EP1714140A1 - Highly-selective tandem chemical sensor and detection method using same - Google Patents

Highly-selective tandem chemical sensor and detection method using same

Info

Publication number
EP1714140A1
EP1714140A1 EP05716653A EP05716653A EP1714140A1 EP 1714140 A1 EP1714140 A1 EP 1714140A1 EP 05716653 A EP05716653 A EP 05716653A EP 05716653 A EP05716653 A EP 05716653A EP 1714140 A1 EP1714140 A1 EP 1714140A1
Authority
EP
European Patent Office
Prior art keywords
detected
molecules
type
fluorescent material
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05716653A
Other languages
German (de)
French (fr)
Inventor
C. Thales I. P. FIORINI-DEBUISSCHERT
V. Thales I.P. SIMIC
O. Thales Intel. Property VIGNEAU
P. Thales Intel. Property LE BARNY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Thales SA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1714140A1 publication Critical patent/EP1714140A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/773Porous polymer jacket; Polymer matrix with indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7756Sensor type
    • G01N2021/7763Sample through flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2600/00Assays involving molecular imprinted polymers/polymers created around a molecular template

Definitions

  • the field of the invention is that of chemical sensors and in particular sensors capable of detecting particularly dangerous molecules such as explosives, drugs ...
  • a chemical sensor comprises a sensitive layer brought into contact with a transducer which translates the signal chemical generated following interactions between the sensitive layer and the compound to be detected in an easily quantifiable signal.
  • An effective chemical sensor must therefore fulfill the following two conditions: being able to easily create interactions with the molecule to be detected and generating an easily observable signal.
  • a very large number of technological solutions in the field of gas detection are available today. However, there is not yet a system which combines high selectivity, very high sensitivity and very short response time for the detection of dangerous gases.
  • the selectivity is only partial since a priori many molecules of electron deficient type can extinguish (quencher) the fluorescence of the polymer and therefore lead to false alarms.
  • quencher quencher
  • the potential interferers can be fragrances, some of which are shown below.
  • Nitrobenzene a tobacco by-product, can also falsify detections.
  • the present invention provides a highly selective chemical sensor combining the detection of molecular entities by a variation in fluorescence and the prior selection of said entities by a chemical filter based on molecularly imprinted material.
  • the invention proposes a new concept of sensor in which we associate a material which will sort the molecules ( filter) with a fluorescent material which will act as a sensitive layer. It should also be noted that in this way, the risks of saturation of the sensitive polymer are also limited following the adsorption of interfering molecules.
  • the subject of the invention is a chemical sensor intended for the detection of a type of molecule comprising a fluorescent material capable of forming a complex with the type of molecule to be detected and means for measuring the variation in fluorescence of said material, characterized in that it further comprises a filter comprising a polymeric material comprising so-called molecular fingerprint cavities whose geometric and chemical configuration is defined so as to fix only the type of molecule to be detected.
  • the fluorescent material may be a polymer or a set of small molecules.
  • the fluorescent polymer may be a polymer with a pi-conjugated chain, for example of the type
  • the polymer material comprising so-called molecular fingerprint cavities can be obtained from functional monomers capable of complexing the molecule to be detected, the interactions possibly being of the hydrogen bond type,
  • the fluorescent material can be deposited in a thin layer on the surface of at least one first substrate.
  • the polymer material comprising so-called molecular finger cavities can be produced on the surface of a membrane or on the surface of microbeads so as to provide a maximum exchange surface with the outside and so as to also allow a response time. (adsorption time of molecules to be detected) as short as possible. More precisely, it can be formed on the surface of a membrane or on the surface of microbeads maintained in a porous support, positioned perpendicular to the charged flow or positioned parallel to the gas flow and arranged in a column of the chromatographic column type.
  • the senor can comprise a pump for sucking in an external medium charged with the type of molecule to be detected. It can also include a source of inert gas which may be nitrogen, positioned downstream of the pump to transport the molecules to be detected to the polymeric material with cavities. According to the invention, the sensor can also comprise a removable shutter making it possible to separate the polymeric material with cavities from the fluorescent material.
  • the means for detecting variation in fluorescence may advantageously comprise a light source for illuminating the fluorescent material and photodetection means for collecting at least part of the light emitted by the complex formed between the fluorescent material and the molecules to be detected, or to measure the decrease in the light emitted by the “raw” material following the adsorption of the molecule to be detected, ie following the formation of the complex.
  • the subject of the invention is also a method of chemical detection of a type of molecule by a sensor according to the invention, characterized in that it comprises the following steps: - the capture by selective adsorption of the type of molecules to be detected by the polymer material comprising so-called molecular finger cavities.
