EP1666822A1 - Apparatus for the cryogenic separation of a gaseous mixture in particular of air - Google Patents

Apparatus for the cryogenic separation of a gaseous mixture in particular of air Download PDF

Info

Publication number
EP1666822A1
EP1666822A1 EP04028681A EP04028681A EP1666822A1 EP 1666822 A1 EP1666822 A1 EP 1666822A1 EP 04028681 A EP04028681 A EP 04028681A EP 04028681 A EP04028681 A EP 04028681A EP 1666822 A1 EP1666822 A1 EP 1666822A1
Authority
EP
European Patent Office
Prior art keywords
direct contact
cooler
feed mixture
heat exchanger
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04028681A
Other languages
German (de)
French (fr)
Inventor
Andreas Brox
Markus Huppenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP04028681A priority Critical patent/EP1666822A1/en
Priority to EP04028683A priority patent/EP1666823A1/en
Priority to EP05024947.3A priority patent/EP1672301B1/en
Priority to PL05024947T priority patent/PL1672301T3/en
Priority to US11/292,282 priority patent/US7516626B2/en
Priority to CA2528735A priority patent/CA2528735C/en
Priority to RU2005137481/06A priority patent/RU2382963C2/en
Priority to CN200510128991A priority patent/CN100575838C/en
Publication of EP1666822A1 publication Critical patent/EP1666822A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the invention relates to a product for producing a product by cryogenic separation of a gas mixture, in particular air, with a feed gas compressor for compressing the feed mixture, with a direct contact cooler for precooling the feed mixture, with a cleaning device for cleaning the pre-cooled feed mixture, with a low temperature part, the main heat exchanger for Cooling of the purified feed mixture to about dew point and a distillation column for cryogenic separation of the cooled feed mixture, and having a coolant circuit for supplying coolant for the direct contact cooler, wherein the coolant circuit has an evaporative cooler for cooling coolant in direct heat exchange with a gas stream from the low temperature part.
  • cryogenic temperature is meant here basically any temperature which is below the ambient temperature, but preferably a temperature of 200 K or less, most preferably 150 K or less, for example 100 K or less.
  • a direct contact cooler In a "direct contact cooler” the feed mixture is brought into direct heat exchange with a coolant, for example water, and thereby cooled. It is used in particular for removing heat of compression, which has arisen in a feed gas compressor, which is usually connected upstream.
  • a coolant for example water
  • a subsequent "cleaning device” is usually designed as an adsorption device and in particular has at least two switchable container, which are operated cyclically. It serves to separate unwanted components, for example those which can freeze out in the low-temperature part.
  • the feed mixture is first cooled to about dew point temperature and then decomposed in a distillation column system.
  • the low-temperature part thus contains one or more heat exchangers and one or more distillation columns.
  • the product is withdrawn in gas or liquid form.
  • the cryogenic part is usually thermally insulated by being enclosed by one or more cold boxes.
  • the “main heat exchanger” serves to heat the gaseous product (s) in indirect heat exchange with at least one feed mixture stream.
  • Direct contact coolers are often operated with coolant circuits in which at least a portion of the withdrawn from the direct contact cooler, heated coolant is cooled and returned to the direct contact cooler.
  • evaporative cooler dry gas is brought into direct countercurrent with coolant.
  • the coolant evaporates partially and is thereby cooled.
  • the dry gas is often available as a residual product in cryogenic plants, for example as impure residual nitrogen in an air separation plant.
  • direct contact coolers and evaporative coolers are arranged as a unit or at least as immediately adjacent units because of their functional relationship.
  • the invention has for its object to further optimize the arrangement of the components of a cryogenic separation plant to achieve a particularly high efficiency of the system.
  • the ratio of the distance between evaporative cooler and direct contact cooler to the distance between the evaporative cooler and the main heat exchanger is at least 0.5, in particular at least 1.0.
  • the evaporative cooler 15 is arranged comparatively close to the main heat exchanger. Although this means higher costs for the coolant piping; However, the line for the gas flow from the low-temperature part can be made very short. In the context of the invention has been found that this arrangement leads to a total of comparatively low investment costs costs. In particular, the effort for the pipelines and the associated steel construction costs is reduced. This is partly due to the very high cross section (for example 1 to 2 m) of the gas line to the evaporative cooler.
  • Atmospheric air is sucked in as "feed mixture” via an inlet filter 1 and fed via feed pipes 51, 52, 53, 54 to other plant components.
  • the filtered air 51 is compressed in a main air compressor, which in the example is the "feed gas compressor.”
  • the compressed air 52 flows into a direct contact cooler 3 where it is cooled in direct heat exchange with cooling water flowing over a cooling water piping 61.
  • the cooled air 53 is further passed into a purifier 4 having a pair of molecular sieve adsorbers 5, 6.
  • the purified air 54 continues to flow to the cryogenic part 7.
  • the low-temperature part may consist of a single cold box, in which all cryogenic apparatuses are arranged, in particular the one or more heat exchangers and the distillation column (s), or from a variety of separate cold boxes.
  • a cylindrical rectification box 9 contains the distillation columns 9a, here a double column with high-pressure and low-pressure column and a main capacitor arranged therebetween.
  • the remaining cold parts, in particular the main heat exchanger 8a are housed in a cuboid heat exchanger box 8.
  • the two cold boxes 8, 9 insulate the respective cold parts of the apparatus against heat from the environment.
  • a transition section 10 also belongs to the low-temperature part. He is also surrounded by a coldbox; Alternatively, located in the transition section 10 piping and fittings are thermally insulated by means of a correspondingly smaller cold box.
  • the main heat exchanger is designed as exclusively recuperative heat exchanger, so not as a switchable heat exchanger (Revex). It consists, for example, of one block or a plurality of flow-connected blocks.
  • the block or blocks are preferably designed as aluminum plate heat exchangers.
  • Possible further heat exchangers, such as one or more subcooling countercurrents, may also be accommodated in the heat exchanger box; alternatively or additionally, one or more blocks of subcooling countercurrents may be arranged in the rectification box.
  • the form of the rectification box may differ from the exemplary embodiment; For example, it may be substantially cuboidal.
  • the main air compressor 2 is driven via a first shaft 11 by a drive means 12, which is designed as an electric motor, gas or steam turbine.
  • a booster 14 is provided for a portion of the purified air 54.
  • the inlet of the booster 14 is connected to the pipe 54 for the purified air.
  • the further compressed air in the booster 14 is passed through a further, not shown in the drawing pipe in the cryogenic part 7, in particular in the heat exchanger box 8.
  • the booster 14 is also driven by a further shaft 13 of the drive means 12.
  • the booster could be driven independently of the main air compressor, for example by a separate gas or steam turbine or by a separate electric motor.
  • the products of the low-temperature part 7 are discharged via exemplary product lines 105, 106, which open here into manifolds 107 and 108, respectively.
  • the manifolds 107, 108 are arranged on a pipe bridge 109 and can connect the device and possibly other identical or similar devices (strands) to a multi-strand system or lead to a tank farm and / or to an emergency supply device.
  • an evaporative cooler 15 For cooling water before its introduction into the direct contact cooler 3, an evaporative cooler 15 is used. In it, dry residual nitrogen from the low-temperature part is brought into direct heat and mass transfer with cooling water to be cooled. About the cooling water piping 61 cold cooling water is passed to the direct contact cooler. Warm cooling water is returned directly or indirectly to the evaporative cooler. The moist nitrogen from the evaporative cooler reaches the atmosphere.
  • the apparatus also includes utility piping 63, the location of which is schematically indicated in the drawing.
  • the equipment piping serves to transport steam, gas and / or cooling water and to dispose of condensate, cooling water, etc. It flows into resource headers (not shown), which can be arranged on the pipe bridge 109.
  • Resource and booster air tubing 63, 62 may be located on the floor (on sleepers) or on one or more pipe bridges.
  • the base surfaces of the direct contact cooler 3, the cleaning device 4 and the low-temperature part 7 have in the embodiment circular, rectangular or a complex shape. These bases are arranged in a line, for example on a main orientation axis 101. In addition, this line 101 extends through the base of the main air compressor 2. This results in a particularly short Eirisatzgasverrohrung 52/53/54. Also, the product lines 105, 106, which are arranged opposite the entrance of the insert line 54, have a particularly short length. They can even be so short that their own pipe bridge is not needed.
  • the rectangle 102 which encloses the bases of direct contact cooler 3, cleaning device 4 and low-temperature part 7, is approximately 1.7 times longer in the extent that extends vertically in the drawing than in the direction perpendicular thereto (horizontally in the drawing).
  • a factor of about 1.8 applies for the rectangle 103, which also encloses the base of the main air compressor and the apparatuses connected to it.
  • a short pipe bridge 109 and short lines 107, 108 of sufficient length for the product removal or the resource supply and removal; This is particularly advantageous in multi-strand systems. (Due to its schematic character, the drawing is not necessarily to scale in this respect either.)
  • direct contact coolers 3 and evaporative coolers 15 are arranged as a unit or at least as immediately adjacent units because of their functional relationship. In the embodiment, however, the evaporative cooler 15 is much closer to the low temperature part than the direct contact cooler.
  • the distance 104 between the evaporative cooler 15 and the main heat exchanger 8a is about one fifth of the distance between the direct contact cooler 3 and the low temperature part 7.
  • the residual nitrogen pipe between the main heat exchanger and the evaporative cooler 15 which is not shown in the drawing, only a relatively short Overcome route and can therefore be realized particularly cost effective; This saving is significant because of the very large cross-section of the residual nitrogen pipe.
  • the cooling water piping is longer, but has a much smaller cross-section and increases the cost of the apparatus only insignificantly.
  • Cryogenic air separation plants regularly have one or more expansion machines, which serve to generate cold by work-performing relaxation of one or more process streams and are usually designed as turbines.
  • the plant of the embodiment preferably has a turbine for work-performing expansion of a partial flow of the feed air or a product or intermediate product stream from the low-temperature decomposition. This turbine is seated in a turbine box 16, which is arranged in the embodiment at the transition section 10 between the heat exchanger box 8 and rectification box 9.

