EP1665194B1 - Verfahren zur Übertragung von Sensordaten - Google Patents

Verfahren zur Übertragung von Sensordaten Download PDF

Info

Publication number
EP1665194B1
EP1665194B1 EP04762455A EP04762455A EP1665194B1 EP 1665194 B1 EP1665194 B1 EP 1665194B1 EP 04762455 A EP04762455 A EP 04762455A EP 04762455 A EP04762455 A EP 04762455A EP 1665194 B1 EP1665194 B1 EP 1665194B1
Authority
EP
European Patent Office
Prior art keywords
sensors
sensor
data
line
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04762455A
Other languages
English (en)
French (fr)
Other versions
EP1665194A2 (de
Inventor
Jens Otterbach
Christian Ohl
Oliver Kohn
Jochen Schomacker
Michael Ulmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1665194A2 publication Critical patent/EP1665194A2/de
Application granted granted Critical
Publication of EP1665194B1 publication Critical patent/EP1665194B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • the invention is based on a method for transmitting data via a line from a first sensor to a control device nach.der type of independent claim.
  • the inventive method with the features of the independent claim has the advantage e. It is known that now several sensors can be connected in parallel to a line. To give each sensor a chance to send its data, this data is sent in consecutive time slots. The triggering event for transmission is an upshift to a first energy level by the controller on the line. This upshifting of the energy detect the sensors, so that this timing leads to the triggering of the timing control in the individual sensors. Each timing control in each sensor tells the particular sensor when to send. The timing controls are on each other
  • the controller will return the energy level to a quiescent level, then re-energize and then initiate transmission of the sensors data.
  • sensors impact sensors, pre-crash sensors, but also occupant position sensors, such as weight sensors or video sensors come into question here. These may be connected together on a line, or else on different lines, so that in each case one type of sensor is connected to a line.
  • the sensor is very simply configured to allow unidirectional data transfer from the sensor to a controller to a controller and without resorting to bus technology.
  • the transmission is purely event-driven and runs without any complex bus protocol communication. This results in a high reliability and a low-cost and simple product.
  • the sensors can be designed very simply with respect to their electronics.
  • All sensors are thus connected in parallel to an interface line.
  • Each sensor is assigned a specific time interval, for example by programming a parameter in the sensor.
  • the line is usually designed as a two-wire line. However, it is possible to make them as a single-wire line.
  • the timing control in the sensors ensures that each sensor transmits its data only in the time interval assigned to it.
  • the time intervals and the times of data transmission are designed such that overlaps are avoided.
  • the sensors have means for detecting the voltage or the voltage change in order to detect the first or second energy level.
  • This second energy level which is characterized by a second voltage, ensures that the sensor is always operated, ie that when the first energy level is switched on, the sensor is not reset.
  • impact sensors and also sensors for detecting the occupant position are connected via lines to a control unit which controls restraint means. It has become established that this communication often takes place unidirectionally, ie from the sensors to the control unit, but not vice versa.
  • a sensor has a single line to the controller and a second sensor another line. This limits the number of sensors that can be connected to a control unit.
  • the term line here refers to a line of two wires, but always a single-wire line is possible.
  • the triggering event for the timing control is an increase in the energy on the line to which the sensors are connected in parallel.
  • the first sensor recognizes accordingly, as well as all others
  • each sensor is given a time slot assigned by its timing control to send its data to the controller.
  • These timeslots are already programmed by the manufacturer so that they do not overlap. So there is a vote manufacturer side of the send slots.
  • FIG. 1 Illustrates in a block diagram the invention.
  • a control unit SG To a control unit SG are connected via a line L, which is designed as a two-wire line, sensors S1, S2 to Sn parallel to each other.
  • the voltage level US On the line L, the voltage level US is applied.
  • This voltage level US is impressed on the line L by the control unit SG.
  • the control unit SG thus serves as an energy source for the sensors S1, S2 to Sn connected to the line L.
  • the energy consumption is used by the control unit to verify the number of connected sensors to the line L.
  • the sensors S1, S2 to Sn transmit unidirectional data to the control unit SG, which has a receiver module for receiving this data.
