EP1711707B1 - Fuel injector comprising a directly triggered injection valve member - Google Patents

Fuel injector comprising a directly triggered injection valve member Download PDF

Info

Publication number
EP1711707B1
EP1711707B1 EP04821076A EP04821076A EP1711707B1 EP 1711707 B1 EP1711707 B1 EP 1711707B1 EP 04821076 A EP04821076 A EP 04821076A EP 04821076 A EP04821076 A EP 04821076A EP 1711707 B1 EP1711707 B1 EP 1711707B1
Authority
EP
European Patent Office
Prior art keywords
piezoelectric actuator
fuel
fuel injector
injection valve
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04821076A
Other languages
German (de)
French (fr)
Other versions
EP1711707A1 (en
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1711707A1 publication Critical patent/EP1711707A1/en
Application granted granted Critical
Publication of EP1711707B1 publication Critical patent/EP1711707B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic

Definitions

  • Common Rail In self-igniting internal combustion engines today, in addition to other injection systems and the accumulator injection system “Common Rail” is used.
  • the essential feature of the common rail system is that the injection pressure can be generated independently of the engine speed and the injection quantity.
  • the decoupling of pressure generation and injection takes place with the aid of a storage volume.
  • This volume which determines the function, consists of components in the common rail in the high-pressure lines and in the injector itself.
  • Fuel injectors via which fuel is injected into the combustion chamber of an internal combustion engine, can be actuated via fast-switching solenoid valves or via piezo actuators.
  • a piezoelectric actuator or a solenoid valve acts on a closing element which closes or releases a discharge channel of a control chamber.
  • an injection valve member such as a nozzle needle.
  • a control volume flows out of the control chamber via a line containing an outlet throttle, so that the control chamber is pressure-relieved. This ensures that the end face of the injection valve member enters the control chamber and releases its combustion chamber side seat so that fuel is injected into the combustion chamber of the self-igniting internal combustion engine via the injection openings formed there in a nozzle body.
  • the actuation of the injection valve member takes place indirectly via a pressure relief of the control chamber, which causes the opening or closing of the needle-shaped injection valve member.
  • piezo actuators are used instead of fast-switching solenoid valves, the piezoelectric actuator is embedded in a high-pressure fuel volume for reasons of space.
  • the fuel volume typically has system pressure, i. the pressure level prevailing in the high-pressure storage space (common rail) of the fuel injection system.
  • Piezo actuators are generally constructed as layered piezocrystal stacks, which change their length when the piezoelectric actuator is energized. If piezoelectric actuators are arranged within a fuel volume, unwanted resultant forces on the piezoactuator arise due to the design of the piezoactuators upon application of a fuel volume. These direct forces influence the stroke within the injector body, in particular at high rotational speeds, in the case of direct activation of the injection valve member, so that the injection times or the quantities of fuel injected into the combustion chamber drift, i. are very inaccurate reproducible.
  • a fuel injector with an injection valve member directly actuated piezoelectric actuator is from the post-published document EP 1 382 838 A2 known.
  • the piezoelectric actuator is encapsulated in a housing, which in turn is arranged in a cavity in the injector.
  • the cavity of the injector housing is filled with fuel.
  • the movable Akorkolben is surrounded by a membrane, so that the piezoelectric actuator is protected within the housing from the fuel.
  • Another fuel injector with an injection valve member directly actuated piezoelectric actuator is off EP 218 895 A1 known.
  • the piezoelectric actuator is arranged in a cavity in the injector, which is filled with a standing under injection pressure fuel volume. As a result, the piezoelectric actuator is exposed directly to the fuel in the injector housing.
  • a membrane arranged which seals the piezoelectric actuator at the Aktorfuß Scheme and separates the fuel-loaded cavity from a damping chamber.
  • a solution is proposed in which a direct control of the injection valve member by a piezoelectric actuator is possible.
  • the proposed solution according to the invention is characterized in that the piezoelectric actuator, which is surrounded by fuel, is designed so that the foot of the arranged in the fuel volume piezoelectric actuator and a directly actuated by the head portion of the piezoelectric actuator booster piston, which is part of the injection valve member, same diameter exhibit.
  • the piezoelectric actuator surrounded by fuel under high pressure within the injector body has a sealing edge in the head region, wherein the sealing edge diameter is preferably identical to the diameter of the booster piston directly connected to the piezoactuator head region.
  • FIG. 1 a fuel injector 1 is shown, which is actuated by means of a piezoelectric actuator 2.
  • the piezoelectric actuator 2 is accommodated within a fuel volume 5.
  • the fuel volume 5 is located within a cavity 4 formed in the injector body 27 of the fuel injector 1.
  • the cavity 4 is acted upon by the fuel volume 5 via a high-pressure inlet 3.
  • the high-pressure inlet 3 in turn is in fluid communication with a in FIG. 1 not shown storage volume (common rail).
  • the storage volume is maintained by a high-pressure fuel pump system pressure level of about 1300 bar and more.
  • piezoelectric actuator 2 comprises an actuator base 6 and an actuator head 12th
  • the piezoelectric actuator 2 contains a number of stacked piezocrystals stacked one above the other, which change their extent when the piezoactuator 2 is energized via electrical connections 10, so that the piezoactuator 2 effects a lifting movement of a booster piston 5 directly connected thereto.
  • a metallic threaded part 8 In the upper region of the piezoelectric actuator 2, this is sealed on the actuator base 6 by a metallic threaded part 8. Below the metallic thread part 8 is a sealing edge 9, which is formed in the sealing edge diameter 17 (d 2 ). The formed on the piezoelectric actuator 2 sealing edge 9 abuts against a corresponding tapered conical surface of the injector 27 of the fuel injector 1.
  • the in FIG. 1 not shown piezocrystal stack may optionally be surrounded by a potting material 11 in order to improve the resistance of the piezoelectric actuator 2 to fuel.
  • the piezoelectric actuator in the actuator head region 12 has a constriction 13.
  • the hydraulic coupling space 19 is delimited by an end face 21 of a needle-shaped injection valve member 20.
  • the diameter of the end face 18 corresponds to the diameter of the booster piston 16 and is dimensioned larger than the diameter of the end face 21 of the injector body 27 movably received in the injector body 27 in a needle-shaped injection valve member 20.
  • the injection valve member 20 is received in a guide length 28 in the injector body 27.
  • a nozzle chamber inlet 22 branches off. Via the nozzle chamber inlet 22, fuel under system pressure flows toward a nozzle chamber 23 formed in the injector body 27.
  • a pressure stage 24 is formed, at which the flowing into the nozzle chamber 23, fuel pressure under system pressure attacks and the injection valve member 20 generates at the pressure stage 24, the injection valve member 20 in the opening direction actuating force. From the nozzle chamber 23 extends beyond an annular gap 25, via which fuel flows in the direction of a tip 26 of the injector valve 20 which can be formed as a nozzle needle.
  • the injection openings, via which fuel flows into a combustion chamber of a self-igniting internal combustion engine, are in FIG. 1 not shown in detail.
  • FIG. 2 The representation according to FIG. 2 is formed on the Aktorfuß Scheme 6, cooperating with the injector housing sealing edge reproduced in an enlarged view.
  • the intensifier piston 15 fixedly connected thereto moves into the hydraulic coupling space 19 with its end face 18, so that the needle-shaped injection valve member 20 is moved into its combustion chamber-side seat, so that the injection openings remain closed in the combustion chamber of a self-igniting internal combustion engine.
  • the booster piston 15 moves out of the hydraulic coupling chamber 19 due to the lack of elongation of the piezocrystal stack containing the piezoactuator 2, so that the end face 21 of the needle-shaped injection valve member 20 moves in the opening direction and fuel from the nozzle chamber 23 via the annular gap 25 to the tip 26 of the needle-shaped injection valve member 20 flows and over the in FIG. 1 injection openings, not shown, can be injected into the combustion chamber of the self-igniting internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Technisches GebietTechnical area