  • the type of molecules to be detected can be captured with a pump so as to collect a flow external to the sensor loaded with molecules to be detected.
  • the method can comprise closing a shutter making it possible to isolate the polymeric material comprising cavities, from the fluorescent material, during the capture operation. It can then also include the opening of the shutter during the desorption operation so as to send the secondary flow loaded with molecules to be detected towards the fluorescent material.
  • the sensor according to the invention comprises a filter comprising a molecularly imprinted polymer prepared from the molecule to be detected carried by a support.
  • the support may be constituted either by a functionalized membrane or by a set of functionalized microbeads.
  • MIPs molecular imprinted polymers
  • MIPs Like biological receptors, MIPs benefit from a high affinity and good selectivity for given molecules.
  • a priori we can design MIPs in the image of any molecule or family of functional molecules ("molecular mecano"): thus, we can consider the synthesis of "custom" MIPs and more particularly for target molecules for which there is no biological equivalent.
  • MIPs Due to their highly cross-linked chemical structure, MIPs exhibit very good thermal and chemical stability. They also have the advantage of being synthesized from low-cost reagents. MIPs can be of different types: organic, organic-inorganic hybrid or inorganic. As summarized in the diagram illustrated in FIG. 1 and described in more detail below, the molecularly imprinted polymer (MIP) is obtained by polymerization, using an initiator, and in the presence of a crosslinking agent d one or more types of polyfunctional monomers (mf) in the presence of a molecule called template (mg) which can be either directly the molecule to be detected, or a steric and chemical analog.
  • mf polyfunctional monomers
  • the template molecule develops interactions with one or more functional monomers in a pore-forming solvent.
  • a crosslinking agent and a polymerization initiator leads to the formation of a synthetic matrix containing the recognition sites specifically built around the template molecule.
  • dite dite so-called “extraction” step the template molecule is eliminated using an adequate solvent: a polymer matrix is finally obtained having cavities called imprints, the geometric and chemical configuration of which is perfectly adapted the fixation of molecules of interest.
  • the MIP may be a hybrid gel obtained from a mixture of silicon alkoxides such as tetramethoxysilane and methylthmethoxysilane, some of which may be functionalized by organic groups, for example the following alkoxide:
  • the hybrid MIP gel can then be obtained by reaction of these monomers by hydrolysis and polycondensation in the presence of water and ethanol (an acidic or basic catalyst can also be added) and in the presence of the molecule said to be printed (in particular, 2,4 DNT, a by-product of the manufacture of TNT with a higher vapor pressure than TNT).
  • the chemical sensor according to the invention thus has an upstream part capable of selectively filtering a type of molecules and a downstream part comprising the fluorescent material and thereby sites of formation of complexes capable of creating variations in fluorescence representative of the presence or even the concentration of said molecules in the environment in which the sensor will have been placed.
  • the transfer process takes place in four stages: 1) Absorption of a photon of Eo energy by the host 2) Relaxation of the environment of a magnitude such that the energy available for a radiative transition of the host is E ⁇ ⁇ E 0 3) Transfer of the energy Ei to the doping complex / extinction site 4) Return to the ground state by a non-radiative process, which explains the decrease in the fluorescence intensity.
  • FIG. 2 illustrates this example:
  • a pump P1 supplies the sensor with an external flow F1 of ambient air containing molecules to be detected.
  • an upstream chamber is thus formed by closing the shutter Op, so as to isolate the filter from the downstream detection part of the sensor, formed at the level of the fluorescent material.
  • an inert gas source typically nitrogen
  • a flow F2 which desorbs the molecularly imprinted material and makes it possible to generate a charged inert flow molecules to be detected which are sent to the downstream part of the sensor by opening the shutter Op.
  • an inert gas makes it possible to limit the photochemical degradation of the fluorescent polymer.
  • An opening 01 is provided to release outside the sensor the inert gas charged with other impurities than the molecules which it is specifically sought to detect. The flow F2 loaded with molecules to be detected is transported to the substrates covered with fluorescent material.
  • the latter can typically be deposited on the surface of two substrates (S1, S2) oriented parallel to the direction of the flow F2, so as to optimize the exchange surface between said flow and the sites capable of generating charge transfer complexes within the fluorescent polymer.
  • a second opening 02 is also provided in the downstream part of the sensor to allow the evacuation of the flow F2.
  • the measurement means comprise a light source SL of laser type or laser diode which can typically emit around 450 nm for the detection of DNT molecules with the fluorescent polymers described above, which irradiates all of the substrates carrying the fluorescent polymer .
  • a PhotoMultiplier or CCD type photodetector is placed perpendicular to the light source so as to collect part of the radiation scattered by the polymer charged with molecules to be detected without collecting incident light directly emitted by the source.
  • the photodetector can detect wavelengths centered on 530 nm (representative of the energy radiations E1 explained above)

