EP1663554B1 - Verfahren zur herstellung von bauteilen einer gastubine - Google Patents

Verfahren zur herstellung von bauteilen einer gastubine Download PDF

Info

Publication number
EP1663554B1
EP1663554B1 EP04786170A EP04786170A EP1663554B1 EP 1663554 B1 EP1663554 B1 EP 1663554B1 EP 04786170 A EP04786170 A EP 04786170A EP 04786170 A EP04786170 A EP 04786170A EP 1663554 B1 EP1663554 B1 EP 1663554B1
Authority
EP
European Patent Office
Prior art keywords
sintering
during
powder
joined together
connected together
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04786170A
Other languages
English (en)
French (fr)
Other versions
EP1663554A1 (de
Inventor
Gerhard Andrees
Josef Kranzeder
Max Kraus
Raimund Lackermeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1663554A1 publication Critical patent/EP1663554A1/de
Application granted granted Critical
Publication of EP1663554B1 publication Critical patent/EP1663554B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a method for producing components of a gas turbine according to the preamble of patent claim 1.
  • the most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys (also called superalloys) and high-strength steels.
  • the high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings.
  • Titanium alloys are typical materials for compressor parts.
  • Nickel alloys are suitable for the hot parts of the aircraft engine.
  • Powder metallurgical injection molding is related to plastic injection molding and is also referred to as metal mold injection or metal injection molding (MIM) processes.
  • MIM metal mold injection or metal injection molding
  • a powder preferably a metal powder, hard metal powder or ceramic powder
  • a binder and optionally a plasticizer to form a homogeneous mass becomes.
  • the injection-molded bodies already have the geometric shape of the component to be produced, but their volume is increased by the volume of the binder and plasticizer added.
  • the injection-molded articles are deprived of the binder and plasticizer in a debinding process.
  • the molded body is compressed or shrunk to the finished component.
  • the volume of the molded body decreases, wherein it is crucial that the dimensions of the molded part in all three spatial directions must decrease uniformly.
  • the volume shrinkage depends on the binder and plasticizer content between 30% and 60%.
  • the powder metallurgical injection molding is usually carried out so that each shaped body undergoes the Entbind ceremoniessrea and is subsequently sintered for themselves. If appropriate, a plurality of components produced by powder metallurgical injection molding are joined together by suitable joining methods only after the actual powder metallurgical injection molding. Accordingly, the production of components having a complex, three-dimensional shape is only possible to a limited extent with the powder-metallurgical injection molding processes known from the prior art.
  • the present invention is based on the problem to propose a novel method for the production of components of a gas turbine.
  • a plurality of molded bodies are connected to one another during the sintering by a diffusion process for producing a component of a gas turbine.
  • a component of a gas turbine from a plurality of shaped bodies in that during the sintering, that is to say during the powder metallurgical injection molding, the shaped bodies are connected to one another by a diffusion process. hereby It is possible, by means of powder metallurgy injection molding and components of a gas turbine with a complex, three-dimensional shape quickly and inexpensively.
  • US 4 813 823 A discloses a method of making drill tools by metallurgical injection molding.
  • the moldings to be joined together are brought into surface contact, preferably into a positive surface contact, at least during the sintering of sections of the moldings to be joined, wherein pressure is applied to them during sintering and during the simultaneous diffusion process Molded body is exercised.
  • the inventive method is used in particular for the production of blades or blade segments from a plurality of blades of an aircraft engine, wherein these blades or blade segments made of a nickel-based alloy or titanium-based alloy.
  • the present invention relates to the production of components of a gas turbine, in particular an aircraft engine, by powder metallurgical injection molding (PM). Powder metallurgy injection molding is also referred to as Metal Injection Molding (MIM).
  • PM powder metallurgical injection molding
  • MIM Metal Injection Molding
  • a metal powder, hard metal powder or ceramic powder is provided in a first step 10.
  • a binder and optionally a plasticizer are provided in a second step 11.
  • the metal powder provided in method step 10 and the binder and plasticizer provided in method step 11 are mixed in method step 12 so that a homogeneous composition is formed.
  • the volume fraction of the metal powder in the homogeneous mass is preferably between 40% and 70%.
  • the proportion of binder and plasticizer on the homogeneous mass thus varies approximately between 30% and 60%.
  • This homogeneous mass of metal powder, binder and plasticizer is further processed by injection molding in the sense of step 13.
  • injection molding moldings are made. These moldings already have all the typical features of the components to be produced.
  • the shaped bodies have the geometric shape of the component to be manufactured. However, they have a volume increased by the binder content and plasticizer content.