  • the control unit SG controls, for example, retaining means such as airbags or belt tensioners.
  • a mechanism is to be provided which controls the transmission of the individual sensors S1, S2 to Sn.
  • the transmission process be initiated via the variation of the voltage US on the line L, while the individual sensors S1, S2 to Sn each have a timing control which is designed such that it transmits a respective one to each sensor S1, S2 to Sn Allocates time slot for transmission, ie overlaps of these time slots are avoided. Therefore, the timing control in the individual sensors S1, S2 to Sn manufacturer must already be set to match these time slots to each other. This means that the sensor S1 first sends its data in a time interval and that in a subsequent time interval the sensor S2 then sends its data. This is done until the last sensor Sn has sent its data.
  • the sensor S1 again sends its data in a predetermined time interval, so that there is a cyclic loop for transmitting the sensor data.
  • the controller SG shuts down the voltage on the line L to stop the transmission.
  • the event that triggers transmission is increasing the voltage US.
  • the voltage US can be increased in one jump, or gradually. If the voltage US exceeds a threshold value, as tested by the individual sensors S1, S2 to Sn, then the time is fixed at which the timing starts.
  • the voltage US represents an energy level assigned to the sensors S1, S2 to Sn.
  • there is a quiescent phase voltage U1 which allows the operation of the sensors without having to reset them when they should resend. It will be as I said, kept for the whole transmission phase and at the elevated voltage level.
  • FIG. 1 under the block diagram also a time diagram is given. It is a voltage-time diagram showing the voltage US on the one hand and the transmission phase of the individual sensors on the other hand. First, the voltage level US is at the voltage Uoff.
  • the voltage can be switched on and off by the control unit. Thereby, e.g. a reset of the sensor can be performed. Normally, once the vehicle is started, the sensor is turned on once by the controller (voltage to US) and then remains on until the ignition is turned off again.
  • the voltage is raised to the value U1, which does not yet trigger the transmission of the sensors S1, S2 to Sn, but supplies them with sufficient energy without having to reset them when they are to transmit.
  • the voltage US is raised to the value U2 for a predetermined period of time. In this period, the individual sensors S1 to Sn in the time sections Ts1, Ts2 to Tsn send their data S1, S2 to Sn. After this period, the control unit SG lowers the voltage US to the value U1 again, and then raise it again to the value U2, so that then the transmission cycle starts again.
  • the voltage US remains at the voltage U2 and cyclically send the sensors their data.
  • FIG. 2 explains in a flow chart the invention.
  • the voltage U.sub.s is raised from the value U.sub.1 to the value U.sub.2 in order to trigger the transmission of the sensors S1, S2 to Sn.
  • the sensors S1, S2 to Sn detect that the voltage has been raised. In this case, an absolute value detection comes into question, or a voltage change. With this raising, the timing control is started in step 202.
  • the sending of the data is then carried out by the individual sensors S1, S2 to Sn in their assigned time slots.
  • the controller SG lowers the voltage from U2 to U1 after the last sensor has sent its data. Then, in step 205, the method ends. As indicated above, there are several ways to perform this procedure cyclically or controlled by raising and lowering the voltage US on line L.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Verfahren zur Übertragung von Daten über eine Leitung von einem ersten Sensor zu einem Steuergerät nach.der Gattung des unabhängigen Patentanspruchs.
  • Aus DE 10114 504 A1 ist ein Verfahren zur Übertragung von Daten von wenigstens einen Sensor zu einem Steuergerät bekannt. Dabei wird ausgeführt, dass der Sensor über eine Zweidrahtleitung mit dem Steuergerät verbunden ist und über diese Zweidrahtleitung die Energie für seinen Betrieb erhält. Über die Zweidrahtleitung überträgt dann der Sensor mittels Strommodulation permanent seine gemessenen Daten. Nach dem Erhalt der Energie sendet der Sensor sofort, wobei er zunächst eine Sensoridentifikation, eine Statusidentifikation und Sensorenwerte als Daten an das Steuergerät überträgt.
  • Ein weiteres Übertragungsverfahren nach dem Stand der Technik ist aus DE 3 330 904 A bekannt.
  • Das erfindungsgemäße Verfahren mit den Merkmalen des unabhängigen Patentanspruchs hat Vorteile. Es ist bekannt, dass nunmehr an eine Leitung mehrere Sensoren parallel angeschlossen werden können. Um jedem Sensor eine Möglichkeit zu geben, seine Daten zu senden, werden diese Daten in aufeinanderfolgenden Zeitschlitzen gesendet. Das auslösende Ereignis für das Senden ist ein Hochschalten auf ein erstes Energieniveau durch das Steuergerät auf der Leitung. Dieses Hochschalten der Energie detektieren die Sensoren, so dass dieser Zeitpunkt zur Triggerung der Zeitablaufsteuerung in den einzelnen Sensoren führt. Jede Zeitablaufsteuerung in jedem Sensor sagt dem jeweiligen Sensor, wann er dann senden kann. Die Zeitablaufsteuerungen sind dabei aufeinander