Abstract

The invention relates to a chemical sensor which is intended for the detection of a type of molecule, comprising a fluorescent material that can form a charge-transfer complex with the type of molecule to be detected, and means for measuring the fluorescence variation in the material. The invention is characterised in that it also includes a filter consisting of a polymer material comprising molecular imprint cavities having a geometric and chemical configuration that is defined such as to fix the type of molecule to be detected. The invention also relates to a detection method using the inventive sensor. The invention can be used to detect drug- or explosive-type molecules.

Description

CAPTEUR CHIMIQUE TANDEM HAUTEMENT SELECTIF ET PROCEDE DE DETECTION UTILISANT CE CAPTEUR HIGHLY SELECTIVE TANDEM CHEMICAL SENSOR AND DETECTION METHOD USING THE SAME
Le domaine de l'invention est celui des capteurs chimiques et notamment des capteurs capables de détecter des molécules particulièrement dangereuses telles que explosifs, drogues ... De manière générale un capteur chimique comprend une couche sensible mise en contact avec un transducteur qui traduit le signal chimique généré suite aux interactions entre la couche sensible et le composé à détecter en un signal facilement quantifiable. Un capteur chimique efficace doit donc remplir les deux conditions suivantes : être capable de créer facilement des interactions avec la molécule à détecter et générer un signal aisément observable. Un très grand nombre de solutions technologiques dans le domaine de la détection de gaz sont aujourd'hui disponibles. Cependant, il n'y a pas encore de système qui allie grande sélectivité, très grande sensibilité et temps de réponse très court pour la détection des gaz dangereux. Pour ce qui concerne la détection d'explosifs (dérivés nitro aromatiques), il y a principalement quatre types de capteurs qui sont aujourd'hui en cours de mise au point : * Un capteur basé sur des mesures de mobilité d'ions (IMS) qui permet d'identifier les molécules après que celles-ci aient été ionisées et défléchies sous un champ électrique (Ion track's ITEMISER, GE-Interlogix). Les tests montrent que ce capteur est efficace pour des détections de composés ayant une pression de vapeur élevée, mais est inefficace pour détecter le TNT ou le DNT (Singh, S.Singh M., Signal processing, 2003,83,31-55) * Un capteur à onde acoustique de surface (Naval research Laboratory, Geo-Centers, Inc. NovaResearch Inc.) * Une détection à distance de modification de fluorescence de particules qui préconcentrent les dérivés aromatiques. (Sandia National Laboratories) Un capteur optique basé sur l'extinction (quenching) de la fluorescence d'un polymère π conjugué et dédié à la détection de mines antipersonnelles (Nomadics Inc. et MIT) ( Brevets Swager T.M. EP 1281744, WO 0216463, EP 1263887). Les auteurs revendiquent la détection de traces de TNT à des concentrations aussi faibles que quelques ppt (parties par trillion). L'efficacité de la couche sensible résulte de l'effet d'amplification chimique causée par la présence de macromolécules π conjuguées. Bien que ce type de capteur développé par Nomadics Inc. semble très performant, il apparaît que la sélectivité n'est que partielle puisque a priori de nombreuses molécules de type électron déficient peuvent éteindre (quencher) la fluorescence du polymère et donc conduire à de fausses alarmes. Dans le cas de molécules d'explosifs, les interférents potentiels peuvent être des parfums, dont certains sont représentés ci-dessous.The field of the invention is that of chemical sensors and in particular sensors capable of detecting particularly dangerous molecules such as explosives, drugs ... In general, a chemical sensor comprises a sensitive layer brought into contact with a transducer which translates the signal chemical generated following interactions between the sensitive layer and the compound to be detected in an easily quantifiable signal. An effective chemical sensor must therefore fulfill the following two conditions: being able to easily create interactions with the molecule to be detected and generating an easily observable signal. A very large number of technological solutions in the field of gas detection are available today. However, there is not yet a system which combines high selectivity, very high sensitivity and very short response time for the detection of dangerous gases. Regarding the detection of explosives (aromatic nitro derivatives), there are mainly four types of sensors which are currently being developed: * A sensor based on ion mobility measurements (IMS) which identifies molecules after they have been ionized and deflected under an electric field (Ion track's ITEMISER, GE-Interlogix). Tests show that this sensor is effective for detection of compounds with a high vapor pressure, but is ineffective in detecting TNT or DNT (Singh, S. Singh M., Signal processing, 2003,83,31-55) * A surface acoustic wave sensor (Naval research Laboratory, Geo-Centers, Inc. NovaResearch Inc.) * A remote detection of modification of fluorescence of particles which preconcentrate the aromatic derivatives. (Sandia National Laboratories) An optical sensor based on quenching the fluorescence of a conjugated π polymer and dedicated to the detection of anti-personnel mines (Nomadics Inc. and MIT) (Patents Swager TM EP 1281744, WO 0216463, EP 1263887). The authors claim the detection of traces of TNT at concentrations as low as a few ppt (parts per trillion). The effectiveness of the sensitive layer results from the chemical amplification effect caused by the presence of conjugated π macromolecules. Although this type of sensor developed by Nomadics Inc. seems to be very efficient, it appears that the selectivity is only partial since a priori many molecules of electron deficient type can extinguish (quencher) the fluorescence of the polymer and therefore lead to false alarms. In the case of explosive molecules, the potential interferers can be fragrances, some of which are shown below.
Mise toluène Ambrai Coumarine Toluene Ambrai Coumarin
Le nitrobenzène, sous produit du tabac, peut aussi fausser les détections. C'est pourquoi la présente invention propose un capteur chimique hautement sélectif combinant la détection d'entités moléculaires par une variation de fluorescence et la sélection préalable desdites entités par un filtre chimique à base de matériau à empreintes moléculaires. Ainsi afin de pallier le manque de sélectivité des capteurs de l'état de l'art, et éviter tout problème de « fausse alarme », l'invention propose un nouveau concept de capteur dans lequel on associe un matériau qui va trier les molécules (filtre) avec un matériau fluorescent qui jouera le rôle de couche sensible. Il est à noter également que de cette façon, on limite aussi les risques de saturation du polymère sensible suite à l 'adsorption de molécules interférantes Plus précisément l'invention a pour objet un capteur chimique destiné à la détection d'un type de molécule comprenant un matériau fluorescent capable de former un complexe avec le type de molécule à détecter et des moyens de mesure de la variation de fluorescence dudit matériau, caractérisé en ce qu'il comprend en outre un filtre comportant un matériau polymère comprenant des cavités dites à empreintes moléculaires dont la configuration géométrique et chimique est définie de façon à fixer uniquement le type de molécule à détecter. Avantageusement le matériau fluorescent peut-être un polymère ou un ensemble de petites molécules. Le polymère fluorescent peut-être un polymère à chaîne pi-conjuguée, par exemple de typeNitrobenzene, a tobacco by-product, can also falsify detections. This is why the present invention provides a highly selective chemical sensor combining the detection of molecular entities by a variation in fluorescence and the prior selection of said entities by a chemical filter based on molecularly imprinted material. Thus, in order to overcome the lack of selectivity of state-of-the-art sensors, and to avoid any problem of "false alarm", the invention proposes a new concept of sensor in which we associate a material which will sort the molecules ( filter) with a fluorescent material which will act as a sensitive layer. It should also be noted that in this way, the risks of saturation of the sensitive polymer are also limited following the adsorption of interfering molecules. More specifically, the subject of the invention is a chemical sensor intended for the detection of a type of molecule comprising a fluorescent material capable of forming a complex with the type of molecule to be detected and means for measuring the variation in fluorescence of said material, characterized in that it further comprises a filter comprising a polymeric material comprising so-called molecular fingerprint cavities whose geometric and chemical configuration is defined so as to fix only the type of molecule to be detected. Advantageously, the fluorescent material may be a polymer or a set of small molecules. The fluorescent polymer may be a polymer with a pi-conjugated chain, for example of the type
