EP1673161A1 - Method and device for carrying out reactions - Google Patents

Method and device for carrying out reactions

Info

Publication number
EP1673161A1
EP1673161A1 EP04765899A EP04765899A EP1673161A1 EP 1673161 A1 EP1673161 A1 EP 1673161A1 EP 04765899 A EP04765899 A EP 04765899A EP 04765899 A EP04765899 A EP 04765899A EP 1673161 A1 EP1673161 A1 EP 1673161A1
Authority
EP
European Patent Office
Prior art keywords
reaction
synthesis
metering
reagent
reagents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04765899A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Ehrfeld
Karoly Nagy
Alexander Azzawi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehrfeld Mikrotechnik BTS GmbH
Original Assignee
Ehrfeld Mikrotechnik BTS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehrfeld Mikrotechnik BTS GmbH filed Critical Ehrfeld Mikrotechnik BTS GmbH
Publication of EP1673161A1 publication Critical patent/EP1673161A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • G01N35/1074Multiple transfer devices arranged in a two-dimensional array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00324Reactor vessels in a multiple arrangement the reactor vessels or wells being arranged in plates moving in parallel to each other
    • B01J2219/00328Movement by linear translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • B01J2219/00333Closures attached to the reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00418Means for dispensing and evacuation of reagents using pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00513Essentially linear supports
    • B01J2219/00518Essentially linear supports in the shape of tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00675In-situ synthesis on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00677Ex-situ synthesis followed by deposition on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00731Saccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0812Bands; Tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/12Libraries containing saccharides or polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1037Using surface tension, e.g. pins or wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00009Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with a sample supporting tape, e.g. with absorbent zones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers

Definitions

  • the invention relates to a method and a device for carrying out, in particular, chemical reactions with reagent amounts in the picomole to micromole range, such as those e.g. can be used for the synthesis of various oligonucleotides.
  • the device for carrying out chemical reactions comprises a reaction slider in which a plurality of through openings serving as reaction chambers are formed. Furthermore, the device comprises a selector slider which is arranged on the upper surface of the reaction slider and which has at least one continuous control opening, the selector slider being displaceable with respect to the reaction slider such that its control opening is in alignment with one of the reaction chambers of the reaction slider, so that a continuous connection for supplying the reaction chambers with a predetermined reagent is created.
  • a chemical slider is arranged below the reaction slider and is designed with passages for supplying chemicals to the individual reaction chambers of the reaction slider.
  • the chemicals can be fed to the chemical slider premixed via a valve arrangement.
  • a device is provided for applying a force to the slider, this device being designed such that the force acts in the region of the axis of rotation.
  • microtiter plates for the synthesis of oligonucleotides is described in Ji-Yen Cheng et al., "High throughput parallel synthesis of oligonucleotides with 1536 Channel Synthesizer", Nucleic Acids Research, 2002, Vol. 30, No. 18, e93 different oligonucleotides are simultaneously synthesized in the individual wells of the microtiter plate.
  • BESTATIGUNGSKOPIE In the devices for the synthesis of oligonucleotides known from the prior art, the individual solutions and reagents are pumped from the storage bottles via a sufficient number of controllable valves into a reaction chamber containing a solid phase.
  • the synthetic scales currently used for carrying out oligonucleotide syntheses are above 20 nmol.
  • a parallelization of the valve technology used in the state-of-the-art synthesis machines can only be carried out to a small degree due to the space requirement and the increasing dead volume with increasing complexity.
  • reaction chamber usually only one reaction chamber is attached to the end of a fluid distribution path.
  • the individual reaction steps require a predetermined reaction time which cannot be shortened. During this time, the complex dosing unit waits until the next process step can be started.
  • Amounts in the lower nanomole range of an oligonucleotide sample are sufficient for many applications. This means that the synthesizers currently used are oversized with a synthesis scale of more than 20 nmol.
  • the object of the present invention is to provide a device for carrying out reactions on a synthesis scale of less than 20 nmol, in which the syntheses can be carried out continuously and in parallel.
  • the solution according to the invention consists in a device for carrying out, in particular, chemical reactions with reagent amounts in the picomole to micromole range, in which the reagents are metered via metering stations to reaction sites which move along a reaction path, with at least one metering station and one removal point being arranged in this way are that the time in which the reaction sites move on the reaction path corresponds at least to the reaction time required for a reaction step.
  • the metering stations are designed such that they each comprise a belt on which the reagent is metered in sections at metering positions, at least one hole in the belt at each metering position, the cross section of which is dimensioned such that the reagent is due to its surface tension does not flow through the at least one hole without the action of an additional force.
  • the belt is then transported to the reaction sites to be filled. There the reagent is transported through the holes in the belt to the reaction sites.
  • the reagents are preferably transported from the conveyor belt to the reaction sites by applying an overpressure.
  • the tape used to meter the reagents is preferably a single-use polymer film. In addition to a reusable belt, it is also possible to use a reusable endless belt.
  • movable plates can be used, on which the metering positions are arranged, the plates actually being arranged in a band-like manner by means of flexible connections, or else being freely displaceable relative to one another and thus being able to take over the function of a band.
  • sheets are understood to mean that the type or design (thickness) of the material used leads to greater dimensional stability.
  • the individual plates are preferably "washable and reusable.
  • the band is to be made from a material that is chemically stable against the reagents used.
  • the band is designed such that it can be wetted by the reagent at the dosing positions and the reagent repels at all other locations. This can e.g. by different coatings on the surface.
  • the band is provided with depressions at the metering positions.
  • the depressions can be introduced into the band during its manufacture or, in particular when a single-use band is used, preferably after it has been removed from a supply roll within the device.
  • the wells can be covered with the reagents after filling in order to protect the reagents from damaging external influences.
  • the covering can be done, for example, by applying a film.
  • the reaction sites are arranged on individual synthesis grids.
  • a synthesis grid is understood to mean the support of the reaction sites on which they are arranged in a predetermined manner, preferably in rows and columns.
  • the reaction sites are preferably introduced as depressions in the synthesis grid.
  • Suitable synthesis grids are, for example, microtiter plates as are generally known to the person skilled in the art and are commercially available (for example from Brand GmbH, Becton-Dickinson and many others). Such microtiter plates comprise, for example, 6, 12, 24, 48, 96, 356 or 1536 wells.
  • reaction sites can also be flat or can be introduced as flat depressions in the synthesis grids.
  • the synthesis grid is preferably wettable by the reagent at the reaction sites and repels the reagent at all other sites.
  • a band section provided with the reagent is brought over the reaction sites in the synthesis grid in such a way that the metering positions on the band section match the positions of the reaction sites.
  • the synthesis grid is preferably moved up to the contact with the belt section and closed pressure-tight from above with a lid. By applying an overpressure above the band section, the reagent located at the individual dosing positions is then emptied to the reaction sites below. After the band section has been emptied to the reaction sites, the synthesis grid and the belt are transported further so that a further synthesis grid can be filled.
  • reagents can also be dosed at one dosing position. This is particularly advantageous if reagents are to be mixed before they are added to the reaction site. Reagents can also be incubated at the metering positions of the tape before they are metered to the reaction sites. In addition to the mixing and incubation of reagents at the metering positions of the tape, other preparation steps known to the person skilled in the art are also possible before metering the reagents into the reaction sites.
  • Another advantage of using a tape for metering the reagents is that separate feed lines and metering nozzles can be provided for each reagent. On this eliminates the use of a very large number of valves susceptible to faults and the problem that cross-contamination can occur due to the use of a single supply line for several reagents. It is also advantageous that the dosing unit can be used immediately to fill further synthesis grids by further transporting the synthesis grid after filling. Waiting times until the next process step, which can result, for example, from waiting for the necessary reaction times to expire, can thus be used for metering reagents into further synthesis grids.
  • the synthesis grids are arranged on a conveyor belt along a reaction path along which several dosing stations can be located.
  • a separate dosing station is preferably provided for each reaction step in which a reagent has to be added.
  • the distance between the dosing stations is preferably selected so that the transport time of the synthesis grid from one dosing station to the next corresponds to the required reaction time for a reaction step.
  • the conveyor belt itself is designed as a synthesis grid, so that the reaction sites are arranged directly on the conveyor belt.
  • the reagents are preferably metered in sections to the reaction sites on the conveyor belt.
  • the reagents can also be metered to the reaction sites of the synthesis grid by means of a dispenser unit.
  • the dispenser unit is preferably designed in such a way that reaction sites of the synthesis grid located in one row or column or several rows and columns can be filled simultaneously.
  • at the positions of each reaction location to be filled in the dispenser unit Dispensing nozzles arranged.
  • An individual metering nozzle with its own feed line is preferably provided for each reagent to be metered.
  • the device for carrying out the chemical reactions is encapsulated in a manner that is impervious to light and / or gas.
  • the device encapsulated in this way can, for example, prevent damage to the reaction products or reagents, e.g. be purged by an inert gas.
  • the reaction path is preferably designed in such a way that the synthesis grid with the reaction sites return to the beginning of the reaction path after the last process step has been completed. With the reaction path closed in this way, the synthesis grid can be removed after the synthesis of the reagents of the first process step after completion of the synthesis. A new synthesis grid can then be positioned at the position at which the synthesis grid was removed.
  • At least one hole is formed at each reaction site, the cross-sectional area of which is selected such that the liquid located at the reaction site can only flow through the hole due to its surface tension by applying an additional force.
  • the reaction product is withdrawn from the reaction site.
  • it is e.g. through a hole at the reaction site enables the rinsing solution, which is introduced in the rinsing processes required for oligonucleotide synthesis, to be withdrawn again from the reaction site.
  • rinsing stations are preferably arranged in front of the metering stations.
  • the reagents are metered at metering stations at reaction sites which move along a reaction route, with at least one metering station and one removal point being arranged such that the time which is move the reaction sites on the reaction route, which corresponds to the required reaction time for the reaction. If a film is used to dose the reagents to the reaction sites, the reagents can be prepared for the reaction before the addition to the reaction sites. This includes, for example, mixing several reagents or incubating.
  • the device or the method are used to carry out, in particular, chemical reactions for the parallel synthesis of different oligonucleotides. Further preferred reactions in which these can be used are the parallel synthesis of peptides or of oligosaccharides.
