EP1674662A1 - Electrolyte for the deposition of an alloy and electrodeposition process - Google Patents

Electrolyte for the deposition of an alloy and electrodeposition process Download PDF

Info

Publication number
EP1674662A1
EP1674662A1 EP04030732A EP04030732A EP1674662A1 EP 1674662 A1 EP1674662 A1 EP 1674662A1 EP 04030732 A EP04030732 A EP 04030732A EP 04030732 A EP04030732 A EP 04030732A EP 1674662 A1 EP1674662 A1 EP 1674662A1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
nickel
cobalt
alloy
electrolyte according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04030732A
Other languages
German (de)
French (fr)
Inventor
Ursus Dr. Krüger
Jan Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04030732A priority Critical patent/EP1674662A1/en
Priority to ES07008970T priority patent/ES2321236T3/en
Priority to AT07008970T priority patent/ATE426733T1/en
Priority to EP07008970A priority patent/EP1840335B1/en
Priority to PCT/EP2005/054917 priority patent/WO2006069816A2/en
Priority to EP05801373A priority patent/EP1807554A2/en
Priority to DE502005006969T priority patent/DE502005006969D1/en
Priority to EP07008969A priority patent/EP1840334A3/en
Publication of EP1674662A1 publication Critical patent/EP1674662A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium

Definitions

  • the invention relates to an electrolyte for depositing an alloy according to claim 1 and an electrodeposition process according to claim 23.
  • Electrolytic coating processes use an electrolyte in which the elements to be deposited are either dissolved in a solution or dispersed as powder particles in a solution. However, alloys can be deposited poorly in this way.
  • an electrolyte according to claim 1 by at least the matrix material, i. H. the component of the alloy with the largest relative proportion of the layer to be deposited is dissolved in the electrolyte and further constituents are dispersed as a powder in the electrolyte and deposited according to claim 23.
  • the electrolyte for the electrolytic deposition of an alloy is a solution of at least the element of the matrix material and furthermore contains dispersed powder.
  • Solved means that the component is present as an ion in a solution (water, alcohol, acid, lye, ).
  • the matrix material may be either cobalt or nickel.
  • at least one further element of the alloy may be dissolved in the electrolyte.
  • nickel and cobalt may be dissolved in the electrolyte.
  • the powder containing the further constituents of the alloy may have either chromium or aluminum or chromium and aluminum.
  • the powder may comprise the elements chromium, aluminum and yttrium.
  • the elements chromium, aluminum and yttrium, silicon and / or rhenium may also be present as dispersed powder in the electrolyte.
  • the matrix material consists of nickel or cobalt.
  • the alloy consists, for example, of at least three elements, in particular of at least five elements (for example NiCoCrAlX).
  • the electrolyte contains, for example, at least one of the elements chromium, aluminum as a dispersed powder.
  • melting point depressants such as B, Si, Hf, Zr may be dissolved in the electrolyte or may be present as a powder.
  • coatings based on superalloys can be deposited with the electrolyte according to the invention.
  • the powder contains nor the elements titanium, tantalum, tungsten, molybdenum, niobium, boron, zirconium or carbon.
  • layers can be deposited on a substrate by means of the electrolytes according to the invention.
  • a heat treatment can be carried out in order, for example, to achieve a better bonding of the electrolytically produced layer to the substrate.
  • further metallic and / or ceramic layers can be applied to the electrolytically produced layer.
  • the electrolyte of the invention solves the problem in that the largest proportion (matrix material) of the alloy to be deposited is dissolved and the other elements are present as a powder.
  • the electrolyte according to the invention opens up the possibility of varying the stoichiometry of the alloy during the electrolytic deposition by varying the proportions of powder by constantly increasing, for example by adding powder, the proportion of an alloying element and thus achieving a gradation in the concentration of this alloying element in the layer to be produced.
  • FIG. 1 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406. As a guide blade 130, the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • blades 120, 130 for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; these references are part of the disclosure regarding the superalloy chemical compositions.
  • the blade 120, 130 can in this case by a casting process, also by means of directional solidification, by a forging process, be made by a milling method or combinations thereof.
  • the blades 120, 130 may be coatings against corrosion or oxidation (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, whose chemical compositions are intended to be part of this disclosure. These layers can be applied electrolytically using the method according to the invention.
  • a thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 2 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of burners 107 arranged around the rotation axis 102 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. These may be solid ceramic stones or alloys with MCrAlX and / or ceramic coatings. The materials of the combustion chamber wall and its coatings may be similar to the turbine blades.
  • Due to the high temperatures inside the combustion chamber 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system.
  • the combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155.
  • a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
  • FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a suction housing 104 Along the rotor 103 follow one another a suction housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 relaxes on the rotor blades 120 in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • SX structure monocrystalline
  • DS structure only longitudinal grains
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths or hafnium.
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which are intended to be part of this disclosure.
  • MCrAIX On the MCrAIX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Conductive Materials (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Medicinal Preparation (AREA)

Abstract

Electrolyte for electrodeposition of alloys in which the matrix material of the alloy is dissolved and containing another component in powder form. An independent claim is included for depostion of a layer from the electrolyte.

Description

Die Erfindung betrifft einen Elektrolyt zur Abscheidung einer Legierung gemäß Anspruch 1 und ein Verfahren zur elektrolytischen Abscheidung gemäß Anspruch 23.The invention relates to an electrolyte for depositing an alloy according to claim 1 and an electrodeposition process according to claim 23.