Abstract

Device (A) for generating a product (B) by cryogenic resolution of a gas mixture (C), especially air. Device (A) for generating a product (B) by cryogenic resolution of a gas mixture (C), especially air, comprises: (A) a compressor (2) for (C); (B) a direct-contact cooler for precooling (C); (C) a purification unit for precooled (C); (D) a cryogenic part (7), including a main heat exchanger (8a) for cooling purified (C) to about its dew point and a distillation column (9a) for cryogenic fractionation of cooled (C); and (E) a coolant recycle line (61) to supply coolant to (3), where (61) includes an evaporative cooler (15) that cools coolant in direct heat exchange with a gas stream from (7). The new feature is that the ratio (R) of (a) the distance (d1) between (15) and (3) and (b) the distance (d2) between (15) and (8a) is at least 0.5, especially at least 1.

Description

Die Erfindung betrifft eine zur Erzeugung eines Produkts durch Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft, mit einem Einsatzgasverdichter zur Verdichtung des Einsatzgemischs, mit einem Direktkontaktkühler zur Vorkühlung des Einsatzgemischs, mit einer Reinigungsvorrichtung zur Reinigung des vorgekühlten Einsatzgemischs, mit einem Tieftemperaturteil, der einen Hauptwärmetauscher zur Abkühlung des gereinigten Einsatzgemischs auf etwa Taupunktstemperatur und eine Destilliersäule zur Tieftemperaturzerlegung des abgekühlten Einsatzgemischs aufweist, und mit einem Kühlmittelkreislauf zur Lieferung von Kühlmittel für den Direktkontaktkühler, wobei der Kühlmittelkreislauf einen Verdunstungskühler zur Abkühlung von Kühlmittel im direkten Wärmeaustausch mit einem Gasstrom aus dem Tieftemperaturteil aufweist.The invention relates to a product for producing a product by cryogenic separation of a gas mixture, in particular air, with a feed gas compressor for compressing the feed mixture, with a direct contact cooler for precooling the feed mixture, with a cleaning device for cleaning the pre-cooled feed mixture, with a low temperature part, the main heat exchanger for Cooling of the purified feed mixture to about dew point and a distillation column for cryogenic separation of the cooled feed mixture, and having a coolant circuit for supplying coolant for the direct contact cooler, wherein the coolant circuit has an evaporative cooler for cooling coolant in direct heat exchange with a gas stream from the low temperature part.

Vorrichtungen zur Tieftemperaturzerlegung atmosphärischer Luft oder anderer Gasgemische sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985 bekannt.Devices for the cryogenic separation of atmospheric air or other gas mixtures are known, for example, from Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985.

Unter "Tieftemperatur" wird hier grundsätzlich jede Temperatur verstanden, die unterhalb der Umgebungstemperatur liegt, vorzugsweise jedoch eine Temperatur von 200 K oder weniger, höchst vorzugsweise von 150 K oder weniger, beispielsweise von 100 K oder weniger.By "cryogenic temperature" is meant here basically any temperature which is below the ambient temperature, but preferably a temperature of 200 K or less, most preferably 150 K or less, for example 100 K or less.