  • FIG. 1 shows a reaction path for oligonucleotide synthesis
  • FIG. 2 shows a dosing station with a belt for dosing the reagents in a perspective view
  • FIG. 3 shows a dosing station with a belt for dosing the reagents in a sectional view
  • Figure 4 is a top view of a dispensing unit with dispenser unit.
  • FIG. 1 A reaction path for oligonucleotide synthesis is shown in FIG.
  • synthesis frames 1 are transported along a reaction path 2.
  • reaction sites for example depressions in a microtiter plate, are formed on the synthesis grid 1.
  • the synthesis grid 1 is fed to reaction zone 2 at the feed point marked with arrow 4.
  • the position of the task and removal of the synthesis grid 1 depends on the synthesis variant. For example, in a so-called trityl-off synthesis, the drop point is at the position marked with the arrow 4.1.
  • the feed point is preferably arranged before the addition of the reagents for the first reaction step and the removal point preferably after the end of the last reaction step required for the synthesis.
  • the reaction sites 3 of the synthesis grid 1 preferably contain a carrier material.
  • a nucleic acid or an oligonucleotide is connected to the carrier material with a covalent or non-covalent bond.
  • they are protected, for example, by monomethoxitrityl or dimethoxitrityl.
  • 5 acid is metered in at a first metering station. Even when producing different oligonucleotides at the individual reaction sites 3 of the synthesis grid 1, this step is the same for all oligonucleotide syntheses at the individual reaction sites 3.
  • the synthesis grid 1 is transported along the reaction path 2 in the transport direction indicated by the arrow 6. However, the transport is preferably carried out step by step from one intermediate position 7 to the next.
  • the time that the synthesis grid 1 remains at the intermediate positions 7 corresponds to the maximum time required for metering in the reagents or for rinsing.
  • the number of intermediate positions 7 between the first dosing station 5 and a first rinsing station 8 results from the time required for the detritylation.
  • a rinsing solution is added in order to wash out excess reagents. After a short exposure time, the rinsing solution together with the excess reagents is removed from reaction site 3.
  • at least one hole is preferably made at the reaction site. The cross section of the at least one hole is to be selected so that the liquid located at the reaction site 3 can only flow through the hole due to its surface tension by applying an additional force.
  • a vacuum is applied to the underside of the synthesis grid 1. As a result, the rinsing solution together with the liquid constituents contained therein, which are located at reaction site 3, are removed through the hole at reaction site 3.
  • the synthesis grid 1 is transported to a second dosing station 9.
  • phosphoramidites are added, which are coupled to the nucleotides contained at the reaction sites 3.
  • the nucleotide to be coupled must be activated. The activation is preferably carried out with tetrazole or a tetrazole derivative.
  • the nucleotide to be coupled and the tetrazole can already be dosed together on the tape, so that the activation already done on the tape.
  • the activated nucleotide derivative is then preferably metered through a hole at the metering position in the band to the reaction site 3.
  • the synthesis grids 1 are transported to a second rinsing station 10.
  • the synthesis grid 1 is transported step by step from one intermediate position 7 to the next.
  • the number of intermediate positions 7 between the second dosing station 9 and the second rinsing station 10 is selected such that the transport duration of the synthesis grid 1 corresponds to the reaction time required for the synthesis.
  • the second rinsing station 10 analogous to the first rinsing station 8, excess reagents are rinsed from the reaction site 3 of the synthesis grid 1.
  • the second rinsing station 10 is followed by a third metering station 11, at which a reagent for capping unreacted 5'-OH groups is metered in.
  • the synthesis grid is transported to a third rinsing station 12 via intermediate positions 7, the number of which in turn depends on the duration of the reaction.
  • the third rinsing station 12 is followed by a fourth dosing station 13, at which a suitable reagent for the oxidation of the phosphorus is added.
  • the synthesis grid 1 is transported to a fourth rinsing station via several intermediate positions 7, the number of which in turn depends on the reaction time.
  • unreacted reagents and reaction by-products are removed from the reaction site 3 analogously to the rinsing stations 8, 10, 12 by adding a suitable rinsing solution.
  • the fourth rinsing station 14 is followed by a grid exchange position 15, from which the synthesis grid 1 can be removed from the reaction zone 2 after the oligonucleotide synthesis has been completed.
  • a new synthesis grid 1 from a supply 17 is placed at the grid exchange position 15 as soon as a synthesis grid 1 has been removed.
  • the processes carried out at the first dosing station 5, the third dosing station 11 and the fourth dosing station 13 are the same for all syntheses, regardless of the oligonucleotides to be synthesized. For this reason can be metered directly to the reaction sites 3 at these metering stations 5, 11, 13, for example with metering nozzles arranged above the reaction sites 3. This makes it possible to dispense with a complex control which ensures that the correct reagent is metered into each reaction site 3.
  • the dosing stations 5, 9, 11, 13 can also be followed by parking positions to which the synthesis grids 1 are transported. After the reaction time required for the individual reaction step, the synthesis grids 1 are then removed from the park position and transported to the next rinsing station 8, 10, 12, 14 and from there to the next metering station 5, 9, 11, 13.
  • the device is also suitable for carrying out any other chemical reaction in which only small amounts of reaction products are produced.
  • the device is particularly suitable for simultaneously synthesizing a large number of different products, which are each produced under the same conditions. These include, for example, peptide synthesis or oligosaccharide synthesis.
  • reaction sites 3 When carrying out chemical reactions in which no rinsing precursors are required, it is not necessary to provide the reaction sites 3 with at least one hole. Since in this case the reaction products are only removed when the synthesis grid 1 has been removed from the reaction zone 2, a removal can then also take place directly from the reaction site 3 via the feed openings of the reaction sites 3 in depressions or chambers in the synthesis grid 1 or in the case of flat reaction sites 3.
  • FIG. 2 shows a dosing station with a belt for dosing the reagents in a perspective view.
  • the reagents which are metered to the reaction sites 3 are prepared on a belt 18.
  • the tape 18 is removed from a film supply 19, which is preferably designed as a roll, on which the tape 18 is wound.
  • indentations 20 are first embossed in sections in the band 18. This can be done, for example, by deep drawing.
  • the hole is dimensioned in such a way that the liquid in the recess 20 can only flow through the hole due to its surface tension by applying an additional force.
  • the belt With the help of rollers 21, the belt is moved in the conveying direction indicated by arrow 22.
  • the depressions 20 produced at the embossing position 23 are conveyed to a metering position 24, at which the reagent to be metered to the reaction sites 3 is metered into the depressions 20.
  • the belt section 37 with the wells 20 filled with reagent is transported over a synthesis grid 1. It should be ensured that the depressions 20 in the film are congruent with the reaction sites 3 of the synthesis grid 1.
  • the synthesis grid 1 is moved from below against the band section 37 and at the same time a cover 25 is placed on from above. By applying an overpressure to the lid 25, the reagent contained in the depressions 20 is emptied to the reaction sites 3 of the synthesis grid 1.
  • Synthesis grid 1 is preferably arranged such that the next synthesis grid 1 is pushed directly under the belt 18 when the synthesis grid 1 is transported. At the same time, a new band section 37 with reagent-containing recesses 20 is placed over the
  • a band 18 which has already been embossed can also be used.
  • the dosing positions can be covered in a further embodiment after dosing. This can be done, for example, by welding or gluing a film.
  • Figure 3 shows a metering station with a belt for metering the reagents in a sectional view.
  • the belt 18 is transported by means of rollers 21 in the conveying direction indicated by the arrow 22.
  • depressions 20 are embossed, at the bottom of which there is at least one hole 26.
  • the hole 26 is preferably dimensioned such that the liquid in the recess 20 can only flow through the hole 26 due to its surface tension by applying an additional force.
  • the reagent required for the reaction is metered into the depressions 20 with the aid of metering nozzles 27.
  • the reagent drops emitted by the metering nozzles 27 are identified by the reference symbol 28.
  • one or more different reagents can be metered into the individual wells 20.
  • a separate metering nozzle 27 is provided for each reagent. This prevents cross-contamination from occurring in the dosing nozzles 27.
  • the wells 20 filled with the reagent are transported to the synthesis grid 1 shown schematically here.
  • the synthesis grid 1 is pressed against the band section 37 in the direction indicated by the arrow 29.
  • a cover 25 is placed on the band section 37 from above.
  • the cover 25 is preferably designed such that a pressure-tight connection is established between the synthesis grid 1, the band section 37 and the cover 25.
  • a pressure surge is generated above the band section 37.
  • the pressure surge is identified here by the arrow with reference number 30. Due to the overpressure above the depressions 20 in the band section 37, the reagents located in the depressions 20 are emptied through the holes 26 to the reaction sites 3 of the synthesis grid 1.
  • the lid 25 is opened, the synthesis grid 1 is moved further, a new synthesis grid 1 being simultaneously transported under the belt 18 for filling.
  • the emptied belt 18 is moved further in the conveying direction 22, with wells 20 filled with reagent being transported simultaneously via the new synthesis grid 1.
  • band 18 is used only once. This means that the band 18 is disposed of after the depressions 20 have been emptied. This ensures that dosing is absolutely contamination-free.
  • an endless belt can also be used for metering.
  • the band 18 has to be cleaned after emptying the depressions 20 in order to remove residues. After cleaning, the band 18 can then be used again for metering the reagents.
  • the belt 18 can comprise individual movable plates, each corresponding to a belt section 37 and on which the metering positions are arranged.
  • Figure 4 shows a dosing point with a dispenser unit in plan view.
  • the metering nozzles 21 for metering the reagents onto the belt 18 are arranged in a dispenser unit 31.
  • the dispenser unit comprises a piezo dispenser array 32 and a control unit 33.
  • nozzle units 34 are arranged next to one another in the piezo dispenser array 32 such that a number of metering positions on the belt 18 are simultaneously filled can be.
  • Each nozzle unit 34 preferably comprises a plurality of metering nozzles 27, one metering nozzle 27 being provided for each reagent to be metered.
  • the dispenser unit 31 makes it possible to dose different reagents simultaneously to different dosing positions in the row which is being filled.
  • the dosing positions filled with different reagents are identified by the reference symbol 38.
  • the dosing nozzles 27 are controlled with the aid of the control unit 33.
  • Electronic connections 35 are provided on the control unit 33, with which the control unit 33 e.g. can be connected to an external data processing system.
  • the dosing nozzles 27 are supplied with the reagents required for the reaction via fluid connections 36.
  • the dispenser unit shown in FIG. 4 is also suitable for metering the reagents directly to the reaction sites 3 of the synthesis grid 1. In this case, however, only one can be used
  • Reagent are metered in, a mixture of several reagents before metering to reaction sites 3 or incubation of the reagents prior to addition to reaction sites 3 is not possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Clinical Laboratory Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention relates to a device for carrying out reactions with amounts of reagents in the region of between 0.5 - 10 nmol, wherein the reagents are dosed at reaction points (3) by dosing stations (5, 9, 11, 13). Said reaction points are displaced along a reaction path (2). At least one dosing station (5, 9, 11, 13) and a discharge point (16) are arranged in such a manner that the time corresponds to at least the required reaction time for a reaction step, wherein the reaction points (3) are displaced on the reaction path (2). At least one of the dosing stations comprises a strip (18). The reagent is dosed in sections on the strip and is positioned. At least one hole (26) is located in the strip (18) at each dosing position.