Site d'extinction (quenching) Quenching site
Il peut aussi s'agir d'un polymère à chaînes latérales de type Formule générale :It can also be a polymer with side chains of the general formula type:
(T ") Groupi e fluorescent(T " ) Group fluorescent
Site d'extinction Exemples :Extinction site Examples:
Chaîne latérale fluorescente Fluorescent side chain
Avec x fraction molaire. On choisira de préférence x< 0,05 With x molar fraction. We will preferably choose x <0.05
Avantageusement le matériau polymère comprenant des cavités dites à empreintes moléculaires peut-être obtenu à partir de monomères fonctionnels capables de complexer la molécule à détecter, les interactions pouvant être du type liaison hydrogène,Advantageously, the polymer material comprising so-called molecular fingerprint cavities can be obtained from functional monomers capable of complexing the molecule to be detected, the interactions possibly being of the hydrogen bond type,
Monovalent BivalentMonovalent Bivalent
H- N COOH c=oH- N COOH c = o
ou de type π-π interactionsor π-π interactions
ou complexes métal-ligand or metal-ligand complexes
Dans le capteur selon l'invention le matériau fluorescent peut-être déposé en couche mince à la surface d'au moins un premier substrat. Le matériau polymère comprenant des cavités dites à empreintes moléculaires peut être réalisé à la surface d'une membrane où à la surface de microbilles de manière à réaliser une surface d'échange maximale avec l'extérieur et de façon à permettre également un temps de réponse (temps d'adsorption des molécules à détecter) le plus court possible. Plus précisément il peut être formé à la surface d'une membrane ou à la surface de microbilles maintenues dans un support poreux, positionné perpendiculaire au flux chargé ou positionné parallèlement au flux gazeux et arrangé dans une colonne de type colonne chromatographique. Avantageusement le capteur peut comprendre une pompe pour aspirer un milieu extérieur chargé du type de molécule à détecter. Il peut également comprendre une source de gaz inerte pouvant être de l'azote, positionné en aval de la pompe pour transporter les molécules à détecter vers le matériau polymère à cavités. Selon l'invention, le capteur peut aussi comprendre un obturateur amovible permettant de séparer le matériau polymère à cavités du matériau fluorescent. Les moyens de détection de variation de fluorescence peuvent avantageusement comprendre une source de lumière pour illuminer le matériau fluorescent et des moyens de photodétection pour collecter au moins une partie de la lumière émise par le complexe formé entre le matériau fluorescent et les molécules à détecter, ou pour mesurer la diminution de la lumière émise par le matériau « brut » suite à l'adsorption de la molécule à détecter c'est à dire suite à la formation du complexe. L'invention a aussi pour objet un procédé de détection chimique d'un type de molécule par un capteur selon l'invention, caractérisé en ce qu' 'il comprend les étapes suivantes : - la capture par adsorption sélective du type de molécules à détecter par le matériau polymère comprenant des cavités dites à empreintes moléculaires. - la désorption desdites molécules par un flux gazeux secondaire après capture par le matériau polymère. - la formation d'un complexe entre le matériau fluorescent et les molécules à détecter par circulation du flux gazeux chargé en molécules à détecter au niveau du matériau fluorescent. - la mesure de variation de fluorescence entre le matériau fluorescent et le complexe formé. Avantageusement la capture du type de molécules à détecter peut être effectuée avec une pompe de manière à collecter un flux extérieur au capteur chargé en molécules à détecter. Selon l'invention, le procédé peut comprendre la fermeture d'un obturateur permettant d'isoler le matériau polymère comprenant des cavités, du matériau fluorescent, lors de l'opération de capture. Il peut alors également comprendre l'ouverture de l'obturateur lors de l'opération de désorption de manière à envoyer le flux secondaire chargé en molécules à détecter en direction du matériau fluorescent. L'invention sera mieux comprise à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : - La figure 1 schématise le processus d'élaboration de matériau à empreintes moléculaires. - La figure 2 illustre un exemple de capteur chimique selon l'invention. De manière générale le capteur selon l'invention comprend un filtre comprenant un polymère à empreinte moléculaire préparé à partir de la molécule à détecter porté par un support. Le support pourra être constitué soit par une membrane fonctionnalisée soit par un ensemble de microbilles fonctionnalisées. De manière générale, les polymères dits « à empreintes moléculaires » (Molecularly Imprinted Polymers - MIPs) sont des systèmes biomimétiques robustes permettant de capter sélectivement un type de molécule donnée. Tout comme les récepteurs biologiques, les MIPs bénéficient d'une grande affinité et d'une bonne sélectivité pour des molécules données. A priori, on peut concevoir des MIPs à l'image de toute molécule ou famille de molécules fonctionnelles (« méccano moléculaire ») : ainsi, on peut envisager la synthèse de MIPs « à façon » et plus particulièrement pour des molécules cibles pour lesquelles il n'existe pas d'équivalent biologique.In the sensor according to the invention, the fluorescent material can be deposited in a thin layer on the surface of at least one first substrate. The polymer material comprising so-called molecular finger cavities can be produced on the surface of a membrane or on the surface of microbeads so as to provide a maximum exchange surface with the outside and so as to also allow a response time. (adsorption time of molecules to be detected) as short as possible. More precisely, it can be formed on the surface of a membrane or on the surface of microbeads maintained in a porous support, positioned perpendicular to the charged flow or positioned parallel to the gas flow and arranged in a column of the chromatographic column type. Advantageously, the sensor can comprise a pump for sucking in an external medium charged with the type of molecule to be detected. It can also include a source of inert gas which may be nitrogen, positioned downstream of the pump to transport the molecules to be detected to the polymeric material with cavities. According to the invention, the sensor can also comprise a removable shutter making it possible to separate the polymeric material with cavities from the fluorescent material. The means for detecting variation in fluorescence may advantageously comprise a light source for illuminating the fluorescent material and photodetection means for collecting at least part of the light emitted by the complex formed between the fluorescent