich hohe Leistungscharakteristiken erzielbar sind.In a further embodiment, the acceleration modules comprise a cylindrical insulating ceramic. This variant has u.a. the advantage that the mechanical design effort at moderate load through the electric field is low, exceptionally high performance characteristics can be achieved.

In einer wieder anderen Ausführungsvariante weist die Isolationskeramik eine hochohmige Innenbeschichtung auf. Diese Ausführungsvariante hat u.a. den Vorteil, dass störende Aufladungen durch gestreute Elektronen, hervorgerufen einerseits durch feldmässig bedingte Prozesse im Isolatormaterial, anderseits durch die vom Anodentarget zurückgestreuten Sekundärelektronen und durch Feldemissionselektronen, vermieden wird. Damit kann die Lebensdauer der Röntgenröhren und/oder die Potentialdifferenzen zwischen den einzelnen Beschleunigungselektroden zusätzlich erhöht werden.In yet another embodiment variant, the insulation ceramic has a high-resistance inner coating. This variant has u.a. the advantage that disturbing charges by scattered electrons, caused on the one hand by field-related processes in the insulator material, on the other hand by the backscattered by the anode target secondary electrons and by field emission electrons, is avoided. Thus, the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased.

In einer Ausführungsvariante umfasst die Isolationskeramik 53 eine rippenförmige Aussenstruktur. Durch die Form der Isolationskeramik 53 kann die Isolationsstrecke an der Aussenseite (Atmosphärenseite) des Isolators verlängert werden. Diese Ausführungsvariante hat u.a. den Vorteil, dass sie eine der Hochspannung entsprechend geformte Aussenstruktur aufweisst. Diese Aussenstruktur erlaubt zusätzlich ein verbessertes effizienteres Kühlen der Röntgenröhre.In one embodiment, the insulation ceramic 53 comprises a rib-shaped outer structure. Due to the shape of the insulation ceramic 53, the insulation distance on the outside (atmosphere side) of the insulator can be extended. This variant has the advantage, among other things, that it has a high-voltage correspondingly shaped external structure. This exterior structure additionally allows for improved efficient cooling of the x-ray tube.

In einer Ausführungsvariante umfassen die Elektroden der Beschleunigungsmodule eine Abschirmung zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik. Mindestens eine der Abschirmungen kann kugelförmig bzw. konusförmig ausgebildete Enden zur Herabsetzung oder Minimierung der Feldüberhöhung an der jeweiligen Abschirmung umfassen. Diese Ausführungsvariante hat u.a. den Vorteil, dass die Abschirmungen einen zusätzlichen Schutz für die Isolationskeramiken bilden. Damit kann die Lebensdauer der Röntgenröhren und/oder die Potentialdifferenzen zwischen den einzelnen Beschleunigungselektroden zusätzlich erhöht werden.In one embodiment, the electrodes of the acceleration modules comprise a shield for suppressing the scattered electron flow to the insulating ceramic. At least one of the shields may include spherically shaped ends for reducing or minimizing field elevation at the respective shield. This variant has u.a. the advantage that the shields provide additional protection for the insulation ceramics. Thus, the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased.

In einer Ausführungsvariante wird die erfindungsgemässe Röntgenröhre im One-Shot-Verfahren hergestellt. Dies hat u.a. den Vorteil, dass die anschliessende Evakuierung der Röntgenröhre 10 mittels Hochvakuumpumpen entfallen kann. Ein weiterer Vorteil des One-Shot-Verfahren, d.h. des einstufigen Herstellungsverfahrens durch die gesamthafte Lötung der Röhre im Vakuum (One-Shot-Verfahren), ist u.a., dass man einen einzigen Herstellungsprozess hat und nicht wie herkömmlich drei: 1. Baugruppen Löten / 2. Baugruppen zusammenfügen (z.B. Löten oder Schweissen) / 3. Röhre evakuieren mittels Vakuumpumpe. Das einstufige Herstellungsverfahren ist daher ökonomisch effizienter, zeitsparender und billiger. Gleichzeitig lässt sich bei diesem Verfahren bei geeigneter Prozessführung die Kontaminierung der Röhre minimieren. Dennoch kann es vorteilhaft sein, wenn die Röhre schon weitgehend frei von Verunreinigungen ist, was in der Regel die Spannungsfestigkeit der Isolationskeramiken minimiert. Die Anforderungen an die Vakuumsdichtigkeit für die Röhren 10 sind beim One-Shot-Verfahren in den meisten Fällen dieselben wie bei mehrstufigen Herstellungsverfahren.In one embodiment variant, the x-ray tube according to the invention is produced by the one-shot method. This has u.a. the advantage that the subsequent evacuation of the X-ray tube 10 can be omitted by means of high vacuum pumps. Another advantage of the one-shot method, i. The one-step manufacturing process by the total soldering of the tube in vacuum (one-shot method), among other things, that one has a single manufacturing process and not as conventional three: 1. assemblies soldering / assembly assemble 2. (eg soldering or welding) / 3. Evacuate tube by means of vacuum pump. The one-step manufacturing process is therefore more economically efficient, time-saving and cheaper. At the same time, contamination of the tube can be minimized in this process with suitable process control. Nevertheless, it may be advantageous if the tube is already largely free of impurities, which minimizes the dielectric strength of the insulating ceramics in the rule. Vacuum tightness requirements for the tubes 10 are the same in most cases in the one-shot process as in multi-stage manufacturing processes.

An dieser Stelle soll festgehalten werden, dass sich die vorliegende Erfindung neben dem erfindungsgemässen Verfahren auch auf eine Vorrichtung zur Ausführung dieses Verfahrens sowie ein Verfahren zur Herstellung einer solchen Vorrichtung bezieht. Insbesondere bezieht es sich auch auf Bestrahlungssysteme, welche mindestens eine erfindungsgemässe Röntgenröhre mit einer oder mehreren Hochspannungskaskaden zur Spannungsversorgung der mindestens einen Röntgenröhre umfassen.It should be noted at this point that the present invention relates not only to the method according to the invention but also to a device for carrying out this method and to a method for producing such a device. In particular, it also relates to irradiation systems which comprise at least one X-ray tube according to the invention with one or more high-voltage cascades for supplying voltage to the at least one X-ray tube.

