EP1673528B1 - Method and device for determining the phase position of a camshaft of an internal combustion engine - Google Patents

Method and device for determining the phase position of a camshaft of an internal combustion engine Download PDF

Info

Publication number
EP1673528B1
EP1673528B1 EP04787225A EP04787225A EP1673528B1 EP 1673528 B1 EP1673528 B1 EP 1673528B1 EP 04787225 A EP04787225 A EP 04787225A EP 04787225 A EP04787225 A EP 04787225A EP 1673528 B1 EP1673528 B1 EP 1673528B1
Authority
EP
European Patent Office
Prior art keywords
phase position
camshaft
determined
crankshaft
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04787225A
Other languages
German (de)
French (fr)
Other versions
EP1673528A1 (en
Inventor
Peter Haluska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1673528A1 publication Critical patent/EP1673528A1/en
Application granted granted Critical
Publication of EP1673528B1 publication Critical patent/EP1673528B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to a method and a device for determining a phase angle of a camshaft of an internal combustion engine.
  • a known internal combustion engine has a crankshaft, which is driven by pistons of the cylinder of the internal combustion engine by means of connecting rods. Furthermore, a camshaft is provided on which cams are designed for driving gas inlet and gas outlet valves of the internal combustion engine. The camshaft is coupled by means of a transformer with the crankshaft and is driven by this.
  • Increasingly stringent legislation on the emission of pollutants in internal combustion engines require effective measures to reduce pollutant emissions.
  • Nitrogen oxide emissions (NOX) can be reduced very effectively by returning exhaust gas into the combustion chambers of the cylinders of the internal combustion engine. By the recirculated exhaust gases in the combustion chamber, the peak temperature of the combustion of the air / fuel mixture is lowered, which then leads to a reduction of nitrogen oxide emissions.
  • Exhaust gas recirculation can be achieved particularly well in the internal combustion engine by a so-called internal exhaust gas recirculation.
  • internal exhaust gas recirculation the crankshaft angle range during which both the gas inlet valve releases the inlet to the cylinder and the gas outlet valve releases the outlet to which an exhaust passage is routed are set according to the desired exhaust gas recirculation rate. This crankshaft angle range is often referred to as valve overlap.
  • a reference position learning method for a variable valve timing control system that adjusts a rotational phase of a camshaft relative to a crankshaft in an internal combustion engine to control a valve timing of the engine based on a learned camshaft reference position.
  • a rotation detection signal of crankshaft rotation and a rotation detection signal of camshaft rotation are generated and a rotation phase of the camshaft relative to the crankshaft is detected based on the rotation detection signals of crankshaft rotation and camshaft rotation.
  • a camshaft reference position is learned.
  • the method is characterized by determining a rotational phase for use during learning of the camshaft reference position based on a detected current rotational phase and at least one previous detected rotational phase, wherein a degree of smoothing applied to the current rotational phase, during the determination of the rotation phase depends on the number of considered previous rotation phases and / or a weighting factor associated with the previous rotation phases, and wherein the degree of smoothing of the current rotation phase is greater during learning of the camshaft reference position, compared to a degree of smoothing due to a current rotation phase in determining a camshaft rotation phase during a feedback valve timing control.
  • the object of the invention is to provide a method and a device which enables or accurate detection of the phase position between a camshaft and a crankshaft of an internal combustion engine.
  • the invention is characterized by a method and a corresponding device for determining a phase angle of a camshaft of an internal combustion engine having a crankshaft, a camshaft and an adjusting device, by means of which the phase angle of the camshaft can be adjusted to the crankshaft.
  • a phase angle is determined as a function of a detected crankshaft angle and a detected camshaft angle.
  • a filter coefficient of a filter is dependent on the amplitude of the phase position superimposed on the phase angle and the change in the phase position determined.
  • a filtered phase position of the determined phase position is determined by means of the filter.
  • the invention is based on the finding that in particular in internal combustion engines whose camshaft or camshafts act on a few gas exchange valves, as for example in a V6 internal combustion engine with two camshafts, which are each associated with the gas exchange valves or only the gas inlet valves of three cylinders, the strong rotational movement of Camshaft superimposed vibrations occur due to the valve movements of the gas exchange valves. This then leads to an inaccurate detection of the phase position and thus in the case of a control of the phase position to reduce the control quality, especially in the stationary operation of the scheme.
  • phase position By filtering the phase position according to the invention can be ensured with a suitable choice of the filter coefficients depending on the amplitude of the phase position superimposed oscillation of the phase position and the change in the phase position both a very good dynamic behavior in setting a desired phase position and the stationary accuracy in the setting of Phase position can be improved.
  • the filtering is carried out by means of a first-order non-recursive filter. This has the advantage that the filtering is particularly easy.
  • the change in the phase position is filtered and determines the filter coefficient as a function of the filtered change in the phase position. This has the advantage that the phase position can be determined easily and very accurately.
  • the filtering of the change in the phase position depends on the speed and / or an oil temperature.
  • the amplitude of the oscillation of the phase position is filtered and the filter coefficient determined depending on the filtered amplitude of the oscillation of the phase position. This has the advantage that the phase position can be determined easily and very accurately.
  • the filtering of the amplitude is dependent on the speed and / or an oil temperature.
  • the reduction of the filter coefficient within a predetermined period of time or within a predetermined crankshaft angle section is limited to a predetermined threshold. This can be prevented in a sudden change from increasing phase to decreasing phase or vice versa that the filter coefficient is reduced from a high value short-term to a low value with the result of then strong filtering of the phase, which is undesirable in such a transient course of the phase is.
  • the filtering is carried out by means of a non-recursive filter of order two or higher. This allows even more precise filtering of the phase position.
  • An internal combustion engine ( FIG. 1 ) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the intake tract preferably comprises a throttle valve 11, a collector 12 and a suction pipe 13 which is guided towards a cylinder Z1 via an intake passage in the engine block.
  • the engine block further comprises a crankshaft 21, which is coupled via a connecting rod 25 with the piston 24 of the cylinder Z1.
  • the cylinder head comprises a valve train with an inlet valve 30, an outlet valve 31 and valve drives 32, 33.
  • the drive of the gas inlet valve 30 and the gas outlet valve 31 by means of a camshaft 36 (see FIG. 2 ) on which cams 39 are formed, which act on the gas inlet valve 30 and the gas outlet valve 31, or optionally by means of two camshafts, one each associated with the gas inlet valve 30 and the gas outlet valve 31.
  • the drive for the gas inlet valve 30 and / or the gas outlet valve 31 preferably comprises in addition to the camshaft 36, an adjusting device 37 which is coupled on the one hand with the camshaft 36 and on the other hand with the crankshaft 21, z. B. about sprockets, which are coupled together via a chain.
  • the adjusting device 37 By means of the adjusting device 37, the phase position between the crankshaft 21 and the camshaft 36 can be adjusted.
  • the arrangement of the sprockets and the chain forms a transformer.
  • the adjusting device 37 may be associated with only one camshaft 36, while the other camshaft is directly driven by the crankshaft 21 by means of the transformer.
  • the valve overlap of the gas inlet valve 30 and the gas outlet valve 31 may be changed, i. the crankshaft angle range during which both an inlet and an outlet of the cylinder are released. Changing the valve overlap is also possible if two camshafts 36 are assigned two separate adjusting devices 37.
  • the cylinder head 3 ( FIG. 1 ) further comprises an injection valve 34 and a spark plug 35.
  • the injection valve may also be arranged in the intake manifold 13.
  • the exhaust tract 4 comprises a catalytic converter 40.
  • a control device 6 is provided, which is associated with sensors which detect different measured variables and in each case determine the measured value of the measured variable.
  • the control device 6 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
  • the sensors are a pedal position sensor 71 which detects the position of an accelerator pedal 7, an air mass meter 14 which detects an air mass flow upstream of the throttle valve 11, a temperature sensor 15 which detects the intake air temperature, a pressure sensor 16 which detects the intake manifold pressure MAP, a crankshaft angle sensor 22 , which detects a crankshaft angle CRK, which is assigned a rotational speed N, another temperature sensor 23, which detects a coolant temperature, a camshaft angle sensor 36a, which detects the camshaft angle CAM, another temperature sensor 26, which detects an oil temperature TOIL and an oxygen probe 41 which a residual oxygen content of the exhaust gas detected.
  • any subset of said sensors or additional sensors may be present.
  • the actuators are, for example, the throttle valve 11, the gas inlet and gas outlet valves 30, 31, the injection valve 34, the spark plug 35 and the adjusting device 37
  • the internal combustion engine may also include further cylinders Z2-Z4, to which corresponding actuators are then assigned.
  • a program for determining the phase position PH between the crankshaft 21 and the camshaft 36 is in one step S1 ( FIG. 1 ), in which variables are initialized if necessary.
  • the phase position PH is determined as a function of the crankshaft angle CRK and the camshaft angle CAM. This is done, for example, by counting tooth flanks of a crankshaft angle sensor of the crankshaft angle sensor 22 relative to a reference position on the camshaft 36 and then converting into the phase position PH.
  • an amplitude AMP of a vibration of the phase position PH is determined.
  • a bracketed n means a value detected or determined in the current calculation cycle of the program.
  • an n-1 in parentheses means a value determined or acquired in the last calculation cycle of the program.
  • the current amplitude AMP (n) of the oscillation of the phase position PH is determined by magnitude formation of the difference between the current phase position PH (n) and the phase position PH (n-1) determined in the preceding calculation cycle.
  • a filtered amplitude AMP_FIL (n) is determined by filtering the currently determined amplitude AMP (n) with a first-order filter.
  • the first-order filter has a filter coefficient FF1, which is either fixed, but is advantageously determined in advance in a step S22 as a function of the rotational speed N and / or the oil temperature TOIL. This is preferably done by means of a characteristic curve or a characteristic field and indeed by characteristic curve or characteristic field interpolation. The characteristic curve or the characteristic diagram are determined by appropriate tests on an engine test bench or by simulations.
  • the current change DELTA (n) of the phase position PH is determined by forming the difference between the current phase position PH (n) and the preceding phase position PH (n-1).
  • a filtered change DELTA_FIL (n) is determined by means of a first-order filter by filtering the current change DELTA (n).
  • the filter coefficient FF2 of the second filter may be fixed, but is preferably determined in advance in a step S24 depending on the rotational speed N and / or an oil temperature TOIL and indeed as in step S22 preferably by means of map or characteristic interpolation.
  • the current filter coefficient FF3 (n) is then determined for a further filter, specifically as a function of the filtered amplitude AMP_FIL (n) and the filtered change DELTA_FIL (n) of the phase position PH. This is preferably done by means of characteristic map interpolation from a characteristic field, which was determined in advance by tests on an engine test bench.
  • the map values are preferably chosen such that in the cases in which the filtered amplitude AMP_FIL (n) of the oscillation of the phase angle is approximately equal to the filtered change DELTA_FIL (n) of the phase position PH are relatively large, for example have the value 0.7 , On the other hand, if the filtered change DELTA_FIL (n) is close to zero and the filtered amplitude AMP_FIL (n) is significantly greater than zero, the map values are preferably very small, for example, from 0.1 to 0, second
  • a filtered current phase position PH_FIL (n) is then determined by filtering the current phase position PH (n) by means of a first-order filter with the filter coefficient FF3.
  • step S12 the processing proceeds to a step S14 in which it is checked whether the difference of the filter coefficient FF3 (n-1) obtained in the previous calculation pass and the currently determined filter coefficient FF3 (n) is larger as a predetermined threshold SW. If this is not the case, the processing is continued directly in step S18.
  • step S14 If, on the other hand, the condition of step S14 is fulfilled, the difference between the filter coefficient FF3 (n-1) and the threshold value SW determined in the preceding calculation cycle is assigned to the current filter coefficient FF3 (n) in a step S16. It is thereby achieved that the filter coefficient FF3 changes from one calculation cycle to the next calculation cycle at most by the threshold value SW. As a result, in the case of a sudden change from increasing phase position PH to decreasing phase position PH or vice versa, it is possible to temporarily reduce the filter coefficient FF3 from a high value to a low value with the consequence of a then strong filtering of the phase position PH, which is the case with such a transient one Course of the phase position PH is undesirable.
  • step S20 The program pauses for a predetermined waiting period T_W in a step S20 before the processing is continued again in step S2.
  • the program may also remain for a given crankshaft angle before the processing is continued again in step S2.
  • the reworking of steps S2 to S18 then corresponds to the next calculation cycle.
  • the program is started in a step S26, preferably close to the start of the internal combustion engine.
  • an exhaust gas recirculation rate EGR is determined, specifically as a function of a required torque TQ_REQ, which is to be generated by the internal combustion engine and preferably determined as a function of the position of the accelerator pedal and optionally further torque requirements, such as those of an ABS or ESP system becomes.
  • the exhaust gas recirculation rate is advantageously also determined depending on an operating mode MOD of the internal combustion engine, which may be, for example, a shift operation or a homogeneous operation of the internal combustion engine.
  • the exhaust gas recirculation rate EGR can also be determined depending on further operating variables of the internal combustion engine.
  • a setpoint value PH_SP of the phase position is then determined as a function of the exhaust gas recirculation rate EGR, the intake manifold pressure MAP, and depending on the rotational speed N and possibly further operating variables.
  • the actuating signal S for actuating the adjusting device 37 is then determined as a function of the desired value PH_SP of the phase position and of the filtered phase position PH_FIL (n). This is preferably done by means of a regulator which is designed as a P, PI or PID controller.
  • the adjusting device 37 is then controlled by the actuating signal S.
  • the program then pauses for the predetermined waiting period T_W in a step S34.
  • the program may also remain in the step S34 for a predetermined crankshaft angle, before the processing is continued again in the step S28.
  • the control quality of the controller of step S28 can be greatly increased and a good dynamic behavior and at the same time a high stationary control accuracy can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to an internal combustion engine comprising a crankshaft, a camshaft and an adjusting device, which is used to adjust the phase position (PH) of the camshaft in relation to the crankshaft. The phase position (PH) is determined in accordance with a detected crankshaft angle (CRK) and a recorded camshaft angle (CAM). A filter coefficient (FF3) of a filter is determined in accordance with the amplitude (AMP) of an oscillation of the phase position (PH) and the modification (DELTA) of said phase position (PH). A filtered phase position (PH_FIL) of the determined phase position (PH) is calculated using the filter.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ermitteln einer Phasenlage einer Nockenwelle einer Brennkraftmaschine.The invention relates to a method and a device for determining a phase angle of a camshaft of an internal combustion engine.

