EP1703227B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP1703227B1
EP1703227B1 EP20060004561 EP06004561A EP1703227B1 EP 1703227 B1 EP1703227 B1 EP 1703227B1 EP 20060004561 EP20060004561 EP 20060004561 EP 06004561 A EP06004561 A EP 06004561A EP 1703227 B1 EP1703227 B1 EP 1703227B1
Authority
EP
European Patent Office
Prior art keywords
coil
coils
heat exchanger
gap
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20060004561
Other languages
English (en)
French (fr)
Other versions
EP1703227A3 (de
EP1703227A2 (de
Inventor
Lila Menari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP1703227A2 publication Critical patent/EP1703227A2/de
Publication of EP1703227A3 publication Critical patent/EP1703227A3/de
Application granted granted Critical
Publication of EP1703227B1 publication Critical patent/EP1703227B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/43Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0132Auxiliary supports for elements for tubes or tube-assemblies formed by slats, tie-rods, articulated or expandable rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/04Arrangements of conduits common to different heat exchange sections, the conduits having channels for different circuits

Definitions

  • the present invention relates to devices for heating liquids, such as boilers and water heaters, and more particularly to the heat exchangers of such devices.
  • the said devices contain a heat source, usually in the form of a gas burner, the hot exhaust gases are passed to a gas-liquid heat exchanger, which often consists of a helically wound tube through which flows the liquid to be heated.
  • a heat source usually in the form of a gas burner
  • the hot exhaust gases are passed to a gas-liquid heat exchanger, which often consists of a helically wound tube through which flows the liquid to be heated.
  • the hot exhaust gases are, after they have flowed around the pipe and thereby released thermal energy, released into the atmosphere.
  • the thermal efficiency depends on the quality of the energy transfer between exhaust and heat exchanger tube. This transmission is mainly determined by the contact time between the exhaust gas and the pipe and by the turbulence of the flow of the hot exhaust gases. Therefore, it is necessary to extend the area where the hot exhaust gases and the pipe come into contact.
  • a heat exchanger is known in which the coils are oval in cross-section and stacked in rows and columns. Warm air is sucked in via a fan and fed to the multi-level lattice-like coils. In the course of its radial flow of the outside air is extracted thermal energy and therefore cooled. The lowered in their temperature air is then fed to a room in which, for example, food, such as meat products, are located, which are cooled Need to become.
  • the heat exchanger therefore has the task of cooling ambient air and making it available to a room. Burner operation is neither intended nor suitable, since the hot exhaust gases originating from the burner would flow radially between the coils without having carried out a sufficient heat exchange.
  • the helical tubes are oval in cross-section and are kept by means of incorporated web-shaped spacers to size.
  • the heat exchanger has only one stage or coil for the exchange of thermal energy.
  • the aim of the present invention is to increase the efficiency of heat exchange between hot, from a heat source such as a burner, originating gases and the flowed through by a fluid to be heated coils of a heat exchanger by means of a suitable arrangement.
  • the invention initially relates to a heat exchanger for thermal coupling of hot, derived from a burner exhaust gases with a tube through which flows a liquid to be heated.
  • the tube is wound helically around the burner. Due to the generous gaps between the windings, the exhaust gases produced during the combustion process can be discharged radially into an exhaust gas duct of a heat exchanger shell, which encloses the pipe.
  • the heat exchanger contains at least two coils, which are arranged mutually coaxial and generally radially overlapping, wherein the two coils have the same coil spacing and the axial offset to each other is almost half a helix distance.
  • the two serially or parallelly arranged spirals form two concentric walls which enclose the space in which hot exhaust gases are formed and allow them to escape radially through the gaps of their windings. Due to the offset by half a helix distance, the centers of the circular cross-sectionally or axially flattened turns of both helices are arranged in an axial plane, like the tips of an isosceles triangle. For this reason, the exhaust gases first flow through the gaps of two adjacent turns of the inner coil and then impinge on the turn of the outer coil virtually at the apex of the isosceles triangle.
  • the exhaust stream is split into two nearly identical sub-streams, which flow over both sides of the turns of the outer helix, before they exit radially through the gaps of the outer helix.
  • the outer turns are therefore an obstacle, which increases the duration of the exhaust pipe contact and thus the effectiveness.
  • the incorporation of one or more additional coils surrounding the outer coil according to the axial displacement principle described above can further increase the yield.
  • the invention is independent of the shape of the turns.
  • the cross sections of the turns do not necessarily have to be circular.
  • the embodiment of the invention with oval, lens or diamond-shaped cross sections is also possible.
  • the outer coil is colder than the inner coil in operation which, in addition to the hot exhaust gases, is also exposed to the direct thermal radiation of the burner, while the outer coil provides a large surface area for the condensation of the liquid, usually water, which is mainly in the the inner spiral confined space was previously evaporated.
  • the outer diameter of the inner coil is larger than the inner diameter of the outer coil. Consequently, the inner coil can not be inserted by a simple translational movement in the outer coil.
  • the turns of the built-in inner coil radially project into the interstices of the turns of the outer coil and thus define axially oblique gaps between the turns of both coils, which can be calibrated on the basis of the purely axial gaps between the turns of a coil. It therefore gives the impression as if the turns of both coils are firmly intermeshed.
  • the exhaust gases initially flow through the gaps of the inner coil and pass through an oblique, located between the two coils, gap in the gaps of the outer coil. If the gaps between the turns and between the helices are the same size, the exhaust gases experience an almost constant pressure loss during the flow through the helices.
  • a plate axially divides the interior of the inner coil into a first region in which the burner is placed and a second, axially remote region in which the exhaust port is located.
  • the exhaust gases exit radially from the burner region, then follow an axial path into a layer-like region lying between the outside of the outer coil and the inside of the heat exchanger shell, and finally flow along a radial path into the second region before they pass flow out through the exhaust port.
  • an axially aligned comb has brackets for supporting the inner coil.
  • the comb is disposed between the inner and outer coils and keeps the gaps between the turns of the inner coil at the desired distance.
  • the comb therefore forms a template which limits a thermally induced axial deformation of the inner coil.
  • the comb may also have brackets for the outer coil, whereby it can be arranged with respect to the inner coil with an axial offset of half a helix distance and a desired radial distance.
  • the comb can also be mounted on the radially outer side of the outer coil to define these supports and their distances.
  • a torque is applied to the outer coil to increase its inner diameter.
  • the outer coil is relieved after said translation of the inner coil again.
  • the translational can be accompanied by a screwing or rotating movement.
  • the process is similar to tightening a screw whose external thread mates with the internal thread of a bore.
  • Object of the present invention is to increase the efficiency of heat exchange in heaters, especially gas-fired condensing appliances by a suitable heat exchanger, which is inexpensive and is characterized by a simple manufacturing process.
  • FIG. 1 is a schematic diagram of the heat exchanger in cross-section.
  • the heat exchanger is bounded by a housing 1, the lateral wall 1 C is cylindrical, has a predetermined axial length and is preferably radially symmetrical to a vertical center axis 9, wherein axially opposite water supply lines 5 and 6 Wasserauslasstechnischen two up and down also opposite sealing walls 1A, 1B, in the present embodiment, they are plates, are connected.