material and the molecules to be detected, or to measure the decrease in the light emitted by the “raw” material following the adsorption of the molecule to be detected, ie following the formation of the complex. The subject of the invention is also a method of chemical detection of a type of molecule by a sensor according to the invention, characterized in that it comprises the following steps: - the capture by selective adsorption of the type of molecules to be detected by the polymer material comprising so-called molecular finger cavities. - Desorption of said molecules by a secondary gas flow after capture by the polymeric material. - The formation of a complex between the fluorescent material and the molecules to be detected by circulation of the gas flow loaded with molecules to be detected at the level of the fluorescent material. - measuring the variation in fluorescence between the fluorescent material and the complex formed. Advantageously, the type of molecules to be detected can be captured with a pump so as to collect a flow external to the sensor loaded with molecules to be detected. According to the invention, the method can comprise closing a shutter making it possible to isolate the polymeric material comprising cavities, from the fluorescent material, during the capture operation. It can then also include the opening of the shutter during the desorption operation so as to send the secondary flow loaded with molecules to be detected towards the fluorescent material. The invention will be better understood on reading the description which follows given without limitation and thanks to the appended figures among which: - Figure 1 shows schematically the process of making material with molecular fingerprints. - Figure 2 illustrates an example of a chemical sensor according to the invention. Generally, the sensor according to the invention comprises a filter comprising a molecularly imprinted polymer prepared from the molecule to be detected carried by a support. The support may be constituted either by a functionalized membrane or by a set of functionalized microbeads. In general, the so-called “molecular imprinted polymers” (MIPs) are robust biomimetic systems making it possible to selectively capture a given type of molecule. Like biological receptors, MIPs benefit from a high affinity and good selectivity for given molecules. A priori, we can design MIPs in the image of any molecule or family of functional molecules ("molecular mecano"): thus, we can consider the synthesis of "custom" MIPs and more particularly for target molecules for which there is no biological equivalent.
En raison de leur structure chimique hautement réticulée, les MIPs présentent une très bonne stabilité thermique et chimique. Ils ont d'autre part l'avantage d'être synthétisés à partir de réactifs bas coût. Les MIPs peuvent être de différentes nature : organique, hybride organique-inorganique ou inorganique. Comme résumé sur le schéma illustré en figure 1 et décrit de façon plus détaillée ci-après, le polymère à empreinte moléculaire (MIP) est obtenu par polymérisation, à l'aide d'un amorceur, et en présence d'un agent réticulant d'un ou plusieurs types de monomères polyfonctionnels (mf) en présence d'une molécule dite gabarit (mg) qui peut être soit directement la molécule à détecter, soit un analogue stérique et chimique. Lors d'une première étape dite de « préarrangement », la molécule gabarit développe des interactions avec un ou plusieurs monomères fonctionnels dans un solvant porogène. Lors d'une 2lôme étape dite de « polymérisation », l'ajout d'un agent réticulant et d'un amorceur de polymérisation conduit à la formation d'une matrice synthétique renfermant les sites de reconnaissance spécifiquement construits autour de la molécule gabarit. Lors de la 3,ô θ étape dite « d'extraction », la molécule gabarit est éliminée à l'aide d'un solvant adéquat : on obtient finalement une matrice polymère présentant des cavités dites empreintes dont la configuration géométrique et chimique est parfaitement adaptée à la fixation des molécules d'intérêt.Due to their highly cross-linked chemical structure, MIPs exhibit very good thermal and chemical stability. They also have the advantage of being synthesized from low-cost reagents. MIPs can be of different types: organic, organic-inorganic hybrid or inorganic. As summarized in the diagram illustrated in FIG. 1 and described in more detail below, the molecularly imprinted polymer (MIP) is obtained by polymerization, using an initiator, and in the presence of a crosslinking agent d one or more types of polyfunctional monomers (mf) in the presence of a molecule called template (mg) which can be either directly the molecule to be detected, or a steric and chemical analog. During a first so-called “pre-arrangement” step, the template molecule develops interactions with one or more functional monomers in a pore-forming solvent. At a 2 Lôme said step of "polymerization", the addition of a crosslinking agent and a polymerization initiator leads to the formation of a synthetic matrix containing the recognition sites specifically built around the template molecule. During the 3rd , dite dite so-called “extraction” step, the template molecule is eliminated using an adequate solvent: a polymer matrix is finally obtained having cavities called imprints, the geometric and chemical configuration of which is perfectly adapted the fixation of molecules of interest.
A titre d'exemple, et dans le cas de détection d'explosifs, le MIP pourra être un gel hybride obtenu à partir d'un mélange d'alkoxydes de silicium tels que le tetramethoxysilane et le methylthméthoxysilane, dont certains pourront être fonctionnalisés par des groupements organiques, par exemple l'alkoxyde suivant : By way of example, and in the case of detection of explosives, the MIP may be a hybrid gel obtained from a mixture of silicon alkoxides such as tetramethoxysilane and methylthmethoxysilane, some of which may be functionalized by organic groups, for example the following alkoxide:
Le gel hybride MIP pourra ensuite être obtenu par réaction de ces monomères par hydrolyse et polycondensation en présence d'eau et d'éthanol (un catalyseur acide ou basique pouvant par ailleurs être ajouté) et en présence de la molécule dite à imprimer (notamment, le 2,4 DNT, sous produit de la fabrication du TNT possédant une tension de vapeur plus élevée que le TNT). Le capteur chimique selon l'invention présente ainsi une partie amont capable de filtrer sélectivement un type de molécules et une partie avale comportant le matériau fluorescent et par la-même des sites de formation de complexes capables de créer des variations de fluorescence représentatives de la présence voire de la concentration desdites molécules dans l'environnement dans lequel aura été placé le capteur. Nous allons décrire plus en détails les processus de fluorescence et illustrer les variations de fluorescence dues à la présence de complexe, phénomène physique utilisé dans la présente invention. De manière générale le transfert d'énergie entre le matériau hôte et la molécule à détecter peut être décrit par le mécanisme suivant : Le procédé de transfert se fait en quatre étapes : 1) Absorption d'un photon d'énergie Eo par l'hôte 2) Relaxation de l'environnement d'une grandeur telle que l'énergie disponible pour une transition radiative de l'hôte est Eι<E0 3) Transfert de l'énergie Ei au complexe dopant/site d'extinction 4) Retour à l'état fondamental par un processus non radiatif, ce qui explique la diminution de l'intensité de fluorescence. Ainsi lorsqu'un faisceau lumineux illumine le matériau fluorescent à la fréquence vo ( énergie Eo), la radiation d'énergie E1 se produit à la fréquence v1. En présence du complexe matériau fluorescent / molécule à détecter, une partie de l'énergie E1 est convertie en chaleur, ce qui entraîne une diminution de l'intensité diffusée par le matériau. Cette variation de quantité