Elektrolytische Beschichtungsverfahren verwenden einen Elektrolyt, in dem die abzuscheidenden Elemente entweder in einer Lösung gelöst oder als Pulverteilchen dispergiert in einer Lösung vorhanden sind.
Jedoch lassen sich Legierungen auf diese Art und Weise schlecht abscheiden.
Electrolytic coating processes use an electrolyte in which the elements to be deposited are either dissolved in a solution or dispersed as powder particles in a solution.
However, alloys can be deposited poorly in this way.

Es ist daher Aufgabe der Erfindung dieses Problem zu überwinden.It is therefore an object of the invention to overcome this problem.

Die Aufgabe wird gelöst durch einen Elektrolyt gemäß Anspruch 1, indem zumindest das Matrixmaterial, d. h. dem Bestandteil der Legierung mit dem größten relativen Anteil der abzuscheidenden Schicht in dem Elektrolyten gelöst ist und weitere Bestandteile als Pulver im Elektrolyt dispergiert sind und gemäß Anspruch 23 abgeschieden wird.The object is achieved by an electrolyte according to claim 1, by at least the matrix material, i. H. the component of the alloy with the largest relative proportion of the layer to be deposited is dissolved in the electrolyte and further constituents are dispersed as a powder in the electrolyte and deposited according to claim 23.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander in vorteilhafter Art und Weise kombiniert werden können.In the dependent claims further advantageous measures are listed, which can be combined with each other in an advantageous manner.

Es zeigen

Figur 1
eine Turbinenschaufel,
Figur 2
eine Brennkammer
Figur 3
eine Gasturbine und
Figur 4
Zusammensetzung von Legierungen, die aus einem erfindungsgemäßen Elektrolyten abscheidbar sind.
Show it
FIG. 1
a turbine blade,
FIG. 2
a combustion chamber
FIG. 3
a gas turbine and
FIG. 4
Composition of alloys which can be deposited from an electrolyte according to the invention.

Der Elektrolyt zur elektrolytischen Abscheidung einer Legierung ist erfindungsgemäß eine Lösung aus zumindest dem Element des Matrixmaterials und enthält weiterhin dispergiertes Pulver. Gelöst bedeutet, dass der Bestandteil als Ion in einer Lösung (Wasser, Alkohol, Säure, Lauge, ...) vorhanden ist.According to the invention, the electrolyte for the electrolytic deposition of an alloy is a solution of at least the element of the matrix material and furthermore contains dispersed powder. Solved means that the component is present as an ion in a solution (water, alcohol, acid, lye, ...).

Das Matrixmaterial kann entweder Kobalt oder Nickel sein. Neben dem Matrixmaterial kann noch zumindest ein weiteres Element der Legierung im Elektrolyt gelöst sein. So kann Nickel und Kobalt in dem Elektrolyt gelöst sein.The matrix material may be either cobalt or nickel. In addition to the matrix material, at least one further element of the alloy may be dissolved in the electrolyte. Thus, nickel and cobalt may be dissolved in the electrolyte.

Das Pulver, das die weiteren Bestanteile der Legierung enthält, kann entweder Chrom oder Aluminium oder Chrom und Aluminium aufweisen.
Ebenso kann das Pulver die Elemente Chrom, Aluminium und Yttrium aufweisen.
Neben den Elementen Chrom, Aluminium und Yttrium kann auch noch Silizium und/oder Rhenium als dispergiertes Pulver in dem Elektrolyten vorhanden sein.
The powder containing the further constituents of the alloy may have either chromium or aluminum or chromium and aluminum.
Likewise, the powder may comprise the elements chromium, aluminum and yttrium.
In addition to the elements chromium, aluminum and yttrium, silicon and / or rhenium may also be present as dispersed powder in the electrolyte.

Im Falle von so genannten MCrAlX-Legierungen besteht das Matrixmaterial aus Nickel oder Kobalt.
Die Legierung besteht beispielsweise aus zumindest drei Elementen, insbesondere aus zumindest fünf Elementen (bspw. NiCoCrAlX). Der Elektrolyt enthält beispielsweise noch zumindest eines der Elemente Chrom, Aluminium als dispergiertes Pulver.
In the case of so-called MCrAlX alloys, the matrix material consists of nickel or cobalt.
The alloy consists, for example, of at least three elements, in particular of at least five elements (for example NiCoCrAlX). The electrolyte contains, for example, at least one of the elements chromium, aluminum as a dispersed powder.

Ebenso können Schmelzpunkterniedriger wie B, Si, Hf, Zr im Elektrolyt gelöst sein oder als Pulver vorhanden sein.Likewise, melting point depressants such as B, Si, Hf, Zr may be dissolved in the electrolyte or may be present as a powder.

Ebenso können Beschichtungen auf Basis von Superlegierungen mit dem erfindungsgemäßen Elektrolyt abgeschieden werden.
Für einen Elektrolyten, mit dem eine Schicht basierend auf einer Superlegierung abgeschieden oder ein Substrat aus einer Superlegierung repariert werden soll, enthält das Pulver beispielsweise noch die Elemente Titan, Tantal, Wolfram, Molybdän, Niob, Bor, Zirkonium oder Kohlenstoff.
Likewise, coatings based on superalloys can be deposited with the electrolyte according to the invention.
For example, for an electrolyte to deposit a superalloy-based layer or repair a superalloy substrate, the powder contains nor the elements titanium, tantalum, tungsten, molybdenum, niobium, boron, zirconium or carbon.