  • the binder and the plasticizer is expelled from the moldings.
  • the method step 14 can also be referred to as the final binding process.
  • the expulsion of binder and plasticizer can be done in different ways. This is usually done by fractional, thermal decomposition or evaporation. Another possibility consists of sucking out the thermally liquefied binding and plasticizing agents by capillary forces, by sublimation or by solvents.
  • the shaped bodies are sintered in the sense of step 15.
  • the Molded body compacted to the components with the final, geometric properties.
  • the moldings shrink, whereby the dimensions of the moldings must decrease uniformly in all three spatial directions.
  • the linear shrinkage is dependent on the binder content and plasticizer content between 10% and 20%.
  • the finished component After sintering, the finished component is present, which is shown in FIG. 1 by step 16. If necessary, after the sintering (step 15), the component may be subjected to a refining process in the sense of step 17. The refining process is optional. It may already be present immediately after sintering a ready-to-install component.
  • the component to be produced can be composed of two moldings, wherein the two moldings are joined together during the sintering by the diffusion process. It is also possible to connect a higher number of moldings to a component during sintering.
  • the shaped bodies are brought into surface contact at portions or surface areas thereof to be joined together.
  • a pressure is exerted during the diffusion process.
  • the surface contact between the moldings to be joined together and the exertion of the pressure on the same takes place at least during the sintering.
  • the diffusion process thus takes place during the sintering.
  • the surface contact and the pressure on the contacting and to be joined moldings already during a Vorsinterns and / or during the debinding process.
  • the procedure is preferred in that the surface contact is already provided during the debinding process and during the pre-sintering and during the actual sintering, but the pressure is exerted only on the molded bodies during the actual sintering.
  • the pre-sintering takes place between the debindering process and the actual sintering, wherein during presintering there is still no appreciable shrinkage process of the molded bodies to be joined together.
  • the shaped bodies are brought into a positive surface contact. This will be explained below with reference to FIGS. 2 to 4.
  • FIG. 2 shows two moldings 18 and 19 which are to be joined to one another during powder metallurgical injection molding via a diffusion process.
  • the moldings 18 and 19 touch one another at portions or surface regions 20 and 21.
  • the surface region 20 of FIG Shaped body 18 in cross-section wedge-shaped.
  • This wedge-shaped surface region 20 of the shaped body 18 engages in a form-fitting manner in the correspondingly formed surface area 21 of the shaped body 19.
  • the surface region 21 of the shaped body 19 accordingly forms a wedge-shaped groove in cross-section.
  • FIG. 3 shows an alternative embodiment of two moldings 22 and 23 to be joined together. Also in the embodiment of FIG. 3, surface regions 24 and 25 to be joined together are in positive contact with the moldings 22 and 23. For this purpose, a cross-sectionally trapezoidal projection is formed on the surface region 25 of the molded body 23, which engages in a correspondingly formed recess in the surface region 24 of the molded body 22.
  • the positive connection between the moldings to be joined together during the sintering by the diffusion process improves the dimensional stability of the component to be produced.
  • the shaped bodies to be joined together in the sense of the present invention can be identical both in terms of their material composition and / or in terms of their shrinkage properties, and can also have different properties in this respect. If the material compositions and the shrinkage properties of the moldings to be joined together are identical, then a uniform shrinkage process arises during the sintering for the moldings to be joined together.
  • moldings having different shrinkage properties in the sense of the present invention can also be connected to one another via the diffusion process during sintering.
  • Moldings having different shrinkage properties can be provided by using moldings having different material compositions.
  • moldings can be used which are formed from different metal powders and thus different metal alloys. Shall shape bodies of different metal powders together be connected, it is important to ensure that the sintering temperature or diffusion temperature of the metal powder is of the same order, so that the shrinkage of the moldings takes place simultaneously.
  • the material composition for providing molded articles having different shrinkage properties can also be changed by variation in the kind and amount of the binder. Different shrinkage properties can furthermore be achieved with the same material composition in that moldings having the same material composition are presintered differently.
  • Another alternative of the present invention is to compensate for the different shrinkage behavior when using moldings with different shrinkage behavior, that before the actual sintering, the moldings are processed by an upstream presintering process.
  • the different shrinkage behavior of the moldings to be joined together can thus be compensated, so that during the actual sintering, the shrinkage behavior of the moldings is adapted to each other.
  • the different shrinkage behavior can be compensated by the fact that the moldings, which consist for example of different metal powders, also differ in terms of their binders and optionally plasticizers or in terms of their percentage composition of metal powder, binder and optionally plasticizer.
  • the different shrinkage behavior can be compensated for.