Description

Verfahren und Vorrichtung zur Durchführung von Reaktionen Method and device for carrying out reactions
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Durchführung von insbesondere chemischen Reaktionen mit Reagenzmengen im Picomol- bis Mikromol- Bereich, wie sie z.B. zur Synthese verschiedener Oligonukleotide eingesetzt werden können.The invention relates to a method and a device for carrying out, in particular, chemical reactions with reagent amounts in the picomole to micromole range, such as those e.g. can be used for the synthesis of various oligonucleotides.
Eine Vorrichtung zur Durchführung von chemischen Reaktionen, bei der in einer Vielzahl von Reaktionskammern simultan chemische Reaktionen durchgeführt werden können, ist aus WO-A2-00/40330 bekannt. Hierzu umfasst die Vorrichtung zum Durchführen von chemischen Reaktionen einen Reaktionsslider, in dem eine Vielzahl als Reaktionskammern dienende Durchgangsöffnungen ausgebildet sind. Ferner umfasst die Vorrichtung einen Wahlslider, der an der oberen Oberfläche des Reaktionssliders angeordnet ist und der zumindest eine durchgehende Steueröffnung aufweist, wobei der Wahlslider bezüglich des Reaktionssliders derart verlagerbar ist, dass sich dessen Steueröffnung in fluchtender Anordnung mit einer der Reaktionskammern des Reaktionssliders befindet, so dass eine durchgehende Verbindung zur Versorgung der Reaktionskammern mit einem vorbestimmten Reagenz geschaffen wird. Unterhalb des Reaktionssliders ist ein Chemikalien-Slider angeordnet, der mit Durchgängen zum Zuführen von Chemikalien zu den einzelnen Reaktionskammern des Reaktionssliders ausgebildet ist. Über eine Ventilanordnung können die Chemikalien vorgemischt dem Chemikalien-Slider zugeführt werden. Zur Abdichtung der Kontaktflächen der Slider ist eine Einrichtung zum Beaufschlagen der Slider mit einer Kraft vorgesehen, wobei diese Einrichtung derart ausgebildet ist, dass die Kraft im Bereich der Drehachse angreift.A device for carrying out chemical reactions, in which chemical reactions can be carried out simultaneously in a large number of reaction chambers, is known from WO-A2-00 / 40330. For this purpose, the device for carrying out chemical reactions comprises a reaction slider in which a plurality of through openings serving as reaction chambers are formed. Furthermore, the device comprises a selector slider which is arranged on the upper surface of the reaction slider and which has at least one continuous control opening, the selector slider being displaceable with respect to the reaction slider such that its control opening is in alignment with one of the reaction chambers of the reaction slider, so that a continuous connection for supplying the reaction chambers with a predetermined reagent is created. A chemical slider is arranged below the reaction slider and is designed with passages for supplying chemicals to the individual reaction chambers of the reaction slider. The chemicals can be fed to the chemical slider premixed via a valve arrangement. To seal the contact surfaces of the slider, a device is provided for applying a force to the slider, this device being designed such that the force acts in the region of the axis of rotation.
Den Einsatz von Mikrotiterplatten zur Synthese von Oligonukleotiden ist in Ji-Yen Cheng et al., „High throughput parallel synthesis of oligonucleotides with 1536 Channel Synthesizer", Nucleic Acids Research, 2002, Vol. 30, No. 18, e93 beschrieben. Hierbei können gleichzeitig in den einzelnen Vertiefungen der Mikrotiterplatte unterschiedliche Oligonukleotide synthetisiert werden.The use of microtiter plates for the synthesis of oligonucleotides is described in Ji-Yen Cheng et al., "High throughput parallel synthesis of oligonucleotides with 1536 Channel Synthesizer", Nucleic Acids Research, 2002, Vol. 30, No. 18, e93 different oligonucleotides are simultaneously synthesized in the individual wells of the microtiter plate.
BESTATIGUNGSKOPIE Bei den aus dem Stand der Technik bekannten Vorrichtungen zur Synthese von Oligonukleotiden werden die einzelnen Lösungen und Reagenzien aus den Vorratsflaschen über eine ausreichende Anzahl von steuerbaren Ventilen in eine eine Festphase enthaltende Reaktionskammer gepumpt. Die Synthesemaßstäbe derzeit eingesetzter Vorrichtungen zur Durchführung von Oligonukleotidsynthesen liegen oberhalb von 20 nmol.BESTATIGUNGSKOPIE In the devices for the synthesis of oligonucleotides known from the prior art, the individual solutions and reagents are pumped from the storage bottles via a sufficient number of controllable valves into a reaction chamber containing a solid phase. The synthetic scales currently used for carrying out oligonucleotide syntheses are above 20 nmol.
Dem steigenden Bedarf an Oligonukleotiden wird bisher durch die Anschaffung weiterer Syntheseautomaten begegnet. Dieses Vorgehen führt aber zu linear mit der Anzahl der Syntheseautomaten steigenden Kosten für Beschaffung und Wartung.The increasing demand for oligonucleotides has so far been met by purchasing additional automatic synthesizers. However, this procedure leads to costs for procurement and maintenance that increase linearly with the number of synthesis machines.
Eine Parallelisierung der in den Syntheseautomaten nach dem Stand der Technik eingesetzten Ventiltechnik lässt sich aufgrund des Platzbedarfes und der bei zunehmender Komplexität wachsenden Totvolumina nur bis zu einem geringen Grad durchführen.A parallelization of the valve technology used in the state-of-the-art synthesis machines can only be carried out to a small degree due to the space requirement and the increasing dead volume with increasing complexity.
Üblicherweise wird an das Ende einer Fluidverteilungsstrecke lediglich eine Reaktionskammer angebracht. Die einzelnen Reaktionsschritte benötigen aber nach der Zudosierung des Reagenz eine vorgegebene Reaktionsdauer, die nicht verkürzt werden kann. Während dieser Zeit wartet die aufwendige Dosiereinheit, bis mit dem nächsten Prozessschritt begonnen werden kann.Usually only one reaction chamber is attached to the end of a fluid distribution path. However, after the reagent has been metered in, the individual reaction steps require a predetermined reaction time which cannot be shortened. During this time, the complex dosing unit waits until the next process step can be started.
Durch die Benutzung der gleichen Zuleitung für alle Reagenzien besteht weiterhin die Gefahr, dass eine Kreuzkontamination mit zuvor dosierten Reagenzien stattfinden kann.By using the same supply line for all reagents, there is still the risk that cross-contamination with previously dosed reagents can take place.
Für viele Anwendungen reichen Mengen im unteren Nanomol-Bereich einer Oligonukleotid-Probe aus. Damit sind die derzeit eingesetzten Syntheseautomaten mit einem Synthesemaßstab von mehr als 20 nmol überdimensioniert.Amounts in the lower nanomole range of an oligonucleotide sample are sufficient for many applications. This means that the synthesizers currently used are oversized with a synthesis scale of more than 20 nmol.
Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zur Durchführung von Reaktionen in einem Synthesemaßstab von weniger als 20 nmol bereitzustellen, in der die Synthesen kontinuierlich und parallel durchgeführt werden können.The object of the present invention is to provide a device for carrying out reactions on a synthesis scale of less than 20 nmol, in which the syntheses can be carried out continuously and in parallel.
Die erfindungsgemäße Lösung besteht in einer Vorrichtung zur Durchführung von insbesondere chemischen Reaktionen mit Reagenzmengen im Picomol- bis Mikromol- Bereich, bei der die Reagenzien über Dosierstationen an Reaktionsorte dosiert werden, die sich entlang einer Reaktionsstrecke bewegen, wobei mindestens eine Dosierstation und eine Entnahmestelle derart angeordnet sind, dass die Zeit, in der sich die Reaktionsorte auf der Reaktionsstrecke bewegen, mindestens der erforderlichen Reaktionszeit für einen Reaktionsschritt entspricht. In einer bevorzugten Ausführungsform sind die Dosierstationen derart ausgebildet, dass sie jeweils ein Band umfassen, auf dem das Reagenz abschnittsweise an Dosierpositionen dosiert wird, wobei sich an jeder Dosierposition vorzugsweise mindestens ein Loch im Band befindet, dessen Querschnitt so bemessen ist, dass das Reagenz aufgrund seiner Oberflächenspannung ohne Einwirkung einer zusätzlichen Kraft nicht durch das mindestens eine Loch fließt. Anschließend wird das Band zu den zu befüllenden Reaktionsorten transportiert. Dort wird das Reagenz durch die Löcher im Band an die Reaktionsorte befördert. Der Transport der Reagenzien vom Band an die Reaktionsorte erfolgt dabei vorzugsweise durch das Anlegen eines Überdrucks. Das zur Dosierung der Reagenzien eingesetzte Band ist vorzugsweise eine einmal verwendbare Polymerfolie. Neben einem einmal verwendbaren Band ist es auch möglich, ein wieder verwendbares Endlosband einzusetzen. Bei dem wieder verwendbaren Endlosband ist jedoch darauf zu achten, dass es abwaschbar ist, damit an den Positionen, an denen Reagenzien dosiert werden, keine Rückstände von vorhergehenden Dosiervorgängen zurückbleiben. Weiterhin können statt einen Bandes bewegliche Platten eingesetzt werden, au f denen die Dosierpositionen angeordnet sind, wobei die Platten tatsächlich durch flexible Verbindungen bandartig angeordnet sind, oder aber auch frei gegeneinander verschiebbar sind und so die Funktion eines Bandes übernehmen können. Unter Platten ist im Gegensatz zu einer Folie zu verstehen, dass die Art bzw. Ausführung (Dicke) des verwendeten Materials zu einer höheren Formstabilität führt. Die einzelnen Platten sind "vorzugsweise abwaschbar und wieder verwendbar. Insbesondere ist das Band aus einem gegen die eingesetzten Reagenzien chemisch stabilen Material zu fertigen.The solution according to the invention consists in a device for carrying out, in particular, chemical reactions with reagent amounts in the picomole to micromole range, in which the reagents are metered via metering stations to reaction sites which move along a reaction path, with at least one metering station and one removal point being arranged in this way are that the time in which the reaction sites move on the reaction path corresponds at least to the reaction time required for a reaction step. In a preferred embodiment, the metering stations are designed such that they each comprise a belt on which the reagent is metered in sections at metering positions, at least one hole in the belt at each metering position, the cross section of which is dimensioned such that the reagent is due to its surface tension does not flow through the at least one hole without the action of an additional force. The belt is then transported to the reaction sites to be filled. There the reagent is transported through the holes in the belt to the reaction sites. The reagents are preferably transported from the conveyor belt to the reaction sites by applying an overpressure. The tape used to meter the reagents is preferably a single-use polymer film. In addition to a reusable belt, it is also possible to use a reusable endless belt. With the reusable endless belt, however, it must be ensured that it is washable so that no residues from previous dosing processes remain at the positions at which reagents are dosed. Furthermore, instead of a belt, movable plates can be used, on which the metering positions are arranged, the plates actually being arranged in a band-like manner by means of flexible connections, or else being freely displaceable relative to one another and thus being able to take over the function of a band. In contrast to a film, sheets are understood to mean that the type or design (thickness) of the material used leads to greater dimensional stability. The individual plates are preferably "washable and reusable. In particular, the band is to be made from a material that is chemically stable against the reagents used.
In einer weiteren Ausführungsform ist das Band derart ausgebildet, dass es an den Dosierpositionen durch das Reagenz benetzbar ist und an allen anderen Stellen das Reagenz abstößt. Dies kann z.B. durch unterschiedliche Beschichtungen der Oberfläche erfolgen.In a further embodiment, the band is designed such that it can be wetted by the reagent at the dosing positions and the reagent repels at all other locations. This can e.g. by different coatings on the surface.
In einer bevorzugten Ausführungsform ist das Band mit Vertiefungen an den Dosierpositionen versehen. Die Vertiefungen können dabei bereits bei seiner Herstellung in das Band eingebracht werden oder insbesondere bei Einsatz eines einmal verwendbaren Bandes bevorzugt nach seiner Entnahme von einer Vorratsrolle innerhalb des Gerätes.In a preferred embodiment, the band is provided with depressions at the metering positions. The depressions can be introduced into the band during its manufacture or, in particular when a single-use band is used, preferably after it has been removed from a supply roll within the device.