Eine bekannte Brennkraftmaschine hat eine Kurbelwelle, die von Kolben der Zylinder der Brennkraftmaschine mittels Pleuelstangen angetrieben wird. Ferner ist eine Nockenwelle vorgesehen, auf der Nocken ausgebildet sind zum Antrieb von Gaseinlass- und Gasauslassventilen der Brennkraftmaschine. Die Nockenwelle ist mittels eines Übertragers mit der Kurbelwelle gekoppelt und wird von dieser angetrieben. Immer strengere gesetzliche Vorschriften bezüglich des Ausstoßes von Schadstoffen bei Brennkraftmaschinen erfordern wirkungsvolle Maßnahmen zum Reduzieren von Schadstoffemissionen. Stickoxidemissionen (NOX) können sehr wirkungsvoll durch das Rückführen von Abgas in die Brennräume der Zylinder der Brennkraftmaschine reduziert werden. Durch die rückgeführten Abgase in dem Brennraum wird die Spitzentemperatur der Verbrennung des Luft/Kraftstoff-Gemisches gesenkt, was dann zu einer Reduzierung der Stickoxidemissionen führt.A known internal combustion engine has a crankshaft, which is driven by pistons of the cylinder of the internal combustion engine by means of connecting rods. Furthermore, a camshaft is provided on which cams are designed for driving gas inlet and gas outlet valves of the internal combustion engine. The camshaft is coupled by means of a transformer with the crankshaft and is driven by this. Increasingly stringent legislation on the emission of pollutants in internal combustion engines require effective measures to reduce pollutant emissions. Nitrogen oxide emissions (NOX) can be reduced very effectively by returning exhaust gas into the combustion chambers of the cylinders of the internal combustion engine. By the recirculated exhaust gases in the combustion chamber, the peak temperature of the combustion of the air / fuel mixture is lowered, which then leads to a reduction of nitrogen oxide emissions.