  • the contacting surfaces thereof may have a coating.
  • This coating then forms a so-called sintering aid, which can be applied as a film or as a slip material or slip layer onto the surface areas of the shaped bodies to be brought into surface contact.
  • This diffusion effect-enhancing coating can be applied to at least one of the surface regions or sections to be joined together or also to both or all of the sections to be joined together.
  • the sintering may also be carried out under a special gas atmosphere which promotes the diffusion effect.
  • the inventive method is suitable for the production of components of a gas turbine, in particular an aircraft engine.
  • blades or blade segments or rotors with integral blading - so-called Blisks ( Bl aded discs ) or Blings ( Bl aded R ings ) - to produce a gas turbine using the method according to the invention.
  • sealing parts, adjusting levers, securing parts or other components having a complex three-dimensional shape can be produced by the method according to the invention.
  • Such components for a gas turbine consist in particular of a nickel-based alloy or titanium-based alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Bauteilen vorzugsweise einer Gasturbine, insbesondere eines Flugtreibwerks, durch pulvermetallurgisches Spitzgiessen. Beim pulvermetallurgischen Spitzgiessen wird zuerst ein Metallpulver mit einem Bindemittel zu einer homogenen Masse vermischt, wobei anschliessend aus der homogenen Masse durch Spritzgiessen mindestens ein Formkörper gefertigt und wobei der oder jede Formkörper darauffolgend einem Entbinderungsprozess unterzogen wird. Im Anschluss wird durch Sintern der oder jeder Formkörper zu mindestens einem Bauteil mit gewünschten geometrischen Eigenschaften verdichtet. Erfindungsgemäss werden zur Herstellung eines Bauteils mehrere Formkörper während des Sinterns durch einen Diffusionsprozess miteinander verbunden. Vorzugsweise werden die miteinander zu verbindenden Formkörper zumindest während des Sinterns an miteinander zu verbindenden Abschnitten der Formkörper in Flächenkontakt, vorzugsweise in einen formschlüssigen Flächenkontakt gebracht, wobei während des Sinterns ein Druck auf die miteinander zu verbindenden Formkörper ausgeübt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Bauteilen einer Gasturbine nach dem Oberbegriff des Patentanspruchs 1.
  • Moderne Gasturbinen, insbesondere Flugtriebwerke, müssen höchsten Ansprüchen im Hinblick auf Zuverlässigkeit, Gewicht, Leistung, Wirtschaftlichkeit und Lebensdauer gerecht werden. In den letzten Jahrzehnten wurden insbesondere auf dem zivilen Sektor Flugtriebwerke entwickelt, die den obigen Anforderungen voll gerecht werden und ein hohes Maß an technischer Perfektion erreicht haben. Bei der Entwicklung von Flugtriebwerken spielt unter anderem die Werkstoffauswahl, die Suche nach neuen, geeigneten Werkstoffen sowie die Suche nach neuen Fertigungsverfahren eine entscheidende Rolle.
  • Die wichtigsten, heutzutage für Flugtriebwerke oder sonstige Gasturbinen verwendeten Werkstoffe sind Titanlegierungen, Nickellegierungen (auch Superlegierungen genannt) und hochfeste Stähle. Die hochfesten Stähle werden für Wellenteile, Getriebeteile, Verdichtergehäuse und Turbinengehäuse verwendet. Titanlegierungen sind typische Werkstoffe für Verdichterteile. Nickellegierungen sind für die heißen Teile des Flugtriebwerks geeignet.
  • Bei der Fertigung bzw. Herstellung von Präzisionsbauteilen aus metallischen oder auch keramischen Pulvern hat sich das pulvermetallurgische Spritzgießen bewährt. Das pulvermetallurgische Spritzgießen ist mit dem Kunststoffspritzguss verwandt und wird auch als Metallform-Spritzen oder Metal Injection Moulding-Verfahren (MIM-Verfahren) bezeichnet. Mit dem pulvermetallurgischen Spritzgießen können Bauteile hergestellt werden, die fast die volle Dichte sowie ca. 95% der statischen Festigkeit von Schmiedeteilen erreichen. Die gegenüber Schmiedeteilen verringerte dynamische Festigkeit kann durch geeignete Werkstoffauswahl kompensiert werden.