  • a burner 3 is arranged, which heats the water flowing in the heat exchanger tubes.
  • the tubes are preferably made of stainless steel and processed into spirals with spiral turns.
  • the heat exchanger includes at least two such coils 20, 30 coaxially disposed and radially overlap.
  • the helix diameters have the values D1 and D2, whereby D2 is greater than D1.
  • the axial length of the coils 20, 30 is almost equal and corresponds to the length of the housing 1.
  • the helix spacing has the same value P for both helices 20, 30. Due to an axial offset of the helices 20 and 30 by P / 2, a radial plane X - X contacts both the center of an inner helical turn and the center of the opposite outer helical turn.
  • the inner coil 20 includes an approximately cylindrical volume, which is divided by a deflecting plate 19 axially into two sub-volumes.
  • This deflecting plate 19 is arranged in a radial plane, preferably axially in the center of the housing 1, and defines a first inner upper volume 10, in which the burner 3 is located, and a second inner lower volume 15, which is connected to an exhaust pipe 4, from each other.
  • the turns of the inner coil 20 are held by U-shaped brackets 23 and the turns of the outer coil 30 via a comb-like holder 33 at a defined distance.
  • the heat exchanger is integrated in a heating circuit in which a pump 50 is connected via the water supply lines 5 to the water inlets 21 and 31 of the two coils 20, 30. In the upper part of the water outlets 22 and 32 are connected to the water outlet 6, which in turn to a consumer device, such as a radiator 7, are connected.
  • the hydraulic heating circuit to Pump 50 is closed via a feedback with a return line 8.
  • the disclosure of the invention which relates to the structure and operation of the device, is made for an operating position in which the axis of the device is arranged vertically.
  • the present disclosure also applies to a different axis alignment with the corresponding conversions of the respective components.
  • the burner 3 is supplied via a gas line 2 from an external gas source 40.
  • an exhaust pipe 4 via which the cooled off at the heat exchanger tubes exhaust gases are removed.
  • the gas stream is preferably assisted by a fan, which is not shown.
  • the helices 20 and 30 are connected in parallel.
  • the two coils 20, 30 are flowed through in the same direction by the liquid to be heated. Consequently, the inner 20 and outer 30 coils are fed via their respective water inlet 21, 31 through the corresponding water supply line 5.
  • the liquid passes in the inner 20 and the outer coil 30 first a colder 15, then a warmer 10 area and thus undergoes gradual heating, the inner coil 20 in the lower region 15 initially colder, in the upper region 10th but warmer water leads than the outer coil 30.
  • the exhaust gases give off part of their thermal energy during heat exchange in the upper region 10, before they reach the lower region 15.
  • the coils 20, 30 may be connected in series. In a serial operation, the two coils 20, 30 are flowed through in opposite directions by the liquid to be heated. In this case, the coupling of the helices 20, 30 can be done in two ways.
  • the return can take place via the water inlet 21 of the inner coil 20.
  • the cold liquid hits in the lower area 15 on the coldest exhaust gases. Due to the heat exchange that takes place, thermal energy is withdrawn from the cold exhaust gases, which leads to an increased formation of condensate in this section.
  • the liquid enters the warmest area 10, in which, in addition to the hottest exhaust gases and the direct heat radiation of the burner 3 heats the water.
  • the water is passed through the two upper connected water outlets 22, 32 in the outer coil 30, where it is further heated and finally exits as a flow from the water inlet 31.
  • a disadvantage of this constellation is the relatively low energy yield due to the rather short preheating of the inner coil 20 in the lower region 15th
  • the return can take place in the second case via the lower end 31 of the outer coil 30.
  • the cold liquid hits the already cooled exhaust gases in the lower region 15 and is preheated.
  • a further preheating in the upper region 10 takes place based on the hotter exhaust gases located there.
  • the water passes through the upper interconnected water outlets 22, 32 in the inner coil 20 and is in the warmest region 10, in which, in addition to the hottest exhaust gases and the direct heat radiation of the burner 3 strikes the turns of the inner coil 20, heated.
  • no or hardly any heat energy is withdrawn from the coldest exhaust gases, since the water present in the inner coil 20 is substantially warmer than the exhaust gases present in this section, which leads to a reduction of the yield in this region 15. Condensation is relatively small in this arrangement.
  • the water inlet 21 of the inner coil 20 the water finally exits as a flow. Due to the extended preheat range, which extends over virtually the entire length of the outer coil 30, the thermal energy yield can be increased.
  • the heat exchanger always finds a heat exchange at the inner 20 and the outer coil 30 due to a radial exhaust gas flow through the coils 20, 30, their advantageous arrangement and a radially arranged baffle plate 19 both in the upper region 10, and in the lower region 15 instead.
  • This has over known single-stage or multi-stage heat exchangers, which have no mutual axial offset, the advantage of higher energy yield and greater efficiency.
  • the radial arrow F0 represents the path of a flow of hot exhaust gases leaving the burner 3, said flow F0 being directed from the central axis 9 to the outer coil 30.
  • the flux F0 passes through a first gap or a first gap E1 of calibrated height between the turns of the inner coil 20.
  • the axial height coincides with the difference resulting from the helix pitch P and a diameter value d1, which is obtained from the cross section of FIG Tube receives the inner coil 20 results.
  • the first gap E1 in the present embodiment is 0.9 mm at a pipe diameter d1 of the inner coil 20 of 14 mm and therefore at a coil pitch P of 14.9 mm, wherein the coil diameter D1 of the inner coil 20 is approximately 20 cm.
  • the flow F0 which leaves the inner upper volume 10 bounded by the inner coil 20 radially outward, after having been initially axially constricted, reaches a position which is at the same height as the centers C1 of the tube cross-sections of the inner coil 20 Following its radial path beyond the first gap E1, the flux F0 axially extends into an inner cylindrical space 11 defined by the coils 20 and 30.
  • the flow F0 then encounters a turn of the outer coil 30. Because of the offset by half a helix distance (P / 2) between the helices 20 and 30, the flow F0 splits into practically two equal sub-flows F1, F2 and flows over both sides of the impacted turn of the outer helix 30.
  • the sub-flows F1, F2 each pass through a further gap E2, which are bounded axially by two turns of the outer coil 30.
  • the partial flows F1 and F2 then impinge radially on the cylindrical wall of the housing 1.
  • the flows F1 and F2 then flow axially in an outer cylindrical space 12 to the ground.
  • the intermediate space 12 which is bounded by the inner surface of the cylindrical housing wall 1 and the outer coil 30, run all, corresponding to the rivers F1 and F2, Halfladore together until they reach the height of the deflecting plate 19 axially.
  • the outer cylindrical gap 12 merges into a volume 13 from which flows, as shown by arrow F10, flow radially in the direction of the central axis 9.
  • the flows pass through the gaps E2 and split in the intermediate space 14, which is analogous to the intermediate space 11, into two practically identical partial flows F11 and F12, which flow through the corresponding columns E1, the flow direction being opposite to the direction of the flows F1, F2 is.
  • a detailed description will be omitted here.
  • the coil pitch P can be determined.
  • the tube diameter d2 of the outer coil 30 may be smaller than, equal to or larger than the diameter value d1 of the inner coil 20.
  • the second gap E2 may or may not have a value identical to that of the first gap E1.
  • a difference value for the average curvature radii R1 and R2 may be selected from a predefined range. The choice of the dimensions determines a composite gap E3, that is, a gap that reflects the oblique spacing between the two coils 20, 30.
  • An inner spacer has the shape of a U-shaped bracket 23, which is fastened to the tubes of the inner coil 20 like a clip.
  • the U-shaped bracket 23 preferably extends to the tube centers C1 to ensure better adhesion to the tube sections.