In einem "Direktkontaktkühler" (direct contact cooler) wird das Einsatzgemisch in direkten Wärmeaustausch mit einem Kühlmittel, zum Beispiel Wasser, gebracht und dadurch abgekühlt. Er dient insbesondere zum Abführen von Verdichtungswärme, die in einem in der Regel vorgeschalteten Einsatzgasverdichter entstanden ist.In a "direct contact cooler" the feed mixture is brought into direct heat exchange with a coolant, for example water, and thereby cooled. It is used in particular for removing heat of compression, which has arisen in a feed gas compressor, which is usually connected upstream.

Eine nachfolgende "Reinigungseinrichtung" ist in der Regel als Adsorptionsvorrichtung ausgebildet und weist insbesondere mindestens zwei umschaltbare Behälter aus, die zyklisch betrieben werden. Sie dient der Abtrennung unerwünschter Komponenten, beispielsweise solcher, die im Tieftemperaturteil ausfrieren können.A subsequent "cleaning device" is usually designed as an adsorption device and in particular has at least two switchable container, which are operated cyclically. It serves to separate unwanted components, for example those which can freeze out in the low-temperature part.

Im "Tieftemperaturteil" wird das Einsatzgemisch zunächst auf etwa Taupunktstemperatur abgekühlt und anschließend in einem Destilliersäulensystem zerlegt. Der Tieftemperaturteil enthält also einen oder mehrere Wärmetauscher und eine oder mehrere Destilliersäulen. Aus dem Tieftemperaturteil wird das Produkt in Gas- oder Flüssigform abgezogen. Selbstverständlich können auch mehrere Produkte in gleichem oder unterschiedlichem Aggregatzustand sowie in gleicher oder verschiedener chemischer Zusammensetzung erzeugt werden. Um Verluste durch einströmende Umgebungswärme zu verhindern, ist der Tieftemperaturteil üblicherweise wärmeisoliert, indem er von einer oder mehreren Coldboxen umschlossen wird.In the "low-temperature part", the feed mixture is first cooled to about dew point temperature and then decomposed in a distillation column system. The low-temperature part thus contains one or more heat exchangers and one or more distillation columns. From the cryogenic part, the product is withdrawn in gas or liquid form. Of course, several products can be produced in the same or different physical state and in the same or different chemical composition. To prevent losses due to incoming ambient heat, the cryogenic part is usually thermally insulated by being enclosed by one or more cold boxes.

Der "Hauptwärmetauscher" dient zur Anwärmung des oder der gasförmigen Produkts/Produkte in indirektem Wärmeaustausch mit mindestens einem Einsatzgemischstrom.The "main heat exchanger" serves to heat the gaseous product (s) in indirect heat exchange with at least one feed mixture stream.

Direktkontaktkühler werden häufig mit Kühlmittelkreisläufen betrieben, bei denen mindestens ein Teil des aus dem Direktkontaktkühler abgezogenen, erwärmten Kühlmittels abgekühlt und zum Direktkontaktkühler zurückgeführt wird.Direct contact coolers are often operated with coolant circuits in which at least a portion of the withdrawn from the direct contact cooler, heated coolant is cooled and returned to the direct contact cooler.

Zur Abkühlung des Kühlmittels ist es üblich, einen oder mehrere Verdunstungskühler einzusetzen. In einem "Verdunstungskühler" wird trockenes Gas in direkten Gegenstrom mit Kühlmittel gebracht. Das Kühlmittel verdunstet dabei teilweise und wird dabei abgekühlt. Das trockene Gas steht bei Tieftemperaturanlagen häufig als Restprodukt zur Verfügung, beispielsweise als unreiner Reststickstoff in einer Luftzerlegungsanlage.To cool the coolant, it is customary to use one or more evaporative coolers. In an "evaporative cooler", dry gas is brought into direct countercurrent with coolant. The coolant evaporates partially and is thereby cooled. The dry gas is often available as a residual product in cryogenic plants, for example as impure residual nitrogen in an air separation plant.

Üblicherweise werden Direktkontaktkühler und Verdunstungskühler wegen ihrer funktionellen Beziehung als eine Einheit oder zumindest als unmittelbar benachbarte Einheiten angeordnet.Typically, direct contact coolers and evaporative coolers are arranged as a unit or at least as immediately adjacent units because of their functional relationship.

Der Erfindung liegt die Aufgabe zugrunde, die Anordnung der Komponenten einer Tieftemperaturzerlegungsanlage weiter zu optimieren, um eine besonders hohe Wirtschaftlichkeit der Anlage zu erreichen.The invention has for its object to further optimize the arrangement of the components of a cryogenic separation plant to achieve a particularly high efficiency of the system.

Diese Aufgabe wird dadurch gelöst, dass das Verhältnis des Abstandes zwischen Verdunstungskühler und Direktkontaktkühler zu dem Abstand zwischen Verdunstungskühler und Hauptwärmetauscher mindestens 0,5 , insbesondere mindestens 1,0 beträgt.This object is achieved in that the ratio of the distance between evaporative cooler and direct contact cooler to the distance between the evaporative cooler and the main heat exchanger is at least 0.5, in particular at least 1.0.

Gemäß der Erfindung ist der Verdunstungskühler 15 vergleichsweise nahe dem Hauptwärmetauscher angeordnet. Dies bedeutet zwar höheren Aufwand für die Kühlmittelverrohrung; allerdings kann die Leitung für den Gasstrom aus dem Tieftemperaturteil besonders kurz ausgeführt werden. Im Rahmen der Erfindung hat sich herausgestellt, dass diese Anordnung zu insgesamt vergleichsweise niedrigen Investitionskosten kosten führt. Es wird insbesondere der Aufwand für die Rohrleitungen und den dazugehörigen Stahlbau-Kosten verringert. Dies ist teilweise auf den sehr hohen Querschnitt (beispielsweise 1 bis 2 m) der Gasleitung zum Verdunstungskühler zurückzuführen.According to the invention, the evaporative cooler 15 is arranged comparatively close to the main heat exchanger. Although this means higher costs for the coolant piping; However, the line for the gas flow from the low-temperature part can be made very short. In the context of the invention has been found that this arrangement leads to a total of comparatively low investment costs costs. In particular, the effort for the pipelines and the associated steel construction costs is reduced. This is partly due to the very high cross section (for example 1 to 2 m) of the gas line to the evaporative cooler.