d'énergie à détecter par les moyens de photodétection est ainsi représentative de la présence de molécules à capter. Une autre voie de réduction de la fluorescence est d'autre part le transfert d'électron photoinduit qui procède par des phénomènes d'oxydation ou de réduction après excitation de molécules dites Donneur ou Accepteur.The hybrid MIP gel can then be obtained by reaction of these monomers by hydrolysis and polycondensation in the presence of water and ethanol (an acidic or basic catalyst can also be added) and in the presence of the molecule said to be printed (in particular, 2,4 DNT, a by-product of the manufacture of TNT with a higher vapor pressure than TNT). The chemical sensor according to the invention thus has an upstream part capable of selectively filtering a type of molecules and a downstream part comprising the fluorescent material and thereby sites of formation of complexes capable of creating variations in fluorescence representative of the presence or even the concentration of said molecules in the environment in which the sensor will have been placed. We will describe in more detail the fluorescence processes and illustrate the variations in fluorescence due to the presence of complex, a physical phenomenon used in the present invention. In general, the transfer of energy between the host material and the molecule to be detected can be described by the following mechanism: The transfer process takes place in four stages: 1) Absorption of a photon of Eo energy by the host 2) Relaxation of the environment of a magnitude such that the energy available for a radiative transition of the host is Eι <E 0 3) Transfer of the energy Ei to the doping complex / extinction site 4) Return to the ground state by a non-radiative process, which explains the decrease in the fluorescence intensity. Thus when a light beam illuminates the fluorescent material at the frequency vo (energy Eo), the radiation of energy E1 occurs at the frequency v1. In the presence of the fluorescent material / molecule complex to be detected, part of the energy E1 is converted into heat, which causes a reduction in the intensity diffused by the material. This variation in the amount of energy to be detected by the photodetection means is thus representative of the presence of molecules to be captured. Another way of reducing fluorescence is on the other hand the transfer of photoinduced electron which proceeds by oxidation or reduction phenomena after excitation of molecules called Donor or Acceptor.
Exemple de capteur et de procédé de détection selon l'invention :Example of sensor and detection method according to the invention:
La figure 2 illustre cet exemple : A l'entrée du capteur une pompe P1 alimente le capteur par un flux extérieur F1 d'air ambiant contenant des molécules à détecter. Typiquement dans le cas de suspicion d'explosif on cherchera à détecter des traces de 2,4 DNT inhérentes à la présence de TNT. Une chambre amont est ainsi constituée en fermant l'obturateur Op, de manière à isoler le filtre de la partie avale de détection du capteur, constituée au niveau du matériau fluorescent. Après un temps de pompage donné (le plus court possible : de toute façon inférieur à qq minutes), la membrane (MIP) a emmagasiné suffisamment de molécules au sein de ses pores pour enclencher l'opération de désorption. En sortie de la pompe P1 on positionne avantageusement mais non nécessairement une source de gaz inerte typiquement de l'azote, assorti ou non de moyens de chauffage pour générer un flux F2 qui désorbe le matériau à empreintes moléculaires et permet de générer un flux inerte chargé des molécules à détecter que l'on envoie vers la partie avale du capteur en ouvrant l'obturateur Op. Avantageusement, l'utilisation d'un gaz inerte permet de limiter la dégradation photochimique du polymère fluorescent. Une ouverture 01 est prévue pour relarguer à l'extérieur du capteur le gaz inerte chargé d'autres impuretés que les molécules que l'on cherche spécifiquement à détecter. Le flux F2 chargé en molécules à détecter est transporté au niveau des substrats recouverts de matériau fluorescent. Ce dernier peut typiquement être déposé à la surface de deux substrats (S1 , S2) orientés parallèlement à la direction du flux F2, de manière à optimiser la surface d'échange entre ledit flux et les sites capables de générer des complexes à transfert de charges au sein du polymère fluorescent. Une seconde ouverture 02 est également prévue en partie avale du capteur pour permettre l'évacuation du flux F2. Les moyens de mesure comprennent une source de lumière SL de type laser ou diode laser pouvant émettre typiquement autour de 450 nm pour de la détection de molécules de DNT avec les polymères fluorescents précédemment décrits, qui vient irradier l'ensemble des substrats porteur de polymère fluorescent. Un photodétecteur (PM) de type PhotoMultiplicateur ou caméra CCD est placé perpendiculairement à la source de lumière de manière à recueillir une partie du rayonnement diffusé par le polymère chargé de molécules à détecter sans recueillir de lumière incidente directement émise par la source. Typiquement dans le cas de détection de DNT avec les polymères fluorescents précédemment décrits, le photodétecteur peut détecter des longueurs d'ondes centrées sur 530 nm (représentatives des radiations d'énergie E1 explicitées précédemment) FIG. 2 illustrates this example: At the input of the sensor, a pump P1 supplies the sensor with an external flow F1 of ambient air containing molecules to be detected. Typically in the case of suspected explosives, we will seek to detect traces of 2.4 DNT inherent in the presence of TNT. An upstream chamber is thus formed by closing the shutter Op, so as to isolate the filter from the downstream detection part of the sensor, formed at the level of the fluorescent material. After a given pumping time (as short as possible: in any case less than a few minutes), the membrane (MIP) has stored enough molecules within its pores to initiate the desorption operation. At the outlet of the pump P1, an inert gas source, typically nitrogen, is advantageously but not necessarily positioned, with or without heating means to generate a flow F2 which desorbs the molecularly imprinted material and makes it possible to generate a charged inert flow molecules to be detected which are sent to the downstream part of the sensor by opening the shutter Op. Advantageously, the use of an inert gas makes it possible to limit the photochemical degradation of the fluorescent polymer. An opening 01 is provided to release outside the sensor the inert gas charged with other impurities than the molecules which it is specifically sought to detect. The flow F2 loaded with molecules to be detected is transported to the substrates covered with fluorescent material. The latter can typically be deposited on the surface of two substrates (S1, S2) oriented parallel to the direction of the flow F2, so as to optimize the exchange surface between said flow and the sites capable of generating charge transfer complexes within the fluorescent polymer. A second opening 02 is also provided in the downstream part of the sensor to allow the evacuation of the flow F2. The measurement means comprise a light source SL of laser type or laser diode which can typically emit around 450 nm for the detection of DNT molecules with the fluorescent polymers described above, which irradiates all of the substrates carrying the fluorescent polymer . A PhotoMultiplier or CCD type photodetector (PM) is placed perpendicular to the light source so as to collect part of the radiation scattered by the polymer charged with molecules to be detected without collecting incident light directly emitted by the source. Typically in the case of detection of DNT with the fluorescent polymers previously described, the photodetector can detect wavelengths centered on 530 nm (representative of the energy radiations E1 explained above)