  • abgestimmt, so dass es zu keinen Überschneidungen beim Senden der Sensordaten kommt. Das Verfahren endet, wenn der letzte Sensor seine Daten gesendet hat. Es ist möglich, dass dann wieder der erste Sensor seine Daten sendet, so dass zyklisch alle Sensoren ihre Daten senden können. Es ist vorsesehen, dass nach dem Senden der Daten des letzten Sensors das Steuergerät das Energieniveau wieder auf einen Ruhepegel zurückfährt, um dann erneut Energie hochzufahren und dann das Senden der Daten der Sensoren zu veranlassen.
  • Als Sensoren kommen hier Aufprallsensoren, Precrashsensoren, aber auch Insassenpositionssensoren, wie Gewichtssensoren oder Videosensoren in Frage. Diese können gemeinsam an einer Leitung angeschlossen sein, oder aber auch an verschiedenen Leitungen, so dass jeweils eine Art eines Sensors an einer Leitung angeschlossen ist. Der Sensor ist sehr einfach konfiguriert, um eine unidirektionale Datenübertragung vom Sensor zu einem Steuergerät zu einem Steuergerät zu ermöglichen und ohne auf eine Bustechnik zurückzugreifen. Hier ist das Senden rein ereignisgesteuert und läuft ohne eine aufwändige Busprotokollkommunikation ab. Dies führt zu einer hohen Zuverlässigkeit und zu einem kostengünstigen und einfachen Produkt. Insbesondere können die Sensoren dabei sehr einfach bezüglich ihrer Elektronik ausgeführt sein.
  • Alle Sensoren sind also parallel an eine Schnittstellenleitung angeschlossen. Jedem Sensor ist ein bestimmtes Zeitintervall zugeordnet, zum Beispiel durch Programmierung eines Parameters im Sensor. Die Leitung ist üblicherweise als eine Zweidrahtleitung ausgeführt. Es ist jedoch möglich, sie auch als eine Eindrahtleitung auszuführen. Durch das Zuführen des ersten Energieniveaus, also dem Einschalten der Spannung oder dem Wechsel eines Spannungspegels, wird der Start zur Datenübertragung der Sensoren zum Steuergerät gegeben. Die Zeitablaufsteuerung in den Sensoren sorgt dafür, dass jeder Sensor nur in dem ihm zugewiesenen Zeitintervall seine Daten sendet. Die Zeitintervalle und die Zeiten der Datenübertragung sind dabei derart ausgelegt, dass Überschneidungen vermieden werden.
  • Weiterhin ist es vorgesehen, dass die Sensoren Mittel zur Erkennung der Spannung oder der Spannungsänderung aufweisen, um das erste bzw. zweite Energieniveau zu erkennen.
  • Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruch angegebenen Sensors möglich.
  • Besonders vorteilhaft ist, dass immer dem Sensor ein zweites Energieniveau zugeführt wird, das kleiner als das erste Energieniveau ist, also nicht das Signal zum Senden gibt. Dieses zweite Energieniveau, das durch eine zweite Spannung gekennzeichnet ist, sorgt dafür, dass der Sensor immer betrieben wird, also dass beim Einschalten des ersten Energieniveaus nicht ein Reset des Sensors stattfindet.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen
  • Figur 1
    ein Blockschaltbild der Erfindung und
    Figur 2
    ein Flussdiagramm
    Beschreibung
  • In der Fahrzeugtechnik werden Aufprallsensoren und auch Sensoren zur Erkennung der Insassenposition über Leitungen mit einem Steuergerät verbunden, das Rückhaltemittel ansteuert. Es hat sich durchgesetzt, dass diese Kommunikation häufig unidirektional abläuft, also von den Sensoren zum Steuergerät, aber nicht umgekehrt. Ein Sensor weist dabei jedoch eine einzige Leitung zum Steuergerät auf und ein zweiter Sensor eine weitere Leitung. Dies begrenzt die Anzahl der Sensoren, die an ein Steuergerät anschließbar sind. Der Begriff Leitung bezeichnet hier eine Leitung aus zwei Drähten, wobei jedoch immer auch eine Eindrahtleitung möglich ist.
  • Es wird vorgeschlagen, eine Art Quasibus zu realisieren, bei dem das Senden der Sensoren zeitgesteuert ist. Das auslösende Ereignis für die Zeitablaufsteuerung ist ein Anstieg der Energie auf der Leitung, an die die Sensoren parallel angeschlossen sind. Der erste Sensor erkennt demnach, wie auch alle anderen
  • Sensoren, den Anstieg auf ein erstes Energieniveau und damit ist der Zeitpunkt gegeben, der für die Zeitablaufsteuerung maßgebend ist. Dann wird jedem Sensor ein durch seine Zeitablaufsteuerung zugeordneter Zeitschlitz gegeben, um seine Daten zum Steuergerät zu senden. Diese Zeitschlitze sind bereits herstellerseitig derart programmiert, dass sie sich nicht überschneiden. Es liegt also eine Abstimmung herstellerseitig der Sendeschlitze vor.