  • Beim pulvermetallurgischen Spritzgießen wird nach dem Stand der Technik in groben Zügen so vorgegangen, dass in einem ersten Verfahrensschritt ein Pulver, vorzugsweise ein Metallpulver, Hartmetallpulver oder auch Keramikpulver, mit einem Bindemittel und gegebenenfalls einem Plastifizierer zu einer homogenen Masse vermischt wird. Aus dieser homogenen Masse werden durch Spritzgießen Formkörper gefertigt. Die spritzgegossenen Formkörper besitzen bereits die geometrische Form des herzustellenden Bauteils, ihr Volumen ist jedoch um das Volumen des zugesetzten Bindemittels und Plastifizierungsmittels vergrößert. Den spritzgegossenen Formkörpern wird in einem Entbinderungsprozess das Bindemittel sowie Plastifizierungsmittel entzogen. Darauffolgend wird während des Sinterns der Formkörper zum fertigen Bauteil verdichtet bzw. geschrumpft. Während des Sinterns verkleinert sich das Volumen des Formkörpers, wobei entscheidend ist, dass die Dimensionen des Formteils in allen drei Raumrichtungen gleichmäßig schwinden müssen. Der Volumenschwund beträgt abhängig vom Bindemittel- und Plastifizierungsmittelgehalt zwischen 30% und 60%.
  • Nach dem Stand der Technik wird beim pulvermetallurgischen Spritzgießen üblicherweise so vorgegangen, dass jeder Formkörper für sich dem Entbinderungsprozess unterzogen und darauffolgend für sich gesintert wird. Gegebenfalls werden erst nach dem eigentlichen pulvermetallurgischen Spritzgießen mehrere durch pulvermetallurgisches Spritzgießen hergestellte Bauteile über geeignete Fügeverfahren miteinander verbunden. Mit den aus dem Stand der Technik bekannten pulvermetallurgischen Spritzgießverfahren ist demnach die Herstellung von Bauteilen mit einer komplexen, dreidimensionalen Gestalt nur in beschränktem Umfang möglich.
  • Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Herstellung von Bauteilen einer Gasturbine vorzuschlagen.
  • Dieses Problem wird dadurch gelöst, dass das eingangs genannte Verfahren durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist.
  • Erfindungsgemäß werden zur Herstellung eines Bauteils einer Gasturbine mehrere Formkörper während des Sinterns durch einen Diffusionsprozess miteinander verbunden.
  • Im Sinne der hier vorliegenden Erfindung wird vorgeschlagen, ein Bauteil einer Gasturbine aus mehreren Formkörpern dadurch herzustellen, dass während des Sinterns, also während des pulvermetallurgischen Spritzgießens, die Formkörper zu dem herzustellenden Bauteil durch einen Diffusionsprozess miteinander verbunden werden. Hierdurch wird es möglich, mithilfe des pulvermetallurgischen Spritzgießens auch Bauteile einer Gasturbine mit einer komplexen, dreidimensionalen Gestalt schnell und kostengünstig herzustellen.
  • US 4 813 823 A offenbart ein Verfahren zur Herstellung von Bohrwerkzeugen durch metallurgisches Spitzgießen.
  • Nach einer vorteilhaften Weiterbildung der Erfindung werden die miteinander zu verbindenden Formkörper zumindest während des Sinterns an miteinander zu verbindenden Abschnitten der Formkörper in Flächenkontakt, vorzugsweise in einen formschlüssigen Flächenkontakt gebracht, wobei während des Sinterns und während des gleichzeitig ablaufenden Diffusionsprozesses ein Druck auf die miteinander zu verbindenden Formkörper ausgeübt wird.
  • Das erfindungsgemäße Verfahren wird insbesondere zur Herstellung von Schaufeln oder Schaufelsegmenten aus mehreren Schaufeln eines Flugtriebwerks verwendet, wobei diese Schaufeln oder Schaufelsegmente aus einer Nickelbasislegierung oder auch Titanbasislegierung bestehen.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Unteransprüchen und der nachfolgenden Beschreibung.
  • Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. In der Zeichnung zeigt:
  • Fig. 1:
    ein Blockschaltbild zur Verdeutlichung der einzelnen Verfahrenschritte beim pulvermetallurgischen Spritzgießen;
    Fig. 2:
    einen Querschnitt durch zwei mit Hilfe des erfindungsgemäßen Verfahrens miteinander zu verbindende Formkörper;
    Fig. 3:
    einen weiteren Querschnitt durch zwei mit Hilfe des erfindungsgemäßen Verfahrens miteinander zu verbindende Formkörper; und
    Fig. 4:
    einen weiteren Querschnitt durch zwei mit Hilfe des erfindungsgemäßen Verfahrens miteinander zu verbindende Formkörper.
  • Die hier vorliegende Erfindung betrifft die Herstellung von Bauteilen einer Gasturbine, insbesondere eines Flugtriebwerks, durch pulvermetallurgisches Spritzgießen (PM). Pulvermetallurgisches Spritzgießen wird auch als Metal Injection Moulding (MIM) bezeichnet.