In einer weiteren Ausführungsform können die Vertiefungen nach dem Befüllen mit den Reagenzien abgedeckt werden, um die Reagenzien vor schädigenden äußeren Einflüssen zu schützen. Die Abdeckung kann z.B. durch Aufbringen einer Folie erfolgen. In einer bevorzugten Ausführungsform sind die Reaktionsorte auf einzelnen Syntheserastern angeordnet. Unter Syntheseraster versteht man dabei den Träger der Reaktionsorte, auf dem diese in einer vorgegebenen Weise, vorzugsweise in Zeilen und Spalten, angeordnet sind. Die Reaktionsorte sind vorzugsweise als Vertiefungen in das Syntheseraster eingebracht. Als Syntheseraster eignen sich z.B. Mikrotiterplatten, wie sie dem Fachmann allgemein bekannt und kommerziell erhältlich sind (beispielsweise von Brand GmbH, Becton-Dickinson und vielen anderen). Solche Mikrotiterplatten umfassen beispielsweise 6, 12, 24, 48, 96, 356 oder 1536 Vertiefungen.In a further embodiment, the wells can be covered with the reagents after filling in order to protect the reagents from damaging external influences. The covering can be done, for example, by applying a film. In a preferred embodiment, the reaction sites are arranged on individual synthesis grids. A synthesis grid is understood to mean the support of the reaction sites on which they are arranged in a predetermined manner, preferably in rows and columns. The reaction sites are preferably introduced as depressions in the synthesis grid. Suitable synthesis grids are, for example, microtiter plates as are generally known to the person skilled in the art and are commercially available (for example from Brand GmbH, Becton-Dickinson and many others). Such microtiter plates comprise, for example, 6, 12, 24, 48, 96, 356 or 1536 wells.
Neben der Ausbildung als Vertiefungen in den Syntheserastern können die Reaktionsorte auch eben sein oder als flache Mulden in die Syntheseraster eingebracht sein. Bei ebenen Reaktionsorten ist das Syntheseraster vorzugsweise an den Reaktionsorten durch das Reagenz benetzbar und stößt das Reagenz an allen anderen Stellen ab." In addition to training as recesses in the synthesis grids, the reaction sites can also be flat or can be introduced as flat depressions in the synthesis grids. In the case of flat reaction sites, the synthesis grid is preferably wettable by the reagent at the reaction sites and repels the reagent at all other sites. "
Zur Befüllung der Reaktionsorte im Syntheseraster wird ein mit dem Reagenz versehener Bandabschnitt derart über die Reaktionsorte im Syntheseraster gebracht, dass die Dosierpositionen auf dem Bandabschnitt mit den Positionen der Reaktionsorte übereinstimmen. Für den Transport der Reagenzien vom Bandabschnitt an die Reaktionsorte wird, nachdem die Dosierpositionen mit den Positionen der Reaktionsorte in Übereinstimmung gebracht wurden, vorzugsweise das Syntheseraster bis zum Kontakt mit dem Bandabschnitt nach oben verfahren und mit einem Deckel von oben druckdicht verschlossen. Durch Anlegen eines Überdrucks oberhalb des Bandabschnitts wird dann das sich an den einzelnen Dosierpositionen befindliche Reagenz an die darunter liegenden Reaktionsorte entleert. Nach dem Entleeren des Bandabschnitts an die Reaktionsorte werden die Syntheseraster und das Band weitertransportiert, damit ein weiteres Syntheseraster befüllt werden kann.To fill the reaction sites in the synthesis grid, a band section provided with the reagent is brought over the reaction sites in the synthesis grid in such a way that the metering positions on the band section match the positions of the reaction sites. For the transport of the reagents from the belt section to the reaction sites, after the dosing positions have been brought into line with the positions of the reaction sites, the synthesis grid is preferably moved up to the contact with the belt section and closed pressure-tight from above with a lid. By applying an overpressure above the band section, the reagent located at the individual dosing positions is then emptied to the reaction sites below. After the band section has been emptied to the reaction sites, the synthesis grid and the belt are transported further so that a further synthesis grid can be filled.
Neben der Befüllung der Dosierposition des Bandes mit nur einem Reagenz können auch mehrere Reagenzien an eine Dosierposition dosiert werden. Dies ist insbesondere dann vorteilhaft, wenn Reagenzien bereits vor der Zugabe an den Reaktionsort vermischt werden sollen. Auch können Reagenzien an den Dosierpositionen des Bandes inkubiert werden, bevor sie an die Reaktionsorte dosiert werden. Neben der Mischung und Inkubation von Reagenzien an den Dosierpositionen des Bandes sind auch weitere dem Fachmann bekannte Vorbereitungsschritte vor dem Zudosieren der Reagenzien an die Reaktionsorte möglich.In addition to filling the dosing position of the tape with just one reagent, several reagents can also be dosed at one dosing position. This is particularly advantageous if reagents are to be mixed before they are added to the reaction site. Reagents can also be incubated at the metering positions of the tape before they are metered to the reaction sites. In addition to the mixing and incubation of reagents at the metering positions of the tape, other preparation steps known to the person skilled in the art are also possible before metering the reagents into the reaction sites.
Ein weiterer Vorteil des Einsatzes eines Bandes für die Dosierung der Reagenzien ist, dass für jedes Reagenz eigene Zuleitungen und Dosierdüsen vorgesehen werden können. Auf diese Weise entfällt der Einsatz einer sehr großen Zahl von störanfälligen Ventilen und die Problematik, dass durch die Benutzung einer einzelnen Zuleitung für mehrere Reagenzien Kreuzkontaminationen auftreten können. Vorteilhaft ist weiterhin, dass durch den Weitertransport der Syntheseraster nach dem Befüllen die Dosiereinheit sofort zum Befüllen weiterer Syntheseraster genutzt werden kann. Wartezeiten bis zum nächsten Prozessschritt, die sich z.B. durch das Abwarten des Ablaufs von notwendigen Reaktionszeiten ergeben können, können somit für die Dosierung von Reagenzien in weitere Syntheseraster genutzt werden.Another advantage of using a tape for metering the reagents is that separate feed lines and metering nozzles can be provided for each reagent. On this eliminates the use of a very large number of valves susceptible to faults and the problem that cross-contamination can occur due to the use of a single supply line for several reagents. It is also advantageous that the dosing unit can be used immediately to fill further synthesis grids by further transporting the synthesis grid after filling. Waiting times until the next process step, which can result, for example, from waiting for the necessary reaction times to expire, can thus be used for metering reagents into further synthesis grids.
In einer bevorzugten Ausführungsform sind die Syntheseraster auf einem Transportband entlang einer Reaktionsstrecke angeordnet, entlang der sich mehrere Dosierstationen befinden können. Vorzugsweise wird für jeden Reaktionsschritt, bei dem ein Reagenz zugegeben werden muss, eine eigene Dosierstation vorgesehen. Der Abstand der Dosierstationen wird dabei vorzugsweise so gewählt, dass die Transportzeit der Syntheseraster von einer Dosierstation zur nächsten der erforderlichen Reaktionszeit für einen Reaktionsschritt entspricht.In a preferred embodiment, the synthesis grids are arranged on a conveyor belt along a reaction path along which several dosing stations can be located. A separate dosing station is preferably provided for each reaction step in which a reagent has to be added. The distance between the dosing stations is preferably selected so that the transport time of the synthesis grid from one dosing station to the next corresponds to the required reaction time for a reaction step.
In einer weiteren Ausführungsform ist das Transportband selbst als Syntheseraster ausgebildet, so dass die Reaktionsorte direkt auf dem Transportband angeordnet sind. In dieser Ausführungsform erfolgt die Dosierung der Reagenzien vorzugsweise abschnittsweise an die Reaktionsorte auf dem Transportband.In a further embodiment, the conveyor belt itself is designed as a synthesis grid, so that the reaction sites are arranged directly on the conveyor belt. In this embodiment, the reagents are preferably metered in sections to the reaction sites on the conveyor belt.
Bei der Dosierung wird unterschieden zwischen komplexen Dosieraufgaben, bei denen an die Reaktionsorte eines Syntheserasters jeweils unterschiedliche Reagenzien aus einer größeren Auswahl verschiedener Reagenzien zugegeben werden und einfachen Dosieraufgaben, bei denen an jeden Reaktionsort eines Syntheserasters das gleiche Reagenz gegeben wird. So handelt es sich z.B. bei der parallel durchgeführten Synthese verschiedener Oligonukleotide bei der Zugabe der Phosphoramidite um eine komplexe Dosieraufgabe, bei der Zugabe der Reagenzien für die Detritylierung, das Capping und die Oxidation um einfache Dosieraufgaben.When dosing, a distinction is made between complex dosing tasks, in which different reagents from a larger selection of different reagents are added to the reaction sites of a synthesis grid, and simple dosing tasks, in which the same reagent is given at each reaction site of a synthesis grid. So it is e.g. in the parallel synthesis of various oligonucleotides, when adding the phosphoramidites for a complex dosing task, when adding the reagents for detritylation, capping and oxidation, for simple dosing tasks.
Neben der Dosierung der Reagenzien mit dem Band können entsprechend einer weiteren Ausführungsform die Reagenzien auch mittels einer Dispensereinheit an die Reaktionsorte der Syntheseraster dosiert werden. Die Dispensereinheit ist dabei vorzugsweise so gestaltet, dass jeweils in einer Zeile bzw. Spalte liegende Reaktionsorte des Syntheserasters oder mehrere Zeilen und Spalten gleichzeitig befüllt werden können. Hierzu sind an den Positionen jedes zu befüllenden Reaktionsortes in der Dispensereinheit Dosierdüsen angeordnet. Vorzugsweise ist für jedes zu dosierende Reagenz eine einzelne Dosierdüse mit einer eigenen Zuleitung vorgesehen.In addition to the metering of the reagents with the belt, according to a further embodiment, the reagents can also be metered to the reaction sites of the synthesis grid by means of a dispenser unit. The dispenser unit is preferably designed in such a way that reaction sites of the synthesis grid located in one row or column or several rows and columns can be filled simultaneously. For this purpose, at the positions of each reaction location to be filled in the dispenser unit Dispensing nozzles arranged. An individual metering nozzle with its own feed line is preferably provided for each reagent to be metered.
Um eine Schädigung der Reagenzien oder Reaktionsprodukte durch Umgebungseinflüsse oder bei lichtempfindlichen Reagenzien oder Reaktionsprodukten durch. Licht zu vermeiden, ist in einer weiteren bevorzugten Ausführungsform die Vorrichtung zur Durchführung der chemischen Reaktionen gegen die Umgebung licht- und/oder gasundurchlässig gekapselt. Die so gekapselte Vorrichtung kann zur Vermeidung von Schädigungen der Reaktionsprodukte oder Reagenzien z.B. von einem Inertgas gespült werden.To damage the reagents or reaction products due to environmental influences or in the case of light-sensitive reagents or reaction products. In a further preferred embodiment, to avoid light, the device for carrying out the chemical reactions is encapsulated in a manner that is impervious to light and / or gas. The device encapsulated in this way can, for example, prevent damage to the reaction products or reagents, e.g. be purged by an inert gas.
Bei Reaktionen wie der Oligonukleotidsynthese, bei der nacheinander mehrere Zyklen mit den jeweils gleichen Prozessschritten durchlaufen werden, ist die Reaktionsstrecke vorzugsweise so gestaltet, dass die Syntheseraster mit den Reaktionsorten nach Durchlaufen des letzten Prozessschrittes wieder an den Anfang der Reaktionsstrecke gelangen. Bei der so geschlossenen Reaktionsstrecke können nach Beendigung der Synthese die Syntheseraster vor der Dosierung der Reagenzien des ersten Prozessschrittes entnommen werden. An die Position, an der das Syntheseraster entnommen wurde, kann dann ein neues Syntheseraster positioniert werden.In reactions such as oligonucleotide synthesis, in which several cycles with the same process steps are carried out in succession, the reaction path is preferably designed in such a way that the synthesis grid with the reaction sites return to the beginning of the reaction path after the last process step has been completed. With the reaction path closed in this way, the synthesis grid can be removed after the synthesis of the reagents of the first process step after completion of the synthesis. A new synthesis grid can then be positioned at the position at which the synthesis grid was removed.