Nachfolgend werden Ausführungsvarianten der vorliegenden Erfindung anhand von Beispielen beschrieben. Die Beispiele der Ausführungen werden durch folgende beigelegte Figuren illustriert:

  • Figur 1 zeigt ein Blockdiagramm, welches schematisch eine Röntgenröhre 10 aus einem Glasverbund des Standes der Technik zeigt. Dabei werden Elektronen e- von einer Kathode 30 emittiert und Röntgenstrahlen γ von einer Anode 20 durch ein Fenster 201 abgestrahlt. 50 ist ein zylindrische Glasröhre, wobei das Glas als Isolator dient.
  • Figur 2 zeigt ein Blockdiagramm, welches schematisch eine unipolare Röntgenröhre 10 aus einem Metall-Keramik-Verbund des Standes der Technik zeigt. 51 ist der Keramik-Isolator, 52 der auf Erde gesetzte Metallzylinder. Dabei werden Elektronen e- von einer Kathode 30 emittiert und Röntgenstrahlen γ von einer Anode 20 durch ein Fenster 201 abgestrahlt.
  • Figur 3 zeigt ein Blockdiagramm, welches schematisch eine bipolare Röntgenröhre 10 ebenfalls aus einem Metall-Keramik-Verbund des Standes der Technik zeigt. 51 ist der Keramik-Isolator, 52 der auf Erde gesetzte Metallzylinder. Dabei werden Elektronen e- von einer Kathode 30 emittiert und Röntgenstrahlen γ von einer Anode 20 durch ein Fenster 201 abgestrahlt.
  • Figur 4 zeigt ein Blockdiagramm, welches schematisch ein Beispiel einer Aussenansicht einer erfindungsgemässen Röntgenröhre 10 zeigt.
  • Figur 5 zeigt ein Blockdiagramm, welches schematisch die Architektur einer Ausführungsvariante einer erfindungsgemässen Röntgenröhre 10 zeigt. Dabei werden Elektronen e- von einer Kathode 30 emittiert und Röntgenstrahlen γ von einer Anode 20 abgestrahlt. Die Röntgenröhre 10 umfasst mehrere einander ergänzende Beschleunigungsmodule 41,...,45 und jedes Beschleunigungsmodul 41,...,45 umfasst mindestens eine potentialtragende Elektrode 20/30/423/433/443.
  • Figur 6 zeigt ein Blockdiagramm, welches schematisch die Architektur einer weiteren Ausführungsvariante einer erfindungsgemässen Röntgenröhre 10 zeigt. Die Röntgenröhre 10 umfasst wie in Figur 3 mehrere einander ergänzende Beschleunigungsmodule 41,...,45 mit potentialtragenden Elektroden 20/30/423/433/443. Die Beschleunigungsmodule umfassen zusätzlich Elektronenabschirmungen 422/432/442 zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik.
  • Figur 7 zeigt ebenfalls ein Blockdiagramm, welches schematisch die Architektur einer anderen Ausführungsvariante einer erfindungsgemässen Röntgenröhre 10 zeigt. Die Röntgenröhre 10 umfasst wie in Figur 3 mehrere einander ergänzende Beschleunigungsmodule 41,...,45 mit potentialtragenden Elektroden 20/30/423/433/443. Mindestens eines der Beschleunigungsmodule 41,...,45 umfasst zusätzlich ein wiederverschliessbares Vakuumventil 531.
  • Figur 8 zeigt eine Querschnittansicht einer erfindungsgemässen Röntgenröhre 10, welche schematisch die Architektur einer Ausführungsvariante gemäss Figur 3 zeigt.
  • Figur 9 zeigt eine weitere Querschnittansicht einer erfindungsgemässen Röntgenröhre 10. Die Beschleunigungsmodule 41,...,45 umfassen zusätzlich eine mögliche Ausführungsform von Abschirmungen 423...443 zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik. Diese Ausführungsvariante hat u.a. den Vorteil, dass die Abschirmungen einen zusätzlichen Schutz für die Isolationskeramiken bilden. Damit kann die Lebensdauer der Röntgenröhren und/oder die Potentialdifferenzen zwischen den einzelnen Beschleunigungselektroden zusätzlich erhöht werden. Die mögliche Ausführungsform von Figur 9 zeigt kugelförmig bzw. konusförmig ausgebildete Enden der Elektroden 423/433/443 und/oder der Abschirmungen 412,...,415 zur Herabsetzung oder Minimierung der Feldüberhöhung an der jeweiligen Elektrode 423/433/443 und/oder Abschirmung 412,...,415. Die Elektroden 423/433/443 sind durch die Potentialanschlüsse z.B. an eine Hochspannungskaskade anschliessbar.
  • Figur 10 zeigt den prinzipiellen Aufbau einer Beschleunigungsstufe einer modularen Metall-Keramik-Röhre mit einer modularen zweistufigen Beschleunigungsstufe mit zwei Beschleunigungsmodulen 42/43 mit Isolationskeramik 50, Beschleunigungselektroden 423/433 und Potentialanschlüssen 421/431.
  • Figur 11 zeigt schematisch die Potentialverteilung in einer erfindungsgemässen modularen Röntgenröhre 10 eines Ausführungsbeispiels mit einer 800kV-Röhre.
  • Figur 12 zeigt schematisch ein Bestrahlungssystem 60 mit einer erfindungsgemässen Röntgenröhre 10. Das Bestrahlungssystem 60 umfasst eine Hochspannungskaskade 62 zur Spannungsversorgung der Röntgenröhre 10, ein Hochspannungstransformer 63 sowie ein Austrittsfenster 61 für die Röntgenstrahlung γ aus dem Abschirmungsgehäuse 65.
  • Figur 13 zeigt eine weitere Ausführungsvariante dreier Beschleunigungsmodulen 42/43/44 mit Isolationskeramik 50, Elektronenabschirmung 422/432/442 und Beschleunigungselektroden 423/433/443.
Hereinafter, embodiments of the present invention will be described by way of examples. The examples of the embodiments are illustrated by the following enclosed figures:
  • FIG. 1 FIG. 12 is a block diagram schematically showing an X-ray tube 10 of a prior art glass composite. In this case, electrons e - are emitted from a cathode 30 and x-rays γ are emitted from an anode 20 through a window 201. 50 is a cylindrical glass tube with the glass serving as insulator.
  • FIG. 2 Fig. 12 is a block diagram schematically showing a prior art unipolar X-ray tube 10 made of a metal-ceramic composite. 51 is the ceramic insulator, 52 is the metal cylinder set on earth. In this case, electrons e - are emitted from a cathode 30 and x-rays γ are emitted from an anode 20 through a window 201.
  • FIG. 3 shows a block diagram which schematically shows a bipolar X-ray tube 10 also of a metal-ceramic composite of the prior art. 51 is the ceramic insulator, 52 is the metal cylinder set on earth. In this case, electrons e - are emitted from a cathode 30 and x-rays γ are emitted from an anode 20 through a window 201.
  • FIG. 4 shows a block diagram which schematically shows an example of an external view of an inventive X-ray tube 10.
  • FIG. 5 shows a block diagram, which schematically shows the architecture of an embodiment of an inventive X-ray tube 10. In this case, electrons e - are emitted by a cathode 30 and x-rays γ are emitted by an anode 20. The X-ray tube 10 comprises a plurality of complementary acceleration modules 41, ..., 45 and each acceleration module 41, ..., 45 comprises at least one potential-carrying electrode 20/30/423/433/443.
  • FIG. 6 shows a block diagram, which schematically shows the architecture of another embodiment of an inventive X-ray tube 10 shows. The X-ray tube 10 comprises as in FIG FIG. 3 a plurality of complementary acceleration modules 41, ..., 45 with potential-carrying electrodes 20/30/423/433/443. The acceleration modules additionally include electron shields 422/432/442 for suppressing the stray electron flux to the insulating ceramic.
  • FIG. 7 also shows a block diagram, which schematically shows the architecture of another embodiment of an inventive X-ray tube 10. The X-ray tube 10 comprises as in FIG FIG. 3 a plurality of complementary acceleration modules 41, ..., 45 with potential-carrying electrodes 20/30/423/433/443. At least one of the acceleration modules 41,..., 45 additionally comprises a resealable vacuum valve 531.
  • FIG. 8 shows a cross-sectional view of an inventive X-ray tube 10, which schematically shows the architecture of an embodiment according to FIG. 3 shows.
  • FIG. 9 shows a further cross-sectional view of an inventive X-ray tube 10. The acceleration modules 41, ..., 45 additionally include a possible embodiment of shields 423 ... 443 for suppressing the stray electron flow to the insulating ceramic. This embodiment variant has the advantage, inter alia, that the shields form an additional protection for the insulation ceramics. Thus, the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes can be additionally increased. The possible embodiment of FIG. 9 shows spherically shaped ends of the electrodes 423/433/443 and / or the shields 412, ..., 415 for reducing or minimizing the field elevation at the respective electrode 423/433/443 and / or shield 412, ... , 415th The electrodes 423/433/443 can be connected through the potential connections, for example, to a high-voltage cascade.
  • FIG. 10 shows the basic structure of an acceleration stage of a modular metal-ceramic tube with a modular two-stage acceleration stage with two acceleration modules 42/43 with insulating ceramic 50, acceleration electrodes 423/433 and potential terminals 421/431.
  • FIG. 11 schematically shows the potential distribution in an inventive modular X-ray tube 10 of an embodiment with an 800kV tube.
  • FIG. 12 schematically shows an irradiation system 60 with an inventive X-ray tube 10. The irradiation system 60 includes a high voltage cascade 62 for powering the X-ray tube 10, a high voltage transformer 63 and an exit window 61 for the X-ray γ from the shield case 65th
  • FIG. 13 shows a further embodiment of three acceleration modules 42/43/44 with insulation ceramic 50, electron shield 422/432/442 and acceleration electrodes 423/433/443.