  • the diameter of the wire from which the clip 23 was made defines the gap E1.
  • the U-shaped bracket 23 is advantageously mounted between the outer 30 and the inner 20 coil, so that in addition to the columns E1 additionally the oblique columns E3 are defined via the wire diameter.
  • FIG. 4 another comb-like support 36 located between the coils 20, 30 is shown.
  • the comb-like holder 36 has arms 34 which support the tubes of the inner coil 20.
  • the height of the arms 34 defines the axial gap E1 between two turns of the inner coil 20.
  • the comb-like support 36 preferably has a V-shape, wherein the axial distance from the V-tips to the adjacent arms 34 is a half helix pitch P / 2.
  • the holder 36 can be considered as a chain of Vs with an opening angle of 120 degrees that propagates in the axial direction to the coils 20, 30. In cross section, each three adjacent turns form an equilateral triangle.
  • the holder 36 defines over its profile and its width the oblique gap E3 between the helices 20, 30th
  • the arms 34 of the comb-like support 36 preferably extend at least to the centers C1, C2 of the helical tubes. Furthermore, by notches on the open sides of the arms 34 springs 35 can be created, which clamp the tubes between two arms 34.
  • the comb-like holder 36 is made of a rectangular piece of sheet metal. This sheet is initially provided with notches, which represent the later springs 35. Subsequently, the arms 34 are punched out, which have an angle of about 90 ° to the original sheet. In a subsequent step, the main piece is pressed into the said V-shape ( Fig. 4-6 ).
  • the comb-like holder 36 is looped through into the spaces 11, 14 located between the coils 20, 30, wherein an optional elastic deformation of the holder 36 and / or the coils 20, 30 facilitates insertion. Also, the use of the holder 36 in the region of the outer coil 30, as in Fig. 1 shown, possible. A combination of the previously described U-shaped bracket 23 and the comb-like holder 36 is also conceivable. Thus, for example, the comb-like holder 36 can be introduced between the two coils 20, 30, while on the radially outer side of the outer coil 30 placed U-shaped brackets 23, the columns E2 additionally hold to measure.
  • the Figures 2 and 3 show the housing 1 with the opposite walls 1A and 1B without the side wall 1C.
  • the helices 20, 30 are clamped and fixed by web-shaped spacers 41 such that there is a constant gap between the helical turns.
  • the spacers 41 have a pin-shaped structure with notches 42 in the upper and lower edge region ( Fig. 7 ).
  • the helices 20, 30 are axially clamped over at least two walls 1A, 1B. This tension is maintained by attaching at least two web-shaped spacers 41 to the walls so that their notches engage the walls 1A, 1B thereby avoiding their discharge.
  • the length of the spacers 41 determines the distance of the axially opposite walls 1A and 1 B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf Geräte zur Erwärmung von Flüssigkeiten, wie Boiler und Warmwasserbereiter und insbesondere auf die Wärmetauscher solcher Geräte.
  • Die genannten Geräte enthalten eine Wärmequelle zumeist in Form eines Gasbrenners, dessen heiße Abgase zu einem Gas-Flüssigkeits-Wärmetauscher geleitet werden, welcher häufig aus einem schraubenförmig aufgewickelten Rohr besteht, durch das die zu erwärmende Flüssigkeit strömt.
  • Die heißen Abgase werden, nachdem sie das Rohr umströmt und hierbei thermische Energie abgegeben haben, ins Freie geleitet. Der thermische Wirkungsgrad hängt dabei von der Güte der Energieübertragung zwischen Abgas und Wärmetauscherrohr ab. Diese Übertragung wird vor allem von der Kontaktdauer zwischen Abgas und Rohr sowie von der Turbulenz der Strömung der heißen Abgase bestimmt. Daher ist es notwendig, den Bereich, in dem die heißen Abgase und das Rohr in Kontakt treten, zu verlängern.
  • Aus der US 4,981,171 ist ein Wärmetauscher bekannt, bei dem die Wendeln im Querschnitt oval und in Reihen sowie Spalten stapelförmig angeordnet sind. Über ein Gebläse wird warme Außenluft angesaugt und den mehrstufigen gitterartigen Wendeln zugeführt. Im Zuge ihrer radialen Strömung wird der Außenluft thermische Energie entzogen und daher abgekühlt. Die in ihrer Temperatur abgesenkte Luft wird anschließend einem Raum zugeführt, in dem sich beispielsweise Lebensmittel, wie Fleischwaren, befinden, die gekühlt werden müssen. Der Wärmetauscher hat folglich die Aufgabe Umgebungsluft abzukühlen und diese einem Raum zur Verfügung zu stellen. Ein Brennerbetrieb ist weder vorgesehen noch geeignet, da die vom Brenner stammenden heißen Abgase radial zwischen den Wendeln strömen würden ohne einen hinreichenden Wärmeaustausch vollzogen zu haben.
  • Ferner ist aus der EP 678186 B1 ein Wärmetauscher bekannt, dessen Wendelrohre im Querschnitt oval sind und mittels eingearbeiteten stegförmigen Abstandshaltern auf Maß gehalten werden. Jedoch weist der Wärmetauscher nur eine Stufe bzw. Wendel für den Austausch thermischer Energie auf.
  • Weiterhin ist aus der DE 4428097 A1 ein Wärmetauscher bekannt, bei dem heiße Abgase die Wendeln axial durchströmen. Allerdings findet hierbei keine direkte Wärmebestrahlung der Wendeln durch den Brenner statt. Aufgrund der axialen Anordnung, wird jede Wendel von verschiedenen Abgasflüssen umströmt. Folglich findet kein doppelter Wärmeaustausch statt, wie bei einer radialen Anordnung, bei der die Abgase die Wärmetauscherrohre, beginnend von der inneren Wendel zur äußeren Wendel hin, nacheinander umströmen.
  • DE 299 06 481 U1 offenbart einen Wärmetauscher mit zwei koaxialen Rohrwendeln, die einander derartig überlappen, dass Wärmestrahlung eines koaxial angeordneten Brenners, welche durch den Spalt der inneren Wendel gelangt, von der äußeren Wendel aufgefangen wird.
  • Ziel der vorliegenden Erfindung ist die Erhöhung des Wirkungsgrades beim Wärmeaustausch zwischen heißen, von einer Wärmequelle, wie beispielsweise einem Brenner, stammenden Gasen und den von einem zu erhitzenden Fluid durchströmten Wendeln eines Wärmetauschers anhand einer geeigneten Anordnung.
  • Zu diesem Zweck bezieht sich die Erfindung zunächst auf einen Wärmetauscher zur thermalen Kopplung von heißen, aus einem Brenner stammenden Abgasen mit einem Rohr, durch welches eine zu erhitzende Flüssigkeit strömt. Das Rohr ist dabei schraubenlinienförmig um den Brenner gewickelt. Durch die großzügigen Spalte zwischen den Windungen können die beim Verbrennungsprozess entstandenen Abgase in einen Abgaskanal einer Wärmetauscherschale, welche das Rohr umschließt, radial abgeführt werden. Der Wärmetauscher enthält dabei mindestens zwei Wendeln, welche gegenseitig koaxial und im Allgemeinen radial überlappend angeordnet sind, wobei die beiden Wendeln denselben Wendelabstand haben und der axiale Versatz zueinander geradezu einen halben Wendelabstand beträgt. Folglich bilden die beiden seriell oder parallel angeordneten Wendeln zwei konzentrische Wände, die den Raum, in dem heiße Abgase entstehen, einschließen und diese sukzessive durch die Lücken ihrer Windungen radial austreten lassen. Aufgrund des Versatzes um einen halben Wendelabstand sind die Mittelpunkte der im Querschnitt kreisförmigen oder axial abgeflachten Windungen beider Wendeln in einer axialen Ebene, wie die Spitzen eines gleichschenkligen Dreiecks angeordnet. Aus diesem Grund strömen die Abgase zunächst durch die Lücken zweier benachbarter Windungen der inneren Wendel und treffen anschließend auf die Windung der äußeren Wendel quasi am Scheitelpunkt des gleichschenkligen Dreiecks auf. Dort wird der Abgasstrom in zwei nahezu identische Teilströme gespalten, die über beide Seiten der Windungen der äußeren Wendel strömen, bevor sie radial durch die Lücken der äußeren Wendel austreten. Die äußeren Windungen stellen mithin ein Hindernis dar, was die Dauer des Abgas-Rohr Kontaktes und somit die Effektivität erhöht. Der Einbau einer oder mehrerer zusätzlicher Wendeln, welche die äußere Wendel entsprechend dem oben beschriebenen Prinzip des axialen Versatzes umgeben, kann die Ausbeute nochmals steigern.
  • Es sollte beachtet werden, dass die Erfindung unabhängig von der Gestalt der Windungen ist. Die Querschnitte der Windungen müssen daher nicht zwangsläufig kreisförmig sein. So ist die Ausführung der Erfindung mit ovalen, linsen- oder rautenförmigen Querschnitten ebenfalls möglich.
  • Die äußere Wendel ist im Betrieb kälter als die innere Wendel, welche zusätzlich zu den heißen Abgasen auch der direkten Wärmestrahlung des Brenners ausgesetzt ist, während die äußere Wendel eine große Oberfläche für die Kondensation der Flüssigkeit, üblicherweise Wasser, bereitstellt, welche hauptsächlich in dem von der inneren Wendel eingegrenzten Raum zuvor verdampft wurde.