In einer weiteren bevorzugten Ausführungsform ist an jedem Reaktionsort mindestens ein Loch ausgebildet, dessen Querschnittsfläche so gewählt wird, dass die am Reaktionsort befindliche Flüssigkeit aufgrund ihrer Oberflächenspannung nur durch Anlegen einer zusätzlichen Kraft durch das Loch abfließen kann. Durch das mindestens eine Loch am Reaktionsort kann z.B. nach Abschluss der Synthese das Reaktionsprodukt vom Reaktionsort abgezogen werden. Weiterhin wird es durch ein Loch am Reaktionsort z.B. ermöglicht, die Spüllösung, die in den bei der Oligonukleotidsynthese erforderlichen Spülvorgängen eingebracht wird, wieder vom Reaktionsort abzuziehen. Für die bei der Oligonukleotidsynthese erforderlichen Spülvorgänge sind vorzugsweise vor den Dosierstationen jeweils Spülstationen angeordnet.In a further preferred embodiment, at least one hole is formed at each reaction site, the cross-sectional area of which is selected such that the liquid located at the reaction site can only flow through the hole due to its surface tension by applying an additional force. Through the at least one hole at the reaction site, e.g. after the synthesis is complete, the reaction product is withdrawn from the reaction site. Furthermore, it is e.g. through a hole at the reaction site enables the rinsing solution, which is introduced in the rinsing processes required for oligonucleotide synthesis, to be withdrawn again from the reaction site. For the rinsing processes required in oligonucleotide synthesis, rinsing stations are preferably arranged in front of the metering stations.
Bei dem erfindungsgemäßen Verfahren zur Durchführung von Reaktionen von Reagenzmengen im Picomol- bis Mikromol-Bereich werden die Reagenzien an Dosierstationen an Reaktionsorte dosiert, die sich entlang einer Reaktionsstrecke bewegen, wobei mindestens eine Dosierstation und eine Entnahmestelle derart angeordnet sind, dass die Zeit, die sich die Reaktionsorte auf der Reaktionsstrecke bewegen, der erforderlichen Reaktionszeit für die Reaktion entspricht. Bei dem Einsatz einer Folie zur Dosierung der Reagenzien an die Reaktionsorte, können die Reagenzien zur Reaktion vor der Zugabe an die Reaktionsorte vorbereitet werden. Hierzu zählt z.B. das Mischen mehrerer Reagenzien oder das Inkubieren.In the method according to the invention for carrying out reactions of reagent quantities in the picomole to micromole range, the reagents are metered at metering stations at reaction sites which move along a reaction route, with at least one metering station and one removal point being arranged such that the time which is move the reaction sites on the reaction route, which corresponds to the required reaction time for the reaction. If a film is used to dose the reagents to the reaction sites, the reagents can be prepared for the reaction before the addition to the reaction sites. This includes, for example, mixing several reagents or incubating.
In einer besonders bevorzugten Ausführungsform werden die Vorrichtung oder das Verfahren zur Durchführung von insbesondere chemischen Reaktionen zur parallelen Synthese verschiedener Oligonukleotide verwendet. Weitere bevorzugte Reaktionen, bei denen diese verwendet werden können, sind die parallele Synthese von Peptiden oder von Oligosacchariden.In a particularly preferred embodiment, the device or the method are used to carry out, in particular, chemical reactions for the parallel synthesis of different oligonucleotides. Further preferred reactions in which these can be used are the parallel synthesis of peptides or of oligosaccharides.
Im Folgenden wird die Erfindung anhand einer Zeichnung näher beschrieben.The invention is described in more detail below with reference to a drawing.
Diese zeigt in:This shows in:
Figur 1 eine Reaktionsstrecke zur Oligonukleotisynthese,FIG. 1 shows a reaction path for oligonucleotide synthesis,
Figur 2 eine Dosierstation mit einem Band zur Dosierung der Reagenzien in einer perspektivischen Darstellung,FIG. 2 shows a dosing station with a belt for dosing the reagents in a perspective view,
Figur 3 eine Dosierstation mit einem Band zur Dosierung der Reagenzien in einer Schnittdarstellung,FIG. 3 shows a dosing station with a belt for dosing the reagents in a sectional view,
Figur 4 eine Dosierstelle mit Dispensereinheit in einer Draufsicht.Figure 4 is a top view of a dispensing unit with dispenser unit.
In Figur 1 ist eine Reaktionsstrecke zur Oligonukleotidsynthese dargestellt.A reaction path for oligonucleotide synthesis is shown in FIG.
Zur Oligonukleotidsynthese werden Syntheseraster 1 entlang einer Reaktionsstrecke 2 transportiert. Zur Durchführung der Reaktionen sind auf dem Syntheseraster 1 Reaktionsorte 3, z.B. Vertiefungen in einer Mikrotiterplatte, ausgebildet. An der mit dem Pfeil 4 gekennzeichneten Aufgabestelle werden bei der in Figur 1 gezeigten Synthesevariante die Syntheseraster 1 der Reaktionsstrecke 2 zugeführt. Die Position der Aufgabe und Entnahme der Syntheseraster 1 hängt von der Synthesevariante ab. So befindet sich zum Beispiel bei einer sogenannten Trityl-Off-Synthese die Aufgabestelle an der mit dem Pfeil 4.1 gekennzeichneten Position. Die Aufgabestelle ist vorzugsweise vor der Zugabe der Reagenzien für den ersten Reaktionsschritt und die Entnahmestelle vorzugsweise nach dem Ende des letzten für die Synthese erforderlichen Reaktionsschrittes angeordnet. Für die Oligonukleotidsynthese enthalten die Reaktionsorte 3 der Syntheseraster 1 vorzugsweise ein Trägermaterial. Mit dem Trägermaterial ist mit einer kovalenten oder nicht kovalenten Bindung eine Nukleinsäure oder ein Oligonukleotid verbunden. Um eine unerwünschte Kopplung von Nukleotiden an die Ausgangssubstanzen zu vermeiden, werden diese z.B. durch Monomethoxitrityl oder Dimethoxitrityl geschützt. Zur Abspaltung der Schutzgruppen wird an einer ersten Dosierstation 5 Säure zudosiert. Auch bei der Herstellung unterschiedlicher Oligonukleotide an den einzelnen Reaktionsorten 3 des Syntheserasters 1 ist dieser Schritt für alle Oligonukleotidsynthesen an den einzelnen Reaktionsorten 3 der gleiche. Das heißt, dass an alle Reaktionsorte 3 des Syntheserasters 1 die gleiche Menge des gleichen Reagenzes dosiert wird. Nach der Zudosierung der Säure an der ersten Dosierstation 5 wird das Syntheseraster 1 entlang der Reaktionsstrecke 2 in die mit dem Pfeil 6 gekennzeichnete Transportrichtung transportiert. Der Transport erfolgt aber vorzugsweise schrittweise von einer Zwischenposition 7 zur nächsten. Die Zeit, die die Syntheseraster 1 an den Zwischenpositionen 7 verweilen, entspricht dabei der Zeit, die maximal zur Zudosierung der Reagenzien oder zum Spülen benötigt wird. Die Anzahl der Zwischenpositionen 7 zwischen der ersten Dosierstation 5 und einer ersten Spülstation 8 ergibt sich aus der Dauer, die für die Detritylierung erforderlich ist.For oligonucleotide synthesis, synthesis frames 1 are transported along a reaction path 2. To carry out the reactions, reaction sites 3, for example depressions in a microtiter plate, are formed on the synthesis grid 1. In the synthesis variant shown in FIG. 1, the synthesis grid 1 is fed to reaction zone 2 at the feed point marked with arrow 4. The position of the task and removal of the synthesis grid 1 depends on the synthesis variant. For example, in a so-called trityl-off synthesis, the drop point is at the position marked with the arrow 4.1. The feed point is preferably arranged before the addition of the reagents for the first reaction step and the removal point preferably after the end of the last reaction step required for the synthesis. For the oligonucleotide synthesis, the reaction sites 3 of the synthesis grid 1 preferably contain a carrier material. A nucleic acid or an oligonucleotide is connected to the carrier material with a covalent or non-covalent bond. In order to avoid unwanted coupling of nucleotides to the starting substances, they are protected, for example, by monomethoxitrityl or dimethoxitrityl. To split off the protective groups, 5 acid is metered in at a first metering station. Even when producing different oligonucleotides at the individual reaction sites 3 of the synthesis grid 1, this step is the same for all oligonucleotide syntheses at the individual reaction sites 3. This means that the same amount of the same reagent is metered into all reaction sites 3 of the synthesis grid 1. After the acid has been metered in at the first metering station 5, the synthesis grid 1 is transported along the reaction path 2 in the transport direction indicated by the arrow 6. However, the transport is preferably carried out step by step from one intermediate position 7 to the next. The time that the synthesis grid 1 remains at the intermediate positions 7 corresponds to the maximum time required for metering in the reagents or for rinsing. The number of intermediate positions 7 between the first dosing station 5 and a first rinsing station 8 results from the time required for the detritylation.
An der ersten Spülstation 8 wird eine Spüllösung zugegeben, um überschüssige Reagenzien auszuwaschen. Nach einer kurzen Emwirkzeit wird die Spüllösung mitsamt den überschüssigen Reagenzien vom Reaktionsort 3 entfernt. Hierzu ist vorzugsweise am Reaktionsort mindestens ein Loch angebracht. Der Querschnitt des mindestens einen Loches ist dabei so zu wählen, dass die am Reaktionsort 3 befindliche Flüssigkeit aufgrund ihrer Oberflächenspannung nur durch Anlegen einer zusätzlichen Kraft durch das Loch abfließen kann. Zum Entfernen der flüssigen Bestandteile vom Reaktionsort 3 an der Spülstation 8 wird an der Unterseite des Syntheserasters 1 ein Unterdruck angelegt. Hierdurch wird die Spüllösung mitsamt der darin enthaltenen flüssigen Bestandteile, die sich am Reaktionsort 3 befinden, durch das Loch am Reaktionsort 3 entfernt. Nach dem Spülprozess an der ersten Spülstation 8 wird das Syntheseraster 1 zu einer zweiten Dosierstation 9 transportiert. An der zweiten Dosierstation 9 erfolgt die Zudosierung von Phosphoramiditen, die an die an den Reaktionsorten 3 enthaltenen Nukleotide angekoppelt werden. Hierzu werden abhängig von den an den einzelnen Reaktionsorten 3 zu synthetisierenden Oligonukleotiden unterschiedliche Mononukleotide an die einzelnen Reaktionsorte 3 dosiert. Bei den hier dargestellten Syntheseverfahren zur Oligonukleotidsynthese muss das anzukoppelnde Nukleotid aktiviert werden. Die Aktivierung erfolgt vorzugsweise mit Tetrazol oder einem Tetrazol-Derviat. Bei Einsatz eines Bandes an der zweiten Dosierstation 9 können das anzukoppelnde Nukleotid und das Tetrazol bereits gemeinsam auf dem Band dosiert werden, so dass die Aktivierung bereits auf dem Band erfolgt. Das aktivierte Nukleotid-Derivat wird dann vorzugsweise durch ein Loch an der Dosierposition im Band an den Reaktionsort 3 dosiert.At the first rinsing station 8, a rinsing solution is added in order to wash out excess reagents. After a short exposure time, the rinsing solution together with the excess reagents is removed from reaction site 3. For this purpose, at least one hole is preferably made at the reaction site. The cross section of the at least one hole is to be selected so that the liquid located at the reaction site 3 can only flow through the hole due to its surface tension by applying an additional force. To remove the liquid constituents from the reaction site 3 at the rinsing station 8, a vacuum is applied to the underside of the synthesis grid 1. As a result, the rinsing solution together with the liquid constituents contained therein, which are located at reaction site 3, are removed through the hole at reaction site 3. After the rinsing process at the first rinsing station 8, the synthesis grid 1 is transported to a second dosing station 9. At the second metering station 9, phosphoramidites are added, which are coupled to the nucleotides contained at the reaction sites 3. For this purpose, depending on the oligonucleotides to be synthesized at the individual reaction sites 3, different mononucleotides are metered into the individual reaction sites 3. In the synthesis methods for oligonucleotide synthesis shown here, the nucleotide to be coupled must be activated. The activation is preferably carried out with tetrazole or a tetrazole derivative. When using a tape at the second dosing station 9, the nucleotide to be coupled and the tetrazole can already be dosed together on the tape, so that the activation already done on the tape. The activated nucleotide derivative is then preferably metered through a hole at the metering position in the band to the reaction site 3.