Figur 4 bis 10 illustrieren Architekturen, wie sie zur Realisierung der Erfindung verwendet werden können. In diesen Ausführungsbeispielen für eine modulare Röntgenröhre 10 werden eine Anode 20 und eine Kathode 30 in einem vakuumisierten Innenraum 40 einander gegenüberliegend angeordnet. Die Elektronen e- werden bei der Kathode 30 erzeugt, wobei die Kathode 30 als Elektronenemitter dient. Die Kathode 30 dient somit zum einen zur Erzeugung des elektrischen Feldes E , zum anderen aber auch zur Elektronenerzeugung. Daher sind für diese Anwendung prinzipiell alle Materialien geeignet, die Elektronen e- emittieren können. Dieser Prozess kann durch thermische Emission, aber auch durch Feldemission (Kaltemitter) erzielt werden. Als Kaltemitter kann z.B. jegliche Art von Mikrotiparrays mit meist diamantähnlichen Strukturen oder z.B. auch Nanoröhrchen verwendet werden. Selbstverständlich kann die Kaltemission bei diesem Röhrentyp auch durch Nutzung des Penningeffektes an geeignet geformten Metallen genutzt werden. Beispielsweise kann man thermische Emitter, die bei diesem Strahlerkonzept auch einsetzbar sind, nutzen, wie z.B. Wolfram (W), Lanthanhexaborid (LaB6), Dispenserkathoden (La in W) und/oder Oxidkathoden (z.B. ZrO). Die Elektronen e- werden mittels anlegbarer Hochspannung auf die Anode 20 beschleunigt und erzeugen Röntgenstrahlen γ auf einer Targetoberfläche der Anode 20. Die Anoden 20 erfüllen zwei Funktionen in den Röntgenröhren 10. Zum einen dienen sie als positive Elektrode 20 zur Generierung eines elektrischen Feldes E zur Beschleunigung der Elektronen e-. Zum anderen dienen die Anoden 20 bzw. das in die Anoden 20 eingelassene Targetmaterial als Ort, wo die Elektronenenergie in Röntgenstrahlung γ umgewandelt wird. Diese Umwandlung ist zum einen abhängig von der Teilchenenergie, aber auch von der Kernladungszahl des Targetmaterials. In erster Nährung geht gemäss der Bethe-Formel der Energieverlust der Teilchen quadratisch mit der Kernladungszahl Z des Targetmaterials / dW dx Z 2

Figure imgb0001
FIGS. 4 to 10 illustrate architectures that can be used to implement the invention. In these embodiments for a modular x-ray tube 10, an anode 20 and a cathode 30 are placed in a vacuumized interior 40 opposite one another. The electrons e - are generated at the cathode 30, wherein the cathode 30 serves as an electron emitter. The cathode 30 thus serves on the one hand for generating the electric field E, on the other hand also for electron generation. Therefore, all materials are in principle suitable for this application, the electrons e - can emit. This process can be achieved by thermal emission, but also by field emission (cold emitter). As a cold emitter, for example, any type of microtiparrays with mostly diamond-like structures or, for example, also nanotubes can be used. Of course, the cold emission in this tube type can also be exploited by utilizing the Penning effect on suitably shaped metals. For example, it is possible to use thermal emitters which can also be used in this emitter concept, for example tungsten (W), lanthanum hexaboride (LaB 6 ), dispenser cathodes (La in W) and / or oxide cathodes (for example ZrO). The electrons e - are accelerated by means of applying high voltage to the anode 20 and generate x-rays γ On an object surface of the anode 20. The anodes 20 perform two functions in the X-ray tubes 10. First, they serve as a positive electrode 20 for generating an electric field E for accelerating the electrons e - . On the other hand, the anodes 20 or the target material embedded in the anodes 20 serve as a location where the electron energy is converted into X-radiation γ. This conversion depends on the one hand on the particle energy, but also on the atomic number of the target material. Firstly, according to the Bethe formula, the energy loss of the particles is quadratic with the atomic number Z of the target material / dW dx Z 2
Figure imgb0001