Claims

REVENDICATIONS
1. Capteur chimique destiné à la détection d'un type de molécule comprenant un matériau fluorescent capable de former un complexe à transfert de charge avec le type de molécule à détecter et des moyens de mesure de la variation de fluorescence dudit matériau, caractérisé en ce qu'il comprend en outre un filtre comportant un matériau polymère comprenant des cavités dites empreintes moléculaires dont la configuration géométrique et chimique est définie de façon à fixer le type de molécule à détecter. 2. Capteur selon la revendication 1, caractérisé en ce que le matériau fluorescent est un polymère à chaîne pi-conjuguée de type1. Chemical sensor intended for the detection of a type of molecule comprising a fluorescent material capable of forming a charge transfer complex with the type of molecule to be detected and means for measuring the variation in fluorescence of said material, characterized in that that it further comprises a filter comprising a polymeric material comprising cavities called molecular fingerprints whose geometric and chemical configuration is defined so as to fix the type of molecule to be detected. 2. Sensor according to claim 1, characterized in that the fluorescent material is a polymer with pi-conjugated chain of the type
3. Capteur selon la revendication 1 , caractérisé en ce que le matériau fluorescent est un polymère à chaînes latérales de type : 3. Sensor according to claim 1, characterized in that the fluorescent material is a polymer with side chains of the type:
Site d'extinction ( quenching) Chaîne latérale fluorescente Quenching site Fluorescent side chain
4. Capteur selon l'une des revendications précédentes, caractérisé en ce que le matériau polymère comprenant des cavités dites à empreintes moléculaires est synthétisé à partir de monomères fonctionnels permettant de générer des interactions de type liaison hydrogène4. Sensor according to one of the preceding claims, characterized in that the polymer material comprising so-called molecular finger cavities is synthesized from functional monomers making it possible to generate interactions of the hydrogen bond type
Monovalent Bivalent CF3 =< COOHMonovalent Bivalent CF 3 = <COOH
ou de type π-π interactionsor π-π interactions
ou complexes métal-ligand or metal-ligand complexes
5. Capteur selon l'une des revendications précédentes, caractérisé en ce que le matériau fluorescent est déposé en couche mince à la surface d'au moins un premier substrat. 5. Sensor according to one of the preceding claims, characterized in that the fluorescent material is deposited in a thin layer on the surface of at least one first substrate.
6. Capteur selon l'une des revendications précédentes, caractérisé en ce que le matériau polymère comprenant des cavités dites à empreintes moléculaires est formé à la surface d'une membrane ou à la surface de microbilles maintenues dans un support poreux, positionné perpendiculaire au flux chargé, ou positionné parallèlement au flux gazeux et arrangé dans une colonne de type colonne chromatographique.6. Sensor according to one of the preceding claims, characterized in that the polymer material comprising so-called molecular finger cavities is formed on the surface of a membrane or on the surface of microbeads maintained in a porous support, positioned perpendicular to the flow charged, or positioned parallel to the gas flow and arranged in a column of the chromatographic column type.
7. Capteur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une pompe pour aspirer un milieu extérieur chargé du type de molécule à détecter. 7. Sensor according to one of the preceding claims, characterized in that it comprises a pump for aspirating an external medium charged with the type of molecule to be detected.
8. Capteur selon la revendication précédente, caractérisé en ce qu'il comprend une source de gaz inerte pouvant être de l'azote, positionné en aval de la pompe pour transporter les molécules à détecter vers le matériau polymère à cavités. 8. Sensor according to the preceding claim, characterized in that it comprises a source of inert gas which may be nitrogen, positioned downstream of the pump for transporting the molecules to be detected towards the polymer material with cavities.
9. Capteur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un obturateur amovible permettant de séparer le matériau polymère à cavités du matériau fluorescent.9. Sensor according to one of the preceding claims, characterized in that it comprises a removable shutter making it possible to separate the polymeric material with cavities from the fluorescent material.
10. Capteur selon l'une des revendications précédentes, caractérisé en ce que les moyens de détection de variation de fluorescence comprennent une source de lumière pour illuminer le matériau fluorescent et des moyens de photodétection pour collecter au moins une partie de la lumière émise par le complexe formé entre le matériau fluorescent et les molécules à détecter ou en détecter sa diminution suite à la formation du complexe.10. Sensor according to one of the preceding claims, characterized in that the means for detecting variation in fluorescence comprise a light source for illuminating the fluorescent material and photodetection means for collecting at least part of the light emitted by the complex formed between the fluorescent material and the molecules to be detected or detecting its decrease following the formation of the complex.
11. Procédé de détection chimique d'un type de molécule chimique par un capteur selon l'une des revendications 1 à 10, caractérisé en ce qu' 'il comprend les étapes suivantes : - la capture du type de molécules à détecter par le matériau polymère comprenant des cavités dites à empreintes moléculaires. - la désorption desdites molécules par un flux gazeux secondaire après capture par le matériau polymère - la formation d'un complexe entre le matériau fluorescent et les molécules à détecter par circulation du flux gazeux chargé en molécules à détecter au niveau du matériau fluorescent - la mesure de variation de fluorescence entre le matériau fluorescent et le complexe formé.11. A method of chemical detection of a type of chemical molecule by a sensor according to one of claims 1 to 10, characterized in that it comprises the following steps: - the capture of the type of molecules to be detected by the material polymer comprising so-called molecular fingerprint cavities. - the desorption of said molecules by a secondary gas flow after capture by the polymer material - the formation of a complex between the fluorescent material and the molecules to be detected by circulation of the gas flow loaded with molecules to be detected at the level of the fluorescent material - the measurement variation in fluorescence between the fluorescent material and the complex formed.
12. Procédé de détection chimique selon la revendication 11 , caractérisé en ce que la capture du type de molécules à détecter est effectuée avec une pompe de manière à collecter un flux primaire extérieur au capteur chargé en molécules à détecter.12. A chemical detection method according to claim 11, characterized in that the capture of the type of molecules to be detected is carried out with a pump so as to collect a primary flow external to the sensor loaded with molecules to be detected.
13. Procédé de détection chimique selon l'une des revendications 11 ou 12, caractérisé en ce qu'il comprend la fermeture d'un obturateur permettant d'isoler le matériau polymère comprenant des cavités, du matériau fluorescent , lors de l'opération de capture.13. Chemical detection method according to one of claims 11 or 12, characterized in that it comprises closing a shutter making it possible to isolate the polymer material comprising cavities, fluorescent material, during the operation of capture.
14. Procédé de détection chimique selon la revendication 13, caractérisé en ce qu'il comprend l'ouverture de l'obturateur lors de l'opération de désorption de manière à envoyer le flux secondaire chargé en molécules à détecter en direction du matériau fluorescent. 14. Chemical detection method according to claim 13, characterized in that it comprises the opening of the shutter during the desorption operation so as to send the secondary flow loaded with molecules to be detected towards the fluorescent material.
EP05716653A 2004-02-12 2005-02-09 Highly-selective tandem chemical sensor and detection method using same Withdrawn EP1714140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0401395A FR2866429B1 (en) 2004-02-12 2004-02-12 HIGHLY SELECTIVE TANDEM CHEMICAL SENSOR AND DETECTION METHOD USING SAME
PCT/EP2005/050573 WO2005088279A1 (en) 2004-02-12 2005-02-09 Highly-selective tandem chemical sensor and detection method using same