  • Figur 1 illustriert in einem Blockschaltbild die Erfindung. An ein Steuergerät SG sind über eine Leitung L, die als Zweidrahtleitung ausgeführt ist, Sensoren S1, S2 bis Sn parallel zueinander angeschlossen. Auf der Leitung L ist der Spannungspegel US angelegt. Dieser Spannungspegel US wird vom Steuergerät SG auf die Leitung L aufgeprägt. Das Steuergerät SG dient damit als Energiequelle für die an die Leitung L angeschlossenen Sensoren S1, S2 bis Sn. Der Energieverbrauch dient dem Steuergerät zur Verifikation der Anzahl der angeschlossenen Sensoren an die Leitung L. Es sind keine Versorgungsleitungen für die Sensoren S1, S2 bis Sn oder Energiespeicher in den Sensoren S1, S2 bis Sn vorgesehen. Die einzige Energieversorgung der Sensoren S1, S2 bis Sn erfolgt über die Leitung L. Die Sensoren S1, S2 bis Sn übertragen unidirektional Daten zum Steuergerät SG, das einen Empfängerbaustein für den Empfang dieser Daten aufweist. In Abhängigkeit von diesen Daten steuert das Steuergerät SG beispielsweise Rückhaltemittel wie Airbags oder Gurtstraffer an. Damit es zu keinen Kollisionen zwischen den Daten der einzelnen Sensoren S1, S2 bis Sn auf der Leitung L kommt, ist ein Mechanismus vorzusehen, der das Senden der einzelnen Sensoren S1, S2 bis Sn steuert. Erfindungsgemäß wird vorgeschlagen, dass über die Variation der Spannung US auf der Leitung L der Sendevorgang eingeleitet wird, während die einzelnen Sensoren S1, S2 bis Sn jeweils eine Zeitablaufsteuerung aufweisen, die derart gestaltet ist, dass sie jedem Sensor S1, S2 bis Sn einen jeweiligen Zeitschlitz zum Senden zuweist, d.h. es werden Überschneidungen dieser Zeitschlitze vermieden. Daher muss die Zeitablaufsteuerung in den einzelnen Sensoren S1, S2 bis Sn herstellerseitig bereits eingestellt werden, um diese Zeitschlitze aufeinander abzustimmen. Das heißt hier, dass der Sensor S1 zuerst seine Daten in einem Zeitintervall sendet und dass in einem darauf folgenden Zeitintervall der Sensor S2 dann seine Daten sendet. Dies wird so lange durchgeführt, bis der letzte Sensor Sn seine Daten versendet hat.
  • Dann ist es möglich, dass wieder der Sensor S1 seine Daten in einem vorgegebenen Zeitintervall sendet, so dass eine zyklische Schleife zum Senden der Sensordaten vorliegt.
  • Es ist jedoch auch möglich, dass nachdem der Sensor Sn seine Daten gesendet hat, das Steuergerät SG die Spannung auf der Leitung L wieder herunterfährt, um das Senden zu beenden. Das Ereignis, das das Senden auslöst, ist nämlich das Erhöhen der Spannung US. Dabei kann die Spannung US in einem Sprung erhöht werden, oder graduell. Überschreitet die Spannung US einen Schwellwert, wie er von den einzelnen Sensoren S1, S2 bis Sn getestet wird, dann liegt der Zeitpunkt fest, zu dem die Zeitablaufsteuerung beginnt. Die Spannung US repräsentiert ein Energieniveau, das den Sensoren S1, S2 bis Sn zugewiesen wird. In der Phase, wo auf der Leitung US nicht das Spannungsniveau gehalten wird, das das Senden der Daten veranlasst, liegt eine Ruhephasespannung U1 an, die den Betrieb der Sensoren ermöglicht, ohne dass diese ein Reset ausführen müssen, wenn sie wieder senden sollen. Sie wird, wie gesagt, für die ganze Sendephase auch auf dem erhöhten Spannungsniveau gehalten werden.
  • In Figur 1 ist unter dem Blockschaltbild auch ein Zeitdiagramm angegeben. Es ist ein Spannungs-Zeit-Diagramm, das einerseits die Spannung US zeigt und andererseits die Sendephase der einzelnen Sensoren. Zunächst ist das Spannungsniveau US auf der Spannung Uoff.
  • Die Spannung kann vom Steuergerät an- und abgeschaltet werden. Dadurch kann z.B. ein Reset des Sensors ausgeführt werden. Normalerweise wird der Sensor nach dem Start des Fahrzeugs einmal durch das Steuergerät eingeschaltet (Spannung auf US) und bleibt dann an, bis die Zündung wieder ausgeschaltet wird.
  • Dann wird die Spannung auf den Wert U1 angehoben, der noch nicht das Senden der Sensoren S1, S2 bis Sn auslöst, aber sie mit genügend Energie versorgt, ohne dass sie, wenn sie senden sollen, ein Reset ausführen müssen. Schließlich wird die Spannung US auf den Wert U2 angehoben, und zwar für einen vorgegebenen Zeitabschnitt. In diesem Zeitabschnitt senden die einzelnen Sensoren S1 bis Sn in den Zeitabschnitten Ts1, Ts2 bis Tsn ihre Daten S1, S2 bis Sn. Nach diesem Zeitabschnitt senkt das Steuergerät SG die Spannung US auf den Wert U1 wieder ab, um ihn dann wieder auf den Wert U2 anzuheben, so dass dann der Sendezyklus erneut beginnt.
  • Es ist vorgesehen, dass die Spannung US auf der Spannung U2 verharrt und zyklisch die Sensoren ihre Daten versenden.
  • Figur 2 erläutert in einem Flussdiagramm die Erfindung. Im Verfahrensschritt 200 wird die Spannung US von dem Wert U1 auf den Wert U2 angehoben, um damit das Senden der Sensoren S1, S2 bis Sn auszulösen. In Verfahrensschritt 201 erkennen die Sensoren S1, S2 bis Sn, dass die Spannung angehoben wurde. Dabei kommt eine Absolutwerterkennung in Frage, oder eine Spannungsänderung. Mit diesem Anheben wird dann die Zeitablaufsteuerung in Verfahrensschritt 202 gestartet. In Verfahrensschritt 203 wird dann von den einzelnen Sensoren S1, S2 bis Sn in ihren zugewiesenen Zeitschlitzen das Versenden der Daten durchgeführt. In Verfahrensschritt 204 senkt das Steuergerät SG die Spannung von U2 auf U1 ab, nachdem der letzte Sensor seine Daten gesendet hat. Dann, in Verfahrensschritt 205, endet das Verfahren. Wie oben dargestellt, gibt es mehrere Möglichkeiten, dieses Verfahren zyklisch durchzuführen oder gesteuert über das Anheben und Absenken der Spannung US auf der Leitung L.