  • Der Außendurchmesser der inneren Wendel ist größer als der Innendurchmesser der äußeren Wendel. Folglich kann die innere Wendel nicht durch eine einfache translatorische Bewegung in die äußere Wendel eingeführt werden. Die Windungen der eingebauten inneren Wendel ragen radial in die Zwischenräume der Windungen der äußeren Wendel und definieren auf diese Weise axial schräge Lücken zwischen den Windungen beider Wendeln, welche auf der Grundlage der rein axialen Lücken zwischen den Windungen einer Wendel kalibriert werden können. Es entsteht daher der Eindruck, als wären die Windungen beider Wendeln fest miteinander verzahnt.
  • Die Abgase strömen zunächst durch die Spalten der inneren Wendel und gelangen über einen schrägen, zwischen den beiden Wendeln befindlichen, Spalt in die Lücken der äußeren Wendel. Sind die Spalten zwischen den Windungen und zwischen den Wendeln gleich groß, erfahren die Abgase während der Durchströmung der Wendeln einen nahezu konstanten Druckverlust.
  • Eine Platte teilt den Innenraum der inneren Wendel axial in einen ersten Bereich, in dem der Brenner platziert ist und einen zweiten, axial entfernten Bereich, in dem sich die Abgasöffnung befindet. Auf diese Weise treten die Abgase radial aus dem Brennerbereich aus, folgen dann einem axialen Pfad in einen schichtähnlichen Bereich, der zwischen der Außenseite der äußeren Wendel und der Innenseite der Wärmetauscherschale liegt, und strömen schließlich einen radialen Pfad entlang in den zweiten Bereich, bevor sie über die Abgasöffnung ausströmen. Vorteilhaft ist bei dieser Ausführung der durch die Umlenkplatte erhaltene Ablenkpfad, welcher einen doppelten Wärmeaustausch gewährleistet.
  • In einer weiteren vorteilhaften Ausführung, hat ein axial ausgerichteter Kamm Halterungen zur Abstützung der inneren Wendel. Der Kamm ist zwischen der inneren und äußeren Wendel angeordnet und hält die Spalten zwischen den Windungen der inneren Wendel auf gewünschter Distanz. Der Kamm bildet daher eine Vorlage, welche eine thermisch bedingte axiale Verformung der inneren Wendel begrenzt.
  • Der Kamm kann auch Halterungen für die äußere Wendel aufweisen, wodurch diese in Bezug auf die innere Wendel mit einem axialen Versatz von einem halben Wendelabstand und einer gewünschten radialen Distanz angeordnet werden kann. Der Kamm kann auch auf der radial äußeren Seite der äußeren Wendel angebracht werden, um diese Abzustützen und dessen Abstände zu definieren.
  • Neben einer Vorrichtung bezieht sich die Erfindung auch auf ein Verfahren zur Fertigung eines Wärmetauschers nach Anspruch 1 wobei:
    • der Wärmetauscher, wie besagt, zwei separate schraubenlinienförmig aufgewickelte innere und äußere Wendeln enthält,
    • die beiden Wendeln gegenseitig unter Einhaltung des besagten Versatzes von P / 2 positioniert sind und dies durch die Einführung der inneren Wendel in einen von der äußeren Wendel begrenzten Raum gewährleistet wird, während die Einführung anhand einer translatorischen Bewegung in eine Richtung erfolgt, die axial zu den Windungen ist, und
    • die beiden Wendeln miteinander verbunden sind.
  • Da die weiter oben beschriebenen Durchmesser der inneren und äußeren Wendel einen Einbau der inneren Wendel durch eine axiale Translation nicht gestatten, muss um die besagte axiale Translation zu ermöglichen, ein Drehmoment auf die innere Wendel ausgeübt werden, so dass sich ihr Außendurchmesser verkleinert. In diesem belasteten Zustand können Clips bzw. Klammern angebracht werden, die das Drehmoment während der Montage aufrechterhalten. Dadurch wird dieser Fertigungsschritt bei der Herstellung des Wärmetauschers wesentlich vereinfacht. Nach erfolgter Einführung wird die innere Wendel entlastet, indem die Clips entfernt werden.
  • Als weitere Alternative zur Ermöglichung der besagten axialen Translation, wird ein Drehmoment auf die äußere Wendel ausgeübt, um ihren Innendurchmesser zu vergrößern. Die äußere Wendel wird nach der besagten Translation der inneren Wendel wieder entlastet.
  • Alternativ, jedoch nicht erfindungsgemäß, kann die translatorische von einer schraubenden bzw. drehenden Bewegung begleitet werden. Der Vorgang ähnelt dem Anziehen einer Schraube, dessen Außengewinde sich mit dem Innengewinde einer Bohrung paart.
  • Aufgabe der vorliegenden Erfindung ist es, den Wirkungsgrad beim Wärmeaustausch in Heizgeräten, insbesondere gasbefeuerten Brennwertgeräten, durch einen geeigneten Wärmetauscher zu erhöhen, der kostengünstig ist und sich durch ein einfaches Fertigungsverfahren auszeichnet.
  • Erfindungsgemäß ist obige Aufgabe durch die Merkmale des Anspruchs 1 und des Anspruchs 11 gelöst.
  • Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen und der folgenden Beschreibung eines Ausführungsbeispiels einer Vorrichtung und eines Verfahrens zur Fertigung eines Wärmetauschers gemäß vorliegender Erfindung. In der Zeichnung zeigen:
    • Fig.1: eine Prinzipskizze eines Heizkreislaufs mit einem Wärmetauscher
    • Fig. 2: eine perspektivische Darstellung des Wärmetauschers ohne Seitenwand
    • Fig. 3: einen Querschnitt durch den Wärmetauscher ohne Seitenwand
    • Fig. 4: einen kammartigen Abstandshalter zwischen zwei Wendeln im Querschnitt
    • Fig. 5: einen kammartigen Abstandshalter in der Draufsicht
    • Fig. 6: die Rückseite eines kammartigen Abstandshalters
    • Fig. 7: einen stegförmigen Abstandshalter
  • Die Ausführungsbeispiele gemäß der Figuren 1 und 4 bis 6 fallen nicht unter den Schutzbereich der Ansprüche.
  • Figur 1 stellt eine Prinzipskizze des Wärmetauschers im Querschnitt dar. Der Wärmetauscher wird von einem Gehäuse 1 begrenzt, dessen seitliche Wand 1C zylindrisch ist, eine vorgegebene axiale Länge hat und vorzugsweise radialsymmetrisch zu einer vertikalen Mittelachse 9 ist, wobei sich axial gegenüberliegende Wasserzulaufleitungen 5 und Wasserauslassleitungen 6 mit zwei oben bzw. unten sich ebenfalls gegenüberliegenden abdichtenden Wänden 1A, 1B, in der vorliegenden Ausführung sind es Platten, verbunden sind.
  • Im Gehäuse 1 ist ein Brenner 3 angeordnet, der das in den Wärmetauscherrohren fließende Wasser erwärmt. Die Rohre sind vorzugsweise aus rostfreiem Stahl gefertigt und zu Wendeln mit spiralförmigen Windungen verarbeitet. Der Wärmetauscher enthält mindestens zwei solcher Wendeln 20, 30, die koaxial angeordnet sind und sich radial überlappen. Die Wendeldurchmesser haben dabei die Werte D1 bzw. D2, wobei D2 größer als D1 ist.
  • Die axiale Länge der Wendeln 20, 30 ist geradezu gleich und entspricht der Länge des Gehäuses 1. Die Windungen einer äußeren Wendel 30, deren durchschnittlicher Krümmungsradius R2 = D2 / 2 beträgt, begrenzen ein inneres Volumen, das die Windungen einer inneren Wendel 20 aufnimmt, dessen Windungs- oder Krümmungsradius R1 = D1/2 beträgt und demnach kleiner als R2 ist. Der Wendelabstand hat für beide Wendeln 20, 30 denselben Wert P. Aufgrund eines axialen Versatzes der Wendeln 20 und 30 um P/2, berührt eine radiale Ebene X - X sowohl den Mittelpunkt einer inneren Wendelwindung, als auch den Mittelpunkt der gegenüberliegenden äußeren Wendelwindung.
  • Die innere Wendel 20 schließt ein annähernd zylindrisches Volumen ein, welches durch eine Umlenkplatte 19 axial in zwei Teilvolumina geteilt wird. Diese Umlenkplatte 19 ist in einer radialen Ebene, vorzugsweise axial mittig im Gehäuse 1, angeordnet und grenzt ein erstes inneres oberes Volumen 10, in dem sich der Brenner 3 befindet, sowie ein zweites inneres unteres Volumen 15, das mit einer Abgasleitung 4 verbunden ist, voneinander ab.
  • Die Windungen der inneren Wendel 20 werden über U-förmige Klammern 23 und die Windungen der äußeren Wendel 30 über eine kammartige Halterung 33 auf definiertem Abstand gehalten.
  • Der Wärmetauscher ist in einen Heizkreis eingebunden, in dem eine Pumpe 50 über die Wasserzulaufleitungen 5 an die Wassereinlässe 21 und 31 der beiden Wendeln 20, 30 angeschlossen ist. Im oberen Bereich sind die Wasserauslässe 22 und 32 an die Wasserauslassleitungen 6 angebunden, welche wiederum an ein Verbrauchergerät, wie beispielsweise einen Radiator 7, angeschlossen sind. Der hydraulische Heizkreis zur Pumpe 50 wird über eine Rückkopplung mit einer Rücklaufleitung 8 geschlossen.
  • Die Offenbarung der Erfindung, welche sich auf die Struktur und den Betrieb des Gerätes bezieht, erfolgt für eine Betriebsposition, in der die Achse des Gerätes vertikal angeordnet ist. Jedoch findet die vorliegende Offenbarung ebenfalls Anwendung auf eine hiervon abweichende Achsausrichtung mit den entsprechenden Umstellungen der jeweiligen Komponenten.
  • Der Brenner 3 wird über eine Gasleitung 2 von einer externen Gasquelle 40 versorgt. Im unteren Teil des Gehäuses 1 befindet sich eine Abgasleitung 4, über welche die an den Wärmetauscherrohren erkalteten Abgase abgeführt werden. Der Gasstrom wird vorzugsweise von einem Gebläse unterstützt, das nicht abgebildet ist.