Publications (1)

Publication Number Publication Date
EP1714140A1 true EP1714140A1 (en) 2006-10-25

Family

ID=34803314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05716653A Withdrawn EP1714140A1 (en) 2004-02-12 2005-02-09 Highly-selective tandem chemical sensor and detection method using same

Country Status (4)

Country Link
US (1) US20070148696A1 (en)
EP (1) EP1714140A1 (en)
FR (1) FR2866429B1 (en)
WO (1) WO2005088279A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462561A (en) * 2017-09-09 2017-12-12 华中农业大学 Tobacco leaf scab character fluorescence dynamic automatic testing device and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049805A1 (en) * 2004-10-12 2006-04-13 Universität Dortmund Process for the preparation of molecularly imprinted polymers for the recognition of target molecules
GB0605427D0 (en) * 2006-03-17 2006-04-26 Univ Cranfield Materials For Binding Drugs Of Abuse
FR2915685A1 (en) * 2007-05-02 2008-11-07 Thales Sa New fluorescent compounds of solid state in water, with naphthalimide base, useful for allowing the grafting on transducer, which is a biological substance, in biosensor and security or explosive detectors, and as markers
DE102009023636B3 (en) * 2009-05-26 2011-01-27 BAM Bundesanstalt für Materialforschung und -prüfung Filter unit i.e. cartridge, for use in gas sensor in sensor system for filtering certain volatile material/components of explosive agent in outer air, has contact surfaces connected with heating element and exhibiting opening for gas
CN106645057B (en) * 2016-11-17 2019-02-26 云南民族大学 A kind of measuring method of cigarette smoke Cd fractionation
EP3889599A1 (en) * 2020-04-01 2021-10-06 Christian-Albrechts-Universität zu Kiel Analytical process for detecting peroxide-, nitrate- and nitramine-based explosives
GB202114557D0 (en) * 2021-10-12 2021-11-24 Univ Court Univ St Andrews Apparatus and methods for detection of chemicals using optical sensors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665452B1 (en) * 1990-07-31 1992-10-09 Thomson Csf AMORPHOUS COPOLYMERS FOR PHOTOREFRACTIVE COMPOUNDS USED IN THE PROCESSING OF THE OPTICAL SIGNAL.
FR2668158B1 (en) * 1990-10-22 1994-05-06 Thomson Csf CROSSLINKABLE POLYMER FOR NONLINEAR OPTICAL APPLICATIONS.
FR2673190B1 (en) * 1991-02-26 1994-09-16 Thomson Csf FLUORINATED LIQUID CRYSTALS.
FR2678613B1 (en) * 1991-07-02 1993-09-17 Thomson Csf THERMALLY CROSSLINKABLE MATERIALS FOR APPLICATION IN NONLINEAR OPTICS.
FR2702058B1 (en) * 1993-02-23 1995-04-07 Thomson Csf Process for obtaining composite materials based on polymer and liquid crystals with dichroic dyes.
FR2703690B1 (en) * 1993-04-06 1995-05-12 Thomson Csf Electrooptical material based on liquid crystal dispersed in a polymer, process for production by chemical modification of the interface and device based on this material.
WO2003033575A1 (en) * 2001-10-16 2003-04-24 The Johns Hopkins University Polymer based permeable membrane for removal of ions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005088279A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462561A (en) * 2017-09-09 2017-12-12 华中农业大学 Tobacco leaf scab character fluorescence dynamic automatic testing device and method

Also Published As

Publication number Publication date
FR2866429A1 (en) 2005-08-19
WO2005088279A1 (en) 2005-09-22
FR2866429B1 (en) 2006-07-21
US20070148696A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
EP1714140A1 (en) Highly-selective tandem chemical sensor and detection method using same
Albert et al. High-speed fluorescence detection of explosives-like vapors
Thomas III et al. Trace Hydrazine Detection with Fluorescent Conjugated Polymers: A Turn‐On Sensory Mechanism
Räupke et al. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks
Zhao et al. Conjugated polymer nanoparticles based fluorescent electronic nose for the identification of volatile compounds
Zhang et al. Fluorescent nanoscale zinc (II)-carboxylate coordination polymers for explosive sensing
Riskin et al. Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite
US8158437B2 (en) Luminescent detection of hydrazine and hydrazine derivatives
US20050101026A1 (en) Photoluminescent polymetalloles as chemical sensors
US20150031138A1 (en) Emissive compositions with internal standard and related techniques
Balan et al. Detection and distinction of DNT and TNT with a fluorescent conjugated polymer using the microwave conductivity technique
Qiagedeer et al. A highly sensitive humidity sensor based on an aggregation-induced emission luminogen-appended hygroscopic polymer microresonator
Xiong et al. Fluorescence detection of a broad class of explosives with one zinc (II)-coordination nanofiber
FR2950436A1 (en) APPARATUS AND METHOD FOR DETECTING AND / OR QUANTIFYING COMPOUNDS OF INTEREST PRESENT IN GAS FORM OR SOLUTION IN SOLVENT
Tanji et al. Nanoporous Fluorescent Microresonators for Non-wired Sensing of Volatile Organic Compounds down to the ppb Level
Ruffolo et al. Phosphorescent oxygen sensors utilizing sulfur− nitrogen− phosphorus polymer matrixes: Synthesis, characterization, and evaluation of poly (thionylphosphazene)-b-poly (tetrahydrofuran) block copolymers
US7927881B2 (en) Inorganic polymers and use of inorganic polymers for detecting nitroaromatic compounds
WO2007125043A1 (en) Fluorescent polymers for physicochemical sensor
Lin et al. Multi-Analyte Discriminated ECL via Photonic Crystal-Enhanced Selectivity
EP2591343A1 (en) Device for the detection and/or electrical quantification of organophosphorus compounds by means of molecular imprinting
Vo‐Dinh et al. Surface‐enhanced Raman detection of chemical vapors with the use of personal dosimeters
Wade et al. Luminescent optical detection of volatile electron deficient compounds by conjugated polymer nanofibers
Cao et al. Permethylated-β-cyclodextrin capped CdTe quantum dot and its sensitive fluorescence analysis of malachite green
EP1931971A1 (en) Inorganic polymers and use of inorganic polymers for detecting nitroaromatic compounds
Ogugu et al. Thermal control of organic semiconductors for trace detection of explosives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070829