Bei selbstzündenden Verbrennungskraftmaschinen kommt heute neben anderen Einspritzsystemen auch das Speichereinspritzsystem "Common Rail" zum Einsatz. Das wesentliche Merkmal des Common Rail-Systems ist es, dass der Einspritzdruck unabhängig von der Motordrehzahl und der Einspritzmenge erzeugt werden kann. Die Entkopplung von Druckerzeugung und Einspritzung erfolgt mit Hilfe eines Speichervolumens. Dieses für die Funktion maßgebende Volumen setzt sich aus Bestandteilen in der gemeinsamen Verteilerleiste (Common Rail) in den Hochdruckleitungen sowie im Injektor selbst zusammen.In self-igniting internal combustion engines today, in addition to other injection systems and the accumulator injection system "Common Rail" is used. The essential feature of the common rail system is that the injection pressure can be generated independently of the engine speed and the injection quantity. The decoupling of pressure generation and injection takes place with the aid of a storage volume. This volume, which determines the function, consists of components in the common rail in the high-pressure lines and in the injector itself.

Stand der TechnikState of the art

Kraftstoffinjektoren, über welche Kraftstoff in den Brennraum einer Verbrennungskraftmaschine eingespritzt wird, können über schnellschaltende Magnetventile oder auch über Piezoaktoren betätigt werden. Bei bisher bekannten Lösungen wirkt ein Piezoaktor oder ein Magnetventil auf ein Schließelement, welches einen Entlastungskanal eines Steuerraums verschließt oder freigibt. Abhängig vom Schließen beziehungsweise Öffnen des kugelförmig oder kegelförmig ausbildbaren Schließgliedes erfolgt eine Betätigung eines Einspritzventilgliedes, so zum Beispiel einer Düsennadel. Der Steuerraum im Injektorkörper wird kontinuierlich über eine Zulaufdrossel mit Hochdruck beaufschlagt Sobald das Ventilschließglied durch den Piezoaktor oder durch das schnellschaltende Magnetventil betätigt wird, strömt ein Steuervolumen über eine eine Ablaufdrossel enthaltende Leitung aus dem Steuerraum ab, so dass der Steuerraum druckentlastet wird. Dadurch wird erreicht, dass die Stirnseite des Einspritzventilgliedes in den Steuerraum einfährt und ihren brennraumseitigen Sitz freigibt, so dass über die dort in einem Düsenkörper ausgebildeten Einspritzöffnungen Kraftstoff in den Brennraum der selbstzündenden Verbrennungskraftmaschine eingespritzt wird.Fuel injectors, via which fuel is injected into the combustion chamber of an internal combustion engine, can be actuated via fast-switching solenoid valves or via piezo actuators. In previously known solutions, a piezoelectric actuator or a solenoid valve acts on a closing element which closes or releases a discharge channel of a control chamber. Depending on the closing or opening of the spherical or conically formable closing member is an actuation of an injection valve member, such as a nozzle needle. As soon as the valve closing member is actuated by the piezoelectric actuator or by the fast-switching solenoid valve, a control volume flows out of the control chamber via a line containing an outlet throttle, so that the control chamber is pressure-relieved. This ensures that the end face of the injection valve member enters the control chamber and releases its combustion chamber side seat so that fuel is injected into the combustion chamber of the self-igniting internal combustion engine via the injection openings formed there in a nozzle body.

Nach den aus dem Stand der Technik bekannten Lösungen erfolgt die Betätigung des Einspritzventilgliedes indirekt über eine Druckentlastung des Steuerraumes, welcher das Öffnen beziehungsweise das Schließen des nadelförmig ausbildbaren Einspritzventilgliedes bewirkt.According to the solutions known from the prior art, the actuation of the injection valve member takes place indirectly via a pressure relief of the control chamber, which causes the opening or closing of the needle-shaped injection valve member.