Nach der Dosierung der Nukleotide zur Synthese in der zweiten Dosierstation 9 werden die Syntheseraster 1 zu einer zweiten Spülstation 10 transportiert. Auch hier erfolgt der Transport der Syntheseraster 1 schrittweise von einer Zwischenposition 7 zur nächsten. Die Anzahl der Zwischenpositionen 7 zwischen der zweiten Dosierstation 9 und der zweiten Spülstation 10 ist so gewählt, dass die Transportdauer der Syntheseraster 1 der notwendigen Reaktionszeit für die Synthese entspricht.After the nucleotides have been dosed for synthesis in the second dosing station 9, the synthesis grids 1 are transported to a second rinsing station 10. Here too, the synthesis grid 1 is transported step by step from one intermediate position 7 to the next. The number of intermediate positions 7 between the second dosing station 9 and the second rinsing station 10 is selected such that the transport duration of the synthesis grid 1 corresponds to the reaction time required for the synthesis.
An der zweiten Spülstation 10 werden analog zur ersten Spülstation 8 überschüssige Reagenzien vom Reaktionsort 3 des Syntheserasters 1 gespült. Die zweite Spülstation 10 ist von einer dritten Dosierstation 11 gefolgt, an der ein Reagenz zum Capping nicht abreagierter 5'-OH-Gruppen zudosiert wird. Nach der Zugabe der Reagenzien an der dritten Dosierstation 11 wird das Syntheseraster über Zwischenpositionen 7, deren Anzahl wiederum von der Dauer der Reaktion abhängt, zu einer dritten Spülstation 12 transportiert. An der dritten Spülstation 12 werden überschüssige Reagenzien und flüssige Reaktionsnebenprodukte durch eine geeignete Spüllösung entfernt, welche den Reaktionsorten 3 zugegeben wird und durch Anlegen eines Unterdrucks an der Unterseite des Syntheserasters 1 wieder vom Reaktionsort 3 abgezogen wird.At the second rinsing station 10, analogous to the first rinsing station 8, excess reagents are rinsed from the reaction site 3 of the synthesis grid 1. The second rinsing station 10 is followed by a third metering station 11, at which a reagent for capping unreacted 5'-OH groups is metered in. After the addition of the reagents at the third dosing station 11, the synthesis grid is transported to a third rinsing station 12 via intermediate positions 7, the number of which in turn depends on the duration of the reaction. At the third rinsing station 12, excess reagents and liquid reaction by-products are removed by a suitable rinsing solution, which is added to the reaction sites 3 and is withdrawn from the reaction site 3 by applying a vacuum to the underside of the synthesis grid 1.
Die dritte Spülstation 12 ist von einer vierten Dosierstation 13 gefolgt, an welcher ein geeignetes Reagenz zur Oxidation des Phosphors zugegeben wird. Über mehrere Zwischenpositionen 7, deren Anzahl wiederum von der Reaktionsdauer abhängt, wird das Syntheseraster 1 zu einer vierten Spülstation transportiert. Auch hier werden analog zu den Spülstationen 8, 10, 12 durch Zugabe einer geeigneten Spüllösung nicht abreagierte Reagenzien und Reaktionsnebenprodukte vom Reaktionsort 3 entfernt. Bei dem in Figur 1 dargestellten Schema ist die vierte Spülstation 14 von einer Rasteraustauschposition 15 gefolgt, an der nach abgeschlossener Oligonukleotidsynthese die Syntheseraster 1 aus der Reaktionsstrecke 2 entnommen werden können.The third rinsing station 12 is followed by a fourth dosing station 13, at which a suitable reagent for the oxidation of the phosphorus is added. The synthesis grid 1 is transported to a fourth rinsing station via several intermediate positions 7, the number of which in turn depends on the reaction time. Here too, unreacted reagents and reaction by-products are removed from the reaction site 3 analogously to the rinsing stations 8, 10, 12 by adding a suitable rinsing solution. In the diagram shown in FIG. 1, the fourth rinsing station 14 is followed by a grid exchange position 15, from which the synthesis grid 1 can be removed from the reaction zone 2 after the oligonucleotide synthesis has been completed.
Für eine optimale Auslastung der Vorrichtung wird an der Rasteraustauschposition 15 sobald ein Syntheseraster 1 entnommen wurde, ein neues Syntheseraster 1 aus einem Vorrat 17 aufgegeben.For optimal utilization of the device, a new synthesis grid 1 from a supply 17 is placed at the grid exchange position 15 as soon as a synthesis grid 1 has been removed.
Bei der Oligonukleotidsynthese sind die an der ersten Dosierstation 5, der dritten Dosierstation 11 und der vierten Dosierstation 13 durchgeführten Prozesse unabhängig von den zu synthetisierenden Oligonukleotiden für alle Synthesen gleich. Aus diesem Grund kann an diesen Dosierstationen 5, 11, 13 z.B. mit oberhalb der Reaktionsorte 3 angeordneten Dosierdüsen direkt an die Reaktionsorte 3 dosiert werden. Hierdurch kann eine aufwendige Regelung entfallen, durch die gewährleistet wird, dass an jeden Reaktionsort 3 das richtige Reagenz dosiert wird.In oligonucleotide synthesis, the processes carried out at the first dosing station 5, the third dosing station 11 and the fourth dosing station 13 are the same for all syntheses, regardless of the oligonucleotides to be synthesized. For this reason can be metered directly to the reaction sites 3 at these metering stations 5, 11, 13, for example with metering nozzles arranged above the reaction sites 3. This makes it possible to dispense with a complex control which ensures that the correct reagent is metered into each reaction site 3.
Neben den in Figur 1 dargestellten Zwischenpositionen 7, über die die Syntheseraster 1 vorzugsweise in einem synchronisierten Takt bewegt werden, können den Dosierstationen 5, 9, 11, 13 auch Parkpositionen nachgeschaltet sein, an die die Syntheseraster 1 transportiert werden. Nach der für den einzelnen Reaktionsschritt erforderlic en Reaktionszeit werden die Syntheseraster 1 dann aus der Parkposition entnommen und zur nächsten Spülstation 8, 10, 12, 14 und von dort zur nächsten Dosierstation 5, 9, 11, 13 transportiert.In addition to the intermediate positions 7 shown in FIG. 1, via which the synthesis grids 1 are preferably moved in a synchronized cycle, the dosing stations 5, 9, 11, 13 can also be followed by parking positions to which the synthesis grids 1 are transported. After the reaction time required for the individual reaction step, the synthesis grids 1 are then removed from the park position and transported to the next rinsing station 8, 10, 12, 14 and from there to the next metering station 5, 9, 11, 13.
Neben der hier beschriebenen Oligonukleotidsynthese eignet sich die Vorrichtung auch zur Durchführung jeglicher anderen chemischen Reaktion, bei der nur geringe Mengen an Reaktionsprodukten erzeugt werden. Die Vorrichtung eignet sich insbesondere dazu, gleichzeitig eine Vielzahl verschiedener Produkte zu synthetisieren, die jeweils unter gleichen Bedingungen hergestellt werden. Hierzu zählen zum Beispiel die Peptidsynthese oder die Oligosaccharidsynthese.In addition to the oligonucleotide synthesis described here, the device is also suitable for carrying out any other chemical reaction in which only small amounts of reaction products are produced. The device is particularly suitable for simultaneously synthesizing a large number of different products, which are each produced under the same conditions. These include, for example, peptide synthesis or oligosaccharide synthesis.
Bei der Durchführung von chemischen Reaktionen, bei denen keine Spülvorgärαge erforderlich sind, ist es nicht notwendig, die Reaktionsorte 3 mit mindestens einem Loch zu versehen. Da in diesem Fall die Entnahme der Reaktionsprodukte erst erfolgt, wenn das Syntheseraster 1 der Reaktionsstrecke 2 entnommen wurde, kann eine Entnahme dann auch über die BefüUöffnungen der Reaktionsorte 3 bei Vertiefungen oder Kammern im Syntheseraster 1 beziehungsweise bei flachen Reaktionsorten 3 direkt vom Reaktionsort 3 erfolgen.When carrying out chemical reactions in which no rinsing precursors are required, it is not necessary to provide the reaction sites 3 with at least one hole. Since in this case the reaction products are only removed when the synthesis grid 1 has been removed from the reaction zone 2, a removal can then also take place directly from the reaction site 3 via the feed openings of the reaction sites 3 in depressions or chambers in the synthesis grid 1 or in the case of flat reaction sites 3.
Figur 2 ist eine Dosierstation mit einem Band zur Dosierung der Reagenzien in einer perspektivischen Darstellung zu entnehmen.FIG. 2 shows a dosing station with a belt for dosing the reagents in a perspective view.
Um mehrere Reaktionsorte 3 eines Syntheserasters 1 gleichzeitig befüllen zu können, werden die Reagenzien, die an die Reaktionsorte 3 dosiert werden, auf einem Band 18 vorbereitet. Das Band 18 wird in einer bevorzugten Ausführungsform einem Folienvorrat 19 entnommen, welcher vorzugsweise als Rolle ausgebildet ist, auf welche das Band 18 aufgewickelt ist. In einer bevorzugten Ausführungsform werden in das Band 18 zunächst abschnittsweise Vertiefungen 20 geprägt. Dies kann z.B. durch Tiefziehen erfolgen. Um die in die Vertiefungen 20 des Bandabschnitts 37 dosierten Reagenzien an die Reaktionsorte 3 zu entleeren, ist am Boden der Vertiefungen 20 vorzugsweise mindestens ein Loch ausgebildet. Das Loch ist dabei so dimensioniert, dass die in der Vertiefung 20 befindliche Flüssigkeit aufgrund ihrer Oberflächenspannung nur durch Anlegung einer zusätzlichen Kraft durch das Loch abfließen kann. Mit Hilfe von Rollen 21 wird das Band in die mit dem Pfeil 22 gekennzeichnete Förderrichtung bewegt. Dabei werden die an der Prägeposition 23 erzeugten Vertiefungen 20 zu einer Dosierposition 24 gefördert, an der in die Vertiefungen 20 das an die Reaktionsorte 3 zu dosierende Reagenz dosiert wird.In order to be able to fill several reaction sites 3 of a synthesis grid 1 at the same time, the reagents which are metered to the reaction sites 3 are prepared on a belt 18. In a preferred embodiment, the tape 18 is removed from a film supply 19, which is preferably designed as a roll, on which the tape 18 is wound. In a preferred embodiment, indentations 20 are first embossed in sections in the band 18. This can be done, for example, by deep drawing. To the reagents dosed into the recesses 20 of the band section 37 to the To empty reaction sites 3, at least one hole is preferably formed at the bottom of the depressions 20. The hole is dimensioned in such a way that the liquid in the recess 20 can only flow through the hole due to its surface tension by applying an additional force. With the help of rollers 21, the belt is moved in the conveying direction indicated by arrow 22. The depressions 20 produced at the embossing position 23 are conveyed to a metering position 24, at which the reagent to be metered to the reaction sites 3 is metered into the depressions 20.
In einem nächsten Schritt wird der Bandabschnitt 37 mit den mit Reagenz gefüllten Vertiefungen 20 über ein Syntheseraster 1 transportiert. Dabei ist darauf zu achten, dass die Vertiefungen 20 in der Folie mit den Reaktionsorten 3 des Syntheserasters 1 deckungsgleich sind. In einer bevorzugten Ausführungsform wird das Syntheseraster 1 von unten gegen den Bandabschnitt 37 bewegt und gleichzeitig von oben ein Deckel 25 aufgesetzt. Durch Anlegen eines Überdrucks am Deckel 25 wird das in den Vertiefungen 20 enthaltene Reagenz an die Reaktionsorte 3 des Syntheserasters 1 entleert. Nach demIn a next step, the belt section 37 with the wells 20 filled with reagent is transported over a synthesis grid 1. It should be ensured that the depressions 20 in the film are congruent with the reaction sites 3 of the synthesis grid 1. In a preferred embodiment, the synthesis grid 1 is moved from below against the band section 37 and at the same time a cover 25 is placed on from above. By applying an overpressure to the lid 25, the reagent contained in the depressions 20 is emptied to the reaction sites 3 of the synthesis grid 1. After this
Entleeren der Vertiefungen 20 wird der Deckel 25 wieder geöffnet und das SyntheserasterEmptying the depressions 20, the lid 25 is opened again and the synthesis grid
1 und das Band 18 werden weitertransportiert. Dabei sind auf der Reaktionsstrecke 2 die1 and the belt 18 are transported on. Here are on the reaction path 2
Syntheseraster 1 vorzugsweise so angeordnet, dass bei dem Transport der Syntheseraster 1 direkt das nächste Syntheseraster 1 unter das Band 18 geschoben wird. Gleichzeitig wird ein neuer Bandabschnitt 37 mit Reagenz enthaltenden Vertiefungen 20 über dasSynthesis grid 1 is preferably arranged such that the next synthesis grid 1 is pushed directly under the belt 18 when the synthesis grid 1 is transported. At the same time, a new band section 37 with reagent-containing recesses 20 is placed over the