Bei diesem Prozess wird die Anode 20 thermisch belastet. Die Anode bzw. das Targetmaterial muss also in der Lage sein, diese thermische Belastung zu überstehen. Daraus folgt, dass der Dampfdruck des Targetmaterials bei Betriebstemperatur des Targets genügend klein sein sollte, um nicht das für den Betrieb der Röntgenröhre 10 notwendige Vakuum negativ zu beeinflussen. Daher können vorzugsweise z.B. Targetmaterialien verwendet werden, die hochtemperaturbeständig sind bzw. gut gekühlt werden können. Dazu kann das Targetmaterial beispielsweise in ein gut wärmeleitfähiges Material (z.B. Kupfer) eingebettet sein, welches gut gekühlt werden kann d.h. gut wärmeleitend ist. Beispielsweise können deshalb möglichst schwere und temperaturbeständige Materialien als Anode (Target) 20 verwendet werden. Insbesondere eignen sich dafür z.B. Materialien wie Wolfram (W, Z=74) und/oder Uran (U, Z=92) und/oder Rhodium (Rh, Z=45) und/oder Silber (Ag, Z=47) und/oder Molybdän (Mo, Z=42) und/oder Palladium (Pd, Z=46) und/oder Eisen (Fe, Z=26) und/oder Kupfer (Cu, Z=29). Bei der Auswahl des Targetmaterials kann es insbesondere vorteilhaft sein, z.B. bei analytischen Anwendungen, zu berücksichtigen, dass die charakteristischen Linien (Kα) sich für den spezifischen Anwendungszweck eignen.In this process, the anode 20 is thermally stressed. The anode or the target material must therefore be able to survive this thermal stress. It follows that the vapor pressure of the target material at the operating temperature of the target should be sufficiently small so as not to negatively influence the vacuum necessary for the operation of the X-ray tube 10. Therefore, for example, target materials can be preferably used which are resistant to high temperatures or can be cooled well. For this purpose, the target material, for example, be embedded in a good heat conductive material (eg copper), which can be well cooled ie good thermal conductivity. For example, it is therefore possible to use as heavy and temperature-resistant materials as the anode (target) 20. In particular, materials such as tungsten (W, Z = 74) and / or uranium (U, Z = 92) and / or rhodium (Rh, Z = 45) and / or silver (Ag, Z = 47) and / or or molybdenum (Mo, Z = 42) and / or palladium (Pd, Z = 46) and / or iron (Fe, Z = 26) and / or copper (Cu, Z = 29). In the selection of the target material, it may be particularly advantageous, for example in analytical applications, to take into account that the characteristic lines (K α ) are suitable for the specific application.

Die Röntgenröhre 10 umfasst weiter mehrere einander ergänzende Beschleunigungsmodule 41,...,45. Jedes Beschleunigungsmodul 41,...,45 umfasst mindestens eine potentialtragende Elektrode 20/30/423/433/443 mit den entsprechenden Potentialanschlüssen 421/431/441. Ein erstes Beschleunigungsmodul 41 umfasst die Kathode 30 mit der Elektronenerzeugung e-, d.h. mit dem Elektronenemitter. Ein zweites Beschleunigungsmodul 45 umfasst die Anode 20 mit der Röntgenstrahlung γ. Die Röntgenröhre umfasst mindestens ein weiteres Beschleunigungsmodul 42,...,44 mit einer potentialtragenden Elektrode 423/433/443. Der vakuumisierte Innenraum 40 kann z.B. mittels Isolationskeramik 51 nach aussen abgeschlossen sein. Für das erfindungsgemässe Strahlerkonzept können z.B. Isolationsmaterialien verwendet werden, die den elektrischen Anforderungen der Röntgenröhre 10 (Feldstärke) genügen. Für entsprechende Ausführungsbeispiele sollten die Isolationsmaterialen auch geeignet sein, eine Metall-Keramik-Verbindung herzustellen. Zudem sollte die Keramik für Hochvaku umanwendungen anwendbar sein. Geeignete Materialien sind somit beispielsweise Reinoxid-Keramiken, wie Aluminium-, Magnesium-, Beryllium- und Zirkoniumoxid. Auch monokristallines Al2O3 (Saphir) ist prinzipiell geeignet. Weiter sind auch so genannte Glaskeramiken, wie z.B. Macor, oder ähnliche Materialen vorstellbar. Insbesondere sind natürlich auch Mischkeramiken (z.B. dotiertes Al2O3) geeignet, falls sie die entsprechenden Eigenschaften aufweisen. Die Isolationskeramiken 51 können z.B. nach aussen in Rippenform oder ähnlichem ausgeführt sein, um Isolierstrecke des Isolationsmantels 51, welches nicht vakuumseitig ist, also z.B. sich in Isolieröl befindet, zu verlängern. In gleicher Weise ist aber auch jede andere Ausgestaltung z.B. eine reine Zylinderform, der Isolationskeramik 51 vorstellbar, ohne dass der Kern der Erfindung damit tangiert würde. Die Isolationskeramik 51 kann zusätzlich z.B. auch eine hochohmige Innenbeschichtung aufweisen, um mögliche Aufladungen, die durch diverse Elektronische Prozesse hervorgerufen werden können, abzuleiten, wobei gleichzeitig gewährleistet ist, dass die Beschleunigungsspannung angelegt werden kann. Figur 8 zeigt den prinzipiellen Aufbau einer modularen Metall-Keramik-Röhre zweier solcher weiterer Beschleunigungsmodule 42/43 mit Isolationskeramik 51, Beschleunigungselektroden 423/433 und Potentialanschlüssen 421/431. Das hier beschriebene Prinzip zum Aufbau von Röntgenröhren 10, das z.B. aus einem Metall-Keramik-Verbund besteht, kann erfindungsgemäss beliebig oft wiederholbar in Serie geschaltet werden und so zur Beschleunigung von Elektronen e- genutzt werden (mehrstufige Beschleunigung). Die letzte potentialtragende Elektrode der Beschleunigungsstruktur ist die zur Erzeugung notwendige Anode 20. Hingegen stellt die zur Elektronenerzeugung notwendige Kathode 30 die erste Elektrode der Beschleunigungsstruktur dar. Dies ist in den Ausführungsbeispiele der Figuren 4 bis 9 dargestellt. Bei geeigneter Anordnung und Wahl der Elektroden können Röntgenröhren 10 mit einer Gesamtenergie bis zu 800 Kilovolt oder mehr gebaut werden (z.B. Figur 5). Herkömmliche Röntgenröhren konnten bis heute dagegen maximal mit einer Gesamtenergie von 200 bis 450 Kilovolt hergestellt werden. Ein wesentlicher Vorteil dieses Konzeptes ist es, dass man sehr grosse Energien bei gleichzeitig kleinen Bauformen erreicht. Ein weiterer Vorteil gegenüber bestehenden Konzepten ist die nahezu homogene Belastung der Segmente der Isolationskeramiken 51 durch das elektrische Feld. Dies hat u.a. den Vorteil, dass die durch Segmentierung die Röntgenröhre 10 so gestaltet werden kann, dass die feldmässige Belastung der Isolationskeramiken 51 unter eines für Hochspannungsüberschlägen notwendigen Grenzwertes bleibt. Figur 9 zeigt schematisch die Potentialverteilung in einer erfindungsgemässen modularen Röntgenröhre 10 eines Ausführungsbeispiels mit einer 800kV-Röhre. Bei den im Stand der Technik eingesetzten Röntgenröhren kommt es dagegen zu starken radialen Belastungen der Isolationskeramiken, da die Röhren im Wesentlichen ähnlich einem Zylinderkondensator aufgebaut sind. Diese radialen Felder führen zu sehr hohen Feldstärken an der Schnittstelle zwischen dem Isolatorinnenradius und den axial angeordneten Beschleunigungselektroden (Anode, Kathode). Durch dies enorme Feldüberhöhung an dem so genannten Tripelpunkt (Isolator-Elektrode-Vakuum) kommt es zu Feldemissionen von Elektronen, die Hochspannungsüberschläge erzeugen und zur Zerstörung der Röhre führen können, wie weiter oben bereits beschrieben wurde. Figur 1 zeigt schematisch eine Architektur einer solchen konventionellen Röntgenröhre 10 des Standes der Technik. Dabei werden Elektronen e- von einem Elektronenemitter, d.h. einer Kathode 20, in der Regel einem heissen Wolframwendel, emittiert durch eine angelegte Hochspannung auf ein Target beschleunigt, wobei Röntgenstrahlen γ vom Target, d.h. der Anode 30 durch ein Fenster 301 abgestrahlt wird. Tripelpunkte (Feldüberhöhungen die zur Feldemission von Elektronen e- führen) entstehen dabei sowohl kathodenseitig als auch anodenseitig.The x-ray tube 10 further comprises a plurality of complementary acceleration modules 41, ..., 45. Each acceleration module 41,..., 45 comprises at least one potential-carrying electrode 20/30/423/433/443 with the corresponding potential connections 421/431/441. A first acceleration module 41 comprises the cathode 30 with the electron production e - , ie with the electron emitter. A second acceleration module 45 comprises the anode 20 with the X-radiation γ. The x-ray tube comprises at least one further acceleration module 42,..., 44 with a potential-carrying electrode 423/433/443. The vacuumized interior 40 may be closed, for example, by means of insulating ceramic 51 to the outside. For the emitter concept according to the invention, it is possible, for example, to use insulation materials which satisfy the electrical requirements of the x-ray tube 10 (field strength). For corresponding embodiments, the insulating materials should also be suitable for producing a metal-ceramic connection. In addition, the ceramic should be applicable for Hochvaku umanwendungen. Suitable materials are thus, for example, pure oxide ceramics, such as aluminum, magnesium, beryllium and zirconium oxide. Also monocrystalline Al 2 O 3 (sapphire) is suitable in principle. Furthermore, so-called glass ceramics, such as Macor, or similar materials are conceivable. In particular, mixed ceramics (eg doped Al 2 O 3 ) are of course suitable if they have the appropriate properties. The insulation ceramics 51 may be designed, for example, outward in rib shape or the like, in order to extend insulating distance of the insulation jacket 51, which is not vacuum-side, that is, for example, is located in insulating oil. In the same way, however, any other embodiment, for example, a pure cylindrical shape, the insulating ceramic 51 conceivable without the core of the invention would be affected. In addition, the insulation ceramic 51 may, for example, also have a high-resistance inner coating in order to dissipate possible charges that can be caused by various electronic processes, at the same time ensuring that the acceleration voltage can be applied. FIG. 8 shows the basic structure of a modular metal-ceramic tube of two such further acceleration modules 42/43 with insulation ceramic 51, acceleration electrodes 423/433 and potential terminals 421/431. Are used (multi-step acceleration) - The principle described here for the construction of X-ray tubes 10, which for example consists of a metal-ceramic composite can according to the invention are switched as often repeatable in series and so to accelerate electrons e. The last potential-carrying electrode of the acceleration structure is the anode 20 required for the production. On the other hand, the cathode 30 necessary for electron generation constitutes the first electrode of the acceleration structure This is in the embodiments of the FIGS. 4 to 9 shown. With a suitable arrangement and choice of electrodes X-ray tubes 10 can be built with a total energy up to 800 kilovolts or more (eg FIG. 5 ). By contrast, conventional X-ray tubes have been produced with a maximum total energy of 200 to 450 kilovolts. An essential advantage of this concept is that it achieves very high energies with small designs at the same time. Another advantage over existing concepts is the almost homogeneous loading of the segments of the insulating ceramics 51 by the electric field. This has the advantage, inter alia, that the X-ray tube 10 can be configured by segmentation so that the field-moderate loading of the insulating ceramics 51 remains below a limit value necessary for high-voltage flashovers. FIG. 9 schematically shows the potential distribution in an inventive modular X-ray tube 10 of an embodiment with an 800kV tube. On the other hand, in the case of the X-ray tubes used in the prior art, there is a strong radial stress on the insulating ceramics because the tubes are constructed substantially similar to a cylindrical capacitor. These radial fields lead to very high field strengths at the interface between the insulator inner radius and the axially arranged acceleration electrodes (anode, cathode). This enormous field elevation at the so-called triple point (insulator-electrode-vacuum) leads to field emissions of electrons, which generate high-voltage flashovers and can lead to the destruction of the tube, as already described above. FIG. 1 Fig. 12 schematically shows an architecture of such a conventional X-ray tube 10 of the prior art. In this case, electrons e- from an electron emitter, that is a cathode 20, usually a hot tungsten filament, emitted accelerated by an applied high voltage to a target, wherein X-rays γ from the target, ie the anode 30 is emitted through a window 301. Triple points (field increases the to field emission of electrons e - lead) incurred while both the cathode side and the anode side.