Die Entwicklungstendenz verläuft nunmehr in Richtung einer Direktansteuerung eines Einspritzventilgliedes. Werden dazu anstelle von schnellschaltenden Magnetventilen Piezoaktoren eingesetzt, wird der Piezoaktor aus Bauraumgründen in ein unter hohem Druck stehendes Kraftstoffvolumen eingebettet. Das Kraftstoffvolumen weist in der Regel Systemdruck auf, d.h. das Druckniveau, welches im Hochdruckspeicherraum (Common Rail) der Kraftstoffeinspritzanlage herrscht. Piezoaktoren sind in der Regel als geschichtete Piezokristallstapel aufgebaut, welche bei Bestromung des Piezoaktors ihre Länge verändern. Werden Piezoaktoren innerhalb eines Kraftstoffvolumens angeordnet, so entstehen aufgrund der Ausgestaltung der Piezoaktoren bei Beaufschlagung mit einem Kraftstoffvolumen unerwünschte resultierende Kräfte auf den Piezoaktor. Diese resultierenden Kräfte beeinflussen bei direkter Ansteuerung des Einspritzventilgliedes dessen Hubweg innerhalb des Injektorkörpers, insbesondere bei hohen Drehzahlen, so dass die Einspritzzeitpunkte beziehungsweise die in den Brennraum eingespritzten Kraftstoffmengen driften, d.h. sehr ungenau reproduzierbar sind.The development trend now proceeds in the direction of a direct control of an injection valve member. If piezo actuators are used instead of fast-switching solenoid valves, the piezoelectric actuator is embedded in a high-pressure fuel volume for reasons of space. The fuel volume typically has system pressure, i. the pressure level prevailing in the high-pressure storage space (common rail) of the fuel injection system. Piezo actuators are generally constructed as layered piezocrystal stacks, which change their length when the piezoelectric actuator is energized. If piezoelectric actuators are arranged within a fuel volume, unwanted resultant forces on the piezoactuator arise due to the design of the piezoactuators upon application of a fuel volume. These direct forces influence the stroke within the injector body, in particular at high rotational speeds, in the case of direct activation of the injection valve member, so that the injection times or the quantities of fuel injected into the combustion chamber drift, i. are very inaccurate reproducible.

Ein Kraftstoffinjektor mit einem ein Einspritzventilglied direkt betätigenden Piezoaktor ist aus dem nachveröffentlichten Dokument EP 1 382 838 A2 bekannt. Hierbei ist der Piezoaktor in ein Gehäuse eingekapselt, dass wiederum in einem Hohlraum im Injektorgehäuse angeordnet ist. Der Hohlraum des Injektorgehäuse ist mit Kraftstoff befüllt. Der bewegliche Akorkolben ist mit einer Membran umgeben, so dass der Piezoaktor innerhalb des Gehäuses vor dem Kraftstoff geschützt ist.A fuel injector with an injection valve member directly actuated piezoelectric actuator is from the post-published document EP 1 382 838 A2 known. Here, the piezoelectric actuator is encapsulated in a housing, which in turn is arranged in a cavity in the injector. The cavity of the injector housing is filled with fuel. The movable Akorkolben is surrounded by a membrane, so that the piezoelectric actuator is protected within the housing from the fuel.

Ein weiterer Kraftstoffinjektor mit einem ein Einspritzventilglied direkt betätigenden Piezoaktor ist aus EP 218 895 A1 bekannt. Der Piezoaktor ist dabei in einem Hohlraum im Injektorgehäuse angeordnet, welcher mit einem unter Einspritzdruck stehenden Kraftstoffvolumen befüllt ist. Dadurch ist der Piezoaktor dem Kraftstoff im Injektorgehäuse unmittelbar ausgesetzt. Zur Abdichtung des Piezoaktors ist zwischen Injektorgehäuse und Aktorfuß eine Membran angeordnet, die den Piezoaktor am Aktorfußbereich abdichtet und den mit Kraftstoff beaufschlagten Hohlraum von einem Dämpfungsraum trennt.Another fuel injector with an injection valve member directly actuated piezoelectric actuator is off EP 218 895 A1 known. The piezoelectric actuator is arranged in a cavity in the injector, which is filled with a standing under injection pressure fuel volume. As a result, the piezoelectric actuator is exposed directly to the fuel in the injector housing. To seal the piezoelectric actuator between the injector and actuator foot is a membrane arranged, which seals the piezoelectric actuator at the Aktorfußbereich and separates the fuel-loaded cavity from a damping chamber.

Darstellung der ErfindungPresentation of the invention

Erfindungsgemäß wird eine Lösung vorgeschlagen, bei welcher eine direkte Ansteuerung des Einspritzventilgliedes durch einen Piezoaktor möglich ist. Die erfindungsgemäß vorgeschlagene Lösung zeichnet sich dadurch aus, dass der Piezoaktor, der von Kraftstoff umgeben ist, so ausgelegt ist, dass der Fußbereich des im Kraftstoffvolumen angeordneten Piezoaktors sowie ein durch den Kopfbereich des Piezoaktors direkt betätigte Übersetzerkolben, der Teil des Einspritzventilgliedes ist, gleiche Durchmesser aufweisen. Dadurch entstehen identische hydraulisch wirksame Flächen, an denen bei Druckbeaufschlagung des Hohlraumes innerhalb des Injektorkörpers, in den der Piezoaktor aufgenommen ist, keine resultierenden hydraulischen Kräfte auftreten, welche den Nutzhub des im Injektorkörper bewegbar geführten Einspritzventilgliedes beeinträchtigen.According to the invention, a solution is proposed in which a direct control of the injection valve member by a piezoelectric actuator is possible. The proposed solution according to the invention is characterized in that the piezoelectric actuator, which is surrounded by fuel, is designed so that the foot of the arranged in the fuel volume piezoelectric actuator and a directly actuated by the head portion of the piezoelectric actuator booster piston, which is part of the injection valve member, same diameter exhibit. This results in identical hydraulically effective surfaces to which upon pressurization of the cavity within the injector, in which the piezoelectric actuator is added, no resulting hydraulic forces occur, which affect the Nutzhub of the injector body movably guided injection valve member.