Die abhängigen Patentansprüche enthalten weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung.The dependent claims contain further advantageous embodiments of the device according to the invention.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels für eine erfindungsgemäße Vorrichtung näher erläutert, die als Tieftemperatur-Luftzerlegungsanlage ausgebildet ist.The invention and further details of the invention are explained in more detail below with reference to an embodiment of a device according to the invention schematically illustrated in the drawing, which is designed as a cryogenic air separation plant.

Atmosphärische Luft wird als "Einsatzgemisch" über ein Einlassfilter 1 angesaugt und über Einsatz-Rohrleitungen 51, 52, 53, 54 zu weiteren Anlagenkomponenten geführt. Zunächst wird die gefilterte Luft 51 in einem Hauptluftverdichter, der in dem Beispiel den "Einsatzgasverdichter" darstellt, komprimiert. Die verdichtete Luft 52 strömt in einen Direktkontaktkühler 3 und wird dort in direktem Wärmeaustausch mit Kühlwasser, das über eine Kühlwasser-Verrohrung 61 heranströmt, abgekühlt. Die abgekühlte Luft 53 wird weiter in eine Reinigungseinrichtung 4 geleitet, die ein Paar von Molekularsieb-Adsorbern 5, 6 aufweist. Die gereinigte Luft 54 strömt weiter zum Tieftemperaturteil 7.Atmospheric air is sucked in as "feed mixture" via an inlet filter 1 and fed via feed pipes 51, 52, 53, 54 to other plant components. First, the filtered air 51 is compressed in a main air compressor, which in the example is the "feed gas compressor." The compressed air 52 flows into a direct contact cooler 3 where it is cooled in direct heat exchange with cooling water flowing over a cooling water piping 61. The cooled air 53 is further passed into a purifier 4 having a pair of molecular sieve adsorbers 5, 6. The purified air 54 continues to flow to the cryogenic part 7.

Der Tieftemperaturteil kann aus einer einzigen Coldbox bestehen, in der alle kryogenen Apparate angeordnet sind, insbesondere der oder die Wärmetauscher und die Destilliersäule(n), oder auch aus einer Vielzahl separater Coldboxen. In dem Beispiel sind zwei separate Coldboxen vorgesehen. Eine zylinderförmige Rektifikationsbox 9 enthält die Destilliersäulen 9a, hier eine Doppelsäule mit Hochdruck- und Niederdrucksäule und einem dazwischen angeordneten Hauptkondensator. Die übrigen kalten Teile, insbesondere der Hauptwärmetauscher 8a sind in einer quaderförmigen Wärmetauscher-Box 8 untergebracht. Die beiden Coldboxen 8, 9 isolieren die jeweiligen kalten Apparateteile gegen Wärmeeinfall aus der Umgebung. Ein Übergangsabschnitt 10 gehört ebenfalls zum Tieftemperaturteil. Er wird ebenfalls von einer Coldbox umschlossen; alternativ werden die im Übergangsabschnitt 10 befindlichen Rohrleitungen und Armaturen mittels einer entsprechend kleineren Coldbox wärmeisoliert.The low-temperature part may consist of a single cold box, in which all cryogenic apparatuses are arranged, in particular the one or more heat exchangers and the distillation column (s), or from a variety of separate cold boxes. In the example, two separate cold boxes are provided. A cylindrical rectification box 9 contains the distillation columns 9a, here a double column with high-pressure and low-pressure column and a main capacitor arranged therebetween. The remaining cold parts, in particular the main heat exchanger 8a are housed in a cuboid heat exchanger box 8. The two cold boxes 8, 9 insulate the respective cold parts of the apparatus against heat from the environment. A transition section 10 also belongs to the low-temperature part. He is also surrounded by a coldbox; Alternatively, located in the transition section 10 piping and fittings are thermally insulated by means of a correspondingly smaller cold box.

Der Hauptwärmetauscher ist als ausschließlich rekuperativer Wärmetauscher ausgebildet, also nicht als umschaltbarer Wärmetauscher (Revex). Er besteht zum Beispiel aus einem Block oder einer Mehrzahl von strömungstechnisch miteinander verbundenen Blöcken. Der oder die Blöcke sind vorzugsweise als Aluminium-Plattenwärmetauscher ausgebildet. Mögliche weitere Wärmetauscher wie zum Beispiel ein oder mehrere Unterkühlungs-Gegenströmer können ebenfalls in der Wärmetauscher-Box untergebracht sein; alternativ oder zusätzlich können ein oder mehrere Blöcke von Unterkühlungs-Gegenströmern in der Rektifikationsbox angeordnet sein. Die Form der Rektifikationsbox kann vom Ausführungsbeispiel abweichen; sie kann zum Beispiel im Wesentlichen quaderförmig ausgebildet sein.The main heat exchanger is designed as exclusively recuperative heat exchanger, so not as a switchable heat exchanger (Revex). It consists, for example, of one block or a plurality of flow-connected blocks. The block or blocks are preferably designed as aluminum plate heat exchangers. Possible further heat exchangers, such as one or more subcooling countercurrents, may also be accommodated in the heat exchanger box; alternatively or additionally, one or more blocks of subcooling countercurrents may be arranged in the rectification box. The form of the rectification box may differ from the exemplary embodiment; For example, it may be substantially cuboidal.

Der Hauptluftverdichter 2 wird über eine erste Welle 11 von einem Antriebsmittel 12 angetrieben, das als Elektromotor, Gas- oder Dampfturbine ausgebildet ist. Außerdem ist in dem Beispiel ein Nachverdichter 14 für einen Teil der gereinigten Luft 54 vorgesehen. Über eine in der Zeichnung lediglich angedeutete Booster-Luft-Verrohrung 62 ist der Einlass des Nachverdichters 14 mit der Rohrleitung 54 für die gereinigte Luft verbunden. Die im Nachverdichter 14 weiterverdichtete Luft wird über eine weitere, in der Zeichnung nicht dargestellte Rohrleitung in den Tieftemperaturteil 7 geleitet, insbesondere in die Wärmetauscher-Box 8. In dem Beispiel wird der Nachverdichter 14 über eine weitere Welle 13 ebenfalls von dem Antriebsmittel 12 angetrieben. Alternativ könnte der Nachverdichter unabhängig vom Hauptluftverdichter angetrieben werden, beispielsweise durch eine separate Gas- oder Dampfturbine oder durch einen separaten Elektromotor.The main air compressor 2 is driven via a first shaft 11 by a drive means 12, which is designed as an electric motor, gas or steam turbine. In addition, in the example, a booster 14 is provided for a portion of the purified air 54. About a merely indicated in the drawing booster air piping 62, the inlet of the booster 14 is connected to the pipe 54 for the purified air. The further compressed air in the booster 14 is passed through a further, not shown in the drawing pipe in the cryogenic part 7, in particular in the heat exchanger box 8. In the example, the booster 14 is also driven by a further shaft 13 of the drive means 12. Alternatively, the booster could be driven independently of the main air compressor, for example by a separate gas or steam turbine or by a separate electric motor.