  • Die Wendeln 20 und 30 sind parallel miteinander verbunden. Bei einem parallelen Betrieb werden die beiden Wendeln 20, 30 in derselben Richtung von der zu erwärmenden Flüssigkeit durchströmt. Folglich wird die innere 20 und die äußere 30 Wendel über ihren jeweiligen Wassereinlass 21, 31 durch die entsprechende Wasserzulaufleitung 5 gespeist. Bei einem Parallelbetrieb passiert die Flüssigkeit in der inneren 20 und der äußeren 30 Wendel zunächst einen kälteren 15, dann einen wärmeren 10 Bereich und erfährt auf diese Weise eine allmähliche Erwärmung, wobei die innere Wendel 20 im unteren Bereich 15 zunächst kälteres, im oberen Bereich 10 aber wärmeres Wasser führt als die äußere Wendel 30. Die Abgase geben einen Teil ihrer thermischen Energie beim Wärmeaustausch im oberen Bereich 10 ab, bevor sie in den unteren Bereich 15 gelangen. Da in den letztgenannten Bereich 15 kalte Flüssigkeit eingespeist wird und ein Temperaturgefälle vom Abgas zur Flüssigkeit existiert, erfolgt auch in diesem Bereich 15 ein Wärmeaustausch. Vorteilhaft ist die hierdurch erhaltene höhere Energieausbeute und ein größerer Wirkungsgrad als bei einem Betrieb, bei dem die Flüssigkeit von einem wärmeren 10 in einen kälteren 15 Bereich geleitet wird. Nachteilig ist bei der parallelen Durchströmung der beiden Wendeln 20, 30, dass mögliche Schmutzablagerungen vor allem in den Rohren der äußeren Wendel 30, welche für eine zusätzliche Energieausbeute verantwortlich sind, zu einer Minderung des Wirkungsgrades führen.
  • Alternativ können die Wendeln 20, 30 seriell miteinander verbunden werden. Bei einem seriellen Betrieb werden die beiden Wendeln 20, 30 in entgegengesetzten Richtungen von der zu erwärmenden Flüssigkeit durchströmt. Hierbei kann die Kopplung der Wendeln 20, 30 auf zwei Arten erfolgen.
  • Im ersten Fall kann der Rücklauf über den Wassereinlass 21 der inneren Wendel 20 erfolgen. Die kalte Flüssigkeit trifft im unteren Bereich 15 auf die kältesten Abgase. Durch den stattfindenden Wärmeaustausch wird den kalten Abgasen thermische Energie entzogen, was zu einer vermehrten Kondensatbildung in diesem Abschnitt führt. Vorgewärmt gelangt die Flüssigkeit in den wärmsten Bereich 10, in dem, neben den heißesten Abgasen auch die direkte Wärmestrahlung des Brenners 3 das Wasser erhitzt. Anschließend wird das Wasser über die beiden oberen miteinander verbundenen Wasserauslässe 22, 32 in die äußere Wendel 30 geleitet, wo es weiter erwärmt wird und schließlich als Vorlauf aus dessen Wassereinlass 31 austritt. Nachteilig bei dieser Konstellation ist die relativ geringe Energieausbeute aufgrund des recht kurzen Vorwärmbereichs der inneren Wendel 20 im unteren Bereich 15.
  • Der Rücklauf kann im zweiten Fall über das untere Ende 31 der äußeren Wendel 30 erfolgen. Die kalte Flüssigkeit trifft auf die bereits abgekühlten Abgase im unteren Bereich 15 und wird vorgewärmt. Schließlich erfolgt eine weitere Vorwärmung im oberen Bereich 10 anhand der dort befindlichen heißeren Abgase. Das Wasser gelangt über die oberen miteinander verbundenen Wasserauslässe 22, 32 in die innere Wendel 20 und wird in dem wärmsten Bereich 10, in dem, neben den heißesten Abgasen auch die direkte Wärmestrahlung des Brenners 3 auf die Windungen der inneren Wendel 20 trifft, erhitzt. Im unteren Bereich 15 wird den kältesten Abgasen schließlich keine oder kaum noch Wärmeenergie entzogen, da das in der inneren Wendel 20 befindliche Wasser wesentlich wärmer als die in diesem Abschnitt befindlichen Abgase ist, was zu einer Verringerung der Ausbeute in diesem Bereich 15 führt. Die Kondensatbildung fällt bei dieser Anordnung relativ gering aus. Über den Wassereinlass 21 der inneren Wendel 20 tritt das Wasser schließlich als Vorlauf aus. Aufgrund des ausgedehnten Vorwärmbereichs, der sich praktisch über die gesamte Länge der äußeren Wendel 30 erstreckt, kann die thermische Energieausbeute erhöht werden.
  • Unabhängig davon, ob die Wendeln 20, 30 parallel oder seriell betrieben werden, findet beim Wärmetauscher aufgrund einer radialen Abgasdurchströmung der Wendeln 20, 30, ihrer vorteilhaften Anordnung und einer radial angeordneten Umlenkplatte 19, stets ein Wärmeaustausch an der inneren 20 und der äußeren 30 Wendel sowohl im oberen Bereich 10, als auch im unteren Bereich 15 statt. Dies hat gegenüber bekannten einstufigen oder aber mehrstufig aufgebauten Wärmetauschern, die keinen gegenseitigen axialen Versatz aufweisen, den Vorteil einer höheren Energieausbeute und eines größeren Wirkungsgrades.
  • Der radiale Pfeil F0 stellt den Pfad eines Flusses heißer Abgase dar, die den Brenner 3 verlassen, wobei der besagte Fluss F0 von der Mittelachse 9 zur äußeren Wendel 30 gerichtet ist. Der Fluss F0 passiert eine erste Lücke bzw. einen ersten Spalt E1 kalibrierter Höhe zwischen den Windungen der inneren Wendel 20. Die axiale Höhe stimmt dabei mit dem Differenzbetrag überein, der sich aus dem Wendelabstand P und einem Durchmesserwert d1, den man aus dem Querschnitt des Rohres der inneren Wendel 20 erhält, ergibt. Der erste Spalt E1 beträgt im vorliegenden Ausführungsbeispiel 0,9 mm bei einem Rohrdurchmesser d1 der inneren Wendel 20 von 14 mm und daher bei einem Wendelabstand P von 14,9 mm, wobei der Wendeldurchmesser D1 der inneren Wendel 20 ungefähr 20 cm beträgt.
  • Der Fluss F0, der das von der inneren Wendel 20 begrenzte innere obere Volumen 10 radial nach außen verlässt, erreicht, nachdem er zunächst axial verengt worden ist, eine Position, die auf der selben Höhe liegt wie die Mittelpunkte C1 der Rohrquerschnitte der inneren Wendel 20. Seinem radialen Pfad jenseits des ersten Spalts E1 folgend, breitet sich der Fluss F0 axial in einen inneren zylindrischen Zwischenraum 11 aus, welcher von den Wendeln 20 und 30 begrenzt wird. Der Fluss F0 trifft anschließend auf eine Windung der äußeren Wendel 30 auf. Wegen des Versatzes um einen halben Wendelabstand (P / 2) zwischen den Wendeln 20 und 30, spaltet sich der Fluss F0 in praktisch zwei gleiche Teilflüsse F1, F2 und strömt über beide Seiten der aufgetroffenen Windung der äußeren Wendel 30. Die Teilflüsse F1, F2 passieren jeweils einen weiteren Spalt E2, welche axial von je zwei Windungen der äußeren Wendel 30 begrenzt werden. Die Teilflüsse F1 und F2 treffen dann radial auf die zylindrische Wand des Gehäuses 1.
  • Die Flüsse F1 und F2 strömen anschließend in einem äußeren zylindrischen Zwischenraum 12 axial zum Boden. Im Zwischenraum 12, der durch die innere Oberfläche der zylindrischen Gehäusewand 1 und der äußeren Wendel 30 begrenzt wird, laufen sämtliche, den Flüssen F1 und F2 entsprechende, Teilflüsse zusammen, bis sie axial die Höhe der Umlenkplatte 19 erreichen.
  • Axial unterhalb der Umlenkplatte 19 geht der äußere zylindrische Zwischenraum 12 in ein Volumen 13 über, aus dem Flüsse, wie durch Pfeil F10 dargestellt, radial in Richtung zur Mittelachse 9 strömen. Die Flüsse passieren die Lücken E2 und spalten sich im Zwischenraum 14, der analog zum Zwischenraum 11 ist, in zwei praktisch gleiche Teilflüsse F11 und F12 auf, die durch die entsprechenden Spalten E1 strömen, wobei die Flussrichtung gegenüber der Richtung der Flüsse F1, F2 entgegengesetzt ist. Auf eine erneute detaillierte Beschreibung wird an dieser Stelle verzichtet.
  • Die Umlenkplatte 19, welche das Volumen 10 vom Volumen 15 abgrenzt, lenkt den Abgasfluss radial in Richtung der zylindrischen äußeren Volumina 12, 13 ab und bildet damit zwei kaskadenartige Wärmetauscherstufen. Im Allgemeinen kann der Einbau einer ungeraden oder geraden Zahl solcher Trennplatten 19 in Erwägung gezogen werden. Dabei kann eine direkte Verbindung zwischen dem zylindrischen äußeren Volumen 13 und der Abgasleitung 4 hergestellt werden, indem die unteren Windungen der Wendeln 20, 30 auf Höhe der Wassereinlässe 21 und 31 weggelassen werden.
  • Für einen gegebenen Rohrdurchmesser d1 der inneren Wendel 20 und einen axialen Spalt E1 zwischen dessen Windungen, kann der Wendelabstand P bestimmt werden. Der Rohrdurchmesser d2 der äußeren Wendel 30 kann dabei kleiner, gleich oder aber größer als der Durchmesserwert d1 der inneren Wendel 20 sein. Mit anderen Worten kann der zweite Spalt E2 einen Wert aufweisen, der mit dem des ersten Spalts E1 identisch ist oder auch nicht. Zusätzlich kann ein Differenzwert für die durchschnittlichen Krümmungs- bzw. Wendelradien R1 und R2 aus einem vordefinierten Bereich ausgewählt werden. Die Wahl der Dimensionen bestimmt einen zusammengesetzten Spalt E3, einen Spalt also, der den schrägen Abstand beider Wendeln 20, 30 wiedergibt.
  • Eine interessante Ausführung erhält man bei der Wahl etwa gleicher Werte für den ersten Spalt E1 und den zusammengesetzten Spalt E3 von beispielsweise 0,9 mm, sowie ungefähr gleicher Werte für die Rohrdurchmesser d1 und d2. Für den zweiten Spalt E2 kann ebenfalls ein Abstandswert von 0,9 mm gewählt werden.