Claims (2)

  1. Verfahren zur Übertragung von Daten über eine Leitung (L) von einem ersten Sensor (S1, Sn) zu einem Steuergerät (SG), wobei der erste Sensor (S1, S2 bis Sn) über die Leitung (L) Energie erhält, wobei der erste Sensor (S1) zu einem Zeitpunkt des Erhalts eines ersten Energieniveaus (U2) die Daten für ein erstes Zeitintervall (Ts1) sendet, wobei ein zweiter Sensor (S2), der parallel zum ersten Sensor (S1) an die Leitung (L) angeschlossen ist, nach dem ersten Zeitintervall (Ts1) für ein zweitens Zeitintervall (Ts2) seine Daten sendet, wobei der erste und der zweite Sensor (S1, S2) jeweils eine Zeitablaufsteuerung aufweisen, die durch den Zeitpunkt getriggert werden und das nachfolgende Senden des ersten und zweiten Sensors (S1, S2) steuern, wobei der erste und der zweite Sensor (S1, S2) derart konfiguriert sind, dass der erste und der zweite Sensor (S1, S2), zumindest das erste Energieniveau (U2) anhand einer Spannungsänderung erkennen, dadurch gekennzeichnet, dass für die ganze Sendephase das erste Energieniveau (U2) gehalten wird, indem ein entsprechendes Spannungsniveau gehalten wird, wobei nur die Datenübertragung von den Sensoren (S1, Sn) zum Steuergerät (SG) durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erste und der zweite Sensor (S1, S2) zumindest immer mit einem zweiten Energieniveau (U1) versorgt werden, wobei das zweite Energieniveau (U1) kleiner als das erste Energieniveau (U2) ist.
EP04762455A 2003-09-15 2004-07-22 Verfahren zur Übertragung von Sensordaten Active EP1665194B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10342625A DE10342625A1 (de) 2003-09-15 2003-09-15 Sensor
PCT/DE2004/001605 WO2005027072A2 (de) 2003-09-15 2004-07-22 Sensor