Der innerhalb des Injektorkörpers vom unter hohem Druck stehenden Kraftstoff umgebene Piezoaktor weist im Kopfbereich eine Dichtkante auf, wobei der Dichtkantendurchmesser bevorzugt mit dem Durchmesser des mit dem Piezoaktorkopfbereich direkt verbundenen Übersetzerkolben identisch ist. Durch diese Lösung kann einerseits erreicht werden, dass der Übersetzerkolben, der einen hydraulischen Kopplungsraum beaufschlagt, die Längung des Piezokristallstapels bei dessen Bestromung exakt überträgt; andererseits können durch die erfindungsgemäß vorgeschlagene Lösung bisher erforderliche Ablaufkanäle, Ablaufdrosseln, Ventilschließelemente sowie Führungen für die Ventilschließelemente eingespart werden. Dies beeinflusst die Bauhöhe eines über einen erfindungsgemäß ausgebildeten Piezoaktor direkt angesteuerten Einspritzventilgliedes günstig, da die oben erwähnten Übertragungselemente entfallen können.The piezoelectric actuator surrounded by fuel under high pressure within the injector body has a sealing edge in the head region, wherein the sealing edge diameter is preferably identical to the diameter of the booster piston directly connected to the piezoactuator head region. By means of this solution, on the one hand, it can be achieved that the booster piston, which acts on a hydraulic coupling space, exactly transfers the elongation of the piezocrystal stack when it is energized; On the other hand can be saved by the inventively proposed solution previously required drainage channels, drain throttles, valve closing elements and guides for the valve closing elements. This has a favorable effect on the overall height of an injection valve member which is directly controlled via a piezoelectric actuator designed according to the invention, since the above-mentioned transmission elements can be dispensed with.

Zeichnungdrawing

Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.With reference to the drawing, the invention will be described below in more detail.

Es zeigt:

Figur 1
einen Längsschnitt durch einen erfindungsgemäß vorgeschlagenen Kraftstoffinjektor mit in den Hochdruckzulauf integriertem Piezoaktor und
Figur 2
eine vergrößerte Darstellung einer Dichtkante des in Figur 1 dargestellten Hohlraums.
It shows:
FIG. 1
a longitudinal section through an inventively proposed fuel injector with integrated into the high-pressure inlet piezoelectric actuator and
FIG. 2
an enlarged view of a sealing edge of in FIG. 1 illustrated cavity.

Ausführungsvariantenvariants

In Figur 1 ist ein Kraftstoffinjektor 1 dargestellt, der mittels eines Piezoaktors 2 betätigt wird. Der Piezoaktor 2 ist innerhalb eines Kraftstoffvolumens 5 aufgenommen. Das Kraftstoffvolumen 5 befindet sich innerhalb eines im Injektorkörper 27 des Kraftstoffinjektors 1 ausgebildeten Hohlraumes 4. Der Hohlraum 4 wird mit dem Kraftstoffvolumen 5 über einen Hochdruckzulauf 3 beaufschlagt. Der Hochdruckzulauf 3 steht seinerseits in Strömungsverbindung mit einem in Figur 1 nicht dargestellten Speichervolumen (Common Rail). Im Speichervolumen herrscht ein durch eine Hochdruck-Kraftstoffpumpe aufrechterhaltenes Systemdruckniveau von etwa 1300 bar und mehr.In FIG. 1 a fuel injector 1 is shown, which is actuated by means of a piezoelectric actuator 2. The piezoelectric actuator 2 is accommodated within a fuel volume 5. The fuel volume 5 is located within a cavity 4 formed in the injector body 27 of the fuel injector 1. The cavity 4 is acted upon by the fuel volume 5 via a high-pressure inlet 3. The high-pressure inlet 3 in turn is in fluid communication with a in FIG. 1 not shown storage volume (common rail). The storage volume is maintained by a high-pressure fuel pump system pressure level of about 1300 bar and more.

Der in Figur 1 innerhalb des Hohlraumes 4 aufgenommene Piezoaktor 2 umfasst einen Aktorfuß 6 sowie einen Aktorkopf 12.The in FIG. 1 Within the cavity 4 recorded piezoelectric actuator 2 comprises an actuator base 6 and an actuator head 12th

Der Piezoaktor 2 enthält eine Anzahl geschichtet übereinander angeordneter, in Stapelform orientierter Piezokristalle, die bei Bestromung des Piezoaktors 2 über elektrische Anschlüsse 10 ihre Ausdehnung ändern, so dass der Piezoaktor 2 eine Hubbewegung eines mit diesem direkt verbundenen Übersetzerkolbens 5 bewirkt.The piezoelectric actuator 2 contains a number of stacked piezocrystals stacked one above the other, which change their extent when the piezoactuator 2 is energized via electrical connections 10, so that the piezoactuator 2 effects a lifting movement of a booster piston 5 directly connected thereto.