Mit einer entsprechenden Elektrolyseapparatur können Schichten mittels der erfindungsgemäßen Elektrolyte auf einem Substrat abgeschieden werden. Nach der elektrolytischen Erzeugung der Schicht kann eine Wärmebehandlung durchgeführt werden, um beispielsweise eine bessere Anbindung der elektrolytisch erzeugten Schicht an das Substrat zu erreichen.
In einem weiteren Schritt können noch weitere metallische und/oder keramische Schichten auf die elektrolytisch erzeugte Schicht aufgebracht werden.
Ein Nachteil bei einem elektrolytischen Verfahren nach dem Stand der Technik liegt darin, dass es bei einer Legierung sehr schwierig ist, alle Bestandteile in der Lösung aufzulösen.
Die andere Möglichkeit, nämlich alle Bestandteile als Pulver in der Lösung zu dispergieren, führt zu dem Problem, dass der Abscheidungsprozess sehr stark bestimmt wird durch die Pulverteilchen des Matrixmaterials, das einen großen Volumenanteil einnimmt. Dabei kommt es oft zu einer unregelmäßigen oder unkontrollierten Abscheidung der Legierungselemente mit kleinerem Volumen oder Gewichtsanteil.
Der erfindungsgemäße Elektrolyt löst das Problem dadurch, dass der größte Anteil (Matrixmaterial) der abzuscheidenden Legierung gelöst ist und die weiteren Elemente als Pulver vorhanden sind.
With a corresponding electrolysis apparatus, layers can be deposited on a substrate by means of the electrolytes according to the invention. After the electrolytic production of the layer, a heat treatment can be carried out in order, for example, to achieve a better bonding of the electrolytically produced layer to the substrate.
In a further step, further metallic and / or ceramic layers can be applied to the electrolytically produced layer.
A drawback with a prior art electrolytic process is that it is very difficult for an alloy to dissolve all components in the solution.
The other possibility, namely to disperse all constituents as powder in the solution, leads to the problem that the deposition process is very strongly determined by the powder particles of the matrix material, which occupy a large volume fraction. This often leads to an irregular or uncontrolled deposition of alloying elements with a smaller volume or weight fraction.
The electrolyte of the invention solves the problem in that the largest proportion (matrix material) of the alloy to be deposited is dissolved and the other elements are present as a powder.

Ebenso eröffnet der erfindungsgemäße Elektrolyt die Möglichkeit durch Variation der Pulveranteile die Stöchiometrie der Legierung während der elektrolytischen Abscheidung zu verändern, indem man beispielsweise durch Zugabe von Pulver den Anteil eines Legierungselements ständig erhöht und so eine Gradierung in der Konzentration dieses Legierungselements in der herzustellenden Schicht erreicht.Likewise, the electrolyte according to the invention opens up the possibility of varying the stoichiometry of the alloy during the electrolytic deposition by varying the proportions of powder by constantly increasing, for example by adding powder, the proportion of an alloying element and thus achieving a gradation in the concentration of this alloying element in the layer to be produced.

Ausführungsbeispiele

  • I. Die gewünschte Zusammensetzung einer MCrAlX-Legierung besteht zumindest aus (in wt%):
    • 20-22% Chrom,
    • 10,5-11,5% Aluminium,
    • 0,3-0,5% Yttrium,
    • 1,5-2,5% Rhenium,
    • 11-13% Kobalt und
    • Rest Nickel.
      Dabei sind Kobalt und Nickel im Elektrolyten gelöst und das Pulver, das dem wässrigen Elektrolyten beigefügt ist, besteht beispielsweise aus (in wt%)
      61,8% Chrom,
      32,3% Aluminium,
      0,9% Yttrium und
      5% Rhenium.
  • II. Eine weitere MCrAlX-Legierung besteht zumindest aus (in wt%) :
    • 27-29% Chrom,
    • 7-8% Aluminium,
    • 0,5-0,7% Yttrium,
    • 0,3-0,7% Silizium,
    • 29-31% Nickel und
    • Rest Kobalt.
      Dabei sind in dem Elektrolyten wiederum die Elemente Kobalt und Nickel gelöst und das Pulver weist beispielsweise folgende Gewichtsverteilungen auf:
      • 76,5% Chrom,
      • 20,5% Aluminium,
      • 1,6% Yttrium und
      • 1,4% Silizium.
  • III. Weiteres Ausführungsbeispiel für eine MCrAlX-Legierung ist
    16-18% Chrom,
    12-13% Aluminium,
    0,5-0,7% Yttrium,
    0,3-0,5% Silizium,
    21-23% Kobalt und
    Rest Nickel.
    Dabei sind wiederum Kobalt und Nickel in dem Elektrolyten gelöst und das Pulver weist beispielsweise folgende Gewichtsbestandteile auf:
    • 56,7% Chrom,
    • 40% Aluminium,
    • 2% Yttrium,
    • 1,3% Silizium.
  • IV. Weiteres Ausführungsbeispiel für eine MCrAIX-Legierung:
    • 16-18% Chrom,
    • 9,5-11% Aluminium,
    • 0,3-0,5% Yttrium,
    • 1-1,8% Rhenium,
    • 24-26% Kobalt,
    • Rest Nickel.
      Dabei sind wiederum Kobalt und Nickel in dem Elektrolyten gelöst und das Pulver enthält
      58,8% Chrom,
      34,6% Aluminium,
      1,4% Yttrium und
      5,2% Rhenium.
embodiments
  • I. The desired composition of an MCrAlX alloy consists at least of (in wt%):
    • 20-22% chromium,
    • 10.5-11.5% aluminum,
    • 0.3-0.5% yttrium,
    • 1.5-2.5% rhenium,
    • 11-13% cobalt and
    • Rest of nickel.
      In this case cobalt and nickel are dissolved in the electrolyte and the powder which is added to the aqueous electrolyte consists, for example, of (in wt%)
      61.8% chromium,
      32.3% aluminum,
      0.9% yttrium and
      5% rhenium.
  • II. Another MCrAlX alloy consists at least of (in wt%):
    • 27-29% chromium,
    • 7-8% aluminum,
    • 0.5-0.7% yttrium,
    • 0.3-0.7% silicon,
    • 29-31% nickel and
    • Balance cobalt.
      In this case, the elements cobalt and nickel are in turn dissolved in the electrolyte and the powder has, for example, the following weight distributions:
      • 76.5% chromium,
      • 20.5% aluminum,
      • 1.6% yttrium and
      • 1.4% silicon.
  • III. Another embodiment of an MCrAlX alloy is
    16-18% chromium,
    12-13% aluminum,
    0.5-0.7% yttrium,
    0.3-0.5% silicon,
    21-23% cobalt and
    Rest of nickel.
    Again, cobalt and nickel are dissolved in the electrolyte and the powder has, for example, the following parts by weight:
    • 56.7% chromium,
    • 40% aluminum,
    • 2% yttrium,
    • 1.3% silicon.
  • IV. Another exemplary embodiment of an MCrAIX alloy:
    • 16-18% chromium,
    • 9.5-11% aluminum,
    • 0.3-0.5% yttrium,
    • 1-1.8% rhenium,
    • 24-26% cobalt,
    • Rest of nickel.
      In turn, cobalt and nickel are dissolved in the electrolyte and the powder contains
      58.8% chromium,
      34.6% aluminum,
      1.4% yttrium and
      5.2% rhenium.