  • Ein innerer Abstandshalter hat die Form einer U-förmigen Klammer 23, der ähnlich einem Clip an die Rohre der inneren Wendel 20 befestigt wird. Im Querschnitt erstreckt sich die U-förmige Klammer 23 vorzugsweise bis zu den Rohrmittelpunkten C1, um eine bessere Haftung an den Rohrabschnitten zu gewährleisten. Der Durchmesser des Drahtes, aus dem die Klammer 23 gefertigt wurde, definiert den Spalt E1. Die U-förmige Klammer 23 wird vorteilhafterweise zwischen der äußeren 30 und der inneren 20 Wendel angebracht, so dass neben den Spalten E1 zusätzlich die schrägen Spalten E3 über den Drahtdurchmesser definiert werden. Durch Anbringung der U-förmigen Klammern 23 an die Rohre der äußeren Wendel 30, kann auch dessen Wendelabstand P auf Maß gehalten werden.
  • In Figur 4 ist eine andere zwischen den Wendeln 20, 30 befindliche kammartige Halterung 36 abgebildet. Die kammartige Halterung 36 weist Arme 34 auf, welche die Rohre der inneren Wendel 20 abstützen. Die Höhe der Arme 34 definiert den axialen Spalt E1 zwischen zwei Windungen der inneren Wendel 20. Auf der radial äußeren Seite, der Rückseite also, weist die kammartige Halterung 36 vorzugsweise eine V-Form auf, wobei der axiale Abstand von den V-Spitzen zu den benachbarten Armen 34 einen halben Wendelabstand P /2 beträgt. Die Halterung 36 kann als eine sich in axialer Richtung zu den Wendeln 20, 30 ausbreitende Kette von Vs mit einem Öffnungswinkel von 120 Grad aufgefasst werden. Im Querschnitt bilden dabei jeweils drei benachbarte Windungen ein gleichseitiges Dreieck. Aufgrund der Abmessungen und der Keilwirkung der V-Form wird neben den Spalten E1, der gegenseitige Achsversatz beider Wendeln 20, 30 und damit die Spalten E2 kalibriert. Darüber hinaus definiert die Halterung 36 über ihr Profil und ihre Breite den schrägen Spalt E3 zwischen den Wendeln 20, 30.
  • Die Arme 34 der kammartigen Halterung 36 erstrecken sich vorzugsweise mindestens bis zu den Mittelpunkten C1, C2 der Wendelrohre. Weiterhin können durch Einkerbungen auf den offenen Seiten der Arme 34 Federn 35 geschaffen werden, welche die Rohre zwischen zwei Arme 34 einspannen.
  • Die kammartige Halterung 36 wird aus einem rechteckigen Stück Blech gefertigt. Dieses Blech wird zunächst mit Kerben versehen, welche die späteren Federn 35 darstellen. Anschließend werden die Arme 34 ausgestanzt, die einen Winkel von etwa 90° zum ursprünglichen Blech aufweisen. In einem anschließenden Arbeitsschritt wird das Hauptstück in die besagte V-Form gepresst (Fig. 4-6).
  • Die kammartige Halterung 36 wird in die zwischen den Wendeln 20, 30 befindlichen Räume 11, 14 durchgeschlängelt, wobei eine optionale elastische Deformation der Halterung 36 und/oder der Wendeln 20, 30 das Einführen erleichtert. Auch ist der Einsatz der Halterung 36 im Bereich der äußeren Wendel 30, wie in Fig. 1 dargestellt, möglich. Eine Kombination der zuvor beschriebenen U-förmigen Klammer 23 und der kammartigen Halterung 36 ist ebenfalls denkbar. So kann zum Beispiel die kammartige Halterung 36 zwischen die beiden Wendeln 20, 30 eingebracht werden, während auf der radial äußeren Seite der äußeren Wendel 30 platzierte U-förmige Klammern 23 die Spalten E2 zusätzlich auf Maß halten.
  • Die Figuren 2 und 3 zeigen das Gehäuse 1 mit den gegenüberliegenden Wänden 1A und 1 B ohne die seitliche Wand 1C. Dazwischen sind die Wendeln 20, 30 eingespannt und durch stegförmige Abstandshalter 41 derart fixiert, dass ein konstanter Spalt zwischen den Wendelgängen besteht. Die Abstandshalter 41 haben dabei eine stiftförmige Struktur mit Einkerbungen 42 im oberen und unteren Randbereich (Fig. 7). Die Wendeln 20, 30 werden über mindestens zwei Wände 1A, 1B axial eingespannt. Diese Spannung wird aufrechterhalten, indem mindestens zwei stegförmige Abstandshalter 41 an die Wände angebracht werden, so dass deren Einkerbungen an den Wänden 1A, 1B einrasten und dadurch deren Entlastung vermeiden. Die Länge der Abstandshalter 41 bestimmt dabei den Abstand der axial gegenüberliegenden Wände 1A und 1 B. Subtrahiert man nun von diesem Gesamtabstand die Höhe der Wände 1A und 1 B, erhält man die Länge der Wendeln 20, 30. Um die Spalten E1 bzw. E2 zu errechnen, muss zunächst die Differenz aus der Wendellänge und der mit dem Rohrdurchmesser d1 bzw. d2 multiplizierten Anzahl der Windungen ermittelt werden. Der resultierende Betrag wird schließlich durch die Anzahl der Spalten geteilt. Das Ergebnis ist die Größe des Spalts E1 bzw. E2. Die zuvor erwähnten Vorrichtungen 23 und 36 können in Kombination zu den stegförmigen Abstandhaltern 41 Anwendungfinden.
  • Da der Innendurchmesser der äußeren Wendel 30 kleiner als der Außendurchmesser der inneren Wendel 20 ist, kann die Einführung der inneren 20 in die äußere 30 Wendel durch eine axial gerichtete translatorische Bewegung nicht ausgeführt werden. Es bestehen folglich die nachstehenden drei Möglichkeiten, die eine Montage der Wendeln 20, 30 gestatten:
    • Zum einen kann ein Drehmoment, vorzugsweise im Bereich des Wasserein- (21) sowie Wasserauslasses (22), auf die innere Wendel 20 ausgeübt werden, die eine Verkleinerung seines Außendurchmessers zur Folge hat. Clips oder Klammern, die im Bereich des Wasserein- (21) und Wasserauslasses (22) angebracht werden, halten die bestehende Spannung während des Montageprozesses aufrecht. Natürlich kann die Einführung durch eine entgegengesetzt gerichtete axiale Translation beider Wendeln 20, 30, oder einer axialen Translation der inneren 20/äußeren 30 Wendel bei ruhender äußerer 30/innerer 20 Wendel erfolgen. Nach erfolgter Montage werden die Clips entfernt und die innere Wendel 20 entlastet, die schließlich ihre ursprüngliche Form einnimmt.
    • Zum anderen kann ein Drehmoment, vorzugsweise im Bereich des Wasserein- (31) sowie Wasserauslasses (32), auf die äußere Wendel 30 ausgeübt werden, die eine Vergrößerung seines Innendurchmessers zur Folge hat. Clips oder Klammern, die im Bereich des Wasserein- (31) und Wasserauslasses (32) angebracht werden, halten die bestehende Spannung während des Montageprozesses aufrecht. Natürlich kann die Einführung durch eine entgegengesetzt gerichtete axiale Translation beider Wendeln 20, 30, oder einer axialen Translation der inneren 20/äußeren 30 Wendel bei ruhender äußerer 30/innerer 20 Wendel erfolgen. Nach erfolgter Montage werden die Clips entfernt und die äußere Wendel 30 entlastet, die schließlich ihre ursprüngliche Form einnimmt.
    • Ferner kann die Montage der Wendeln (20, 30) durch eine entgegengesetzt gerichtete Schraubbewegung beider Wendeln (20, 30) oder aber eine schraubende Drehbewegung der inneren 20/äußeren 30 Wendel bei ruhender äußerer 30/innerer 20 Wendel erfolgen. Die Wendelgänge verhalten sich wie paarende Gewindegänge eines Innengewindes einer Bohrung und eines Außengewindes einer Schraube. Dieses dritte Montageverfahren ist jedoch aus dem Stand der Technik bekannt.
    Bezugszeichenliste
  • 1
    Gehäuse
    1A
    Deckenwand
    1 B
    Bodenwand
    1C
    seitliche Wand
    2
    Gasleitung
    3
    Brenner
    4
    Abgasleitung
    5
    Wasserzulaufleitung
    6
    Wasserauslassleitung
    7
    Radiator
    8
    Rücklaufleitung
    9
    Mittelachse
    10
    inneres oberes Volumen
    11
    Raum zwischen innerer und äußerer Wendel im oberen Volumen
    12
    zylindrischer Zwischenraum im oberen äußeren Volumen
    13
    zylindrischer Zwischenraum im unteren äußeren Volumen
    14
    Raum zwischen innerer und äußerer Wendel im unteren Volumen
    15
    inneres unteres Volumen
    19
    Umlenkplatte
    20
    innere Wendel
    21
    Wassereinlass der inneren Wendel
    22
    Wasserauslass der inneren Wendel
    23
    U-förmige Klammer
    30
    äußere Wendel
    31
    Wassereinlass der äußeren Wendel
    32
    Wasserauslass der äußeren Wendel
    33
    kammartige Halterung
    34
    Arm
    35
    Feder
    36
    kammartige Halterung
    40
    externe Gasquelle
    41
    stegförmiger Abstandshalter
    42
    Einkerbung
    50
    Pumpe
    C1
    Mittelpunkt der inneren Wendelrohre
    C2
    Mittelpunkt der äußeren Wendelrohre
    d1
    Durchmesser der inneren Wendelrohre
    d2
    Durchmesser der äußeren Wendelrohre
    D1
    Durchmesser der inneren Wendel
    D2
    Durchmesser der äußeren Wendel
    E1
    axialer Spalt zwischen den Windungen der inneren Wendel
    E2
    axialer Spalt zwischen den Windungen der äußeren Wendel
    E3
    schräger Spalt zwischen innerer und äußerer Wendel
    F0
    von der Mittelachse radial weg weisender Gasfluss im Bereich der inneren Wendel
    F1
    von der Mittelachse radial weg weisender Teilfluss im Bereich der äußeren Wendel
    F2
    weiterer von der Mittelachse radial weg weisender Teilfluss im Bereich der äußeren Wendel
    F10
    radial zur Mittelachse weisender Gasfluss im Bereich der äußeren Wendel
    F11
    radial zur Mittelachse weisender Teilfluss im Bereich der inneren Wendel
    F12
    weiterer radial zur Mittelachse weisender Teilfluss im Bereich der inneren Wendel
    P
    Wendelabstand
    R1
    Radius der inneren Wendel
    R2
    Radius der äußeren Wendel