Eine Abgasrückführung kann in der Brennkraftmaschine besonders gut durch eine sogenannte interne Abgasrückführung erreicht werden. Bei einer internen Abgasrückführung wird der Kurbelwellenwinkelbereich, während dessen sowohl das Gaseinlassventil den Einlass zum Zylinder freigibt als auch das Gasauslassventil den Auslass freigibt, zu dem ein Abgaskanal geführt ist, entsprechend der gewünschten Abgasrückführrate eingestellt. Dieser Kurbelwellenwinkelbereich wird häufig auch mit Ventilüberschneidung bezeichnet.Exhaust gas recirculation can be achieved particularly well in the internal combustion engine by a so-called internal exhaust gas recirculation. In internal exhaust gas recirculation, the crankshaft angle range during which both the gas inlet valve releases the inlet to the cylinder and the gas outlet valve releases the outlet to which an exhaust passage is routed are set according to the desired exhaust gas recirculation rate. This crankshaft angle range is often referred to as valve overlap.

Aus der DE 101 08 055 C1 ist eine Brennkraftmaschine bekannt mit einer Nockenwelle, deren Phasenlage zu der Kurbelwelle mittels einer Verstelleinrichtung verstellbar ist. Die Verstelleinrichtung ist hydraulisch ansteuerbar.From the DE 101 08 055 C1 an internal combustion engine is known with a camshaft whose phase angle is adjustable to the crankshaft by means of an adjusting device. The adjustment is hydraulically controlled.

Je nachdem in welchem Betriebspunkt sich die Brennkraftmaschine befindet, müssen sehr unterschiedliche Abgasrückführraten eingestellt werden. Dies gilt auch für die unterschiedlichen Betriebsmodi, wie sie beispielsweise bei Brennkraftmaschinen mit Einspritzventilen auftreten, die den Kraftstoff direkt in den Brennraum des Zylinders zumessen. Diese Betriebsmodi sind beispielsweise ein Schicht-Betrieb oder ein Homogen-Betrieb. Es ergibt sich somit die Anforderung sehr schnell die Abgasrückführraten von hohen auf niedrige und umgekehrt einzustellen und gleichzeitig die Abgasrückführrate sehr präzise einzustellen. Die DE 101 08 055 C1 offenbart, die Phasenlage abhängig von dem Nockenwellenwinkel und dem Kurbelwellenwinkel zu ermitteln.Depending on the operating point in which the internal combustion engine is located, very different exhaust gas recirculation rates must be set. This also applies to the different operating modes, as they occur, for example, in internal combustion engines with injection valves, which meter the fuel directly into the combustion chamber of the cylinder. These operating modes are, for example, a shift operation or a homogeneous operation. Thus, the requirement arises very quickly to set the exhaust gas recirculation rates from high to low and vice versa and at the same time to set the exhaust gas recirculation rate very precisely. The DE 101 08 055 C1 discloses to determine the phase angle depending on the camshaft angle and the crankshaft angle.

In der EP 1 201 886 A1 ist ein Bezugspositions-Lernverfahren für ein veränderbares Ventilzeitpunkt-Steuerungssystems beschrieben, das eine Rotationsphase einer Nockenwelle im Verhältnis zu einer Kurbelwelle in einer Brennkraftmaschine einstellt, um einen Ventilzeitpunkt des Motors auf der Grundlage einer gelernten Nockenwellen-Bezugsposition zu steuern. Es wird ein Rotations-Erfassungssignals einer Kurbelwellendrehung und ein Rotations-Erfassungssignal einer Nockenwellendrehung erzeugt und eine Rotationsphase der Nockenwelle im Verhältnis zu der Kurbelwelle auf der Grundlage der Rotationserfassungssignale einer Kurbelwellendrehung und einer Nockenwellendrehung erfasst. Auf der Grundlage der erfassten Rotationsphase wird eine Nockenwellenbezugspostition gelernt. Das Verfahren ist gekennzeichnet durch Bestimmen einer Rotationsphase zur Verwendung während des Lernens der Nockenwellenbezugsposition auf der Grundlage einer erfassten gegenwärtigen Rotationsphase und zumindest einer vorherigen erfassten Rotationsphase, wobei ein Glättungsgrad der gegenwärtigen Rotationsphase angewandt, während der Bestimmung der Rotationsphase von der Anzahl der berücksichtigten vorherigen Rotationsphasen und /oder von einem Wichtungsfaktor zugeordnet zu den vorherigen Rotationsphasen abhängt, und wobei der Glättungsgrad der gegenwärtigen Rotationsphase während des Lernens der Nockenwellenbezugsposition größer ist, verglichen mit einem Glättungsgrad, der auf eine gegenwärtige Rotationsphase beim Bestimmen einer Nockenwellen-Rotationsphase während einer Rückkopplungs-Ventilzeitpunktsteuerung angewandt wird.In the EP 1 201 886 A1 For example, a reference position learning method for a variable valve timing control system that adjusts a rotational phase of a camshaft relative to a crankshaft in an internal combustion engine to control a valve timing of the engine based on a learned camshaft reference position. A rotation detection signal of crankshaft rotation and a rotation detection signal of camshaft rotation are generated and a rotation phase of the camshaft relative to the crankshaft is detected based on the rotation detection signals of crankshaft rotation and camshaft rotation. Based on the detected rotational phase, a camshaft reference position is learned. The method is characterized by determining a rotational phase for use during learning of the camshaft reference position based on a detected current rotational phase and at least one previous detected rotational phase, wherein a degree of smoothing applied to the current rotational phase, during the determination of the rotation phase depends on the number of considered previous rotation phases and / or a weighting factor associated with the previous rotation phases, and wherein the degree of smoothing of the current rotation phase is greater during learning of the camshaft reference position, compared to a degree of smoothing due to a current rotation phase in determining a camshaft rotation phase during a feedback valve timing control.

Die Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zu schaffen, das beziehungsweise die ein genaues Erfassen der Phasenlage zwischen einer Nockenwelle und einer Kurbelwelle einer Brennkraftmaschine ermöglicht.The object of the invention is to provide a method and a device which enables or accurate detection of the phase position between a camshaft and a crankshaft of an internal combustion engine.

Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.The object is solved by the features of the independent claims. Advantageous embodiments of the invention are characterized in the subclaims.

Die Erfindung zeichnet sich aus durch ein Verfahren und eine entsprechende Vorrichtung zum Ermitteln einer Phasenlage einer Nockenwelle einer Brennkraftmaschine mit einer Kurbelwelle, einer Nockenwelle und einer Verstelleinrichtung, mittels der die Phasenlage der Nockenwelle zu der Kurbelwelle verstellt werden kann. Eine Phasenlage wird abhängig von einem erfassten Kurbelwellenwinkel und einem erfassten Nockenwellenwinkel ermittelt. Ein Filterkoeffizient eines Filters wird abhängig von der Amplitude einer der Phasenlage überlagerten Schwingung der Phasenlage und der Änderung der Phasenlage ermittelt. Eine gefilterte Phasenlage der ermittelten Phasenlage wird mittels des Filters ermittelt.The invention is characterized by a method and a corresponding device for determining a phase angle of a camshaft of an internal combustion engine having a crankshaft, a camshaft and an adjusting device, by means of which the phase angle of the camshaft can be adjusted to the crankshaft. A phase angle is determined as a function of a detected crankshaft angle and a detected camshaft angle. A filter coefficient of a filter is dependent on the amplitude of the phase position superimposed on the phase angle and the change in the phase position determined. A filtered phase position of the determined phase position is determined by means of the filter.