Die Potentialdifferenz zwischen jeweils zwei potentialtragenden Elektroden 20/30/423/433/443 benachbarter Beschleunigungsmodule 41,...,45 kann z.B. auch für alle Beschleunigungsmodule 41,...,45 konstant gewählt sein, wobei die Endenergie der beschleunigten Elektronen e- ein ganzzahliges Vielfaches der Energie eines Beschleunigungsmoduls 41,...,45 ist. Mindestens eines der Beschleunigungsmodule 41,...,45 kann weiter ein wiederverschliessbares Vakuumventil 531 aufweisen. Dies hat den Vorteil, dass mittels des Vakuumventils 531 einzelne Teile der Röntgenröhre 10 ersetzt werden können, ohne dass, wie bei herkömmlichen Röntgenröhren, gleich die ganze Röhre ersetzt werden muss. Da die erfindungsgemässe Röhre 10 modular aufgebaut ist, lässt sich die Röhre 10 nachträglich damit auch problemlos an veränderte Betriebsvoraussetzungen anpassen, indem weitere Beschleunigungsmodule eingesetzt oder bestehende Module entfernt werden. Dies ist bei keiner der Röhren im Stand der Technik so möglich.The potential difference between in each case two potential-carrying electrodes 20/30/423/433/443 of adjacent acceleration modules 41,..., 45 may, for example, also be constant for all acceleration modules 41,. wherein the final energy of the accelerated electrons e - is an integer multiple of the energy of an acceleration module 41, ..., 45. At least one of the acceleration modules 41,..., 45 may further comprise a resealable vacuum valve 531. This has the advantage that by means of the vacuum valve 531 individual parts of the X-ray tube 10 can be replaced without, as in conventional X-ray tubes, the same whole tube must be replaced. Since the tube 10 according to the invention has a modular design, the tube 10 can subsequently also be easily adapted to changed operating conditions by using further acceleration modules or by removing existing modules. This is not possible with any of the prior art tubes.