Die Produkte des Tieftemperaturteils 7 werden über beispielhaft eingezeichnete Produktleitungen 105, 106 abgegeben, die hier in Sammelleitungen 107 beziehungsweise 108 münden. Die Sammelleitungen 107, 108 sind auf einer Rohrbrücke 109 angeordnet und können die Vorrichtung und mögliche weitere identische oder ähnliche Vorrichtungen (Stränge) zu einer mehrsträngigen Anlage verbinden beziehungsweise zu einem Tanklager und/oder zu einer Notversorgungsvorrichtung führen.The products of the low-temperature part 7 are discharged via exemplary product lines 105, 106, which open here into manifolds 107 and 108, respectively. The manifolds 107, 108 are arranged on a pipe bridge 109 and can connect the device and possibly other identical or similar devices (strands) to a multi-strand system or lead to a tank farm and / or to an emergency supply device.

Zur Abkühlung von Wasser vor dessen Einleitung in den Direktkontaktkühler 3 dient ein Verdunstungskühler 15. Darin wird trockener Reststickstoff aus dem Tieftemperaturteil in direkten Wärme- und Stoffaustausch mit abzukühlendem Kühlwasser gebracht. Über die Kühlwasser-Verrohrung 61 wird kaltes Kühlwasser zum Direktkontaktkühler geleitet. Warmes Kühlwasser wird direkt oder indirekt zum Verdunstungskühler zurückgeführt. Der feuchte Stickstoff aus dem Verdunstungskühler enfinreicht in die Atmosphäre.For cooling water before its introduction into the direct contact cooler 3, an evaporative cooler 15 is used. In it, dry residual nitrogen from the low-temperature part is brought into direct heat and mass transfer with cooling water to be cooled. About the cooling water piping 61 cold cooling water is passed to the direct contact cooler. Warm cooling water is returned directly or indirectly to the evaporative cooler. The moist nitrogen from the evaporative cooler reaches the atmosphere.

Die Vorrichtung weist außerdem eine Betriebsmittel-Verrohrung (utility piping) 63 auf, deren Lage in der Zeichnung schematisch angedeutet ist. Die Betriebsmittel-Verrohrung dient zum Transport von Dampf, Gas und/oder Kühlwasser und zum Entsorgen von Kondensat, Kühlwasser etc. Sie mündet in Betriebsmittel-Sammelleitungen (nicht eingezeichnet), die auf der Rohrbrücke 109 angeordnet sein können. Betriebsmittel- und Booster-Luft-Verrohrung 63, 62 können auf dem Boden (auf Sleepern) oder auf einer oder mehreren Rohrbrücken angeordnet sein.The apparatus also includes utility piping 63, the location of which is schematically indicated in the drawing. The equipment piping serves to transport steam, gas and / or cooling water and to dispose of condensate, cooling water, etc. It flows into resource headers (not shown), which can be arranged on the pipe bridge 109. Resource and booster air tubing 63, 62 may be located on the floor (on sleepers) or on one or more pipe bridges.

Die Grundflächen des Direktkontaktkühlers 3, der Reinigungseinrichtung 4 und des Tieftemperaturteils 7 weisen in dem Ausführungsbeispiel Kreisform, Rechteckform beziehungsweise eine komplexe Form auf. Diese Grundflächen sind auf einer Linie, zum Beispiel auf einer Hauptorientierungsachse 101 angeordnet. Zusätzlich verläuft diese Linie 101 auch durch die Grundfläche des Hauptluftverdichters 2. Hierdurch ergibt sich eine besonders kurze Eirisatzgasverrohrung 52/53/54. Auch die Produktleitungen 105, 106, die gegenüber dem Eintritt der Einsatzleitung 54 angeordnet sind, weisen eine besonders geringe Länge auf. Sie können sogar so kurz sein, dass eine eigene Rohrbrücke nicht benötigt wird.The base surfaces of the direct contact cooler 3, the cleaning device 4 and the low-temperature part 7 have in the embodiment circular, rectangular or a complex shape. These bases are arranged in a line, for example on a main orientation axis 101. In addition, this line 101 extends through the base of the main air compressor 2. This results in a particularly short Eirisatzgasverrohrung 52/53/54. Also, the product lines 105, 106, which are arranged opposite the entrance of the insert line 54, have a particularly short length. They can even be so short that their own pipe bridge is not needed.

Das Rechteck 102, das die Grundflächen von Direktkontaktkühler 3, Reinigungseinrichtung 4 und Tieftemperaturteil 7 umschließt, ist in der Ausdehnung, die in der Zeichnung vertikal verläuft, etwa um den Faktor 1,7 länger als in der dazu senkrechten Richtung (horizontal in der Zeichnung). Für das Rechteck 103, das auch die Grundfläche des Hauptluftverdichters und der mit ihm verbundenen Apparate umschließt, gilt ein Faktor von etwa 1,8. Hierdurch reichen eine kurze Rohrbrücke 109 und Sammelleitungen 107, 108 geringer Länge für die Produktabfuhr bzw. die Betriebsmittel-Zu- und Abfuhr aus; dies ist insbesondere bei mehrsträngigen Anlagen von Vorteil. (Die Zeichnung ist wegen ihres schematischen Charakters auch in dieser Hinsicht nicht unbedingt maßstäblich.)The rectangle 102, which encloses the bases of direct contact cooler 3, cleaning device 4 and low-temperature part 7, is approximately 1.7 times longer in the extent that extends vertically in the drawing than in the direction perpendicular thereto (horizontally in the drawing). , For the rectangle 103, which also encloses the base of the main air compressor and the apparatuses connected to it, a factor of about 1.8 applies. In this way, a short pipe bridge 109 and short lines 107, 108 of sufficient length for the product removal or the resource supply and removal; This is particularly advantageous in multi-strand systems. (Due to its schematic character, the drawing is not necessarily to scale in this respect either.)