  • Unter Bezugnahme auf Fig. 1 werden die einzelnen Verfahrensschritte des pulvermetallurgischen Spritzgießens erläutert. In einem ersten Schritt 10 wird ein Metallpulver, Hartmetallpulver oder Keramikpulver bereitgestellt. In einem zweiten Schritt 11 werden ein Bindemittel und ggf. ein Plastifizierungsmittel bereitgestellt. Das im Verfahrensschritt 10 bereitgestellte Metallpulver sowie das im Verfahrensschritt 11 bereitgestellte Bindemittel und Plastifizierungsmittel werden im Verfahrensschritt 12 gemischt, so dass sich eine homogene Masse ausbildet. Der Volumenanteil des Metallpulvers in der homogenen Masse beträgt dabei vorzugsweise zwischen 40% und 70%. Der Anteil von Bindemittel und Plastifizierungsmittel an der homogenen Masse schwankt demnach in etwa zwischen 30% und 60%.
  • Diese homogene Masse aus Metallpulver, Bindemittel und Plastifizierungsmittel wird im Sinne des Schritts 13 durch Spritzgießen weiterverarbeitet. Beim Spritzgießen werden Formkörper gefertigt. Diese Formkörper weisen schon alle typischen Merkmale der herzustellenden Bauteile auf. Insbesondere verfügen die Formkörper über die geometrische Form des zu fertigenden Bauteils. Sie verfügen jedoch über ein um den Bindemittelgehalt sowie Plastifizierungsmittelgehalt vergrößertes Volumen.
  • Im nachgeschalteten Schritt 14 wird das Bindemittel und das Plastifizierungsmittel aus den Formkörpern ausgetrieben. Den Verfahrensschritt 14 kann man auch als Endbinderungsprozess bezeichnen. Das Austreiben von Bindemittel und Plastifizierungsmittel kann auf unterschiedliche Art und Weise erfolgen. Üblicherweise erfolgt dies durch fraktionierte, thermische Zersetzung bzw. Verdampfung. Eine weitere Möglichkeit besteht durch Heraussaugen der thermisch verflüssigten Binde- und Plastifizierungsmittel durch Kapillarkräfte, durch Sublimation oder durch Lösungsmittel.
  • Im Anschluss an den Entbinderungsprozess im Sinne des Schritts 14 werden die Formkörper im Sinne des Schritts 15 gesintert. Während des Sinterns werden die Formkörper zu den Bauteilen mit den endgültigen, geometrischen Eigenschaften verdichtet. Während des Sinterns verkleinern sich demnach die Formkörper, wobei die Dimensionen der Formkörper in allen drei Raumrichtungen gleichmäßig schwinden müssen. Der lineare Schwund beträgt abhängig vom Bindemittelgehalt und Plastifizierungsmittelgehalt zwischen 10% und 20%.
  • Nach dem Sintern liegt das fertige Bauteil vor, was in Fig. 1 durch den Schritt 16 dargestellt ist. Falls erforderlich, kann nach dem Sintern (Schritt 15) das Bauteil noch einem Veredelungsprozess im Sinne des Schritts 17 unterzogen werden. Der Veredelungsprozess ist jedoch optional. Es kann bereits auch unmittelbar nach dem Sintern ein einbaufertiges Bauteil vorliegen.
  • Es liegt im Sinne der hier vorliegenden Erfindung, ein Bauteil einer Gasturbine mithilfe des pulvermetallurgischen Spritzgießens dadurch herzustellen, dass das Bauteil aus mehreren Formkörpern gebildet wird, wobei die Formkörper während des pulvermetallurgischen Spritzgießens durch einen Diffusionsprozess miteinander verbunden werden. So kann zum Beispiel das herzustellende Bauteil aus zwei Formkörpern zusammengesetzt werden, wobei die beiden Formkörper während des Sinterns durch den Diffusionsprozess miteinander verbunden werden. Es ist auch möglich, eine höhere Anzahl von Formkörpern zu einem Bauteil während des Sinterns miteinander zu verbinden.
  • Zum Verbinden der Formkörper bei der Herstellung des Bauteils werden die Formkörper an miteinander zu verbindenden Abschnitten bzw. Oberflächenbereichen derselben in einen Flächenkontakt gebracht. Dies bedeutet, dass die miteinander zu verbindenden Formkörper sich an den Abschnitten bzw. Oberflächenbereichen einander berühren. Auf die sich berührenden Formkörper bzw. die sich berührenden Abschnitte der Formkörper wird während des Diffusionsprozesses ein Druck ausgeübt. Der Flächenkontakt zwischen den miteinander zu verbindenden Formkörpern sowie das Ausüben des Drucks auf dieselben, erfolgt zumindest während des Sinterns. Der Diffusionsprozess erfolgt demnach während des Sinters.