Im oberen Bereich des Piezoaktors 2 ist dieser am Aktorfuß 6 durch ein metallisches Gewindeteil 8 abgedichtet. Unterhalb des metallischen Gewindeteiles 8 befindet sich eine Dichtkante 9, die im Dichtkantendurchmesser 17 (d2) ausgebildet ist. Die am Piezoaktor 2 ausgebildete Dichtkante 9 liegt an einer entsprechend angeschrägten Kegelfläche des Injektorgehäuses 27 des Kraftstoffinjektors 1 an. Der in Figur 1 nicht dargestellte Piezokristallstapel kann optional von einem Vergussmaterial 11 umgeben sein, um die Beständigkeit des Piezoaktors 2 gegen Kraftstoff zu verbessern.In the upper region of the piezoelectric actuator 2, this is sealed on the actuator base 6 by a metallic threaded part 8. Below the metallic thread part 8 is a sealing edge 9, which is formed in the sealing edge diameter 17 (d 2 ). The formed on the piezoelectric actuator 2 sealing edge 9 abuts against a corresponding tapered conical surface of the injector 27 of the fuel injector 1. The in FIG. 1 not shown piezocrystal stack may optionally be surrounded by a potting material 11 in order to improve the resistance of the piezoelectric actuator 2 to fuel.

Am Aktorkopf 12 des Piezoaktors 2 ist dieser fest mit einem Übersetzerkolben 15 verbunden, der in einem Durchmesser 16 (d1) ausgeführt ist. Der Dichtkantendurchmesser 17 (d2) und der Übersetzerkolbendurchmesser 16 (d1) sind identisch. Der Übersetzerkolben 15 ist bewegbar im Injektorgehäuse 27 des Kraftstoffinjektors 1 geführt. Oberhalb einer Verbindungsfläche 14 weist der Piezoaktor im Aktorkopfbereich 12 eine Einschnürung 13 auf.At the actuator head 12 of the piezoelectric actuator 2, this is fixedly connected to a booster piston 15, which is designed in a diameter 16 (d 1 ). The sealing edge diameter 17 (d 2 ) and the translator piston diameter 16 (d 1 ) are identical. The booster piston 15 is movable in the injector housing 27 of the fuel injector 1 out. Above a connecting surface 14, the piezoelectric actuator in the actuator head region 12 has a constriction 13.

Die einem hydraulischen Kopplungsraum 19 zuweisende untere Stirnseite 18 des Übersetzerkolbens 15 beaufschlagt ein im hydraulischen Kopplungsraum 19 enthaltenes Kraftstoffvolumen. Der hydraulische Kopplungsraum 19 wird andererseits durch eine Stirnfläche 21 eines nadelförmig ausgebildeten Einspritzventilgliedes 20 begrenzt. Der Durchmesser der Stirnseite 18 entspricht dem Durchmesser des Übersetzerkolbens 16 und ist größer bemessen als der Durchmesser der Stirnseite 21 des im Injektorkörper 27 in vertikale Richtung bewegbar aufgenommenen, nadelförmig ausgebildeten Einspritzventilgliedes 20. Das Einspritzventilglied 20 ist in einer Führungslänge 28 im Injektorkörper 27 aufgenommen.The lower end face 18 of the booster piston 15, which is assigned to a hydraulic coupling space 19, acts on a fuel volume contained in the hydraulic coupling space 19. On the other hand, the hydraulic coupling space 19 is delimited by an end face 21 of a needle-shaped injection valve member 20. The diameter of the end face 18 corresponds to the diameter of the booster piston 16 and is dimensioned larger than the diameter of the end face 21 of the injector body 27 movably received in the injector body 27 in a needle-shaped injection valve member 20. The injection valve member 20 is received in a guide length 28 in the injector body 27.

Vom Hohlraum 4, in welchem das Kraflstoffvolumen 5 über den Hochdruckzulauf 3 einströmt, zweigt ein Düsenraumzulauf 22 ab. Über den Düsenraumzulauf 22 strömt unter Systemdruck stehender Kraftstoff einem im Injektorkörper 27 ausgebildeten Düsenraum 23 zu. Am Einspritzventilglied 20 ist eine Druckstufe 24 ausgebildet, an welcher der in den Düsenraum 23 einströmende, unter Systemdruck stehende Kraftstoff angreift und das Einspritzventilglied 20 an der Druckstufe 24 eine das Einspritzventilglied 20 in Öffnungsrichtung betätigende Kraft erzeugt. Vom Düsenraum 23 erstreckt sich darüber hinaus ein Ringspalt 25, über welchen Kraftstoff in Richtung auf eine Spitze 26 des als Düsennadel ausbildbaren Einspritzventilgliedes 20 zuströmt.From the cavity 4, in which the Kraflstoffvolumen 5 flows through the high-pressure inlet 3, a nozzle chamber inlet 22 branches off. Via the nozzle chamber inlet 22, fuel under system pressure flows toward a nozzle chamber 23 formed in the injector body 27. At the injection valve member 20, a pressure stage 24 is formed, at which the flowing into the nozzle chamber 23, fuel pressure under system pressure attacks and the injection valve member 20 generates at the pressure stage 24, the injection valve member 20 in the opening direction actuating force. From the nozzle chamber 23 extends beyond an annular gap 25, via which fuel flows in the direction of a tip 26 of the injector valve 20 which can be formed as a nozzle needle.

Die Einspritzöffnungen, über welche Kraftstoff in einen Brennraum einer selbstzündenden Verbrennungskraftmaschine einströmt, sind in Figur 1 nicht näher dargestellt.The injection openings, via which fuel flows into a combustion chamber of a self-igniting internal combustion engine, are in FIG. 1 not shown in detail.

Der Darstellung gemäß Figur 2 ist die am Aktorfußbereich 6 ausgebildete, mit dem Injektorgehäuse zusammenwirkende Dichtkante in vergrößerter Darstellung wiedergegeben.The representation according to FIG. 2 is formed on the Aktorfußbereich 6, cooperating with the injector housing sealing edge reproduced in an enlarged view.