Der Erfindung liegt die Erkenntnis zugrunde, dass insbesondere bei Brennkraftmaschinen, deren Nockenwelle oder Nockenwellen auf wenige Gaswechselventile einwirken, wie dies beispielsweise bei einer V6-Brennkraftmaschine mit zwei Nockenwellen, die jeweils den Gaswechselventilen oder nur den Gaseinlassventilen dreier Zylinder zugeordnet sind, starke der Drehbewegung der Nockenwelle überlagerte Schwingungen auftreten aufgrund der Ventilbewegungen der Gaswechselventile. Dies führt dann zu einer ungenauen Erfassung der Phasenlage und damit im Falle einer Regelung der Phasenlage zur Verringerung der Regelungsgüte, insbesondere im Stationärbetrieb der Regelung.The invention is based on the finding that in particular in internal combustion engines whose camshaft or camshafts act on a few gas exchange valves, as for example in a V6 internal combustion engine with two camshafts, which are each associated with the gas exchange valves or only the gas inlet valves of three cylinders, the strong rotational movement of Camshaft superimposed vibrations occur due to the valve movements of the gas exchange valves. This then leads to an inaccurate detection of the phase position and thus in the case of a control of the phase position to reduce the control quality, especially in the stationary operation of the scheme.

Durch das erfindungsgemäße Filtern der Phasenlage kann bei geeigneter Wahl der Filterkoeffizienten abhängig von der Amplitude einer der Phasenlage überlagerten Schwingung der Phasenlage und der Änderung der Phasenlage sowohl ein sehr gutes Dynamikverhalten bei der Einstellung einer gewünschten Phasenlage gewährleistet werden als auch die stationäre Genauigkeit bei der Einstellung der Phasenlage verbessert werden.By filtering the phase position according to the invention can be ensured with a suitable choice of the filter coefficients depending on the amplitude of the phase position superimposed oscillation of the phase position and the change in the phase position both a very good dynamic behavior in setting a desired phase position and the stationary accuracy in the setting of Phase position can be improved.

In einer vorteilhaften Ausgestaltung der Erfindung erfolgt die Filterung mittels eines nichtrekursiven Filters erster Ordnung. Dies hat den Vorteil, dass die Filterung besonders einfach ist.In an advantageous embodiment of the invention, the filtering is carried out by means of a first-order non-recursive filter. This has the advantage that the filtering is particularly easy.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Änderung der Phasenlage gefiltert und der Filterkoeffizient abhängig von der gefilterten Änderung der Phasenlage ermittelt. Dies hat den Vorteil, dass die Phasenlage einfach und sehr genau bestimmt werden kann.In a further advantageous embodiment of the invention, the change in the phase position is filtered and determines the filter coefficient as a function of the filtered change in the phase position. This has the advantage that the phase position can be determined easily and very accurately.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung erfolgt die Filterung der Änderung der Phasenlage abhängig von der Drehzahl und/oder einer Öltemperatur. Dies hat den Vorteil, dass die Drehzahl und/oder Öltemperatur charakteristisch sind für die Pumpleistung einer Hydraulikpumpe und damit für eine mögliche Dynamik einer hydraulisch angesteuerten Verstelleinrichtung.In a further advantageous embodiment of the invention, the filtering of the change in the phase position depends on the speed and / or an oil temperature. This has the advantage that the speed and / or oil temperature are characteristic of the pump power of a hydraulic pump and thus for a possible dynamics of a hydraulically controlled adjusting device.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Amplitude der Schwingung der Phasenlage gefiltert und der Filterkoeffizient abhängig von der gefilterten Amplitude der Schwingung der Phasenlage ermittelt. Dies hat den Vorteil, dass die Phasenlage einfach und sehr genau bestimmt werden kann.In a further advantageous embodiment of the invention, the amplitude of the oscillation of the phase position is filtered and the filter coefficient determined depending on the filtered amplitude of the oscillation of the phase position. This has the advantage that the phase position can be determined easily and very accurately.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung erfolgt die Filterung der Amplitude abhängig von der Drehzahl und/oder einer Öltemperatur. Dies hat den Vorteil, dass die Drehzahl und/oder Öltemperatur charakteristisch sind für die Pumpleistung einer Hydraulikpumpe und damit für eine mögliche Dynamik einer hydraulisch angesteuerten Verstelleinrichtung.In a further advantageous embodiment of the invention, the filtering of the amplitude is dependent on the speed and / or an oil temperature. This has the advantage that the speed and / or oil temperature are characteristic of the pump power of a hydraulic pump and thus for a possible dynamics of a hydraulically controlled adjusting device.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das Verringern des Filterkoeffizienten innerhalb einer vorgegebenen Zeitdauer oder innerhalb eines vorgegebenen Kurbelwellenwinkelabschnitts auf einen vorgegebenen Schwellenwert begrenzt. Dadurch kann bei einem plötzlichen Wechsel von zunehmender Phasenlage zu abnehmender Phasenlage oder umgekehrt verhindert werden, dass der Filterkoeffizient von einem hohen Wert kurzfristig auf einen niedrigen Wert herabgesetzt wird mit der Folge einer dann starken Filterung der Phasenlage, was bei einem derartigen instationären Verlauf der Phasenlage unerwünscht ist.In a further advantageous embodiment of the invention, the reduction of the filter coefficient within a predetermined period of time or within a predetermined crankshaft angle section is limited to a predetermined threshold. This can be prevented in a sudden change from increasing phase to decreasing phase or vice versa that the filter coefficient is reduced from a high value short-term to a low value with the result of then strong filtering of the phase, which is undesirable in such a transient course of the phase is.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung erfolgt die Filterung mittels eines nichtrekursiven Filters der Ordnung zwei oder höher. Dadurch ist ein noch präziseres Filtern der Phasenlage möglich.In a further advantageous embodiment of the invention, the filtering is carried out by means of a non-recursive filter of order two or higher. This allows even more precise filtering of the phase position.

Ausführungsbeispiele der Erfindung werden im folgenden anhand der schematischen Zeichnungen erläutert. Es zeigen:

Figur 1
eine Brennkraftmaschine mit einer Steuereinrich- tung,
Figur 2
eine weitere Ansicht von Teilen der Brennkraftma- schine,
Figur 3
ein Ablaufdiagramm eines Programms zum Ermitteln einer Phasenlage einer Nockenwelle zu einer Kurbel- welle der Brennkraftmaschine gemäß Figur 1 und 2, und
Figur 4
ein Ablaufdiagramm eines Programms zum Einstellen der Phasenlage zwischen der Nockenwelle und der Kurbelwelle.
Embodiments of the invention are explained below with reference to the schematic drawings. Show it:
FIG. 1
an internal combustion engine with a control device,
FIG. 2
another view of parts of the internal combustion engine,
FIG. 3
a flowchart of a program for determining a phase angle of a camshaft to a crankshaft of the internal combustion engine according to FIGS. 1 and 2 , and
FIG. 4
a flowchart of a program for adjusting the phase angle between the camshaft and the crankshaft.

Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet.Elements of the same construction and function are identified across the figures with the same reference numerals.

Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgastrakt 4. Der Ansaugtrakt umfasst vorzugsweise eine Drosselklappe 11, ferner einen Sammler 12 und ein Saugrohr 13, das hin zu einem Zylinder Z1 über einen Einlasskanal in den Motorblock geführt ist. Der Motorblock umfasst ferner eine Kurbelwelle 21, welche über eine Pleuelstange 25 mit dem Kolben 24 des Zylinders Z1 gekoppelt ist.An internal combustion engine ( FIG. 1 ) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4. The intake tract preferably comprises a throttle valve 11, a collector 12 and a suction pipe 13 which is guided towards a cylinder Z1 via an intake passage in the engine block. The engine block further comprises a crankshaft 21, which is coupled via a connecting rod 25 with the piston 24 of the cylinder Z1.