Als Beispiel für die Zusammensetzung einer Superlegierung sei hier beispielhaft IN 738 aus der Figur 4 erwähnt mit den Anteilen:

  • 15 - 17% Chrom,
  • 3,2 - 3,7% Aluminium,
  • 3,2-3,7% Titan,
  • 1,5-2,0% Tantal,
  • 2,4-2,8% Wolfram,
  • 1,5-2,0% Molybdän,
  • 0,6-1,1% Niob,
  • 0,0007-0,012% Bor,
  • 0,015-0,06% Zirkonium,
  • 8-9% Kobalt,
  • Rest Nickel.
As an example of the composition of a superalloy, mention may be made here by way of example of IN 738 from FIG. 4 with the proportions:
  • 15-17% chromium,
  • 3.2 - 3.7% aluminum,
  • 3.2-3.7% titanium,
  • 1.5-2.0% tantalum,
  • 2.4-2.8% tungsten,
  • 1.5-2.0% molybdenum,
  • 0.6-1.1% niobium,
  • 0.0007-0.012% boron,
  • 0.015-0.06% zirconium,
  • 8-9% cobalt,
  • Rest of nickel.

Hier sind Kobalt und Nickel bspw. ebenfalls wieder in dem Elektrolyten gelöst und das Pulver weist beispielsweise folgende Bestandteile in wt% auf:

  • 53,8% Chrom,
  • 11,4% Aluminium,
  • 11,4% Titan,
  • 5,9% Tantal,
  • 8,7% Wolfram,
  • 5,9% Molybdän,
  • 2,8% Niob,
  • 0,03% Bor,
  • 0,13% Zirkonium.
Here, cobalt and nickel, for example, are likewise dissolved again in the electrolyte, and the powder has, for example, the following constituents in wt%:
  • 53.8% chromium,
  • 11.4% aluminum,
  • 11.4% titanium,
  • 5.9% tantalum,
  • 8.7% tungsten,
  • 5.9% molybdenum,
  • 2.8% niobium,
  • 0.03% boron,
  • 0.13% zirconium.

Andere Schichten aus Superlegierungen gemäß der Figur 4 werden ebenfalls so hergestellt.Other layers of superalloys according to FIG. 4 are also produced in this way.

Figur 1 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.1 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine, which extends along a longitudinal axis 121.

Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.

Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 auf.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt) .
The blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
As a guide blade 130, the blade 130 may have at its blade tip 415 another platform (not shown).

Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
The blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
The blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.

Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bezüglich den chemischen Zusammensetzungen der Superlegierung Teil der Offenbarung.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
In conventional blades 120, 130, for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; these references are part of the disclosure regarding the superalloy chemical compositions.
The blade 120, 130 can in this case by a casting process, also by means of directional solidification, by a forging process, be made by a milling method or combinations thereof.

Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt; diese Schriften sind Teil der Offenbarung.
Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
The production of such monocrystalline workpieces, for example, by directed solidification from the melt. These are casting methods in which the liquid metallic alloy solidifies into a monocrystalline structure, ie a single-crystal workpiece, or directionally.
Here, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal. In these processes, it is necessary to avoid the transition to globulitic (polycrystalline) solidification, since non-directional growth necessarily produces transverse and longitudinal grain boundaries which negate the good properties of the directionally solidified or monocrystalline component.
The term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
Such methods are known from US Pat. No. 6,024,792 and EP 0 892 090 A1; these writings are part of the revelation.

Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 oder EP 1 306 454 A1, deren chemischen Zusammensetzungen Teil dieser Offenbarung sein sollen. Diese Schichten könne mit dem erfindungsgemäßen Verfahren elektrolytisch aufgebracht werden.Likewise, the blades 120, 130 may be coatings against corrosion or oxidation (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, whose chemical compositions are intended to be part of this disclosure. These layers can be applied electrolytically using the method according to the invention.

Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
On the MCrAlX still a thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
By means of suitable coating processes, such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.

Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.

Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.The blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Die Figur 2 zeigt eine Brennkammer 110 einer Gasturbine.
Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
FIG. 2 shows a combustion chamber 110 of a gas turbine.
The combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of burners 107 arranged around the rotation axis 102 in the circumferential direction open into a common combustion chamber space. For this purpose, the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C. In order to enable a comparatively long service life even with these, for the materials unfavorable operating parameters, the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.

Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt. Dies können massive keramische Steine oder Legierungen mit MCrAlX und/oder keramischen Beschichtungen sein.
Die Materialien der Brennkammerwand und deren Beschichtungen können ähnlich der Turbinenschaufeln sein.
Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. These may be solid ceramic stones or alloys with MCrAlX and / or ceramic coatings.
The materials of the combustion chamber wall and its coatings may be similar to the turbine blades.

Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein.Due to the high temperatures inside the combustion chamber 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system.

Die Brennkammer 110 ist insbesondere für eine Detektion von Verlusten der Hitzeschildelemente 155 ausgelegt. Dazu sind zwischen der Brennkammerwand 153 und den Hitzeschildelementen 155 eine Anzahl von Temperatursensoren 158 positioniert.The combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155. For this purpose, a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.

Die Figur 3 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
The gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
Along the rotor 103 follow one another a suction housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
The annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example. There, for example, four turbine stages 112 connected in series form the turbine 108.
Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.

Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
Coupled to the rotor 103 is a generator or work machine (not shown).

Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the gas turbine 100, air 105 is sucked in and compressed by the compressor 105 through the intake housing 104. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. The working medium 113 relaxes on the rotor blades 120 in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and drive the machine coupled to it.

Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
To withstand the prevailing temperatures, they can be cooled by means of a coolant.
Likewise, substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110, for example, iron-, nickel- or cobalt-based superalloys are used.

Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium). Solche Legierungen sind bekannt aus der EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 oder EP 1 306 454 A1, die Teil dieser Offenbarung sein sollen.Also, the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths or hafnium). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which are intended to be part of this disclosure.

Auf der MCrAIX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.On the MCrAIX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide. By means of suitable coating processes, such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.

Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Claims (24)