Üblicherweise werden Direktkontaktkühler 3 und Verdunstungskühler 15 wegen ihrer funktionellen Beziehung als eine Einheit oder zumindest als unmittelbar benachbarte Einheiten angeordnet. In dem Ausführungsbeispiel ist der Verdunstungskühler 15 jedoch dem Tieftemperaturteil wesentlich näher als dem Direktkontaktkühler. Der Abstand 104 zwischen dem Verdunstungskühler 15 und dem Hauptwärmetauscher 8a beträgt etwa ein Fünftel des Abstandes zwischen dem Direktkontaktkühler 3 und dem Tieftemperaturteil 7. Hierdurch muss die Reststickstoffleitung zwischen dem Hauptwärmetauscher und dem Verdunstungskühler 15, die in der Zeichnung nicht dargestellt ist, nur eine relativ kurze Strecke überwinden und kann daher besonders kostengünstig realisiert werden; diese Einsparung fällt wegen des sehr großen Querschnitts der Reststickstoffleitung erheblich ins Gewicht. Die Kühlwasser-Verrohrung ist zwar länger, weist aber einen sehr viel geringeren Querschnitt auf und verteuert den Apparat nur unwesentlich.Usually direct contact coolers 3 and evaporative coolers 15 are arranged as a unit or at least as immediately adjacent units because of their functional relationship. In the embodiment, however, the evaporative cooler 15 is much closer to the low temperature part than the direct contact cooler. The distance 104 between the evaporative cooler 15 and the main heat exchanger 8a is about one fifth of the distance between the direct contact cooler 3 and the low temperature part 7. As a result, the residual nitrogen pipe between the main heat exchanger and the evaporative cooler 15, which is not shown in the drawing, only a relatively short Overcome route and can therefore be realized particularly cost effective; This saving is significant because of the very large cross-section of the residual nitrogen pipe. Although the cooling water piping is longer, but has a much smaller cross-section and increases the cost of the apparatus only insignificantly.

Tieftemperatur-Luftzerlegungsanlagen weisen regelmäßig eine oder mehrere Entspannungsmaschinen auf, die zur Erzeugung von Kälte durch arbeitsleistende Entspannung eines oder mehrerer Prozess-Ströme dienen und üblicherweise als Turbinen ausgebildet sind. Die Anlage des Ausführungsbeispiels weist vorzugsweise eine Turbine zur arbeitsleistenden Entspannung eines Teilstroms der Einsatzluft oder eines Produkt- oder Zwischenproduktstroms aus der Tieftemperaturzerlegung auf. Diese Turbine sitzt in einem Turbinenkasten 16, der in dem Ausführungsbeispiel am Übergangsabschnitt 10 zwischen Wärmetauscher-Box 8 und Rektifikationsbox 9 angeordnet ist.Cryogenic air separation plants regularly have one or more expansion machines, which serve to generate cold by work-performing relaxation of one or more process streams and are usually designed as turbines. The plant of the embodiment preferably has a turbine for work-performing expansion of a partial flow of the feed air or a product or intermediate product stream from the low-temperature decomposition. This turbine is seated in a turbine box 16, which is arranged in the embodiment at the transition section 10 between the heat exchanger box 8 and rectification box 9.

Claims (7)

Vorrichtung zur Erzeugung eines Produkts durch Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft, mit einem Einsatzgasverdichter (2) zur Verdichtung des Einsatzgemischs, mit einem Direktkontaktkühler (3) zur Vorkühlung des Einsatzgemischs, mit einer Reinigungsvorrichtung (4) zur Reinigung des vorgekühlten Einsatzgemischs, mit einem Tieftemperaturteil (7), der einen Hauptwärmetauscher (8a) zur Abkühlung des gereinigten Einsatzgemischs auf etwa Taupunktstemperatur und eine Destilliersäule (9a) zur Tieftemperaturzerlegung des abgekühlten Einsatzgemischs aufweist, und mit einem Kühlmittelkreislauf (61) zur Lieferung von Kühlmittel für den Direktkontaktkühler, wobei der Kühlmittelkreislauf einen Verdunstungskühler (15) zur Abkühlung von Kühlmittel im direkten Wärmeaustausch mit einem Gasstrom aus dem Tieftemperaturteil aufweist, dadurch gekennzeichnet, dass das Verhältnis des Abstandes zwischen Verdunstungskühler (15) und Direktkontaktkühler (3) zu dem Abstand (104) zwischen Verdunstungskühler (15) und Hauptwärmetauscher (8a) mindestens 0,5 , insbesondere mindestens 1,0 beträgt.Device for producing a product by cryogenic separation of a gas mixture, in particular of air, with a feed gas compressor (2) for compressing the feed mixture, with a direct contact cooler (3) for pre-cooling the feed mixture, with a cleaning device (4) for cleaning the pre-cooled feed mixture, with a A cryogenic part (7) having a main heat exchanger (8a) for cooling the purified feed mixture to about dew point and a distillation column (9a) for cryogenic separation of the cooled feed mixture, and a coolant circuit (61) for supplying coolant to the direct contact cooler, the coolant loop an evaporative cooler (15) for cooling coolant in direct heat exchange with a gas stream from the low-temperature part, characterized in that the ratio of the distance between evaporative cooler (15) and direct contact cooler (3) to the Abst and (104) between evaporative cooler (15) and main heat exchanger (8a) at least 0.5, in particular at least 1.0. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis des Abstandes zwischen Verdunstungskühler (15) und Direktkontaktkühler (3) zu dem Abstand (104) zwischen Verdunstungskühler (15) und Hauptwärmetauscher (8a) mindestens 2, insbesondere mindestens 4 beträgt.Apparatus according to claim 1, characterized in that the ratio of the distance between the evaporative cooler (15) and direct contact cooler (3) to the distance (104) between evaporative cooler (15) and main heat exchanger (8a) is at least 2, in particular at least 4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Abstand (104) zwischen Verdunstungskühler (15) und Hauptwärmetauscher (8a) höchstens 20 m, insbesondere höchstens 10 m beträgt.Apparatus according to claim 1 or 2, characterized in that the distance (104) between the evaporative cooler (15) and main heat exchanger (8a) is at most 20 m, in particular at most 10 m. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Abstand zwischen Verdunstungskühler und Direktkontaktkühler (3) mindestens 10 m, insbesondere mindestens 25 m beträgt.Device according to one of claims 1 to 3, characterized in that the distance between the evaporative cooler and direct contact cooler (3) is at least 10 m, in particular at least 25 m. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dem Hauptwärmetauscher (8a) ein Direktkontaktkühler (3) zur Kühlung des Einsatzgemischs und eine Reinigungsvorrichtung (4) zu Reinigung des gekühlten Einsatzgemischs vorgeschaltet sind, wobei der Direktkontaktkühler (3), die Reinigungsvorrichtung (4) und der Tieftemperaturteil (7) auf einer Linie (101) angeordnet sind.Device according to one of claims 1 to 4, characterized in that the main heat exchanger (8a) is a direct contact cooler (3) for cooling the feed mixture and a cleaning device (4) for cleaning the cooled Feed mixture are connected upstream, wherein the direct contact cooler (3), the cleaning device (4) and the low-temperature part (7) are arranged on a line (101). Vorrichtung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch einen dem Direktkontaktkühler (3) vorgeschalteten Einsatzgasverdichter (2) zur Verdichtung des Einsatzgemischs, wobei der Einsatzgasverdichter (2), der Direktkontaktkühler (3), die Reinigungsvorrichtung (4) und der Tieftemperaturteil (7) auf einer Linie (101) angeordnet sind.Device according to one of claims 1 to 5, characterized by a direct contact cooler (3) upstream feed gas compressor (2) for compressing the feed mixture, wherein the feed gas compressor (2), the direct contact cooler (3), the cleaning device (4) and the low-temperature part (7 ) are arranged on a line (101). Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass einen dem Direktkontaktkühler (3) vorgeschalteten Einsatzgasverdichter (2) zur Verdichtung des Einsatzgemischs, wobei die Antriebswelle (11) des Einsatzgasverdichters (2) im Wesentlichen senkrecht oder im Wesentlichen parallel zu der Linie (101) verläuft, auf welcher der Direktkontaktkühler (3), die Reinigungsvorrichtung (4) und der Tieftemperaturteil (7) angeordnet sind.Device according to one of claims 1 to 6, characterized in that the direct contact cooler (3) upstream feed gas compressor (2) for compressing the feed mixture, wherein the drive shaft (11) of the feed gas compressor (2) is substantially perpendicular or substantially parallel to the line (101), on which the direct contact cooler (3), the cleaning device (4) and the low-temperature part (7) are arranged.
EP04028681A 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air Withdrawn EP1666822A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP04028681A EP1666822A1 (en) 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP04028683A EP1666823A1 (en) 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP05024947.3A EP1672301B1 (en) 2004-12-03 2005-11-15 Apparatus for the cryogenic separation of a gaseous mixture in particular of air
PL05024947T PL1672301T3 (en) 2004-12-03 2005-11-15 Apparatus for the cryogenic separation of a gaseous mixture in particular of air
US11/292,282 US7516626B2 (en) 2004-12-03 2005-12-02 Apparatus for the low-temperature separation of a gas mixture, in particular air
CA2528735A CA2528735C (en) 2004-12-03 2005-12-02 Apparatus for the low-temperature separation of a gas mixture, in particular air
RU2005137481/06A RU2382963C2 (en) 2004-12-03 2005-12-02 Plant for cryogenic separation of mixture of gases, namely air
CN200510128991A CN100575838C (en) 2004-12-03 2005-12-05 The equipment that is used for cryogenic separation admixture of gas, particularly air