Der Zylinderkopf umfasst einen Ventiltrieb mit einem Einlassventil 30, einem Auslassventil 31 und Ventilantrieben 32, 33. Der Antrieb des Gaseinlassventils 30 und des Gasauslassventils 31 erfolgt mittels einer Nockenwelle 36 (siehe Figur 2), auf der Nocken 39 ausgebildet sind, die auf das Gaseinlassventil 30 bzw. das Gasauslassventil 31 einwirken, oder gegebenenfalls mittels zweier Nockenwellen, wobei je eine dem Gaseinlassventil 30 und dem Gasauslassventil 31 zugeordnet ist.The cylinder head comprises a valve train with an inlet valve 30, an outlet valve 31 and valve drives 32, 33. The drive of the gas inlet valve 30 and the gas outlet valve 31 by means of a camshaft 36 (see FIG. 2 ) on which cams 39 are formed, which act on the gas inlet valve 30 and the gas outlet valve 31, or optionally by means of two camshafts, one each associated with the gas inlet valve 30 and the gas outlet valve 31.

Der Antrieb für das Gaseinlassventil 30 und/ oder das Gasauslassventil 31 umfasst vorzugsweise neben der Nockenwelle 36 eine Verstelleinrichtung 37, die einerseits mit der Nockenwelle 36 und andererseits mit der Kurbelwelle 21 gekoppelt ist, z. B. über Zahnkränze, die über eine Kette miteinander gekoppelt sind. Mittels der Verstelleinrichtung 37 kann die Phasenlage zwischen der Kurbelwelle 21 und der Nockenwelle 36 verstellt werden. Die Anordnung der Zahnkränze und der Kette bildet einen Übertrager.The drive for the gas inlet valve 30 and / or the gas outlet valve 31 preferably comprises in addition to the camshaft 36, an adjusting device 37 which is coupled on the one hand with the camshaft 36 and on the other hand with the crankshaft 21, z. B. about sprockets, which are coupled together via a chain. By means of the adjusting device 37, the phase position between the crankshaft 21 and the camshaft 36 can be adjusted. The arrangement of the sprockets and the chain forms a transformer.

Dies erfolgt im vorliegenden Ausführungsbeispiel durch Erhöhen des hydraulischen Drucks in den Hochdruckkammern 37a der Verstelleinrichtung 37 bzw. Erniedrigen des entsprechenden Drucks, je nachdem in welche Richtung die Verstellung erfolgen soll. Der mögliche Verstellbereich ist in der Figur 2 mit dem Pfeil 37b gekennzeichnet.This is done in the present embodiment by increasing the hydraulic pressure in the high-pressure chambers 37a of the adjusting device 37 and lowering the corresponding pressure, depending on the direction in which the adjustment is to take place. The possible adjustment range is in the FIG. 2 indicated by the arrow 37b.

Falls zwei Nockenwellen 36 vorgesehen sind kann beispielsweise die Verstelleinrichtung 37 nur einer Nockenwelle 36 zugeordnet sein, während die andere Nockenwelle direkt mittels des Übertragers von der Kurbelwelle 21 angetrieben wird. In diesem Fall kann die Ventilüberschneidung des Gaseinlassventils 30 und des Gasauslassventils 31 verändert werden, d.h. der Kurbelwellenwinkelbereich, während dessen sowohl ein Einlass als auch ein Auslass des Zylinders freigegeben wird. Ein Verändern der Ventilüberschneidung ist auch möglich, wenn zwei Nockenwellen 36 zwei separate Verstelleinrichtungen 37 zugeordnet sind.If two camshafts 36 are provided, for example, the adjusting device 37 may be associated with only one camshaft 36, while the other camshaft is directly driven by the crankshaft 21 by means of the transformer. In this case, the valve overlap of the gas inlet valve 30 and the gas outlet valve 31 may be changed, i. the crankshaft angle range during which both an inlet and an outlet of the cylinder are released. Changing the valve overlap is also possible if two camshafts 36 are assigned two separate adjusting devices 37.

Der Zylinderkopf 3 (Figur 1) umfasst ferner ein Einspritzventil 34 und eine Zündkerze 35. Alternativ kann das Einspritzventil auch in dem Saugrohr 13 angeordnet sein.The cylinder head 3 ( FIG. 1 ) further comprises an injection valve 34 and a spark plug 35. Alternatively, the injection valve may also be arranged in the intake manifold 13.

Der Abgastrakt 4 umfasst einen Katalysator 40.The exhaust tract 4 comprises a catalytic converter 40.

Ferner ist eine Steuereinrichtung 6 vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und jeweils den Messwert der Messgröße ermitteln. Die Steuereinrichtung 6 ermittelt abhängig von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden.Furthermore, a control device 6 is provided, which is associated with sensors which detect different measured variables and in each case determine the measured value of the measured variable. The control device 6 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.

Die Sensoren sind ein Pedalstellungsgeber 71, welcher die Stellung eines Fahrpedals 7 erfasst, ein Luftmassenmesser 14, welcher einen Luftmassenstrom stromaufwärts der Drosselklappe 11 erfasst, ein Temperatursensor 15, welcher die Ansauglufttemperatur erfasst, ein Drucksensor 16, welcher den Saugrohrdruck MAP erfasst, ein Kurbelwellenwinkelsensor 22, welcher einen Kurbelwellenwinkel CRK erfasst, dem eine Drehzahl N zugeordnet wird, ein weiterer Temperatursensor 23, welcher eine Kühlmitteltemperatur erfasst, ein Nockenwellenwinkelsensor 36a, welcher den Nockenwellenwinkel CAM erfasst, ein weiterer Temperatursensor26, welcher eine Öltemperatur TOIL erfasst und eine Sauerstoffsonde 41 welche einen Restsauerstoffgehalt des Abgases erfasst. Je nach Ausführungsform der Erfindung kann eine beliebige Untermenge der genannten Sensoren oder auch zusätzliche Sensoren vorhanden sein.The sensors are a pedal position sensor 71 which detects the position of an accelerator pedal 7, an air mass meter 14 which detects an air mass flow upstream of the throttle valve 11, a temperature sensor 15 which detects the intake air temperature, a pressure sensor 16 which detects the intake manifold pressure MAP, a crankshaft angle sensor 22 , which detects a crankshaft angle CRK, which is assigned a rotational speed N, another temperature sensor 23, which detects a coolant temperature, a camshaft angle sensor 36a, which detects the camshaft angle CAM, another temperature sensor 26, which detects an oil temperature TOIL and an oxygen probe 41 which a residual oxygen content of the exhaust gas detected. Depending on the embodiment of the invention, any subset of said sensors or additional sensors may be present.

Die Stellglieder sind beispielsweise die Drosselklappe 11, die Gaseinlass- und Gasauslassventile 30, 31, das Einspritzventil 34, die Zündkerze 35 und die Verstelleinrichtung 37The actuators are, for example, the throttle valve 11, the gas inlet and gas outlet valves 30, 31, the injection valve 34, the spark plug 35 and the adjusting device 37

Die Brennkraftmaschine kann neben dem Zylinder Z1 auch noch weitere Zylinder Z2-Z4 umfassen, denen dann auch entsprechende Stellglieder zugeordnet sind.In addition to the cylinder Z1, the internal combustion engine may also include further cylinders Z2-Z4, to which corresponding actuators are then assigned.

Ein Programm zum Ermitteln der Phasenlage PH zwischen der Kurbelwelle 21 und der Nockenwelle 36 wird in einem Schritt S1 (Figur 1) gestartet, in dem gegebenenfalls Variablen initialisiert werden.A program for determining the phase position PH between the crankshaft 21 and the camshaft 36 is in one step S1 ( FIG. 1 ), in which variables are initialized if necessary.