Am oberen Bereich des in den Hohlraum 4 eingelassenen Piezoaktors 2 befindet sich ein Gewindeabschnitt 8. Da die über ein Gewinde 8 herstellbare Abdichtung des mit unter hohem Druck stehenden Kraftstoff 5 beaufschlagten Hohlraumes 4 nicht ausreichend ist, wird im Aktorfußbereich 6 des Piezoaktors 2 eine Dichtkante 9 vorgesehen. Die Dichtkante 9 wirkt mit einem in Kegelstumpfform ausgebildeten Dichtsitz am Injektorgehäuse 27 zusammen. Der Dichtkantendurchmesser 17 (d2) bezeichnet die Stelle, an welcher die Dichtkante 9 die kegelstumpfförmig ausgebildete Dichtfläche des Injektorgehäuses 27 berührt und eine Abdichtung des Hohlraumes 4, der mit einem unter hohem Druck stehenden Kraftstoffvolumen 5 befüllt ist, gewährleistet.There is a threaded portion 8 at the upper portion of the inserted into the cavity 4 Piezoaktors 2. Since the manufacturable via a thread 8 sealing of under high pressure fuel 5 cavity 4 is not sufficient, is in the Aktorfußbereich 6 of the piezoelectric actuator 2, a sealing edge. 9 intended. The sealing edge 9 cooperates with a sealing seat in the form of a truncated cone on the injector housing 27. The sealing edge diameter 17 (d 2 ) denotes the point at which the sealing edge 9 contacts the frustoconical sealing surface of the injector housing 27 and a seal of the cavity 4, which is filled with a high pressure fuel volume 5, guaranteed.

Charakteristisch für die in Figuren 1 und 2 dargestellte Ausbildung des in einem Hohlraum 4, der mit unter hohem Druck stehenden Kraftstoff 5 beaufschlagt ist, aufgenommenen Piezoaktors 2, ist die Identität des Dichtkantendurchmessers 17 und des Übersetzerkolbendurchmessers 16. Sind diese Durchmesser 16 (d1) beziehungsweise 17 (d2) identisch, wird durch das im Hohlraum 4 des Injektorgehäuses 27 aufgenommene, unter hohem Druck stehende Kraftstoffvolumen 5 keine resultierende Kraft (Fres=0) auf den Piezoaktor 2 in Nutzhubrichtung ausgeübt.Characteristic of the in Figures 1 and 2 illustrated embodiment of in a cavity 4, which is acted upon by high-pressure fuel 5, recorded piezoelectric actuator 2, is the identity of the sealing edge diameter 17 and the translator piston diameter 16. Are these Diameter 16 (d 1 ) or 17 (d 2 ) identical, is exerted by the cavity 4 of the injector 27 recorded, under high pressure fuel volume 5 no resultant force (F res = 0 ) on the piezoelectric actuator 2 in Nutzhubrichtung.

Wird der im Piezoaktor 2 enthaltene Piezokristallstapel bestromt, fährt aufgrund der Längenänderung des Piezoaktors 2 der mit diesem fest verbundene Übersetzerkolben 15 mit seiner Stirnseite 18 in den hydraulischen Kopplungsraum 19 ein, so dass das nadelförmig ausgebildete Einspritzventilglied 20 in seinen brennraumseitigen Sitz gerückt wird, so dass die Einspritzöffnungen in den Brennraum einer selbstzündenden Verbrennungskraftmaschine geschlossen bleiben. Erfolgt eine Aufhebung der Bestromung des eine Piezokristallanordnung enthaltenden Aktors 2, so fährt aufgrund der fehlenden Längung des im Piezoaktor 2 enthaltenden Piezokristallstapels der Übersetzerkolben 15 aus dem hydraulischen Kopplungsraum 19 aus, so dass die Stirnseite 21 des nadelförmig ausgebildeten Einspritzventilgliedes 20 sich in Öffnungsrichtung bewegt und Kraftstoff aus dem Düsenraum 23 über den Ringspalt 25 zur Spitze 26 des nadelförmig ausgebildeten Einspritzventilgliedes 20 strömt und über die in Figur 1 nicht dargestellte Einspritzöffnungen in den Brennraum der selbstzündenden Verbrennungskraftmaschine eingespritzt werden kann.If the piezocrystal stack contained in the piezoelectric actuator 2 is energized, due to the change in length of the piezoelectric actuator 2, the intensifier piston 15 fixedly connected thereto moves into the hydraulic coupling space 19 with its end face 18, so that the needle-shaped injection valve member 20 is moved into its combustion chamber-side seat, so that the injection openings remain closed in the combustion chamber of a self-igniting internal combustion engine. If the energization of the actuator 2 containing a piezocrystal structure is canceled, the booster piston 15 moves out of the hydraulic coupling chamber 19 due to the lack of elongation of the piezocrystal stack containing the piezoactuator 2, so that the end face 21 of the needle-shaped injection valve member 20 moves in the opening direction and fuel from the nozzle chamber 23 via the annular gap 25 to the tip 26 of the needle-shaped injection valve member 20 flows and over the in FIG. 1 injection openings, not shown, can be injected into the combustion chamber of the self-igniting internal combustion engine.