Syntheseraster 1 geführt.Synthesis grid 1 performed.
Neben der Prägung der Vertiefungen 20 an der Prägeposition 23 direkt vor der Zudosierung der Reagenzien in der Vorrichtung zur Durchführung einer chemischen Reaktion kann auch ein bereits fertig geprägtes Band 18 eingesetzt werden.In addition to embossing the depressions 20 at the embossing position 23 directly before the reagents are metered into the device for carrying out a chemical reaction, a band 18 which has already been embossed can also be used.
Neben der Verwendung von Vertiefungen 20 zur Aufnahme der Reagenzien an den Dosierpositionen auf dem Band 18 ist es auch möglich, das Band 18 an den Dosierpositionen durch das Reagenz benetzbar auszuführen und an allen anderen Stellen derart auszuführen, dass das zu dosierende Reagenz abgestoßen wird. Dies kann z.B. durch eine Beschichtung erfolgen.In addition to the use of depressions 20 for receiving the reagents at the dosing positions on the band 18, it is also possible to make the band 18 wettable by the reagent at the dosing positions and to execute them at all other locations in such a way that the reagent to be dosed is repelled. This can e.g. done by a coating.
Zum Schutz der Reagenzien können die Dosierpositionen in einer weiteren Ausführungsform nach dem Dosieren abgedeckt werden. Dies kann zum Beispiel durch Aufschweißen oder Aufkleben einer Folie erfolgen.To protect the reagents, the dosing positions can be covered in a further embodiment after dosing. This can be done, for example, by welding or gluing a film.
Figur 3 zeigt eine Dosierstation mit einem Band zur Dosierung der Reagenzien in einer Schnittdarstellung. Das Band 18 wird mit Hilfe von Rollen 21 in die mit dem Pfeil 22 gekennzeichnete Förderrichtung transportiert. In das Band 18 sind Vertiefungen 20 geprägt, an deren Boden sich mindestens ein Loch 26 befindet. Dabei ist das Loch 26 vorzugsweise so dimensioniert, dass die in der Vertiefung 20 befindliche Flüssigkeit aufgrund ihrer Oberflächenspannung nur durch Anlegung einer zusätzlichen Kraft durch das Loch 26 abfließen kann. In die Vertiefungen 20 wird mit Hilfe von Dosierdüsen 27 das zur Reaktion benötigte Reagenz dosiert. Die von den Dosierdüsen 27 abgegebenen Reagenztropfen sind mit dem Bezugszeichen 28 gekennzeichnet. Abhängig von der durchzuführenden Reaktion können in die einzelnen Vertiefungen 20 ein oder mehrere verschiedene Reagenzien dosiert werden. In einer bevorzugten Ausführungsfor ist für jedes Reagenz eine eigene Dosierdüse 27 vorgesehen. Hierdurch wird vermieden, dass durch Rückstände in den Dosierdüsen 27 eine Kreuzkontamination auftreten kann.Figure 3 shows a metering station with a belt for metering the reagents in a sectional view. The belt 18 is transported by means of rollers 21 in the conveying direction indicated by the arrow 22. In the band 18 depressions 20 are embossed, at the bottom of which there is at least one hole 26. The hole 26 is preferably dimensioned such that the liquid in the recess 20 can only flow through the hole 26 due to its surface tension by applying an additional force. The reagent required for the reaction is metered into the depressions 20 with the aid of metering nozzles 27. The reagent drops emitted by the metering nozzles 27 are identified by the reference symbol 28. Depending on the reaction to be carried out, one or more different reagents can be metered into the individual wells 20. In a preferred embodiment, a separate metering nozzle 27 is provided for each reagent. This prevents cross-contamination from occurring in the dosing nozzles 27.
Die mit dem Reagenz gefüllten Vertiefungen 20 werden zu dem hier schematisch dargestellten Syntheseraster 1 transportiert. Sobald die Vertiefungen 20 mit den Positionen der Reaktionsorte 3 des Syntheserasters 1 übereinstimmen, wird das Syntheseraster 1 in die mit dem Pfeil 29 gekennzeichnete Richtung gegen den Bandabschnitt 37 gedrückt. Von oben wird auf den Bandabschnitt 37 ein Deckel 25 aufgesetzt. Der Deckel 25 ist dabei vorzugsweise so ausgebildet, dass zwischen dem Syntheseraster 1, dem Bandabschnitt 37 und dem Deckel 25 eine druckdichte Verbindung hergestellt wird. Nach dem Verschließen des Syntheserasters 1 und dem Bandabschnitt 37 mit dem Deckel 25 wird oberhalb des Bandabschnitts 37 ein Druckstoß erzeugt. Der Druckstoß ist hier mit dem Pfeil mit Bezugszeichen 30 gekennzeichnet. Aufgrund des Überdrucks oberhalb der Vertiefungen 20 im Bandabschnitt 37 werden die in den Vertiefungen 20 befindlichen Reagenzien durch die Löcher 26 an die Reaktionsorte 3 des Syntheserasters 1 entleert.The wells 20 filled with the reagent are transported to the synthesis grid 1 shown schematically here. As soon as the depressions 20 match the positions of the reaction sites 3 of the synthesis grid 1, the synthesis grid 1 is pressed against the band section 37 in the direction indicated by the arrow 29. A cover 25 is placed on the band section 37 from above. The cover 25 is preferably designed such that a pressure-tight connection is established between the synthesis grid 1, the band section 37 and the cover 25. After closing the synthesis grid 1 and the band section 37 with the lid 25, a pressure surge is generated above the band section 37. The pressure surge is identified here by the arrow with reference number 30. Due to the overpressure above the depressions 20 in the band section 37, the reagents located in the depressions 20 are emptied through the holes 26 to the reaction sites 3 of the synthesis grid 1.
Nach dem Entleeren der Vertiefungen 20 an die Reaktionsorte 3 des Syntheserasters 1 wird der Deckel 25 geöffnet, das Syntheseraster 1 wird weiterbewegt, wobei gleichzeitig ein neues Syntheseraster 1 zum Befüllen unter das Band 18 transportiert wird. Das entleerte Band 18 wird in Förderrichtung 22 weiterbewegt, wobei gleichzeitig mit Reagenz gefüllte Vertiefungen 20 über das neue Syntheseraster 1 transportiert werden.After the depressions 20 have been emptied to the reaction sites 3 of the synthesis grid 1, the lid 25 is opened, the synthesis grid 1 is moved further, a new synthesis grid 1 being simultaneously transported under the belt 18 for filling. The emptied belt 18 is moved further in the conveying direction 22, with wells 20 filled with reagent being transported simultaneously via the new synthesis grid 1.
In einer bevorzugten Ausführungsform wird das Band 18 nur einmal verwendet. Das bedeutet, dass das Band 18 nach dem Entleeren der Vertiefungen 20 entsorgt wird. Hierdurch wird gewährleistet, dass absolut kontaminationsfrei dosiert werden kann. Neben der Verwendung des Bandes 18 als Einwegteil kann zum Dosieren jedoch auch, ein Endlosband eingesetzt werden. Hierbei muss das Band 18 nach dem Entleeren der Vertiefungen 20 gereinigt werden, um Rückstände zu entfernen. Nach dem Reinigen kann das Band 18 dann erneut für die Dosierung der Reagenzien verwendet werden.In a preferred embodiment, band 18 is used only once. This means that the band 18 is disposed of after the depressions 20 have been emptied. This ensures that dosing is absolutely contamination-free. In addition to the use of the belt 18 as a disposable part, however, an endless belt can also be used for metering. Here, the band 18 has to be cleaned after emptying the depressions 20 in order to remove residues. After cleaning, the band 18 can then be used again for metering the reagents.
In einer weiteren bevorzugten Ausführungsform kann das Band 18 einzelne bewegliche Platten, die jeweils einem Bandabschnitt 37 entsprechend und auf denen die Dosierpositionen angeordnet sind, umfassen.In a further preferred embodiment, the belt 18 can comprise individual movable plates, each corresponding to a belt section 37 and on which the metering positions are arranged.
Figur 4 zeigt eine Dosierstelle mit Dispensereinheit in Draufsicht.Figure 4 shows a dosing point with a dispenser unit in plan view.
Bei der in Figur 4 gezeigten Dosierstelle sind die Dosierdüsen 21 zur Dosierung der Reagenzien auf das Band 18 in einer Dispensereinheit 31 angeordnet. Die Dispensereinheit umfasst dazu ein Piezo-Dispenser-Array 32 und eine Steuereinheit 33. Bei der in Figur 4 dargestellten Ausführungsvariante sind in dem Piezo-Dispenser-Array 32 Düseneinheiten 34 derart nebeneinander angeordnet, dass jeweils gleichzeitig eine Reihe an Dosierpositionen auf dem Band 18 befüllt werden kann. Jede Düseneinheit 34 umfasst vorzugsweise mehrere Dosierdüsen 27, wobei für jedes zu dosierende Reagenz eine Dosierdüse 27 vorgesehen ist. Die Dispensereinheit 31 ermöglicht es, gleichzeitig an verschiedene Dosierpositionen in der Reihe, welche befüllt wird, unterschiedliche Reagenzien zu dosieren. Mit dem Bezugszeichen 38 sind die mit unterschiedlichen Reagenzien befüllten Dosierpositionen gekennzeichnet.In the metering point shown in FIG. 4, the metering nozzles 21 for metering the reagents onto the belt 18 are arranged in a dispenser unit 31. For this purpose, the dispenser unit comprises a piezo dispenser array 32 and a control unit 33. In the embodiment variant shown in FIG. 4, nozzle units 34 are arranged next to one another in the piezo dispenser array 32 such that a number of metering positions on the belt 18 are simultaneously filled can be. Each nozzle unit 34 preferably comprises a plurality of metering nozzles 27, one metering nozzle 27 being provided for each reagent to be metered. The dispenser unit 31 makes it possible to dose different reagents simultaneously to different dosing positions in the row which is being filled. The dosing positions filled with different reagents are identified by the reference symbol 38.
Die Steuerung der Dosierdüsen 27 erfolgt mit Hilfe der Steuereinheit 33. An der Steuereinheit 33 sind Elektronikanschlüsse 35 vorgesehen, mit denen die Steuereinheit 33 z.B. mit einer externen Datenverarbeitungsanlage verbunden werden kann. Die Versorgung der Dosierdüsen 27 mit den zur Reaktion erforderlichen Reagenzien erfolgt über Fluidanschlüsse 36.The dosing nozzles 27 are controlled with the aid of the control unit 33. Electronic connections 35 are provided on the control unit 33, with which the control unit 33 e.g. can be connected to an external data processing system. The dosing nozzles 27 are supplied with the reagents required for the reaction via fluid connections 36.
Dadurch, dass für jedes Reagenz eine eigene Dosierdüse 27 vorgesehen ist und auch für jedes Reagenz eine eigene Zuleitung vorgesehen ist, kann mit der in Figur 4 dargestellten Dispensereinheit absolut kontaminationsfrei dosiert werden.Because a separate dosing nozzle 27 is provided for each reagent and a separate feed line is also provided for each reagent, dosing with the dispenser unit shown in FIG. 4 is absolutely contamination-free.
Neben der Dosierung der Reagenzien an die Dosierposition auf dem Band 18 eignet sich die in Figur 4 dargestellte Dispensereinheit auch zur Dosierung der Reagenzien direkt an die Reaktionsorte 3 des Syntheserasters 1. Hierbei kann dann jedoch jeweils nur einIn addition to the metering of the reagents at the metering position on the belt 18, the dispenser unit shown in FIG. 4 is also suitable for metering the reagents directly to the reaction sites 3 of the synthesis grid 1. In this case, however, only one can be used
Reagenz zudosiert werden, eine Vermischung mehrerer Reagenzien vor der Zudosierung an die Reaktionsorte 3 oder ein Inkubieren der Reagenzien vor der Zugabe an die Reaktionsorte 3 ist nicht möglich. Reagent are metered in, a mixture of several reagents before metering to reaction sites 3 or incubation of the reagents prior to addition to reaction sites 3 is not possible.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Syntheserastersynthesis grid
Reaktionsstreckereaction section
Reaktionsortreaction site
Aufgabestelle erste DosierstationFeed point of the first dosing station
Transportrichtungtransport direction
Zwischenposition erste Spülstation zweite Dosierstation zweite Spülstation dritte Dosierstation dritte Spülstation vierte Dosierstation vierte SpülstationIntermediate position first rinsing station second dosing station second rinsing station third dosing station third rinsing station fourth dosing station fourth rinsing station
RasteraustauschpositionRaster exchange position
Entnahmewithdrawal
Vorratstock
Foliefoil
Folienvorratfilm supply
Vertiefungdeepening
Rollerole
Förderrichtungconveying direction
Prägepositionembossing position
Dosierstellemetering
Deckelcover
Lochhole
Dosierdüsendosing nozzles
ReagenztropfenReagenztropfen
Bewegungsrichtung des Syntheserasters 1Direction of movement of the synthesis grid 1
Druckstoßpressure surge
Dispensereinheitdispenser unit
Piezo-Dispenser-ArrayPiezo dispenser array
Steuereinheitcontrol unit
Düseneinheitnozzle unit
Elektronikanschlüsseelectronic connectors
Fluidanschlüssefluid connections
Bandabschnitt Dosierposition mit Reagenz band section Dosing position with reagent