In einem Schritt S2 wird die Phasenlage PH abhängig von dem Kurbelwellenwinkel CRK und dem Nockenwellenwinkel CAM ermittelt. Dies erfolgt beispielsweise mittels Auszählen von Zahnflanken eines Kurbelwellenwinkelgebers des Kurbelwellenwinkelsensors 22 bezogen auf eine Referenzposition auf der Nockenwelle 36 und anschließendes Umrechnen in die Phasenlage PH.In a step S2, the phase position PH is determined as a function of the crankshaft angle CRK and the camshaft angle CAM. This is done, for example, by counting tooth flanks of a crankshaft angle sensor of the crankshaft angle sensor 22 relative to a reference position on the camshaft 36 and then converting into the phase position PH.

In einem Schritt S4 wird eine Amplitude AMP einer Schwingung der Phasenlage PH ermittelt. Ein in Klammern gesetztes n bedeutet jeweils ein im aktuellen Berechnungszyklus des Programms erfasster oder ermittelter Wert. Ein in Klammern gesetztes n-1 bedeutet dementsprechend ein bei dem letzten Berechnungszyklus des Programms ermittelter oder erfasster Wert.In a step S4, an amplitude AMP of a vibration of the phase position PH is determined. A bracketed n means a value detected or determined in the current calculation cycle of the program. Accordingly, an n-1 in parentheses means a value determined or acquired in the last calculation cycle of the program.

Die aktuelle Amplitude AMP (n) der Schwingung der Phasenlage PH wird durch Betragsbildung der Differenz zwischen der aktuellen Phasenlage PH(n) und der in dem vorangegangenen Berechnungszyklus ermittelten Phasenlage PH(n-1) ermittelt.The current amplitude AMP (n) of the oscillation of the phase position PH is determined by magnitude formation of the difference between the current phase position PH (n) and the phase position PH (n-1) determined in the preceding calculation cycle.

In einem Schritt S6 wird eine gefilterte Amplitude AMP_FIL(n) durch Filtern der aktuell ermittelten Amplitude AMP(n) mit einem Filter erster Ordnung ermittelt. Das Filter erster Ordnung hat einen Filterkoeffizienten FF1, der entweder fest vorgegeben ist, vorteilhaft jedoch vorab in einem Schritt S22 abhängig von der Drehzahl N und/oder der Öltemperatur TOIL ermittelt wird. Dies erfolgt vorzugsweise mittels einer Kennlinie oder eines Kennfeldes und zwar durch Kennlinien- oder Kennfeldinterpolation. Die Kennlinie oder das Kennfeld sind durch entsprechende Versuche an einem Motorprüfstand oder durch Simulationen ermittelt.In a step S6, a filtered amplitude AMP_FIL (n) is determined by filtering the currently determined amplitude AMP (n) with a first-order filter. The first-order filter has a filter coefficient FF1, which is either fixed, but is advantageously determined in advance in a step S22 as a function of the rotational speed N and / or the oil temperature TOIL. This is preferably done by means of a characteristic curve or a characteristic field and indeed by characteristic curve or characteristic field interpolation. The characteristic curve or the characteristic diagram are determined by appropriate tests on an engine test bench or by simulations.

In einem Schritt S8 wird die aktuelle Änderung DELTA(n) der Phasenlage PH durch Bilden der Differenz zwischen der aktuellen Phasenlage PH(n) und der vorangegangenen Phasenlage PH(n-1) ermittelt.In a step S8, the current change DELTA (n) of the phase position PH is determined by forming the difference between the current phase position PH (n) and the preceding phase position PH (n-1).

In einem Schritt S10 wird eine gefilterte Änderung DELTA_FIL(n) mittels eines Filters erster Ordnung durch Filtern der aktuelle Änderung DELTA(n) ermittelt. Der Filterkoeffizient FF2 des zweiten Filters kann fest vorgegeben sein, wird jedoch bevorzugt vorab in einem Schritt S24 abhängig von der Drehzahl N und/oder einer Öltemperatur TOIL ermittelt und zwar ebenso wie im Schritt S22 vorzugsweise mittels Kennfeld- oder Kennlinieninterpolation.In a step S10, a filtered change DELTA_FIL (n) is determined by means of a first-order filter by filtering the current change DELTA (n). The filter coefficient FF2 of the second filter may be fixed, but is preferably determined in advance in a step S24 depending on the rotational speed N and / or an oil temperature TOIL and indeed as in step S22 preferably by means of map or characteristic interpolation.

In einem Schritt S12 wird dann der aktuelle Filterkoeffizient FF3(n) für eine weiteres Filter ermittelt und zwar abhängig von der gefilterten Amplitude AMP_FIL(n) und der gefilterten Änderung DELTA_FIL(n) der Phasenlage PH. Dies erfolgt vorzugsweise mittels Kennfeldinterpolation aus einem Kennfeld, das vorab durch Versuche an einem Motorprüfstand ermittelt wurde. Die Kennfeldwerte sind vorzugsweise so gewählt, dass in den Fällen, in denen die gefilterte Amplitude AMP_FIL(n) der Schwingung der Phasenlage in etwa gleich ist der gefilterten Änderung DELTA_FIL(n) der Phasenlage PH relativ groß sind, beispielsweise den Wert 0,7 haben. Wenn andererseits die gefilterte Änderung DELTA_FIL(n) nahezu den Wert null hat und die gefilterte Amplitude AMP_FIL(n) einen deutlich größeren Wert als null hat, sind die Kennfeldwerte bevorzugt sehr klein gewählt und zwar zum Beispiel mit Werten von 0,1 bis 0,2.In a step S12, the current filter coefficient FF3 (n) is then determined for a further filter, specifically as a function of the filtered amplitude AMP_FIL (n) and the filtered change DELTA_FIL (n) of the phase position PH. This is preferably done by means of characteristic map interpolation from a characteristic field, which was determined in advance by tests on an engine test bench. The map values are preferably chosen such that in the cases in which the filtered amplitude AMP_FIL (n) of the oscillation of the phase angle is approximately equal to the filtered change DELTA_FIL (n) of the phase position PH are relatively large, for example have the value 0.7 , On the other hand, if the filtered change DELTA_FIL (n) is close to zero and the filtered amplitude AMP_FIL (n) is significantly greater than zero, the map values are preferably very small, for example, from 0.1 to 0, second

In einem Schritt S18 wird dann eine gefilterte aktuelle Phasenlage PH_FIL(n) durch Filtern der aktuellen Phasenlage PH(n) mittels eines Filters erster Ordnung mit dem Filterkoeffizienten FF3 ermittelt.In a step S18, a filtered current phase position PH_FIL (n) is then determined by filtering the current phase position PH (n) by means of a first-order filter with the filter coefficient FF3.

Bevorzugt wird nach dem Schritt S12 die Bearbeitung in einem Schritt S14 fortgesetzt, in dem geprüft wird, ob die Differenz des Filterkoeffizienten FF3(n-1), der in dem vorangegangenen Berechnungsdurchlauf ermittelt wurde, und des aktuell ermittelten Filterkoeffizienten FF3(n) größer ist als ein vorgegebener Schwellenwert SW. Ist dies nicht der Fall so wird die Bearbeitung direkt in dem Schritt S18 fortgesetzt.Preferably, after the step S12, the processing proceeds to a step S14 in which it is checked whether the difference of the filter coefficient FF3 (n-1) obtained in the previous calculation pass and the currently determined filter coefficient FF3 (n) is larger as a predetermined threshold SW. If this is not the case, the processing is continued directly in step S18.