Es ist wichtig darauf hinzuweisen, dass bei den erfindungsgemässen Röntgenröhren 10 eine prinzipielle Modularität besteht, d.h. die Erhöhung der Strahlenergie einer Röntgenröhren 10 kann durch Hinzufügung einer oder mehrerer Beschleunigungssegmente 41,...,45 oder Beschleunigungsmodule 41,...,45 erzielt werden. Dabei kann mindestens eines der Beschleunigungsmodule 41,...,45 so ausgebildet sein, dass es eine wiederverschliessbare Vakuumventil 531 trägt. Die Beschleunigungsmodule 41,...,45 könne zusätzlich einseitig oder beidseitig Vakuumdichtungen umfassen. Dies hat den Vorteil, dass einzelnen defekte Beschleunigungsmodule 41,...,45 einfach ersetzt und/oder recycelt werden können, indem eine defekten Röhre 10 mittels des wiederverschliessbare Vakuumventil 531 entvakuumsiert wird, das defekte Beschleunigungsmodul 41,...,45 durch ein neues und/oder funktionierendes ersetzt wird und die Röhre 10 mit einer entsprechenden Vakuumpumpe über das wiederverschliessbare Vakuumventil 531 wieder vakuumisiert wird. Es ist ebenfalls wichtig darauf hinzuweisen, dass die Elektroden 20/30/423/433/443 der Beschleunigungsmodule 41,...,45 eine Abschirmung 412,...,415 zur Unterdrückung des Streuelektronenflusses auf die Isolationskeramik 51 umfassen können (Figur 6/13). Dies hat den Vorteil, dass die Abschirmungen einen zusätzlichen Schutz für die Isolationskeramiken 51 bilden. Damit kann die Lebensdauer der Röntgenröhren und/oder die Potentialdifferenzen zwischen den einzelnen Beschleunigungselektroden 20/30/423/433/443 zusätzlich erhöht werden. Der einfache und modulare Aufbau der erfindungsgemässen Röntgenröhre 10 ist insbesondere geeignet für Herstellungsverfahren im One-Shot-Verfahren, bzw. ermöglicht diese Bauweise das One-Shot-Verfahren erst effizient. Dabei erfolgt die Lötung der gesamten Röhre 10 in einem einstufigen Vakuumlötprozess. Dies hat u.a. den Vorteil, dass die anschliessende Evakuierung der Röntgenröhre 10 mittels Hochvakuumpumpen entfallen kann. Ein weiterer Vorteil des One-Shot-Verfahren, d.h. des einstufigen Herstellungsverfahrens durch die gesamthafte Lötung der Röhre im Vakuum (One-Shot-Verfahren), ist u.a., dass man einen einzigen Herstellungsprozess hat und nicht wie herkömmlich drei: 1. Baugruppen Löten / 2. Baugruppen zusammenfügen (z.B. Löten oder Schweissen) / 3. Röhre evakuieren mittels Vakuumpumpe. Das einstufige Herstellungsverfahren ist daher ökonomisch effizienter, zeitsparender und billiger. Gleichzeitig lässt sich bei desem Verfahren bei geeigneter Prozessführung die Kontaminierung der Röhre minimieren. Dennoch kann es vorteilhaft sein, wenn die Röhre schon weitgehend frei von Verunreinigungen ist, was in der Regel die Spannungsfestigkeit der Isolationskeramiken minimiert. Die Anforderungen an die Vakuumsdichtigkeit für die Röhren 10 sind beim One-Shot-Verfahren in den meisten Fällen dieselben wie bei mehrstufigen Herstellungsverfahren. Da die Felder innerhalb der Röhre 10 viel kleiner sind als bei konventionellen Röhren, ist die erfindungsgemässe Röhre 10 zusätzlich weniger anfällig auf Verunreinigungen und/oder undichte Stellen. Dies macht die erfindungsgemässe Röntgenröhre 10 weiter geeignet für das One-Shot-Verfahren. Die erfindungsgemässe Röntgenröhre 10 lässt sich beispielsweise auch hervorragend zur Herstellung ganzer Strahlungssysteme und/oder einzelner Strahlungsvorichtungen 60 benutzen (siehe Figur 12). In einer solchen Strahlungsvorichtung 60 kann die Röhre 10 in einem Gehäuse 65 z.B. in Isolieröl gelagert sein. Das Abschirmgehäuse 65 kann ein Austrittsfenster 61 für Röntgenstrahlung γ umfassen. Die Strahlungsvorrichtung 60 umfasst für die Röhre 10 eine entsprechende Hochspannungskaskade 62 z.B. mit einem zugeordneten Hochspannungstransformer 63 und Spannungsanschlüssen 64 nach aussen. Solche Strahlungsvorichtungen 60 oder Monoblocks 60 können dann z.B. zur Herstellung grösserer Strahlungssysteme verwendet werden. Natürlich ist es dem Fachmann auf dem Gebiet klar, dass die erfindungsgemässe Röhre 10 ohne Target oder Transmissionsanode sich durch ihren einfachen, modularen Aufbau und ihre hohen Leistungen auch hervorragend als Elekronenstrahler und/oder Elektronenkanone eignet mit den entsprechenden industriellen Anwendungsgebieten.It is important to point out that in the inventive X-ray tubes 10 is a principal modularity, ie the increase of the beam energy of X-ray tubes 10 can be achieved by adding one or more acceleration segments 41, ..., 45 or acceleration modules 41, ..., 45 , In this case, at least one of the acceleration modules 41,..., 45 can be designed such that it carries a resealable vacuum valve 531. The acceleration modules 41,..., 45 could additionally comprise vacuum seals on one or both sides. This has the advantage that individual defective acceleration modules 41,..., 45 can be easily replaced and / or recycled by un-vacuuming a defective tube 10 by means of the resealable vacuum valve 531, through the defective acceleration module 41, new and / or working is replaced and the tube 10 is re-vacuumed with a corresponding vacuum pump via the resealable vacuum valve 531. It is also important to point out that the electrodes 20/30/423/433/443 of the acceleration modules 41,..., 45 can comprise a shield 412,..., 415 for suppressing the scattered electron flow to the insulating ceramic 51 ( Figure 6/13 ). This has the advantage that the shields form an additional protection for the insulating ceramics 51. Thus, the life of the X-ray tubes and / or the potential differences between the individual acceleration electrodes 20/30/423/433/443 can be additionally increased. The simple and modular construction of the x-ray tube 10 according to the invention is particularly suitable for production processes in the one-shot method, or this construction allows the one-shot process only efficiently. The soldering of the entire tube 10 takes place in a single-stage vacuum brazing process. This has the advantage, inter alia, that the subsequent evacuation of the x-ray tube 10 by means of high-vacuum pumps can be dispensed with. Another advantage of the one-shot process, ie the one-step production process by the total soldering of the tube in vacuum (one-shot method), is, among other things, that one has a single manufacturing process and not three as usual: 2. Assemble assemblies (eg soldering or welding) / 3. Evacuate tube by means of vacuum pump. The one-step manufacturing process is therefore more economically efficient, time-saving and cheaper. At the same time, with proper process control, the contamination of the tube can be minimized. Nevertheless, it may be advantageous if the tube is already largely free of impurities, which minimizes the dielectric strength of the insulating ceramics in the rule. Vacuum tightness requirements for the tubes 10 are the same in most cases in the one-shot process as in multi-stage manufacturing processes. In addition, since the fields within the tube 10 are much smaller than conventional tubes, the inventive tube 10 is less susceptible to contamination and / or leaks. This makes the X-ray tube 10 according to the invention more suitable for the one-shot method. For example, the X-ray tube 10 according to the invention can also be used excellently for producing entire radiation systems and / or individual radiation devices 60 (see FIG. 12 ). In such a radiation device 60, the tube 10 may be mounted in a housing 65, for example, in insulating oil. The shielding housing 65 may include an exit window 61 for X-radiation γ. The radiation device 60 comprises for the tube 10 a corresponding high-voltage cascade 62, for example with an associated high-voltage transformer 63 and voltage terminals 64 to the outside. Such radiation devices 60 or monobloc 60 can then be used, for example, to produce larger radiation systems. Of course, it is clear to those skilled in the art that the inventive tube 10 without a target or transmission anode is also outstandingly suitable as an electron emitter and / or electron gun with the corresponding industrial fields of application due to its simple, modular construction and its high powers.