Publications (2)

Publication Number Publication Date
EP1665194A2 EP1665194A2 (de) 2006-06-07
EP1665194B1 true EP1665194B1 (de) 2009-06-10

Family

ID=34305800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04762455A Active EP1665194B1 (de) 2003-09-15 2004-07-22 Verfahren zur Übertragung von Sensordaten

Country Status (7)

Country Link
US (1) US8106763B2 (de)
EP (1) EP1665194B1 (de)
JP (1) JP4608481B2 (de)
CN (1) CN100442693C (de)
DE (2) DE10342625A1 (de)
ES (1) ES2325025T3 (de)
WO (1) WO2005027072A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003542A1 (de) 2007-01-24 2008-07-31 Robert Bosch Gmbh Steuergerät und Verfahren zur Ansteuerung von einem Personenschutzsystem
DE102008005990A1 (de) 2007-07-03 2009-01-08 Robert Bosch Gmbh Verfahren zum Betrieb eines Quasibusses für ein Personenschutzsystem, Steuergerät zur Ansteuerung eines Personenschutzsystems und Vorrichtung zur Übertragung von Daten von Sensoren über wenigstens einen Quasibus an ein Steuergerät zur Ansteuerung eines Personenschutzsystems
DE102008050648A1 (de) 2008-10-07 2010-04-08 Fendt, Günter Multifunkionsmessgerät, insbesondere geeignet zum Messen von Signalen an Kraftfahrzeug-Bordnetzen
JP6375928B2 (ja) * 2014-12-17 2018-08-22 横河電機株式会社 データ収集システム
JP6662909B2 (ja) * 2015-12-28 2020-03-11 ローム株式会社 車両用スイッチ制御装置及びスイッチ状態検出方法
JP6672548B2 (ja) * 2016-06-02 2020-03-25 株式会社ダイヘン 通信システム、および、溶接システム
EP3467598B1 (de) * 2017-10-04 2021-09-29 TTTech Computertechnik AG Verfahren und vorrichtung zur bestimmung der schlitzdauer in einem zeitgesteuerten steuerungssystem
FR3090858B1 (fr) * 2018-12-19 2020-11-27 Continental Automotive France Synchronisation d’un moteur à combustion interne
US11460142B2 (en) * 2019-12-16 2022-10-04 Saudi Arabian Oil Company Sensor network for subsurface impact protection system