Ist die Bedingung des Schrittes S14 hingegen erfüllt, so wird in einem Schritt S16 dem aktuellen Filterkoeffizienten FF3(n) die Differenz des in dem vorangegangenen Berechnungszyklus ermittelten Filterkoeffizienten FF3(n-1) und des Schwellenwertes SW zugeordnet. Dadurch wird erreicht, dass sich der Filterkoeffizient FF3 von einem Berechnungszyklus zu dem nächsten Berechnungszylklus maximal um den Schwellenwert SW ändert. Dadurch kann bei einem plötzlichen Wechsel von zunehmender Phasenlage PH zu abnehmender Phasenlage PH oder umgekehrt verhindert werden, dass der Filterkoeffizient FF3 von einem hohen Wert kurzfristig auf einen niedrigen Wert herabgesetzt wird mit der Folge einer dann starken Filterung der Phasenlage PH, was bei einem derartigen instationären Verlauf der Phasenlage PH unerwünscht ist.If, on the other hand, the condition of step S14 is fulfilled, the difference between the filter coefficient FF3 (n-1) and the threshold value SW determined in the preceding calculation cycle is assigned to the current filter coefficient FF3 (n) in a step S16. It is thereby achieved that the filter coefficient FF3 changes from one calculation cycle to the next calculation cycle at most by the threshold value SW. As a result, in the case of a sudden change from increasing phase position PH to decreasing phase position PH or vice versa, it is possible to temporarily reduce the filter coefficient FF3 from a high value to a low value with the consequence of a then strong filtering of the phase position PH, which is the case with such a transient one Course of the phase position PH is undesirable.

Das Programm verharrt für eine vorgegebene Wartezeitdauer T_W in einem Schritt S20, bevor die Bearbeitung erneut im Schritt S2 fortgesetzt wird. Alternativ kann das Programm in dem Schritt S20 auch für einen vorgegebenen Kurbelwellenwinkel verharren, bevor die Bearbeitung erneut in dem Schritt S2 fortgesetzt wird. Das erneute Bearbeiten der Schritte S2 bis S18 entspricht dann dem nächsten Berechnungszyklus.The program pauses for a predetermined waiting period T_W in a step S20 before the processing is continued again in step S2. Alternatively, in step S20, the program may also remain for a given crankshaft angle before the processing is continued again in step S2. The reworking of steps S2 to S18 then corresponds to the next calculation cycle.

Parallel zu dem Ermitteln der gefilterten Phasenlage PH_FIL wird im Programm gemäß Figur 3 ein weiteres Programm abgearbeitet, das ein Stellsignal S (Figur 4) zum Steuern der Verstelleinrichtung 37 ermittelt.Parallel to the determination of the filtered phase position PH_FIL is in the program according to FIG. 3 processed a further program that a control signal S ( FIG. 4 ) for controlling the adjusting device 37.

Das Programm wird in einem Schritt S26 gestartet und zwar vorzugsweise zeitnah zum Start der Brennkraftmaschine. In einem Schritt S28 wird eine Abgasrückführrate EGR ermittelt und zwar abhängig von einem geforderten Drehmoment TQ_REQ, das von der Brennkraftmaschine erzeugt werden soll und das vorzugsweise abhängig von der Stellung des Fahrpedals und gegebenenfalls weiteren Drehmomentanforderungen, wie denen eines ABS- oder ESP-Systems, ermittelt wird. Die Abgasrückführrate wird vorteilhaft auch abhängig von einem Betriebsmodus MOD der Brennkraftmaschine ermittelt, der beispielsweise ein Schicht-Betrieb oder ein Homogen-Betrieb der Brennkraftmaschine sein kann. Die Abgasrückführrate EGR kann auch abhängig von weiteren Betriebsgrößen der Brennkraftmaschine ermittelt werden.The program is started in a step S26, preferably close to the start of the internal combustion engine. In a step S28, an exhaust gas recirculation rate EGR is determined, specifically as a function of a required torque TQ_REQ, which is to be generated by the internal combustion engine and preferably determined as a function of the position of the accelerator pedal and optionally further torque requirements, such as those of an ABS or ESP system becomes. The exhaust gas recirculation rate is advantageously also determined depending on an operating mode MOD of the internal combustion engine, which may be, for example, a shift operation or a homogeneous operation of the internal combustion engine. The exhaust gas recirculation rate EGR can also be determined depending on further operating variables of the internal combustion engine.

In einem Schritt S30 wird dann ein Sollwert PH_SP der Phasenlage abhängig von der Abgasrückführrate EGR, dem Saugrohrdruck MAP und abhängig von der Drehzahl N und gegebenenfalls weiteren Betriebsgrößen ermittelt.In a step S30, a setpoint value PH_SP of the phase position is then determined as a function of the exhaust gas recirculation rate EGR, the intake manifold pressure MAP, and depending on the rotational speed N and possibly further operating variables.

In einem Schritt S32 wird dann das Stellsignal S zum Ansteuern der Verstelleinrichtung 37 abhängig von dem Sollwert PH_SP der Phasenlage und der gefilterten Phasenlage PH_FIL(n) ermittelt. Dies erfolgt vorzugsweise mittels eines Reglers der als P-, PI- oder PID-Regler ausgebildet ist.In a step S32, the actuating signal S for actuating the adjusting device 37 is then determined as a function of the desired value PH_SP of the phase position and of the filtered phase position PH_FIL (n). This is preferably done by means of a regulator which is designed as a P, PI or PID controller.

Die Verstelleinrichtung 37 wird dann mit dem Stellsignal S angesteuert. Nach dem Schritt S32 verharrt das Programm dann für die vorgegebene Wartezeitdauer T_W in einem Schritt S34. Alternativ kann das Programm auch in dem Schritt S34 auch für einen vorgegebenen Kurbelwellenwinkel verharren, bevor die Bearbeitung erneut in dem Schritt S28 fortgesetzt wird.The adjusting device 37 is then controlled by the actuating signal S. After the step S32, the program then pauses for the predetermined waiting period T_W in a step S34. Alternatively, the program may also remain in the step S34 for a predetermined crankshaft angle, before the processing is continued again in the step S28.

Durch eine geeignete Wahl des Filterkoeffizienten FF3 kann die Regelgüte des Reglers des Schrittes S28 sehr stark erhöht werden und ein gutes dynamisches Verhalten und gleichzeitig eine hohe stationäre Regelgenauigkeit erreicht werden. Dies führt dazu, dass die Abgasrückführrate EGR in dem Zylinder Z1 sehr schnell und stationär genau eingestellt werden kann, was dann entscheidend beiträgt zu geringen Stickoxidemissionen.By a suitable choice of the filter coefficient FF3, the control quality of the controller of step S28 can be greatly increased and a good dynamic behavior and at the same time a high stationary control accuracy can be achieved. This results in that the exhaust gas recirculation rate EGR in the cylinder Z1 can be set very quickly and stationarily accurate, which then contributes significantly to low nitrogen oxide emissions.

Claims (9)