Die Druckausgeglichenheit des Piezoaktors 2, der innerhalb des Hohlraumes 4, der mit dem unter hohem Druck stehenden Kraftstoffvolumen 5 befüllt ist, aufgenommen ist, gewährleistet die maximale Nutzhubausnutzung des Piezoaktors 2, da der Ausdehnung der Piezokristalle, die in Stapelanordnung aufgenommen sind, keine behindernde Kraft entgegenwirkt und somit der maximale Hubbereich des Piezoaktors bei dessen Bestromung und bei der Aufhebung der Bestromung, d.h. der Wiederherstellung der ursprünglichen Form der Piezokristalle ermöglicht wird. Dies ist bei Piezoaktoren 2 insofern von großer Bedeutung, weil die Längenänderung eines Piezokristallstapels nur wenige µm beträgt und die diese Längenänderung beeinflussenden, resultierende Kräfte den maximalen Nutzhub des Piezoaktors 2 erheblich beeinträchtigen können.The pressure balance of the piezoelectric actuator 2, which is received within the cavity 4, which is filled with the high-pressure fuel volume 5, ensures the maximum Nutzhubausnutzung the piezoelectric actuator 2, since the expansion of the piezoelectric crystals, which are received in a stacked arrangement, no obstructive force counteracts and thus the maximum stroke range of the piezoelectric actuator in its energization and in the abolition of the energization, ie the restoration of the original shape of the piezoelectric crystals is possible. This is of great importance in the case of piezoactuators 2 because the change in length of a piezocrystal stack is only a few μm and the resulting forces influencing this change in length can considerably impair the maximum useful stroke of the piezoactuator 2.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Kraftstoffinjektorfuel injector
22
Piezoaktorpiezo actuator
33
HochdruckzulaufHigh-pressure inlet
44
Hohlraumcavity
55
Kraftstoffvolumen (Systemdruck)Fuel volume (system pressure)
66
AktorfußbereichAktorfußbereich
77
AktorfußdurchmesserAktorfußdurchmesser
88th
Gewindeabschnittthreaded portion
99
Dichtkantesealing edge
1010
elektrische Anschlüsseelectrical connections
1111
Vergussmaterialgrout
1212
AktorkopfbereichAktorkopfbereich
1313
Einschnürungconstriction
1414
Verbindungsflächeinterface
1515
ÜbersetzerkolbenBooster piston
1616
Durchmesser Übersetzerkolben (d1)Diameter of the booster piston (d 1 )
1717
Dichtkantendurchmesser (d2)Sealing edge diameter (d 2 )
1818
Stirnseite ÜbersetzerkolbenFront side spool
1919
hydraulischer Kopplungsraumhydraulic coupling room
2020
nadelförmiges Einspritzventilgliedneedle-shaped injection valve member
2121
Stirnseite EinspritzventilgliedFront side injection valve member
2222
DüsenraumzulaufNozzle chamber inlet
2323
Düsenraumnozzle chamber
2424
Druckstufepressure stage
2525
Ringspaltannular gap
2626
Spitze EinspritzventilgliedTip injection valve member
2727
Injektorkörperinjector
2828
Führungslänge EinspritzventilgliedGuide length injection valve member

Claims (8)

  1. Fuel injector (1) having a piezoelectric actuator (2) which actuates an injection valve element (20) directly and acts on a transmitter plunger (15), and one end side (18) of the transmitter plunger (15) loads a hydraulic coupling chamber (19) in order to actuate the injection valve element (20) and the piezoelectric actuator (2) is accommodated in the injector housing (27) in a hollow space (4) which is filled with a highly pressurized fuel volume (5), with the result that the piezoelectric actuator (2) is surrounded by the fuel, characterized in that, in an actuator-base region (6), the piezoelectric actuator (2) has a sealing edge (9) which interacts with a sealing seat of frustoconical configuration on the injector housing (27), and in that the diameter (17) (d2) of the sealing edge (9) in the actuator-base region (6) corresponds to the diameter (16) (d1) of the transmitter plunger (15).
  2. Fuel injector according to Claim 1, characterized in that the piezoelectric actuator (2) is connected fixedly to the transmitter plunger (15) at its head region (12).
  3. Fuel injector according to Claim 1, characterized in that an end side (18) of the transmitter plunger (15), which end side (18) loads a hydraulic coupling chamber (19), forms a larger hydraulically active surface than an end side (21) of the injection valve element (20), which end side (21) delimits the hydraulic coupling chamber (19).
  4. Fuel injector according to Claim 1, characterized in that the piezoelectric actuator (2) is enclosed by a sealing material (11).
  5. Fuel injector according to Claim 1, characterized in that, in the injector housing (27), the hollow space (4) which encloses the piezoelectric actuator (2) loads a nozzle-chamber inlet (22) which extends to a nozzle chamber (23).
  6. Fuel injector according to Claim 1, characterized in that electric connections (10) for supplying current to the piezoelectric actuator (2) are guided through a threaded section (8) which is arranged above the actuator-base region (6).
  7. Fuel injector according to Claim 1, characterized in that a sealing edge (9) which interacts with a chamfered housing section of the injector housing (27) and is formed in the base region (6) of the piezoelectric actuator (2) seals the hollow space (4) which is filled with a highly pressurized fuel volume (5) with respect to the threaded section (8).
  8. Fuel injector according to Claim 1, characterized in that the piezoelectric actuator (2) has a constricted section (13) above a connecting surface (14) to the transmitter plunger (15).
EP04821076A 2004-01-16 2004-11-16 Fuel injector comprising a directly triggered injection valve member Expired - Fee Related EP1711707B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002299A DE102004002299A1 (en) 2004-01-16 2004-01-16 Fuel injector with directly controlled injection valve member
PCT/EP2004/052980 WO2005068821A1 (en) 2004-01-16 2004-11-16 Fuel injector comprising a directly triggered injection valve member

Publications (2)

Publication Number Publication Date
EP1711707A1 EP1711707A1 (en) 2006-10-18
EP1711707B1 true EP1711707B1 (en) 2008-07-02

Family

ID=34716614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04821076A Expired - Fee Related EP1711707B1 (en) 2004-01-16 2004-11-16 Fuel injector comprising a directly triggered injection valve member

Country Status (6)