Claims (11)

  1. Wärmetauscher zur Übertragung der thermischen Energie eines Gases auf mindestens zwei flüssigkeitsdurchströmte Wendeln (20, 30) aus wärmeleitendem Material, welche über gleichen Wendelabstand (P) verfügen, wobei die Wendeln (20, 30) radial durchströmbar sowie koaxial und radial überlappend angeordnet sind, und in radialer Richtung der Zwischenraum zwischen zwei Windungen einer Wendel (20, 30) durch mindestens eine andere Wendel (20, 30) abgedeckt wird dadurch gekennzeichnet, dass die Wendeln (20, 30) mittels mindestens zweier Wände (1A, 1 B) axial eingespannt sind und mindestens zwei stegförmige Abstandshalter (41) den axialen Abstand zwischen den Wänden (1A, 1 B) und den Spalt (E1, E2) zwischen den Wendelgängen der Wendeln (20, 30) konstant halten.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass zwei benachbarte Wendeln (20, 30) axial um einen halben Wendelabstand (P/2) versetzt angeordnet sind.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wendeln (20, 30) als Spiralwendeln mit in axialer Richtung stetig sich vergrößerndem beziehungsweise verkleinerndem Wendeldurchmesser geformt sind.
  4. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wendeln (20, 30) als Spiralwendeln mit in axialer Richtung alternierenden Wendeldurchmessern geformt sind.
  5. Wärmetauscher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Spalt zwischen zwei Wendelgängen der innersten Wendel (20) größer als der Spalt zwischen zwei Wendelgängen der mindestens einen äußeren Wendel (30) ist.
  6. Wärmetauscher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mindestens zwei Wendeln (20, 30) parallel geschaltet sind.
  7. Wärmetauscher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mindestens zwei Wendeln (20, 30) seriell hintereinander geschaltet sind.
  8. Wärmetauscher nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Umlenkplatte (19) in einer radialen Ebene angeordnet ist und den Innenraum der innersten Wendel (20) axial in ein erstes Volumen (10), in dem sich eine Wärmequelle (3) befindet und ein zweites, axial versetztes Volumen (15), welches mit einem Abgasaustritt (4) verbunden ist, teilt.
  9. Wärmetauscher nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens eine, vorzugsweise mehrere über den Umfang verteilte kammartige Halterungen (33, 36) den Spalt (E1, E2) zwischen zwei Wendelgängen mindestens einer Wendel (20, 30) konstant halten.
  10. Wärmetauscher nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens eine, vorzugsweise mehrere über den Umfang verteilte U-förmige Klammern (23) den Spalt (E1, E2) zwischen zwei Wendelgängen mindestens einer Wendel (20, 30) konstant halten.
  11. Verfahren zur Herstellung eines Wärmetauschers zur Übertragung der thermischen Energie eines Gases auf mindestens zwei flüssigkeitsdurchströmte Wendeln (20, 30) aus wärmeleitendem Material, welche über gleichen Wendelabstand (P) verfügen, wobei die Wendeln (20, 30) radial durchströmbar sowie koaxial und radial überlappend angeordnet sind, und in radialer Richtung der Zwischenraum zwischen zwei Windungen einer Wendel (20, 30) durch mindestens eine andere Wendel (20, 30) abgedeckt wird, wobei die Wendeln (20, 30) mittels mindestens zweier Wände (1A, 1 B) axial eingespannt sind und mindestens zwei stegförmige Abstandshalter (41) den axialen Abstand zwischen den Wänden (1A, 1 B) und den Spalt (E1, E2) zwischen den Wendelgängen der Wendeln (20, 30) konstant halten, dadurch gekennzeichnet, dass durch Ausüben eines Drehmomentes auf mindestens eine der Wendeln (20, 30), der Außendurchmesser der inneren Wendel (20) verkleinert und/oder der Innendurchmesser der äußeren Wendel (30) vergrößert wird und anschließend durch eine axial gerichtete translatorische Bewegung mindestens einer Wendel (20, 30), bei ruhender oder entgegengesetzt gerichteter axialer Translation mindestens einer anderen Wendel (20, 30), die Wendeln (20, 30) ineinander eingeführt werden,
    die Wendeln (20, 30) über die Wände (1A,1B) eingespannt werden und
    mindestens zwei stegförmige Abstandshaltern (41) an den Wänden (1A, 1B) angebracht werden.
EP20060004561 2005-03-15 2006-03-07 Wärmetauscher Active EP1703227B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005012235 2005-03-15