  1. Method for determining a phase position of a camshaft of an internal combustion engine having a crankshaft (21), a camshaft (36) and an adjustment device (37), by means of which the phase position (PH) of the camshaft (36) can be adjusted with respect to the crankshaft (21), wherein
    - the phase position (PH) is determined as a function of a detected crankshaft angle (CRK) and a detected camshaft angle (CAM), and a filtered phase position (PH_FIL) of the determined phase position (PH) is determined by means of the filter,
    characterized in that
    - a filter coefficient (FF3) of the filter is determined as a function of the amplitude (AMP) of an oscillation of the phase position (PH) superimposed on the phase position, and of the change (DELTA) in the phase position (PH).
  2. Method according to Claim 1,
    characterized in that
    the filtering is carried out by means of a non-recursive first- order filter.
  3. Method according to Claim 1,
    characterized in that
    the change (DELTA) in the phase position (PH) is filtered, and the filter coefficient (FF3) is determined as a function of the filtered change (DELTA_FIL) in the phase position (PH).
  4. Method according to Claim 3,
    characterized in that
    the filtering of the change (DELTA) in the phase position (PH) is carried out as a function of the rotational speed (N) and/or of an oil temperature (TOIL).
  5. Method according to one of the preceding claims, characterized in that
    the amplitude (AMP) of the oscillation of the phase position (PH) is filtered, and the filter efficient (FF3) is determined as a function of the filtered amplitude (AMP_FIL) of the oscillation of the phase position (PH).
  6. Method according to Claim 5,
    characterized in that
    the filtering of the amplitude (AMP) is carried out as a function of the rotational speed (N) and/or of the oil temperature (TOIL).
  7. Method according to one of the preceding claims, characterized in that
    the reduction in the filter coefficient (FF3) within a predefined time period or within a predefined crankshaft angle section is limited to a predefined threshold value (SW).
  8. Method according to one of the preceding claims, characterized in that
    the filtering is carried out by means of a non-recursive second order or higher filter.
  9. Device for determining a phase position of a camshaft of an internal combustion engine having a crankshaft (21), a camshaft (36) and an adjustment device (37) by means of which the phase position (PH) of the camshaft (36) can be adjusted with respect to the crankshaft (21), wherein,
    - first means are provided which determine the phase position (PH) as a function of a detected crankshaft angle (CRK) and a detected camshaft angle (CAM), and second means are provided which determine a filtered phase position (PH_FIL) of the determined phase position (PH) by means of the filter,
    characterized in that
    - third means are provided which determine a filter coefficient (FF3) of a filter as a function of the amplitude (AMP) of an oscillation of the phase position (PH) which is superimposed on the phase position, and of the change (DELTA) in the phase position (PH).
EP04787225A 2003-10-13 2004-09-27 Method and device for determining the phase position of a camshaft of an internal combustion engine Expired - Fee Related EP1673528B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10347516A DE10347516B3 (en) 2003-10-13 2003-10-13 Method and device for determining a phase position of a camshaft of an internal combustion engine
PCT/EP2004/052326 WO2005038225A1 (en) 2003-10-13 2004-09-27 Method and device for determining the phase position of a camshaft of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1673528A1 EP1673528A1 (en) 2006-06-28
EP1673528B1 true EP1673528B1 (en) 2011-06-29

Family

ID=34441904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04787225A Expired - Fee Related EP1673528B1 (en) 2003-10-13 2004-09-27 Method and device for determining the phase position of a camshaft of an internal combustion engine

Country Status (4)

Country Link
US (1) US7184880B2 (en)
EP (1) EP1673528B1 (en)
DE (1) DE10347516B3 (en)
WO (1) WO2005038225A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213539A1 (en) * 2012-08-01 2014-02-06 Robert Bosch Gmbh Method for determining a phase position of an adjustable camshaft

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005059575B4 (en) 2005-12-14 2022-03-17 Robert Bosch Gmbh Method for operating an internal combustion engine
US7447587B2 (en) * 2005-12-21 2008-11-04 Honeywell International Inc. Cylinder to cylinder variation control
US7757546B2 (en) * 2007-12-28 2010-07-20 Gm Global Technology Operations, Inc. Camshaft and crankshaft position correlation simulation methods and systems
DE102014204492A1 (en) 2014-03-12 2015-10-01 Volkswagen Aktiengesellschaft Motor vehicle, control unit and method for controlling a phase angle of a camshaft
KR101558392B1 (en) * 2014-06-09 2015-10-07 현대자동차 주식회사 Control system of variable valve timing device
US9587525B2 (en) 2014-10-21 2017-03-07 Ford Global Technologies, Llc Method and system for variable cam timing device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2096695A (en) * 1981-04-13 1982-10-20 Ford Motor Co Ic engine camshaft drive mechanism
US4577598A (en) * 1982-04-09 1986-03-25 Ford Motor Company Internal combustion engine and cam drive mechanism therefor
US5218935A (en) * 1992-09-03 1993-06-15 Borg-Warner Automotive Transmission & Engine Components Corporation VCT system having closed loop control employing spool valve actuated by a stepper motor
GB2293894B (en) * 1994-10-03 1998-05-13 Ford Motor Co Variable camshaft timing system
JP2913273B2 (en) * 1996-04-17 1999-06-28 本田技研工業株式会社 Engine rotation detector
DE19741597A1 (en) * 1997-09-20 1999-03-25 Schaeffler Waelzlager Ohg Cam pulse wheel for internal combustion engine
US6101993A (en) 1999-02-19 2000-08-15 Ford Global Technologies, Inc. Variable cam timing control system and method
DE10043756C2 (en) * 2000-09-05 2002-11-28 Siemens Ag Method for determining the injection timing in an injection system for an internal combustion engine
JP3988376B2 (en) 2000-10-23 2007-10-10 日産自動車株式会社 Reference position learning device for variable valve timing device
DE10108055C1 (en) * 2001-02-20 2002-08-08 Siemens Ag Method for controlling an internal combustion engine
DE10115262C2 (en) * 2001-03-28 2003-04-24 Bosch Gmbh Robert Method for determining the rotational position of the camshaft of an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213539A1 (en) * 2012-08-01 2014-02-06 Robert Bosch Gmbh Method for determining a phase position of an adjustable camshaft

Also Published As

Publication number Publication date
WO2005038225A1 (en) 2005-04-28
US20060136118A1 (en) 2006-06-22
EP1673528A1 (en) 2006-06-28
US7184880B2 (en) 2007-02-27
DE10347516B3 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
DE102005009104B3 (en) Method for control of combustion engine involves one or more cylinders with a burner chamber and associated with piston together with suction tract linked to inlet-valve of burner chamber and outlet-valve linked to cylinder pressure sensor
EP1743098B1 (en) Method and device for controlling an internal combustion engine
EP1774161B1 (en) Method and device for controlling an internal combustion engine
DE102005014920A1 (en) Method to adjust injection times of individual cylinders of an internal combustion engine depending on their dimensions derived from the crank shaft rotations to compensate for fluctuations in injection quantities
DE102007000042A1 (en) Device and method for controlling an internal combustion engine
EP1706603B1 (en) Method and device for determining an internal combustion engine phase
DE102005023181A1 (en) Knock control device and knock control method for internal combustion engine
EP1673528B1 (en) Method and device for determining the phase position of a camshaft of an internal combustion engine
DE10233612B4 (en) Method and apparatus for controlling the combustion process of an HCCI engine
EP1664492A1 (en) Method and device for determining a phase position between a crankshaft and a camshaft of an internal combustion engine
DE102006013501B4 (en) Method and device for operating an internal combustion engine
EP1611318B1 (en) Method for controlling an internal combustion engine
DE10356257B4 (en) Method and device for controlling an internal combustion engine
DE102004038338B3 (en) Method and device for controlling an internal combustion engine
DE102004012756B4 (en) Method and device for controlling an internal combustion engine
DE10250255A1 (en) Method and arrangement for improving the accuracy of estimation for the phase angle of the camshaft in an internal combustion engine with variable cam setting
WO2018046212A1 (en) Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the purge air mass introduced into the exhaust manifold of the internal combustion engine during a gas exchange process
DE102005047023B4 (en) Method and apparatus for determining a switching condition for initiating a valve lift switching in an internal combustion engine
EP1700025B1 (en) Method and device for controlling an internal combustion engine
DE102006042969B4 (en) Method and device for operating an internal combustion engine
DE10341583B4 (en) Method and device for determining a phase angle of a camshaft to a crankshaft of an internal combustion engine and method for monitoring the phase angle of the camshaft to the crankshaft of the internal combustion engine
DE102005016599A1 (en) Cam shaft transmitter wheel for camshaft sensor device, has camshaft sensor for engine, where partial angle ranges are formed such that they are distinguished from one another and each range comprises distinguishing characteristics
DE102005047024B4 (en) Method and device for controlling an internal combustion engine in a valve lift switching
DE102004013660B3 (en) Method for controlling of internal combustion engine entails controlling impulse charging valve depending upon comparison value determined in dependence upon desired mass flow and maximum mass flow
WO2005028829A1 (en) Method and device for adjusting an exhaust gas return rate in an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HALUSKA, PETER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

17Q First examination report despatched

Effective date: 20101014

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012655

Country of ref document: DE

Effective date: 20110901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110929

26N No opposition filed

Effective date: 20120330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012655

Country of ref document: DE

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110929

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004012655

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012655

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210930

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012655

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012655

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401