  • Es ist auch möglich, den Flächenkontakt sowie den Druck auf die sich berührenden und miteinander zu verbindenden Formkörper bereits während eines Vorsinterns und/oder während des Entbinderungsprozesses herzustellen. Bevorzugt ist die Vorgehensweise, dass der Flächenkontakt bereits während des Entbinderungsprozesses und während des Vorsinters sowie während des eigentlichen Sinters bereitgestellt wird, der Druck jedoch lediglich während des eigentlichen Sinterns auf die Formkörper ausgeübt wird. An dieser Stelle sei der Vollständigkeit halber angemerkt, dass das Vorsintern zwischen dem Entbinderungsprozess und dem eigentlichen Sintern stattfindet, wobei beim Vorsintern noch kein merklicher Schrumpfungsprozess der miteinander zu verbindenden Formkörper stattfindet.
  • Nach einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens werden die Formkörper in einen formschlüssigen Flächenkontakt gebracht. Dies wird anhand der Fig. 2 bis 4 nachfolgend erläutert.
  • So zeigt Fig. 2 zwei während des pulvermetallurgischen Spritzgießens über einen Diffusionsprozess miteinander zu verbindende Formkörper 18 und 19. Die Formkörper 18 und 19 berühren einander an Abschnitten bzw. Oberflächenbereichen 20 und 21. Wie Fig. 2 entnommen werden kann, ist der Oberflächenbereich 20 des Formkörpers 18 im Querschnitt keilförmig ausgebildet. Dieser keilförmige Oberflächenbereich 20 des Formkörpers 18 greift formschlüssig in den korrespondierend ausgebildeten Oberflächenbereich 21 des Formkörpers 19 ein. Der Oberflächenbereich 21 des Formkörpers 19 bildet demnach im Querschnitt eine keilförmige Nut.
  • Fig. 3 zeigt eine alternative Ausgestaltung von zwei miteinander zu verbindenden Formkörpern 22 und 23. Auch beim Ausführungsbeispiel der Fig. 3 sind miteinander zu verbindende Oberflächenbereiche 24 und 25 der Formkörper 22 und 23 in formschlüssigem Kontakt. Hierzu ist am Oberflächenbereich 25 des Formkörpers 23 ein im Querschnitt trapezförmiger Vorsprung ausgebildet, der in eine entsprechend ausgebildete Ausnehmung im Oberflächenbereich 24 des Formkörpers 22 eingreift.
  • Eine weitere mögliche Ausgestaltung zweier miteinander zu verbindender Formkörper 26 und 27 zeigt Fig. 4. Beim Ausführungsbeispiel der Fig. 4 sind miteinander zu verbindende Oberflächenbereiche 28 und 29 der beiden Formkörper 26 und 27 wiederum in formschlüssigem Kontakt miteinander, im Unterschied zum Ausführungsbeispiel gemäß Fig. 3 sind im Ausführungsbeispiel gemäß Fig. 4 der Vorsprung bzw. die Ausnehmung im Bereich der Abschnitte bzw. der Oberflächenbereiche 28 bzw. 29 im Querschnitt nicht trapezförmig, sondern vielmehr im Querschnitt rechteckig. Bei den Ausführungsbeispielen gemäß Fig. 2 und 3 sind die miteinander zu verbindender Formkörper 18 und 19 bzw. 22 und 23 seitlich nebeneinander angeordnet, bei Ausführungsbeispiel der Fig. 4 sind die Formkörper 26 und 27 übereinander positioniert.
  • Der Formschluss zwischen den während des Sinterns durch den Diffusionsprozess miteinander zu verbindenden Formkörpern verbessert die Maßhaltigkeit des herzustellenden Bauteils.
  • An dieser Stelle sei angemerkt, dass die miteinander zu verbindenden Formkörper im Sinne der hier vorliegenden Erfindung sowohl hinsichtlich ihrer Materialzusammensetzung und/oder hinsichtlich ihrer Schrumpfungseigenschaften identisch ausgebildet sein können, als auch diesbezüglich unterschiedliche Eigenschaften aufweisen können. Sind die Materialzusammensetzungen sowie die Schrumpfeigenschaften der miteinander zu verbindenden Formkörper identisch, so stellt sich während des Sinterns für die miteinander zu verbindenden Formkörper ein gleichmäßiger Schrumpfungsprozess ein.