Es kann für die erfindungsgemässe Ausführung sinnvoll sein, dass die Abschirmungen 422/432/442 so geformt sind, dass der Elektronenstrahl keine Isolatorfläche 51 "sieht" (Figur 13). Durch Anlegen der Beschleunigungsspannung kann es zu Aufladungseffekten der Keramikisolatoren 51 kommen, welche nicht unbedingt durch Streu- und Sekundärelektronenemission hervorgerufen sein muss. Durch eine in Figur 13 dargestellte Geometrie oder eine ähnliche Geometrie können solche Aufladungseffekten verhindert oder minimiert werden. Eine Beschichtung der Isolationskeramik kann insbesondere auch zur Zuführung des Potentiales genutzt werden, falls man z.B. eine geeignete leitende Schicht aussen an den Isolatoren anbringt, so dass die Schicht als Spannungsteiler wirkt. Gegen den vakuumisierten Innenraum könnte eine geeignete Beschichtung auch die metallischen Elektroden 423/433/443 ersetzten. Dies würde jedoch zur Folge haben, dass man keine Abschirmung mehr wie in Figur 13 hat. Als Ausführungsbeispiel wäre es z.B. möglich, eine helixförmige Schicht auf der Innenseite (Vakuum) der Isolationskeramik 51 anzubringen, die als Spannungsteiler wirkt und so die Folge von metallischen Elektroden 423/433/443 ersetzt.It may be useful for the embodiment according to the invention that the shields 422/432/442 are shaped so that the electron beam does not "see" an insulator surface 51 (FIG. FIG. 13 ). By applying the acceleration voltage, charging effects of the ceramic insulators 51 may occur, which need not necessarily be caused by scattered and secondary electron emission. By a in FIG. 13 illustrated geometry or a similar geometry, such charging effects can be prevented or minimized. A coating of the insulation ceramic can also be used, in particular, to supply the potential if, for example, a suitable conductive layer is attached to the outside of the insulators, so that the layer acts as a voltage divider. A suitable coating could also replace the metallic electrodes 423/433/443 against the vacuumized interior. However, this would mean that you no longer have shielding as in FIG. 13 Has. As an exemplary embodiment, it would be possible, for example, to attach a helical layer on the inside (vacuum) of the insulating ceramic 51, which acts as a voltage divider and thus replaces the sequence of metallic electrodes 423/433/443.

Claims (12)

  1. An X-ray tube (10) in which an anode (20) and a cathode (30) are disposed opposite each other in a vacuumized inner space (40), electrons (e-) being able to be produced at the cathode (30), being able to be accelerated to the anode (20) by means of impressible high voltage, and X rays (γ) being able to be produced at the anode (20) by means of the electrons (e-), the X-ray tube (10) comprising a multiplicity of mutually complementary acceleration modules (41,...,45), each acceleration module (41,...,45) comprising at least one potential-carrying electrode (20/30/423/433/443), a first acceleration module (41) comprising the cathode (30) with electron extraction (e-), and a second acceleration module (45) comprising the anode (20) with the X ray generation (γ),
    wherein
    the X-ray tube (10) comprises at least one further acceleration module (42,...,44) with a potential-carrying electrode (423/433/443), the acceleration module (42,...,44) for acceleration of electrons (e-) being repeatedly connectible in series as often as desired, and the X-ray tube (10) being of modular construction.
  2. The X-ray tube (10) according to claim 1, wherein the difference in potential between each two potential-carrying electrodes (20/30/423/433/443) of adjacent acceleration modules (41,...,45) is constant for all acceleration modules (41,...,45), the final energy of the accelerated electrons (e-) being a whole-number multiple of the energy of an acceleration module (41,...,45).
  3. The X-ray tube (10) according to one of the claims 1 or 2, wherein at least one of the acceleration modules (41,...,45) has a reclosable vacuum valve (531) and/or vacuum seals on one side or on two sides.
  4. The X-ray tube (10) according to one of the claims 1 to 3, wherein the acceleration modules (41,...,45) include a cylindrical ceramic insulator (53).
  5. The X-ray tube (10) according to claim 4, wherein the insulating ceramic (53) has a high-ohmic interior coating.
  6. The X-ray tube (10) according to one of the claims 4 or 5, wherein the ceramic insulator (53) comprises a ridged exterior structure.
  7. The X-ray tube (10) according to one of the claims 1 to 6, wherein the anode (20) comprises a target for X-ray generation as well as an emission hole (201) for X-radiation.
  8. The X-ray tube (10) according to one of the claims 1 to 6, wherein the anode (20) includes a transmission anode, the transmission anode closing off the vacuumized inner space (40) toward the outside.
  9. The X-ray tube (10) according to one of the claims 1 to 7, wherein the electrodes (20/30/423/433/443) of the acceleration modules (41,...,45) include a shield (412,...,415) for suppression of the stray electron flow on the ceramic insulator (51).
  10. The X-ray tube (10) according to claim 9, wherein at least one of the electrodes (423/433/443 ) and/or shields (412,...,415) comprises spherically or conically designed ends for reducing or minimizing the field peak at the respective electrode (423/433/443) and/or shield (412,...,415).
  11. An irradiation system (60), wherein the irradiation system (60) comprises at least one X-ray tube (10) according to one of the claims 1 to 10 with a high voltage cascade (62) for voltage supply of the X-ray tube (10).
  12. A method of production of an X-ray tube (10) according to one of the claims 1 to 10, wherein the X-ray tube (10) is produced in a one-step vacuum soldering process.
EP03773415A 2003-12-02 2003-12-02 Modular x-ray tube and method for the production thereof Expired - Lifetime EP1714298B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2003/000796 WO2005055270A1 (en) 2003-12-02 2003-12-02 Modular x-ray tube and method for the production thereof