Claims

Patentansprüche claims
1. Vorrichtung zur Durchführung von insbesondere chemischen Reaktionen mit Reagenzmengen im Picomol- bis Mikromol-Bereich, bei der die Reagenzien über Dosierstationen (5, 9, 11, 13) an Reaktionsorte (3) dosiert werden, die sich entlang einer Reaktionsstrecke (2) bewegen, wobei mindestens eine Dosierstation (5, 9, 11, 13) und eine Entnahmestelle (16) derart angeordnet sind, dass die Zeit, in der sich die Reaktionsorte (3) auf der Reaktionsstrecke (2) bewegen, mindestens der erforderlichen Reaktionszeit für einen Reaktionsschritt entspricht.1. Device for carrying out, in particular, chemical reactions with reagent amounts in the picomole to micromole range, in which the reagents are metered via metering stations (5, 9, 11, 13) to reaction sites (3) which are located along a reaction path (2) move, wherein at least one dosing station (5, 9, 11, 13) and a tapping point (16) are arranged such that the time in which the reaction sites (3) move on the reaction path (2) is at least the required reaction time for corresponds to a reaction step.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eine der Dosierstationen (5, 9, 11, 13) ein Band (18) umfasst, auf das das Reagenz abschnittsweise an Dosierpositionen dosiert wird, wobei sich an jeder Dosierposition mindestens ein Loch (26) im Band (18) befindet, dessen Querschnitt so bemessen ist, dass das Reagenz aufgrund seiner Oberflächenspannung ohne Einwirkung einer zusätzlichen Kraft nicht durch das mindestens eine Loch (26) fließt, das Band (18) zu den zu befüllenden Reaktionsorten (3) transportiert wird und dort durch Anlegen eines Überdrucks das Reagenz durch die Löcher (26) im Band (18) an die Reaktionsorte (3) befördert wird.2. Device according to claim 1, characterized in that at least one of the metering stations (5, 9, 11, 13) comprises a belt (18) onto which the reagent is metered in sections at metering positions, with at least one hole (at each metering position) 26) in the band (18), the cross section of which is dimensioned such that the reagent does not flow through the at least one hole (26) due to its surface tension without the action of an additional force, the band (18) to the reaction sites to be filled (3) is transported and there the reagent is conveyed through the holes (26) in the belt (18) to the reaction sites (3) by applying an overpressure.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Band (18) eine einmal verwendbare Polymerfolie ist.3. Device according to claim 2, characterized in that the band (18) is a single-use polymer film.
4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass als Band (18) ein wieder verwendbares Endlosband eingesetzt wird.4. The device according to claim 2, characterized in that a reusable endless belt is used as the belt (18).
5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Band (18) einzelne bewegliche Platten umfasst, auf denen die Dosierpositionen angeordnet sind.5. The device according to claim 2, characterized in that the band (18) comprises individual movable plates on which the metering positions are arranged.
6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das Band (18) an den Dosierpositionen durch das Reagenz benetzbar ist und an allen anderen Stellen das Reagenz abstößt.6. Device according to one of claims 2 to 5, characterized in that the band (18) at the metering positions can be wetted by the reagent and the reagent repels at all other locations.
7. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass an den Dosierpositionen Vertiefungen (20) in dem Band (18) angeordnet sind. 7. Device according to one of claims 2 to 5, characterized in that recesses (20) are arranged in the band (18) at the metering positions.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Vertiefungen (20) nach dem Befüllen mit dem Reagenz abgedeckt werden.8. The device according to claim 7, characterized in that the wells (20) are covered after filling with the reagent.
9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass an einer Dosierstelle (24) der Dosierstation (5, 9, 11, 13) das Reagenz mittels einer Dispensereinheit (31) an die Dosierpositionen des Bandes (18) dosiert wird.9. The device according to claim 1, characterized in that at a dosing point (24) of the dosing station (5, 9, 11, 13) the reagent is dosed by means of a dispenser unit (31) to the dosing positions of the belt (18).
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Vorrichtung gegen die Umgebung licht- und/oder gasundurchlässig ist.10. Device according to one of claims 1 to 9, characterized in that the device is opaque to the environment and / or gas impermeable.
11. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass mehrere Dosierstationen (5, 9, 11, 13) derart entlang der Reaktionsstrecke (2) angeordnet sind, dass die Zeit, in der sich die Reaktionsorte (3) von einer zur nächsten Dosierstation (5, 9, 11, 13) bewegen, mindestens der erforderlichen Reaktionszeit für einen Reaktionsschritt entspricht.11. The device according to claim 1, characterized in that a plurality of metering stations (5, 9, 11, 13) are arranged along the reaction path (2) such that the time in which the reaction sites (3) move from one to the next metering station ( 5, 9, 11, 13) move, corresponds at least to the required reaction time for a reaction step.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Reaktionsstrecke (2) so ausgebildet ist, dass mehrere Zyklen nacheinander durchlaufen werden können.12. Device according to one of claims 1 to 11, characterized in that the reaction path (2) is designed such that a plurality of cycles can be run through in succession.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass an jedem Reaktionsort (3) mindestens ein Loch ist, dessen Querschnitt so gewählt wird, dass die in der Reaktionskammer befindliche Flüssigkeit aufgrund ihrer Oberflächenspannung nur durch Anlegen einer zusätzlichen Kraft durch das mindestens eine Loch abfließen kann.13. The device according to one of claims 1 to 12, characterized in that at each reaction site (3) is at least one hole, the cross section of which is selected such that the liquid in the reaction chamber due to its surface tension only by applying an additional force by the can drain at least one hole.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Reaktionsorte (3) auf einem Syntheseraster (1) angeordnet sind.14. Device according to one of claims 1 to 13, characterized in that the reaction sites (3) are arranged on a synthesis grid (1).
15. Vomchtung nach Anspruch 14, dadurch gekennzeichnet, dass die Syntheseraster (1) in einem einheitlichen Takt durch die Anlage transportiert werden.15. Vomchtung according to claim 14, characterized in that the synthesis grid (1) are transported in a uniform cycle through the system.
16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass vor den Dosierstationen (5, 9, 11, 13) Spülstationen (8, 10, 12, 14) angeordnet sind.16. Device according to one of claims 1 to 15, characterized in that rinsing stations (8, 10, 12, 14) are arranged in front of the metering stations (5, 9, 11, 13).
17. Verfahren zur Durchführung von Reaktionen mit Reagenzmengen im Pikomol- bis Mikromol-Bereich unter Einsatz einer Vorrichtung nach einem der Ansprüche 1 bis 15. 17. A method for carrying out reactions with reagent amounts in the picomole to micromole range using a device according to one of claims 1 to 15.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass an mindestens einer Dosierstation (5, 9, 11, 13) Reagenzien vor Zugabe an die Reaktionsorte (3) für die Reaktion vorbereitet werden können.18. The method according to claim 17, characterized in that at least one dosing station (5, 9, 11, 13) reagents can be prepared for the reaction before addition to the reaction sites (3).
19- Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Vorbereitung der Reagenzien auf das Band (18) erfolgt.19. The method according to claim 18, characterized in that the reagents are prepared for the belt (18).
20. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 16 oder eines Verfahrens nach einem der Ansprüche 17 bis 19 zur parallelen Synthese verschiedener Oligonukleotide.20. Use of a device according to one of claims 1 to 16 or a method according to one of claims 17 to 19 for the parallel synthesis of different oligonucleotides.
21. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 16 oder eines Verfahrens nach einem der Ansprüche 17 bis 19 zur parallelen Synthese verschiedener Peptide.21. Use of a device according to one of claims 1 to 16 or a method according to one of claims 17 to 19 for the parallel synthesis of different peptides.
22. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 16 oder eines Verfahrens nach einem der Ansprüche 17 bis 19 zur parallelen Synthese verschiedener Oligosaccharide. 22. Use of a device according to one of claims 1 to 16 or a method according to one of claims 17 to 19 for the parallel synthesis of different oligosaccharides.
EP04765899A 2003-10-08 2004-10-08 Method and device for carrying out reactions Withdrawn EP1673161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003147311 DE10347311A1 (en) 2003-10-08 2003-10-08 Method and device for carrying out reactions
PCT/EP2004/011291 WO2005035110A1 (en) 2003-10-08 2004-10-08 Method and device for carrying out reactions

Publications (1)

Publication Number Publication Date
EP1673161A1 true EP1673161A1 (en) 2006-06-28

Family

ID=34428320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04765899A Withdrawn EP1673161A1 (en) 2003-10-08 2004-10-08 Method and device for carrying out reactions

Country Status (3)

Country Link
EP (1) EP1673161A1 (en)
DE (1) DE10347311A1 (en)
WO (1) WO2005035110A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169816A1 (en) * 2003-12-15 2005-08-04 Kirshner Brian M. Automated oligomer synthesis
EP2288443A1 (en) 2008-04-28 2011-03-02 Douglas Machine, Inc. High throughput screening employing combination of dispensing well plate device and array tape
US20160018428A1 (en) 2013-03-15 2016-01-21 Douglas Scientific, LLC Reusable belt with a matrix of wells
KR20220042053A (en) * 2019-04-10 2022-04-04 니토 덴코 아베시아 인크. Method and apparatus for sequential synthesis of biopolymers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2353856A1 (en) * 1976-06-02 1977-12-30 Chateau Guy TAPE INTENDED TO BE USED AS A SUPPORT FOR A REACTION FOR EXAMPLE CHEMICAL OR BIOCHEMICAL, AND ANALYSIS PROCESS IMPLEMENTING IT
US5310674A (en) * 1982-05-10 1994-05-10 Bar-Ilan University Apertured cell carrier
US5763263A (en) * 1995-11-27 1998-06-09 Dehlinger; Peter J. Method and apparatus for producing position addressable combinatorial libraries
US5985214A (en) * 1997-05-16 1999-11-16 Aurora Biosciences Corporation Systems and methods for rapidly identifying useful chemicals in liquid samples
DE19960837A1 (en) * 1998-12-30 2000-07-06 Mwg Biotech Ag Reaction apparatus for chemical and especially biochemical reactions, e.g. oligonucleotide synthesis, includes sliding control-, reaction-, and chemical rotors, enabling high throughput of reactions
US6432719B1 (en) * 1999-02-16 2002-08-13 Pe Corporation (Ny) Matrix storage and dispensing system
US6245297B1 (en) * 1999-04-16 2001-06-12 Pe Corporation (Ny) Apparatus and method for transferring small volumes of substances
AU5126400A (en) * 1999-05-03 2000-11-17 Ljl Biosystems, Inc. Integrated sample-processing system
AU2001255265A1 (en) * 2000-04-05 2001-10-23 Alexion Pharmaceuticals, Inc. Methods and devices for storing and dispensing liquids
US6841663B2 (en) * 2001-10-18 2005-01-11 Agilent Technologies, Inc. Chemical arrays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005035110A1 *

Also Published As

Publication number Publication date
DE10347311A1 (en) 2005-05-12
WO2005035110A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
EP1171232B1 (en) Fluids manipulation device with format conversion
DE69909511T2 (en) DEVICE FOR DISPENSING LIQUID AND DISPENSING METHODS
DE60111310T2 (en) Method, device and computer program for producing an array of chemical compounds
DE60018392T2 (en) METHOD AND APPARATUS FOR DISTRIBUTING DROPLETS ON A SUBSTRATE
DE69927975T2 (en) Vial and multi-vessel rotating synthesizer
EP0629144B1 (en) Device for simultaneously or successively carrying out chemical reactions
EP1089822B1 (en) Device for carrying out an almost simultaneous synthesis of a plurality of samples
EP1313551B1 (en) Device and method for the non-contact application of micro-droplets on a substrate
DE60131735T2 (en) DEVICE FOR DISTRIBUTING EXACTLY CONTROLLED SMALL FLUID QUANTITIES
EP0885395B1 (en) Testing system for chemical substances or mixtures
EP1070963B1 (en) Rinsing tray
EP1610129B1 (en) Process and apparatus for manufacturing affinity-binding supports
WO2001017669A1 (en) Method and device for applying a plurality of microdroplets onto a substrate
EP1673161A1 (en) Method and device for carrying out reactions
EP1261428A2 (en) Dispenser
WO2002057015A2 (en) Device and method for dosing small amounts of liquid
WO2020108942A1 (en) Method and arrangement for spreading multiple-grain metered quantities of a granulate material using an agricultural machine, and dispersing machine
EP0925828B1 (en) Device for carrying out sequential chemical reactions
EP0969919B1 (en) Automated macromolecule synthesising process and device
DE60116326T2 (en) HIGH-PARALLEL PREPARATION OF MICROARRAYS BY INK JET PRINT HEAD
DE19823876B4 (en) Component loaded with different connections (biochip) and method for its production
EP1173275B1 (en) Method and device for the parallel manufacture of oligonucleotides
WO2002087760A1 (en) Method and device for storing and dosing small quantities of liquid
EP1286760B1 (en) Device used in parallel microsynthesis
DE102004062280A1 (en) Laboratory spotting process and assembly to dispense fine droplets onto a substrate at intervals of less than 1 mm

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20090922

18W Application withdrawn

Effective date: 20090926