  • Es können jedoch auch Formkörper mit unterschiedlichen Schrumpfungseigenschaften im Sinne der hier vorliegenden Erfindung über den Diffusionsprozess während des Sinterns miteinander verbunden werden. So liegt es auch im Sinne der hier vorliegenden Erfindung, einen Formkörper mit einem größeren Schrumpfungsumfang während des Sinterns auf einen Formkörper mit einem kleineren Schrumpfungsumfang aufzusintern. Bei den in Fig. 2 bis 4 gezeigten Ausführungsbeispielen würde dies bedeuten, dass die Formkörper 19, 22 und 26 einen größeren Schrumpfungsumfang aufweisen und damit stärker schrumpfen als die Formkörper 18, 23 bzw. 27.
  • Formkörper mit unterschiedlichen Schrumpfungseigenschaften können dadurch bereitgestellt werden, dass Formkörper mit unterschiedlichen Materialzusammensetzungen verwendet werden. So können zum Beispiel Formkörper verwendet werden, die aus unterschiedlichen Metallpulvern und damit unterschiedlichen Metalllegierungen gebildet sind. Sollen Formkörper aus unterschiedlichen Metallpulvern miteinander verbunden werden, so ist darauf zu achten, dass die Sintertemperatur bzw. Diffusionstemperatur der Metallpulver in der selben Größenordnung liegt, damit die Schrumpfung der Formkörper auch gleichzeitig erfolgt. Die Materialzusammensetzung zur Bereitstellung von Formkörpern mit unterschiedlichen Schrumpfungseigenschaften kann auch durch Variation in der Art und im Umfang des Bindemittels geändert werden. Unterschiedliche Schrumpfungseigenschaften können des weiteren bei gleicher Materialzusammensetzung dadurch erreicht werden, dass Formkörper mit gleicher Materialzusammensetzung unterschiedlich vorgesintert werden.
  • Eine weitere Alternative der hier vorliegenden Erfindung liegt darin, bei Verwendung von Formkörpern mit unterschiedlichem Schrumpfungsverhalten das unterschiedliche Schrumpfungsverhalten dadurch auszugleichen, dass vor dem eigentlichen Sintern die Formkörper durch einen vorgeschalteten Vorsinterprozess bearbeitet werden. Das unterschiedliche Schrumpfverhalten der miteinander zu verbindenden Formkörper kann so ausgeglichen werden, so dass während des eigentlichen Sinterns das Schrumpfverhalten der Formkörper aufeinander angepasst ist.
  • Nach einer anderen Alternative des erfindungsgemäßen Verfahrens kann das unterschiedliche Schrumpfverhalten dadurch ausgeglichen werden, dass die Formkörper, die zum Beispiel aus unterschiedlichen Metallpulvern bestehen, sich auch hinsichtlich ihrer Bindemittel und gegebenenfalls Plastifizierungsmittel bzw. hinsichtlich ihrer prozentualen Zusammensetzung von Metallpulver, Bindemittel und gegebenenfalls Plastifizierungsmittel unterscheiden. Auch hierdurch kann dann, wenn zum Beispiel Formkörper aus unterschiedlichen Metallpulvern miteinander verbunden werden sollen, das unterschiedliche Schrumpfungsverhalten ausgeglichen werden. Es ist jedoch wieder darauf zu achten, dass die Sintertemperatur bzw. Diffusionstemperatur der Materialzusammensetzungen der Formkörper in der selben Größenordnung liegt, damit die Schrumpfung der Formkörper auch gleichzeitig erfolgt.
  • Mithilfe der hier vorliegenden Erfindung ist es möglich, während des Sinterns pulvermetallurgische Formkörper unmittelbar miteinander zu verbinden. Hierdurch werden neue Gestaltungsmöglichkeiten für pulvermetallurgisch herzustellende Bauteile geschaffen. Weiterhin entfallen die nach dem Stand der Technik erforderlichen separaten Füge- bzw. Verbindungsprozesse nach dem eigentlichen pulvermetallurgischen Spritzgießen. Durch den Wegfall dieses nach dem Stand der Technik erforderlichen, zusätzlichen Verfahrensschritts ist die Herstellung der Bauteile schneller sowie kostengünstiger möglich.
  • Zur Verstärkung des Diffusionseffekts beim Sintern der miteinander zu verbindenden Formkörper können die einander berührenden Oberflächen derselben eine Beschichtung aufweisen. Diese Beschichtung bildet dann eine sogenannte Sinterhilfe, die als Folie oder als Schlickerwerkstoff bzw. Schlickerschicht auf die in Flächenkontakt zu bringenden Oberflächenbereiche der Formkörper aufgebracht werden kann. Diese den Diffusionseffekt verstärkende Beschichtung kann auf mindestens eine der miteinander zu verbindenden Oberflächenbereiche bzw. Abschnitte oder auch auf beide oder alle miteinander zu verbindenden Abschnitte aufgebracht werden.