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156463A (de) * 1974-06-07 1975-12-17
JPS5821039Y2 (ja) * 1975-12-27 1983-05-02 株式会社島津製作所 2 センシキデンソウキ
JPS5290055A (en) 1976-01-23 1977-07-28 Tohoku Metal Ind Ltd Regulated dc power supply
US4203096A (en) * 1978-04-06 1980-05-13 Mallinckrodt, Inc. Sensor monitoring alarm system
JPS5560362A (en) * 1978-10-30 1980-05-07 Toshiba Corp General command confirmation system
JPS57132296A (en) * 1981-02-10 1982-08-16 Omron Tateisi Electronics Co Signal transmitter
US4540890A (en) * 1982-05-24 1985-09-10 Galber Automazione E System for selectively addressing electrical control signals from a control unit to a plurality of remote units
US4464739A (en) * 1982-07-26 1984-08-07 The United States Of America As Represented By The Secretary Of The Navy Sampled towed array telemetry
EP0111178B1 (de) * 1982-11-23 1987-10-28 Cerberus Ag Ueberwachungsanlage mit mehreren, kettenförmig an einer Meldelinie liegenden Meldern
NO162317C (no) * 1983-05-19 1992-02-06 Hochiki Co Brannalarmanlegg
DE3330904A1 (de) * 1983-08-25 1985-03-07 Siemens AG, 1000 Berlin und 8000 München Messwertuebertragungssystem
JPS60160239A (ja) * 1984-01-30 1985-08-21 Omron Tateisi Electronics Co 信号伝送装置
US4754262A (en) * 1984-03-01 1988-06-28 Interactive Technologies, Inc. Multiplexed alarm system
JPH0782597B2 (ja) * 1984-05-04 1995-09-06 富士電機株式会社 測定情報の時分割多重伝送システム
US4788527A (en) * 1984-09-17 1988-11-29 Johansson Fritz H Apparatus and method for device control using a two conductor power line
JPS61201538A (ja) * 1985-03-05 1986-09-06 Meisei Electric Co Ltd コ−ル式テレメ−タ方式
KR950005468B1 (ko) 1987-05-09 1995-05-24 삼성전자주식회사 레이저 다이오드와 수광면이 넓어진 포토다이오드를 일체화시킨 반도체 소자의 제조방법
JPH03117998A (ja) * 1989-09-29 1991-05-20 Hitachi Cable Ltd テレメータ伝送方式
US5252967A (en) * 1990-05-25 1993-10-12 Schlumberger Industries, Inc. Reader/programmer for two and three wire utility data communications system
JP3158581B2 (ja) 1991-12-20 2001-04-23 トヨタ自動車株式会社 電気自動車の制動制御装置
DE4227577C1 (de) * 1992-08-20 1994-02-17 Dornier Gmbh Verfahren zur bidirektionalen Signalübertragung
DE19822146A1 (de) * 1997-05-26 1998-12-03 Volkswagen Ag Vorrichtung zur Kommunikation zwischen einer Vielzahl von elektrischen Komponenten
DE10114504A1 (de) 2001-03-23 2002-10-02 Bosch Gmbh Robert Verfahren zur Übertragung von Daten von wenigstens einem Sensor zu einem Steuergerät
JP3675740B2 (ja) * 2001-07-11 2005-07-27 株式会社デンソー 電源電力給電型通信線を有する通信装置
US7277414B2 (en) * 2001-08-03 2007-10-02 Honeywell International Inc. Energy aware network management
DE10248456A1 (de) * 2001-10-19 2003-06-18 Denso Corp Fahrzeugkommunikationssystem