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04028682 2004-12-03
EP04028681A EP1666822A1 (en) 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP04028683A EP1666823A1 (en) 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air

Publications (1)

Publication Number Publication Date
EP1666822A1 true EP1666822A1 (en) 2006-06-07

Family

ID=36565984

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04028683A Withdrawn EP1666823A1 (en) 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP04028681A Withdrawn EP1666822A1 (en) 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP05024947.3A Not-in-force EP1672301B1 (en) 2004-12-03 2005-11-15 Apparatus for the cryogenic separation of a gaseous mixture in particular of air

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04028683A Withdrawn EP1666823A1 (en) 2004-12-03 2004-12-03 Apparatus for the cryogenic separation of a gaseous mixture in particular of air

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05024947.3A Not-in-force EP1672301B1 (en) 2004-12-03 2005-11-15 Apparatus for the cryogenic separation of a gaseous mixture in particular of air

Country Status (6)

Country Link
US (1) US7516626B2 (en)
EP (3) EP1666823A1 (en)
CN (1) CN100575838C (en)
CA (1) CA2528735C (en)
PL (1) PL1672301T3 (en)
RU (1) RU2382963C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007052136A1 (en) 2007-09-28 2009-04-02 Linde Aktiengesellschaft Method for starting cryogenic-air separation system, involves introducing air stream as cooling gas stream into evaporative cooler through starting pipeline, before starting distillation column system
WO2012007691A2 (en) 2010-07-13 2012-01-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cooling unit, and apparatus for separating air by means of cryogenic distillation including such a cooling unit
CN105222524A (en) * 2015-11-05 2016-01-06 天津市振津石油天然气工程有限公司 A kind of miniature movable type natural gas liquefaction sled

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
WO2009121008A2 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CN102177326B (en) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 Methods and systems for controlling the products of combustion
DE102009034979A1 (en) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Method for producing pressurized oxygen by evaporating liquid oxygen using a copper and nickel heat exchanger block
CN102459850B (en) 2009-06-05 2015-05-20 埃克森美孚上游研究公司 Combustor systems and methods for using same
EP2312248A1 (en) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Method and device for obtaining pressurised oxygen and krypton/xenon
EA023673B1 (en) 2009-11-12 2016-06-30 Эксонмобил Апстрим Рисерч Компани Low emission power generation and hydrocarbon recovery system and method
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
TWI593878B (en) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 Systems and methods for controlling combustion of a fuel
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
MY160833A (en) 2010-07-02 2017-03-31 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
MX341981B (en) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Stoichiometric combustion with exhaust gas recirculation and direct contact cooler.
FR2962526B1 (en) * 2010-07-09 2014-07-04 Air Liquide APPARATUS FOR COOLING AND PURIFYING AIR FOR A CRYOGENIC AIR DISTILLATION UNIT
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CN105736150B (en) 2010-08-06 2018-03-06 埃克森美孚上游研究公司 Optimize the system and method for stoichiometric(al) combustion
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
TWI564474B (en) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI593872B (en) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 Integrated system and methods of generating power
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
DE102011112909A1 (en) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Process and apparatus for recovering steel
EP2600090B1 (en) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
KR20160052778A (en) * 2011-12-16 2016-05-12 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Liquid distributor with a mixer
US9630123B2 (en) 2011-12-16 2017-04-25 Air Products And Chemicals, Inc. Liquid distributor with a mixer
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
CN104428490B (en) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 The coal bed methane production of raising
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
AU2014226413B2 (en) 2013-03-08 2016-04-28 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
DE102013017590A1 (en) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer
DE102013018664A1 (en) 2013-10-25 2015-04-30 Linde Aktiengesellschaft Process for the cryogenic separation of air and cryogenic air separation plant
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
EP2963369B1 (en) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
TR201808162T4 (en) 2014-07-05 2018-07-23 Linde Ag Method and apparatus for recovering a pressurized gas product by decomposing air at low temperature.
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
PL2963370T3 (en) * 2014-07-05 2018-11-30 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP3040665A1 (en) 2014-12-30 2016-07-06 Linde Aktiengesellschaft Distillation system and plant for the production of oxygen by crygenic separation of air
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
FR3086549B1 (en) * 2018-09-27 2022-05-13 Air Liquide DISTILLATION COLUMN ENCLOSURE
CN109676367A (en) * 2018-12-28 2019-04-26 乔治洛德方法研究和开发液化空气有限公司 A kind of method of heat exchanger assemblies and the assembly heat exchanger assemblies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461871A (en) * 1993-06-03 1995-10-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation for the distillation of air
US5979182A (en) * 1997-03-13 1999-11-09 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for air separation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822774C2 (en) * 1978-05-24 1982-08-26 Linde Ag, 6200 Wiesbaden Process and system components for setting up a factory
FR2695714B1 (en) * 1992-09-16 1994-10-28 Maurice Grenier Installation of cryogenic treatment, in particular of air distillation.
FR2780147B1 (en) * 1999-06-29 2001-01-05 Air Liquide AIR DISTILLATION SYSTEM AND CORRESPONDING COLD BOX
US6360815B1 (en) * 1999-06-29 2002-03-26 Ecia Industrie Arrangement for mounting a fan motor on a heat exchanger and automobile vehicle front assembly provided with that arrangement
FR2799277B1 (en) * 1999-10-01 2001-12-28 Air Liquide HEAT EXCHANGER AND AIR DISTILLATION INSTALLATION COMPRISING SUCH A HEAT EXCHANGER
FR2828729B1 (en) * 2001-08-14 2003-10-31 Air Liquide HIGH PRESSURE OXYGEN PRODUCTION PLANT BY AIR DISTILLATION
US6910350B2 (en) * 2002-08-08 2005-06-28 Pacific Consolidated Industries, Llc Nitrogen generator
FR2844344B1 (en) * 2002-09-11 2005-04-08 Air Liquide PLANT FOR PRODUCTION OF LARGE QUANTITIES OF OXYGEN AND / OR NITROGEN