Elektrolyt zur elektrolytischen Abscheidung einer Legierung,
in dem zumindest das Matrixmaterial der Legierung gelöst ist und
in dem zumindest ein weiterer Bestandteil der abzuscheidenden Legierung als Pulver enthalten ist.
Electrolyte for the electrolytic deposition of an alloy,
in which at least the matrix material of the alloy is dissolved and
in which at least one further constituent of the alloy to be deposited is contained as powder.
Elektrolyt nach Anspruch 1,
dadurch gekennzeichnet, dass
das Matrixmaterial Kobalt ist.
An electrolyte according to claim 1,
characterized in that
the matrix material is cobalt.
Elektrolyt nach Anspruch 1,
dadurch gekennzeichnet, dass
das Matrixmaterial Nickel ist.
An electrolyte according to claim 1,
characterized in that
the matrix material is nickel.
Elektrolyt nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet, dass
die Legierung aus zumindest drei Elementen besteht, insbesondere aus zumindest fünf Elementen und insbesondere des Typs MCrAlX ist,
wobei M zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni) ist,
X ein Aktivelement ist und für Yttrium (Y) und/oder Silizium (Si) und/oder Hafnium (Hf) und/oder zumindest ein Element der Seltenen Erden steht.
An electrolyte according to claim 1, 2 or 3,
characterized in that
the alloy consists of at least three elements, in particular of at least five elements and in particular of the MCrAlX type,
where M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni),
X is an active element and stands for yttrium (Y) and / or silicon (Si) and / or hafnium (Hf) and / or at least one element of the rare earths.
Elektrolyt nach Anspruch 1, 2, 3 oder 4,
dadurch gekennzeichnet, dass
neben dem Element des Matrixmaterials zumindest ein weiteres Element der Legierung im Elektrolyt gelöst ist.
An electrolyte according to claim 1, 2, 3 or 4,
characterized in that
at least one further element of the alloy is dissolved in the electrolyte in addition to the element of the matrix material.
Elektrolyt nach Anspruch 1, 2, 3, 4 oder 5,
dadurch gekennzeichnet, dass
Nickel und Kobalt im Elektrolyt gelöst sind.
An electrolyte according to claim 1, 2, 3, 4 or 5,
characterized in that
Nickel and cobalt are dissolved in the electrolyte.
Elektrolyt nach Anspruch 1,
dadurch gekennzeichnet, dass
das Pulver zumindest Chrom enthält.
An electrolyte according to claim 1,
characterized in that
the powder contains at least chromium.
Elektrolyt nach Anspruch 1 oder 7,
dadurch gekennzeichnet, dass
das Pulver zumindest Aluminium enthält.
An electrolyte according to claim 1 or 7,
characterized in that
the powder contains at least aluminum.
Elektrolyt nach Anspruch 1, 7 oder 8,
dadurch gekennzeichnet, dass
das Pulver zumindest Yttrium enthält.
An electrolyte according to claim 1, 7 or 8,
characterized in that
the powder contains at least yttrium.
Elektrolyt nach Anspruch 1 oder 7 bis 9,
dadurch gekennzeichnet, dass
das Pulver zumindest Silizium enthält.
An electrolyte according to claim 1 or 7 to 9,
characterized in that
the powder contains at least silicon.
Elektrolyt nach Anspruch 1 oder 7 bis 10,
dadurch gekennzeichnet, dass
das Pulver zumindest Rhenium enthält.
An electrolyte according to claim 1 or 7 to 10,
characterized in that
the powder contains at least rhenium.
Elektrolyt nach Anspruch 1, 3 oder 4,
dadurch gekennzeichnet, dass
die aus dem Elektrolyt abscheidbare Legierung zumindest besteht aus (in wt%)
20-22% Chrom,
10,5-11,5% Aluminium,
0,3-0,5% Yttrium,
1,5-2,5% Rhenium,
11-13% Kobalt und
Rest Nickel.
An electrolyte according to claim 1, 3 or 4,
characterized in that
the alloy which can be deposited from the electrolyte at least consists of (in wt%)
20-22% chromium,
10.5-11.5% aluminum,
0.3-0.5% yttrium,
1.5-2.5% rhenium,
11-13% cobalt and
Rest of nickel.
Elektrolyt nach einem oder mehreren der Ansprüche 4 bis 12,
dadurch gekennzeichnet,
dass Kobalt und Nickel im Elektrolyt gelöst sind und
dass das Pulver besteht aus (in wt%)
61,8% Chrom,
32,3% Aluminium,
0,9% Yttrium und
5% Rhenium.
Electrolyte according to one or more of claims 4 to 12,
characterized,
that cobalt and nickel are dissolved in the electrolyte and
that the powder consists of (in wt%)
61.8% chromium,
32.3% aluminum,
0.9% yttrium and
5% rhenium.
Elektrolyt nach Anspruch 1, 2 oder 4,
dadurch gekennzeichnet, dass
die aus dem Elektrolyt abscheidbare Legierung zumindest besteht aus (in wt%)
27-29% Chrom,
7-8% Aluminium,
0,5-0,7% Yttrium,
0,3-0,7% Silizium,
29-31% Nickel und
Rest Kobalt.
An electrolyte according to claim 1, 2 or 4,
characterized in that
the alloy which can be deposited from the electrolyte at least consists of (in wt%)
27-29% chromium,
7-8% aluminum,
0.5-0.7% yttrium,
0.3-0.7% silicon,
29-31% nickel and
Balance cobalt.
Elektrolyt nach einem oder mehreren der Ansprüche 4 bis 11 oder 14,
dadurch gekennzeichnet,
dass in dem Elektrolyt Nickel und Kobalt gelöst sind und dass das Pulver besteht aus (in wt%)
76,5% Chrom,
20,5% Aluminium,
1,6% Yttrium,
1,4% Silizium.
Electrolyte according to one or more of claims 4 to 11 or 14,
characterized,
that in the electrolyte nickel and cobalt are dissolved and that the powder consists of (in wt%)
76.5% chromium,
20.5% aluminum,
1.6% yttrium,
1.4% silicon.