Also Published As

Publication number Publication date
WO2005027072A3 (de) 2005-06-23
WO2005027072A2 (de) 2005-03-24
JP4608481B2 (ja) 2011-01-12
ES2325025T3 (es) 2009-08-24
DE502004009594D1 (de) 2009-07-23
JP2006522380A (ja) 2006-09-28
CN1853209A (zh) 2006-10-25
US8106763B2 (en) 2012-01-31
CN100442693C (zh) 2008-12-10
EP1665194A2 (de) 2006-06-07
DE10342625A1 (de) 2005-04-14
US20070229306A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
DE3811217C2 (de)
EP0883526B1 (de) Verfahren zum auslösen eines rückhaltemittels in einem fahrzeug
DE19940700C2 (de) Verfahren und Vorrichtung zur automatischen Zuweisung von Melderadressen bei einer Gefahrenmeldeanlage
EP1875674B1 (de) Verfahren und vorrichtungen zum übertragen von daten auf einer datenleitung zwischen einem steuergerät und zumindest einem dezentralen datenverarbeitungsgerät
EP1665194B1 (de) Verfahren zur Übertragung von Sensordaten
EP1374488B1 (de) Busmaster für einen bus zum anschluss von sensoren und/oder zündmitteln
WO2005051723A1 (de) Verbindungselement, verfahren zur buskommunikation zwischen einem steuergerät zur ansteuerung von personen-schutzmitteln als master und wenigstens einem verbindungselement zur gewichtsmessung in einem sitz als slave und bus-system
EP1864443A1 (de) Verfahren und vorrichtung zum übertragen von daten auf einer datenleitung zwischen einem steuergerät und einem dezentralen datenverarbeitungsgerät
EP1436795B1 (de) Verfahren zur übertragung von daten von wenigstens einem sensor zu einem steuergerät
EP2012469B1 (de) Verfahren zum Betrieb eines Quasibusses für ein Personenschutzsystem, Steuergerät zur Ansteuerung eines Personenschutzsystems und Vorrichtung zur Übertragung von Daten von Sensoren über wenigstens einen Quasibus an ein Steuergerät zur Ansteuerung eines Personenschutzsystems
EP1665866B1 (de) Sensor, steuerger t und verfahren zum betrieb von an ein ste uerger t angeschlossenen sensoren
EP4018600B1 (de) Verfahren zur positionserkennung eines busteilnehmers
EP1946976A2 (de) Erstes Steuergerät zur Bestimmung einer Gefährdung wenigstens eines Fahrzeuginsassen, zweites Steuergerät zur Ansteuerung eines elektromotorischen Gurtstraffers, Vorrichtung zur Ansteuerung eines elektromotorischen Gurtstraffers und Verfahren zur Ansteuerung eines elektromotorischen Gurtstraffers
EP1209040A2 (de) Verfahren und System zur Ansteuerung von Zündkreisen für Rückhaltemittel
DE102005048548B4 (de) Vorrichtung zur Datenübertragung und Busstation zur Datenübertragung an ein Steuergerät
DE10226260A1 (de) Verfahren und Vorrichtung zur Aufprallerkennung
DE102008011945A1 (de) Verfahren zur Datenübertragung von seriell angeordneten crashrelevanten Sensoren zu einem Steuergerät für die Ansteuerung von Personenschutzmitteln für ein Fahrzeug, Steuergerät für die Ansteuerung von Personenschutzmitteln für ein Fahrzeug, crashrelevanter Sensor und serielles Bussystem
DE19737506C1 (de) Anordnung zum Ansteuern einer Auslösevorrichtung eines Rückhaltesystems für Fahrzeuginsassen mit einem Übertrager
DE102008014045A1 (de) Schaltungsanordnung zur Ansteuerung eines elektrischen Sicherheitsgurtaufrollers
DE102008005990A1 (de) Verfahren zum Betrieb eines Quasibusses für ein Personenschutzsystem, Steuergerät zur Ansteuerung eines Personenschutzsystems und Vorrichtung zur Übertragung von Daten von Sensoren über wenigstens einen Quasibus an ein Steuergerät zur Ansteuerung eines Personenschutzsystems
DE10139810B4 (de) Spannungssensor zur Überwachung elektronischer Zündkreise
EP2896214B1 (de) Empfängerschaltung und verfahren zu ihrem betrieb
EP0362797A2 (de) Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
DE102008031807A1 (de) Ausfallsicherer Eindraht-Sensor mit Diagnose und Programmierung
EP3752795A1 (de) Verfahren zum übertragen von sensorinformation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060418

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB SE

17Q First examination report despatched

Effective date: 20071213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR TRANSMITTING SENSOR DATA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004009594

Country of ref document: DE

Date of ref document: 20090723

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2325025

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200818

Year of fee payment: 17

Ref country code: GB

Payment date: 20200724

Year of fee payment: 17

Ref country code: FR

Payment date: 20200727

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200724

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230922

Year of fee payment: 20