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461871A (en) * 1993-06-03 1995-10-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation for the distillation of air
US5979182A (en) * 1997-03-13 1999-11-09 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for air separation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"OXYGEN-NITROGEN GENERATORS", PUBLICATION BOC CRYOPLANTS, BOC CRYOPLANTS ENGINEERING CENTRE, GUILDFORD, GB, May 1992 (1992-05-01), pages 1 - 5, XP001223905 *
"Skid-mounted Oxygen-Nitrogen Plant Type SK145", PUBLICATION BOC CRYOPLANTS, BOC CRYOPLANTS ENGINEERING CENTRE, GUILDFORD, GB, September 1991 (1991-09-01), pages 1 - 3, XP001223907 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007052136A1 (en) 2007-09-28 2009-04-02 Linde Aktiengesellschaft Method for starting cryogenic-air separation system, involves introducing air stream as cooling gas stream into evaporative cooler through starting pipeline, before starting distillation column system
WO2012007691A2 (en) 2010-07-13 2012-01-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cooling unit, and apparatus for separating air by means of cryogenic distillation including such a cooling unit
FR2962799A1 (en) * 2010-07-13 2012-01-20 Air Liquide COOLING ASSEMBLY AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION COMPRISING SUCH A COOLING ASSEMBLY
CN103299147A (en) * 2010-07-13 2013-09-11 乔治洛德方法研究和开发液化空气有限公司 Cooling unit, and apparatus for separating air by means of cryogenic distillation including such a cooling unit
WO2012007691A3 (en) * 2010-07-13 2013-10-10 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cooling unit, and apparatus for separating air by means of cryogenic distillation including such a cooling unit
CN103299147B (en) * 2010-07-13 2015-10-07 乔治洛德方法研究和开发液化空气有限公司 Cooling unit and the equipment for being separated air by low temperature distillation comprising this cooling unit
CN105222524A (en) * 2015-11-05 2016-01-06 天津市振津石油天然气工程有限公司 A kind of miniature movable type natural gas liquefaction sled

Also Published As

Publication number Publication date
PL1672301T3 (en) 2019-01-31
EP1672301A1 (en) 2006-06-21
RU2382963C2 (en) 2010-02-27
RU2005137481A (en) 2007-06-20
US7516626B2 (en) 2009-04-14
EP1672301B1 (en) 2018-08-15
CN1782644A (en) 2006-06-07
EP1666823A1 (en) 2006-06-07
CA2528735A1 (en) 2006-06-03
US20060156759A1 (en) 2006-07-20
CN100575838C (en) 2009-12-30
CA2528735C (en) 2013-08-06

Similar Documents

Publication Publication Date Title
EP1666822A1 (en) Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP0505812B1 (en) Low temperature air separation process
DE19904527B4 (en) Air distillation unit with several cryogenic distillation units of the same type
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
EP2015012A2 (en) Process for the cryogenic separation of air
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
DE102010052544A1 (en) Process for obtaining a gaseous product by cryogenic separation of air
DE19803437A1 (en) Oxygen and nitrogen extracted by low-temperature fractional distillation
EP2313724A2 (en) Process and device for cryogenic air fractionation
EP1146301A1 (en) Process and apparatus for the production of high pressure nitrogen from air separation
EP3059536A1 (en) Method and device for obtaining a pressurised nitrogen product
EP0342436A2 (en) Low-temperature air separation process
DE102012008416A1 (en) Casing module for air separation plant
EP2657633B1 (en) Tubing module for air separation unit
EP1490295B1 (en) Plant unit and method for decomposing and purifying synthesis gas
EP1319913A1 (en) Device and process for producing gaseous oxygen under elevated pressure
EP2758735A2 (en) Method and device for generating two purified partial air streams
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
EP2770286B1 (en) Method and apparatus for the production of high pressure oxygen and high pressure nitrogen
DE10045128A1 (en) Method and device for producing high-purity nitrogen by low-temperature air separation
DE102005023434A1 (en) Cryogenic air separation to produce oxygen and/or nitrogen comprises splitting air into several streams which are compressed, precooled and purified before being cooled and supplied to a common distillation system
EP2865978A1 (en) Method for low-temperature air separation and low temperature air separation plant
EP2573492A1 (en) Method and device for cryogenic decomposition of air
DE4030750A1 (en) Combination triple duty compressor for prodn. of nitrogen@ and oxygen@ - has multiple shaft machine providing compression for feed air, first main stage, and coolant nitrogen streams
DE19623310A1 (en) Low pressure single column air sepn. plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061208

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566