Elektrolyt nach Anspruch 1, 3 oder 4,
dadurch gekennzeichnet, dass
die aus dem Elektrolyt abscheidbare Legierung zumindest besteht aus (in wt%)
16-18% Chrom,
12-13% Aluminium,
0,5-0,7% Yttrium,
0,3-0,5% Silizium,
21-23% Kobalt und
Rest Nickel.
An electrolyte according to claim 1, 3 or 4,
characterized in that
the alloy which can be deposited from the electrolyte at least consists of (in wt%)
16-18% chromium,
12-13% aluminum,
0.5-0.7% yttrium,
0.3-0.5% silicon,
21-23% cobalt and
Rest of nickel.
Elektrolyt nach einem oder mehreren der Ansprüche 4 bis 11 oder 16,
dadurch gekennzeichnet,
dass in dem Elektrolyt Nickel und Kobalt gelöst sind und dass das Pulver besteht aus (in wt%)
56,7% Chrom,
40% Aluminium,
2% Yttrium,
1,3% Silizium.
Electrolyte according to one or more of claims 4 to 11 or 16,
characterized,
that in the electrolyte nickel and cobalt are dissolved and that the powder consists of (in wt%)
56.7% chromium,
40% aluminum,
2% yttrium,
1.3% silicon.
Elektrolyt nach Anspruch 1, 3 oder 4,
dadurch gekennzeichnet, dass
die aus dem Elektrolyt abscheidbare Legierung zumindest besteht aus (in wt%)
16-18% Chrom,
9,5-11% Aluminium,
0,3-0,5% Yttrium,
1-1,8% Rhenium,
24-26% Kobalt,
Rest Nickel.
An electrolyte according to claim 1, 3 or 4,
characterized in that
the alloy which can be deposited from the electrolyte at least consists of (in wt%)
16-18% chromium,
9.5-11% aluminum,
0.3-0.5% yttrium,
1-1.8% rhenium,
24-26% cobalt,
Rest of nickel.
Elektrolyt nach einem oder mehreren der Ansprüche 4 bis 11 oder 18,
dadurch gekennzeichnet,
dass in dem Elektrolyt Nickel und Kobalt gelöst sind und dass das Pulver besteht aus (in wt%)
58,8% Chrom,
34,6% Aluminium,
1,4% Yttrium,
5,2% Rhenium.
An electrolyte according to one or more of claims 4 to 11 or 18,
characterized,
that in the electrolyte nickel and cobalt are dissolved and that the powder consists of (in wt%)
58.8% chromium,
34.6% aluminum,
1.4% yttrium,
5.2% rhenium.
Elektrolyt nach Anspruch 1 oder 3,
dadurch gekennzeichnet,
die aus dem Elektrolyt abscheidbare Legierung zumindest besteht aus (in wt%)
15 - 17% Chrom,
3,2 - 3,7% Aluminium,
3,2-3,7% Titan,
1,5-2,0% Tantal,
2,4-2,8% Wolfram,
1,5-2,0% Molybdän,
0,6-1,1% Niob,
0,0007-0,012% Bor,
0,015-0,06% Zirkonium,
8-9% Kobalt,
Rest Nickel.
An electrolyte according to claim 1 or 3,
characterized
the alloy which can be deposited from the electrolyte at least consists of (in wt%)
15-17% chromium,
3.2 - 3.7% aluminum,
3.2-3.7% titanium,
1.5-2.0% tantalum,
2.4-2.8% tungsten,
1.5-2.0% molybdenum,
0.6-1.1% niobium,
0.0007-0.012% boron,
0.015-0.06% zirconium,
8-9% cobalt,
Rest of nickel.
Elektrolyt nach Anspruch 5 oder 20,
dadurch gekennzeichnet,
das Pulver besteht aus (in wt%)
53,8% Chrom,
11,4% Aluminium,
11,4% Titan,
5,9% Tantal,
8,7% Wolfram,
5,9% Molybdän,
2,8% Niob,
0,03% Bor,
0,13% Zirkonium und
Kobalt und Nickel im Elektrolyt gelöst sind.
An electrolyte according to claim 5 or 20,
characterized
the powder consists of (in wt%)
53.8% chromium,
11.4% aluminum,
11.4% titanium,
5.9% tantalum,
8.7% tungsten,
5.9% molybdenum,
2.8% niobium,
0.03% boron,
0.13% zirconium and
Cobalt and nickel are dissolved in the electrolyte.
Elektrolyt nach Anspruch 1, 5 oder 6,
dadurch gekennzeichnet,
die aus dem Elektrolyt abscheidbare Legierung einen Schmelzpunkterniedriger enthält.
An electrolyte according to claim 1, 5 or 6,
characterized
the electrolyte depositable alloy contains a melting point depressant.
Verfahren zur Abscheidung einer Schicht,
bei dem ein Elektrolyt nach einem oder mehreren der vorherigen Ansprüche verwendet wird.
Method for depositing a layer,
in which an electrolyte according to one or more of the preceding claims is used.
Verfahren nach Anspruch 23,
dadurch gekennzeichnet, dass
während der elektrolytischen Abscheidung Pulver eines Legierungsbestandteils zu dem Elektrolyt hinzu gegeben wird, sodass sich die Konzentration dieses Legierungsbestandteils erhöht,
wodurch eine gradierte Schicht erzeugt wird.
Method according to claim 23,
characterized in that
during the electrolytic deposition, powder of an alloying ingredient is added to the electrolyte so that the concentration of this alloying ingredient increases,
whereby a graded layer is produced.
EP04030732A 2004-12-23 2004-12-23 Electrolyte for the deposition of an alloy and electrodeposition process Withdrawn EP1674662A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP04030732A EP1674662A1 (en) 2004-12-23 2004-12-23 Electrolyte for the deposition of an alloy and electrodeposition process
ES07008970T ES2321236T3 (en) 2004-12-23 2005-09-29 CAP.
AT07008970T ATE426733T1 (en) 2004-12-23 2005-09-29 LAYER
EP07008970A EP1840335B1 (en) 2004-12-23 2005-09-29 Layer
PCT/EP2005/054917 WO2006069816A2 (en) 2004-12-23 2005-09-29 Electrolyte for deposition of an alloy and method for electrolytic deposition
EP05801373A EP1807554A2 (en) 2004-12-23 2005-09-29 Electrolyte for deposition of an alloy and method for electrolytic deposition
DE502005006969T DE502005006969D1 (en) 2004-12-23 2005-09-29 layer
EP07008969A EP1840334A3 (en) 2004-12-23 2005-09-29 Layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04030732A EP1674662A1 (en) 2004-12-23 2004-12-23 Electrolyte for the deposition of an alloy and electrodeposition process