Publications (3)

Publication Number Publication Date
EP1703227A2 EP1703227A2 (de) 2006-09-20
EP1703227A3 EP1703227A3 (de) 2012-05-30
EP1703227B1 true EP1703227B1 (de) 2015-02-25

Family

ID=36600180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060004561 Active EP1703227B1 (de) 2005-03-15 2006-03-07 Wärmetauscher

Country Status (3)

Country Link
EP (1) EP1703227B1 (de)
DK (1) DK1703227T3 (de)
ES (1) ES2536445T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135678A (zh) * 2015-09-23 2015-12-09 安徽三鼎锅炉制造有限公司 有机热载体供热设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913105B1 (fr) 2007-02-28 2009-05-08 Mer Joseph Le "echangeur de chaleur a condensation comprenant deux faisceaux primaires et un faisceau secondaire"
AU2010346932B8 (en) * 2010-02-26 2013-10-17 Daikin Europe N.V. Coil support member
DE102012006407A1 (de) 2012-03-29 2013-10-02 Vaillant Gmbh Wärmetauscher
DE102013103191A1 (de) * 2013-03-28 2014-10-02 Viessmann Werke Gmbh & Co Kg Heizkessel
US10012413B2 (en) * 2014-04-15 2018-07-03 Ecr International, Inc. Heat exchanger
IT201600074665A1 (it) * 2016-07-18 2018-01-18 Ariston Thermo Spa Scambiatore di calore per caldaia o simili

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE605213C (de) * 1932-11-11 1934-11-07 Josef Kurz Vorrichtung zur Lagerung von Rohrleitungen, insbesondere von Rohrschlangen, in Gestalt eines Flach-, T- oder eines anderen Profileisens mit dem Querschnitt der Rohre entsprechenden Ausschnitten
FR2191089A1 (de) * 1972-07-03 1974-02-01 Ciat Sa
US4798240A (en) * 1985-03-18 1989-01-17 Gas Research Institute Integrated space heating, air conditioning and potable water heating appliance
EP0344351A1 (de) * 1988-06-03 1989-12-06 VIA Gesellschaft für Verfahrenstechnik mbH Gas-Kältemittel-Wärmetauscher, insbesondere für Drucklufttrockner
US4981171A (en) 1988-09-13 1991-01-01 Rite Coil, Inc. Heat exchange coil
US4901677A (en) * 1988-12-21 1990-02-20 Gas Research Institute Finned-tube heat exchanger with liquid-cooled baffle
FR2700608B1 (fr) 1993-01-15 1995-04-07 Joseph Le Mer Elément échangeur de chaleur, procédé et dispositif pour le fabriquer.
DE4428097A1 (de) 1994-08-09 1996-02-22 Bosch Gmbh Robert Verfahren zum Betreiben eines Heizgerätes sowie Heizgerät zur Durchführung des Verfahrens
DE29906481U1 (de) 1998-04-06 1999-07-29 Joh. Vaillant Gmbh U. Co, 42859 Remscheid Wasserheizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135678A (zh) * 2015-09-23 2015-12-09 安徽三鼎锅炉制造有限公司 有机热载体供热设备
CN105135678B (zh) * 2015-09-23 2018-08-07 安徽三鼎锅炉制造有限公司 有机热载体供热设备

Also Published As

Publication number Publication date
EP1703227A3 (de) 2012-05-30
DK1703227T3 (da) 2015-05-26
ES2536445T3 (es) 2015-05-25
EP1703227A2 (de) 2006-09-20

Similar Documents

Publication Publication Date Title
EP1703227B1 (de) Wärmetauscher
WO2005088208A1 (de) Wärmetauscher mit vakuumröhre
EP2828598B1 (de) Wärmetauscher, verfahren zu seiner herstellung sowie verschiedene anlagen mit einem derartigen wärmetauscher
DE60307323T4 (de) Wärmetauscher
DE102010008175B4 (de) Wärmeübertrager
EP2096372A2 (de) Heizgerät
CH666539A5 (de) Waermetauscherrohr und daraus gebildeter waermetauscher.
DE3327938C2 (de)
EP2157382A2 (de) Heizgerät
DE10348141B3 (de) Innerer Wärmeübertrager für Hochdruckkältemittel mit Akkumulator
EP2937658B1 (de) Innerer wärmeübertrager
DE102008014523A1 (de) Heizgerät
DE202017104743U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
DE102006011147A1 (de) Wärmetauscher
CH665019A5 (de) Waermeuebertrager, insbesondere zum kuehlen von gas aus einem hochtemperaturreaktor.
EP3367035A1 (de) Rohrwendelwärmetauscher und speicherbehälter mit einem rohrwendelwärmetauscher
DE6806870U (de) Elektrisch beheizter waermespeicherofen.
WO2009000669A1 (de) Kältegerät
EP1439354B1 (de) Wärmeaustauscher
CH660075A5 (de) Gegenstrom-roehren-waermetauscher.
DE202023105664U1 (de) Wärmetauscher mit kontinuierlicher wendelförmiger Prallplatte
DE29617733U1 (de) Heizkörper für Zentralheizungsanlagen, insbesondere Badezimmer-Heizkörper
AT412913B (de) Wendelförmiger wärmeaustauscher
EP1790507B1 (de) Wärmetauscherbaugruppe für eine Fahrzeugheiz- oder Klimaanlage
DE10341644A1 (de) Wendelförmiger Wärmeaustauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 9/013 20060101ALI20120426BHEP

Ipc: F24H 1/43 20060101AFI20120426BHEP

Ipc: F28D 7/02 20060101ALI20120426BHEP

Ipc: F28D 7/00 20060101ALI20120426BHEP

17P Request for examination filed

Effective date: 20121119

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20130808

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014197

Country of ref document: DE

Effective date: 20150409

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 712325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2536445

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150525

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150521

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 18584

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150526

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014197

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150307

26N No opposition filed

Effective date: 20151126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060307

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170215

Year of fee payment: 12

Ref country code: DK

Payment date: 20170303

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150307

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 712325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210303

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230228

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 18

Ref country code: CZ

Payment date: 20230224

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230301

Year of fee payment: 18

Ref country code: SK

Payment date: 20230223

Year of fee payment: 18

Ref country code: GB

Payment date: 20230228

Year of fee payment: 18

Ref country code: DE

Payment date: 20230228

Year of fee payment: 18

Ref country code: BE

Payment date: 20230228

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 18

Ref country code: ES

Payment date: 20230403

Year of fee payment: 18