Country Link
US (1) US20070152080A1 (en)
EP (1) EP1711707B1 (en)
JP (1) JP2007514095A (en)
CN (1) CN1906399A (en)
DE (2) DE102004002299A1 (en)
WO (1) WO2005068821A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031790A1 (en) * 2004-07-01 2006-01-26 Robert Bosch Gmbh Common rail injector
DE102006009659A1 (en) 2005-07-25 2007-02-01 Robert Bosch Gmbh Fuel injection device for internal combustion engine, has valve unit arranged in housing and composed of several parts including control piston and nozzle needle, where piston and needle are coupled to each other via hydraulic coupler
DE102005044830A1 (en) * 2005-09-20 2007-03-29 Robert Bosch Gmbh Fuel injector
DE102005050784A1 (en) * 2005-10-24 2007-04-26 Robert Bosch Gmbh Fuel injection valves for internal combustion engines
DE102005051438A1 (en) * 2005-10-27 2007-05-03 Daimlerchrysler Ag Fuel injector for an internal combustion engine
DE102006019308A1 (en) * 2006-04-26 2007-10-31 Robert Bosch Gmbh Injector for fuel supply to internal combustion engine, especially in motor vehicle, has piezoactuator with foot on end remote from nozzle needle with sealing profile facing needle that contacts seal seat on injector body
DE102007001363A1 (en) * 2007-01-09 2008-07-10 Robert Bosch Gmbh Injector for injecting fuel into combustion chambers of internal combustion engines
EP1970556B1 (en) * 2007-03-15 2009-12-30 Ford Global Technologies, LLC Injector
DE102009024595A1 (en) * 2009-06-10 2011-03-24 Continental Automotive Gmbh Injection valve with transmission unit
DE102009024596A1 (en) 2009-06-10 2011-04-07 Continental Automotive Gmbh Injection valve with transmission unit
DE102011003452A1 (en) * 2011-02-01 2012-08-02 Robert Bosch Gmbh Fuel injection component
KR101340888B1 (en) 2012-10-30 2013-12-13 숭실대학교산학협력단 Piezo injector with direct driven type
JP2019060251A (en) * 2017-09-25 2019-04-18 日立オートモティブシステムズ株式会社 High-pressure fuel supply device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19843534A1 (en) * 1998-09-23 2000-03-30 Bosch Gmbh Robert Fuel injector
DE19946840A1 (en) * 1999-09-30 2001-05-03 Bosch Gmbh Robert Valve for controlling liquids
DE10032924A1 (en) * 2000-07-06 2002-01-24 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE10043625C2 (en) * 2000-09-05 2003-03-27 Bosch Gmbh Robert Hydraulically translated valve
DE10159750A1 (en) * 2001-12-05 2003-06-12 Bosch Gmbh Robert Fuel injection valve for IC engine, has pressure balanced valve needle, whereby force exerted in opening direction by fuel pressure is approximately equal to force exerted by fuel in closing direction
DE10203657A1 (en) * 2002-01-30 2003-08-28 Bosch Gmbh Robert Fuel injector
DE10213858A1 (en) * 2002-03-27 2003-10-30 Bosch Gmbh Robert Fuel injector
DE10217594A1 (en) * 2002-04-19 2003-11-06 Bosch Gmbh Robert Fuel injection valve for IC engines has throttle gap formed by Laser/erosion drilling, and positioned separate from guide gaps, for cheaper fabrication of gaps
DE10232193A1 (en) * 2002-07-16 2004-02-05 Robert Bosch Gmbh Fuel injector

Also Published As

Publication number Publication date
JP2007514095A (en) 2007-05-31
DE102004002299A1 (en) 2005-08-04
CN1906399A (en) 2007-01-31
WO2005068821A1 (en) 2005-07-28
EP1711707A1 (en) 2006-10-18
US20070152080A1 (en) 2007-07-05
DE502004007521D1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1831540B1 (en) Fuel injector comprising a directly triggered injection valve member
EP1756415B1 (en) Fuel injector with variable actuator transmission
WO2005075811A1 (en) Fuel injector with a direct controlled injection valve member
EP1711707B1 (en) Fuel injector comprising a directly triggered injection valve member
WO2007141134A1 (en) Arrangement with a coated piezo actuator
DE102004028522A1 (en) Fuel injector with variable Aktorhubübersetzung
WO2002053904A1 (en) Injection valve
EP1865189B1 (en) Fuel injector with a piezo actuator arranged on the low pressure side
WO2012034749A1 (en) Fuel injector
DE102006019736A1 (en) Fuel injector for combustion chamber of internal combustion engine, has actuator arranged in low-pressure area and surrounded by fuel, and compensation unit e.g. housing part, formed in low-pressure area
DE102006015745A1 (en) Fuel injector especially for diesel engine has a solenoid operated valve with a bypass for enhanced switching speed
EP1466086B1 (en) Control element for injectors with switched injector pin
EP1983186B1 (en) Pressure-stabilised actuator
WO2002057620A1 (en) Injection valve
WO2008113630A1 (en) Fuel injector with improved injection behavior
DE10043625C2 (en) Hydraulically translated valve
DE102010023698A1 (en) Injector with direct and servo drive
EP2126333B1 (en) Fuel injector comprising a coupler
EP2439398B1 (en) Fuel injector valve
WO2008061842A1 (en) Fuel injector
DE102005016794B4 (en) Fuel injector with stroke reversal
DE102005026967A1 (en) Valve e.g. piezoelectrically operated servo valve, for fuel injector of e.g. common-rail-injection system, has valve fixing throttle provided inside valve and establishing fluid connection between high and low pressure sides of valve
DE10333688B3 (en) Fuel injection system with valve for internal combustion engine receives high-pressure fuel from common rail which passes to injection valve and working space between pistons
DE102005025138B4 (en) metering valve
DE10333699A1 (en) Fuel injection device for internal combustion engine has one hydraulic coupler piston connected to actuator by piston rod, other piston operates control valve via narrower rod, control valve is at least partly force-balanced

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20070111

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20070111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004007521

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081124

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081118

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081002

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130124

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007521

Country of ref document: DE

Effective date: 20140603