Publications (1)

Publication Number Publication Date
EP1674662A1 true EP1674662A1 (en) 2006-06-28

Family

ID=34927990

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04030732A Withdrawn EP1674662A1 (en) 2004-12-23 2004-12-23 Electrolyte for the deposition of an alloy and electrodeposition process
EP07008969A Withdrawn EP1840334A3 (en) 2004-12-23 2005-09-29 Layer
EP07008970A Not-in-force EP1840335B1 (en) 2004-12-23 2005-09-29 Layer
EP05801373A Withdrawn EP1807554A2 (en) 2004-12-23 2005-09-29 Electrolyte for deposition of an alloy and method for electrolytic deposition

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP07008969A Withdrawn EP1840334A3 (en) 2004-12-23 2005-09-29 Layer
EP07008970A Not-in-force EP1840335B1 (en) 2004-12-23 2005-09-29 Layer
EP05801373A Withdrawn EP1807554A2 (en) 2004-12-23 2005-09-29 Electrolyte for deposition of an alloy and method for electrolytic deposition

Country Status (5)

Country Link
EP (4) EP1674662A1 (en)
AT (1) ATE426733T1 (en)
DE (1) DE502005006969D1 (en)
ES (1) ES2321236T3 (en)
WO (1) WO2006069816A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793008A1 (en) * 2005-12-02 2007-06-06 Siemens Aktiengesellschaft Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
CN101352357B (en) * 2007-07-25 2011-09-28 伊西康内外科公司 Biopsy device with manually rotated sample barrel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2367833A1 (en) * 1976-10-15 1978-05-12 Bbc Brown Boveri & Cie Corrosion protective coating for gas turbine parts - consists of electrodeposited nickel or cobalt contg. inclusions
EP0484115A1 (en) * 1990-11-01 1992-05-06 General Electric Company Abrasive turbine blade tips
EP0532150A1 (en) * 1991-09-09 1993-03-17 General Electric Company Strengthened protective coatings for superalloys
US5833829A (en) * 1994-07-22 1998-11-10 Praxair S.T. Technology, Inc. Protective coating
WO2000036180A1 (en) * 1998-12-16 2000-06-22 Onera (Office National D'etudes Et De Recherches Aerospatiales) METHOD FOR FORMING A METAL ALLOY COATING SUCH AS MCrAlY

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273712A (en) * 1989-08-10 1993-12-28 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
US5582635A (en) * 1990-08-10 1996-12-10 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating for a component in particular a gas turbine component
US5939204A (en) * 1995-08-16 1999-08-17 Siemens Aktiengesellschaft Article for transporting a hot, oxidizing gas
EP1295969A1 (en) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Method of growing a MCrAIY-coating and an article coated with the MCrAIY-coating
EP1380672A1 (en) * 2002-07-09 2004-01-14 Siemens Aktiengesellschaft Highly oxidation resistant component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2367833A1 (en) * 1976-10-15 1978-05-12 Bbc Brown Boveri & Cie Corrosion protective coating for gas turbine parts - consists of electrodeposited nickel or cobalt contg. inclusions
EP0484115A1 (en) * 1990-11-01 1992-05-06 General Electric Company Abrasive turbine blade tips
EP0532150A1 (en) * 1991-09-09 1993-03-17 General Electric Company Strengthened protective coatings for superalloys
US5833829A (en) * 1994-07-22 1998-11-10 Praxair S.T. Technology, Inc. Protective coating
WO2000036180A1 (en) * 1998-12-16 2000-06-22 Onera (Office National D'etudes Et De Recherches Aerospatiales) METHOD FOR FORMING A METAL ALLOY COATING SUCH AS MCrAlY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN L ET AL: "MICROSTRUCTURE CHARACTERISTICS OF THE NICKEL MATRIX IN ELECTRODEPOSITED NI-PSZ GRADIENT COATING", TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, INSTITUTE OF METAL FINISHING, LONDON, GB, vol. 76, no. PART 4, July 1998 (1998-07-01), pages 131 - 134, XP000765554, ISSN: 0020-2967 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793008A1 (en) * 2005-12-02 2007-06-06 Siemens Aktiengesellschaft Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
WO2007063091A1 (en) * 2005-12-02 2007-06-07 Siemens Aktiengesellschaft Alloy, protective layer for protecting a component against corrosion and oxidation at high temperatures and component
CN101352357B (en) * 2007-07-25 2011-09-28 伊西康内外科公司 Biopsy device with manually rotated sample barrel

Also Published As

Publication number Publication date
EP1840335A2 (en) 2007-10-03
EP1807554A2 (en) 2007-07-18
ATE426733T1 (en) 2009-04-15
EP1840335B1 (en) 2009-03-25
ES2321236T3 (en) 2009-06-03
WO2006069816A2 (en) 2006-07-06
DE502005006969D1 (en) 2009-05-07
WO2006069816A3 (en) 2007-08-23
EP1840334A2 (en) 2007-10-03
EP1840335A3 (en) 2007-11-14
EP1840334A3 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
EP1707653B1 (en) Coating system
EP2465958B1 (en) Alloy, protective coating and component
EP2612949B1 (en) Alloy, protective layer and component
EP1783248A1 (en) Two-layer thermal barrier coating system containing a pyrochlore phase
EP1716965A1 (en) Solder comprising metallic elemental filler powder
EP1816222A1 (en) Coating system with two-layered metallic protective coating
EP1793008A1 (en) Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP1798299B1 (en) Alloy, protective coating and component
EP1806418A1 (en) Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP1790743A1 (en) Alloy, protective layer and component
EP1854898A1 (en) Alloy, protective layer and component
EP2474413A1 (en) Alloy, protective coating and component
EP2710167B1 (en) Alloy, protective coating and component
EP1840335B1 (en) Layer
EP1681374B1 (en) Coating system with barrier layer and process of manufacture
DE202005020695U1 (en) Multi-layer material for gas turbine vanes and heat shields, has a metallic bonding layer between the substrate and an inner ceramic layer supporting an outer ceramic layer
EP2611949B1 (en) Nickel base alloy, protective coating, and component
EP2661370B1 (en) Alloy, protective layer and component
EP1790746B1 (en) Alloy, protective layer and component
EP1676938A1 (en) Method of manufacturing a component part of a turbine and a component of a turbine
EP1806419B1 (en) Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP2568054A1 (en) Alloy, protective coating and component
EP2345748A1 (en) Alloy, protective layer and component
EP1818419A1 (en) Alloy, protective layer and component
EP2354260A1 (en) Alloy, protective layer and component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061229

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566