Publications (2)

Publication Number Publication Date
EP1714298A1 EP1714298A1 (en) 2006-10-25
EP1714298B1 true EP1714298B1 (en) 2008-11-19

Family

ID=34638003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03773415A Expired - Lifetime EP1714298B1 (en) 2003-12-02 2003-12-02 Modular x-ray tube and method for the production thereof

Country Status (7)

Country Link
US (1) US7424095B2 (en)
EP (1) EP1714298B1 (en)
CN (1) CN1879187B (en)
AT (1) ATE414987T1 (en)
AU (1) AU2003281900A1 (en)
DE (1) DE50310817D1 (en)
WO (1) WO2005055270A1 (en)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2179436B1 (en) * 2007-07-05 2014-01-01 Newton Scientific, Inc. Compact high voltage x-ray source system and method for x-ray inspection applications
DE102008006620A1 (en) * 2008-01-29 2009-08-06 Smiths Heimann Gmbh X-ray generator and its use in an X-ray examination or X-ray inspection
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
MX2010012716A (en) * 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system.
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8373146B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
WO2009142550A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
EP2283709B1 (en) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning apparatus
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
EP2283713B1 (en) 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
EP2283711B1 (en) * 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle beam acceleration apparatus as part of a charged particle cancer therapy system
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
CN102172106B (en) * 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 charged particle cancer therapy beam path control method and device
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
WO2009142546A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US7939809B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
DE102009007218A1 (en) * 2009-02-03 2010-09-16 Siemens Aktiengesellschaft Electron accelerator for generating a photon radiation with an energy of more than 0.5 MeV
SG173879A1 (en) 2009-03-04 2011-10-28 Protom Aozt Multi-field charged particle cancer therapy method and apparatus
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8953747B2 (en) * 2012-03-28 2015-02-10 Schlumberger Technology Corporation Shielding electrode for an X-ray generator
JP5763032B2 (en) * 2012-10-02 2015-08-12 双葉電子工業株式会社 X-ray tube
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
JP7269107B2 (en) * 2019-06-12 2023-05-08 日清紡マイクロデバイス株式会社 electron gun
EP4060713A4 (en) * 2019-11-11 2023-12-13 Canon Electron Tubes & Devices Co., Ltd. X-ray tube and method for manufacturing x-ray tube
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
US11791123B2 (en) * 2021-04-29 2023-10-17 Electronics And Telecommunications Research Institute X-ray tube

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6946926U (en) 1969-12-03 1971-07-22 C H P Mueller Gmbh ROENTGE PIPE WITH METAL PISTON.
DE2302938C3 (en) * 1973-01-22 1979-07-12 Polymer-Physik Gmbh & Co Kg, 2844 Lemfoerde Multi-stage accelerator for charged particles with high vacuum insulation
US3903424A (en) * 1974-02-19 1975-09-02 Extrion Corp Linear accelerator with x-ray absorbing insulators
DE2506841C2 (en) 1975-02-18 1986-07-03 Philips Patentverwaltung Gmbh, 2000 Hamburg High voltage vacuum tube
DE2855905A1 (en) 1978-12-23 1980-06-26 Licentia Gmbh DEVICE WITH A X-RAY TUBE
CH665920A5 (en) 1985-03-28 1988-06-15 Comet Elektron Roehren X-ray tube WITH THE ANODE AND CATHODE SURROUNDING CYLINDRICAL METAL PART.
DE4425683C2 (en) * 1994-07-20 1998-01-22 Siemens Ag Electron generating device of an X-ray tube with a cathode and with an electrode system for accelerating the electrons emanating from the cathode
JP2002025446A (en) * 1997-12-04 2002-01-25 Hamamatsu Photonics Kk Manufacturing method of x-ray tube
US6111932A (en) * 1998-12-14 2000-08-29 Photoelectron Corporation Electron beam multistage accelerator
DE10019070A1 (en) 2000-04-18 2001-10-25 Moeller Gmbh Device for de-gassing and soldering pre-mounted vacuum switch tubes has base plate with solder point(s), opening for connecting suction pump, bell, stimulation coil, generator and susceptor
DE10048833C2 (en) * 2000-09-29 2002-08-08 Siemens Ag Vacuum housing for a vacuum tube with an X-ray window
JP2002253687A (en) 2001-03-02 2002-09-10 Mitsubishi Heavy Ind Ltd Radiotherapeutic apparatus

Also Published As

Publication number Publication date
WO2005055270A1 (en) 2005-06-16
DE50310817D1 (en) 2009-01-02
CN1879187B (en) 2010-04-28
EP1714298A1 (en) 2006-10-25
US20070121788A1 (en) 2007-05-31
US7424095B2 (en) 2008-09-09
CN1879187A (en) 2006-12-13
ATE414987T1 (en) 2008-12-15
AU2003281900A1 (en) 2005-06-24

Similar Documents

Publication Publication Date Title
EP1714298B1 (en) Modular x-ray tube and method for the production thereof
DE2129636C2 (en) Field emission electron gun
EP0584871B1 (en) X-ray tube with anode in transmission mode
DE19933650C1 (en) Ionization chamber with a non-radioactive ionization source
DE112010002551B4 (en) LOADED PARTICLES EMITTING DEVICE
EP0777255A1 (en) X-ray tube, in particular microfocus X-ray tube
DE19962160C2 (en) Devices for generating extreme ultraviolet and soft X-rays from a gas discharge
EP0558797B1 (en) Cathodic sputtering device
DE1514990A1 (en) Hollow cathode
EP0063840B1 (en) High tension vacuum tube, particularly x ray tube
EP2191132A2 (en) Device for dissipating lost heat, and ion accelerator arrangement comprising such a device
EP1537594B1 (en) High-voltage vacuum tube
DE1187740B (en) Electron multiplier tubes
DE2341503A1 (en) ELECTRON BEAM TUBE
WO2005086203A1 (en) X-ray tube for high dosing performances, method for producing high dosing performances with x-ray tubes and method for the production of corresponding x-ray devices
DE3001983C2 (en)
DE102020109610B4 (en) GAS FIELD IONIZATION SOURCE
DE10241549B4 (en) Orbitron pump
DE1934328A1 (en) Device for the optional atomization of solid substances by ion bombardment using the plasma or ion beam method
EP1654914B1 (en) Extreme uv and soft x ray generator
RU2344513C2 (en) Modular x-ray tube and method of its production
DE619621C (en) X-ray tube with perforated hollow anode
DE102021127146B3 (en) Device for charging bulk material with accelerated electrons
DE3908480C1 (en)
DE745240C (en) Device for generating a beam of positive ions or electrons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50310817

Country of ref document: DE

Date of ref document: 20090102

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090301

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

BERE Be: lapsed

Owner name: COMET HOLDING A.G.

Effective date: 20081231

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

26N No opposition filed

Effective date: 20090820

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090520

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100528

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191210

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310817

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701