  • Zur Verstärkung des Diffusionseffekts beim Sintern kann das Sintern auch unter einer speziellen Gasatmosphäre durchgeführt werden, die den Diffusionseffekt unterstützt.
  • Das erfindungsgemäße Verfahren eignet sich zur Herstellung von Bauteilen einer Gasturbine, insbesondere eines Flugtriebwerks. So liegt es im Sinne der hier vorliegenden Erfindung, Schaufeln oder Schaufelsegmente oder Rotoren mit integraler Beschaufelung - sogenannte Blisks (Bladed Disks) oder Blings (Bladed Rings) - einer Gasturbine mithilfe des erfindungsgemäßen Verfahrens herzustellen. Weiterhin können Dichtungsteile, Verstellhebel, Sicherungsteile oder andere Bauteile mit einer komplexen dreidimensionalen Gestalt durch das erfindungsgemäße Verfahren hergestellt werden. Derartige Bauteile für eine Gasturbine bestehen insbesondere aus einer Nickelbasislegierung oder Titanbasislegierung.

Claims (5)

  1. Verfahren zur Herstellung von Bauteilen einer Gasturbine, insbesondere eines Flugtriebwerks, durch pulvermetallurgisches Spitzgießen, wobei aus Pulver-Bindemittel-Gemischen mehrere Formkörper gefertigt werden und jeder Formkörper darauffolgend einem Entbinderungsprozess unterzogen wird, wobei im Anschluss durch Sintern jeder formkörper zu mindestens einem Bauteil mit gewünschten geometrischen Eigenschaften verdichtet bzw. geschrumpft wird, und wobei zur Herstellung eines Bauteils mehrere Formkörper während des Sinterns durch einen Diffusionsprozess miteinander verbunden werden, indem die miteinander zu verbindenden Formkörper zumindest während des Sinterns an miteinander zu verbindenden Abschnitten in Flächenkontakt gebracht werden, dadurch gekennzeichnet, dass während des Sinterns ein Druck auf die miteinander zu verbindenden Formkörper ausgeübt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass auf mindestens einen der miteinander zu verbindenden Abschnitte der Formkörper zur Unterstützung des Diffusionsprozesses eine Beschichtung aufgebracht wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass-die oder jede Beschichtung als Folie oder Schlickerschicht aufgebracht wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dann, wenn die miteinander zu verbindenden Formkörper ein unterschiedliches Schrumpfverhalten während des Sinterns aufweisen, der Formkörper mit dem größeren Schrumpfumfang auf den Formkörper mit dem geringeren Schrumpfumfang aufgeschrumpft wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dasselbe der Herstellung von Schaufeln oder Schaufelsegmenten, insbesondere von Leitschaufeln, Leitschaufelsegmenten, laufschaufeln oder Laufschaufeisegmenten eines Flugtriebwerks, oder der Herstellung von Rotoren mit integraler Beschaufelung dient.
EP04786170A 2003-09-22 2004-08-24 Verfahren zur herstellung von bauteilen einer gastubine Expired - Fee Related EP1663554B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10343782A DE10343782A1 (de) 2003-09-22 2003-09-22 Verfahren zur Herstellung von Bauteilen
PCT/DE2004/001872 WO2005030417A1 (de) 2003-09-22 2004-08-24 Verfahren zur herstellung von bauteilen

Publications (2)

Publication Number Publication Date
EP1663554A1 EP1663554A1 (de) 2006-06-07
EP1663554B1 true EP1663554B1 (de) 2007-03-07

Family

ID=34306008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786170A Expired - Fee Related EP1663554B1 (de) 2003-09-22 2004-08-24 Verfahren zur herstellung von bauteilen einer gastubine

Country Status (3)

Country Link
EP (1) EP1663554B1 (de)
DE (2) DE10343782A1 (de)
WO (1) WO2005030417A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282681B2 (en) 2005-05-05 2007-10-16 General Electric Company Microwave fabrication of airfoil tips
DE102005022730A1 (de) * 2005-05-18 2006-11-23 Schaeffler Kg Wälzlagerring,insbesondere für hochbeanspruchte Wälzlager in Flugzeugtriebwerken, sowie Verfahren zu dessen Herstellung
DE102006009860A1 (de) * 2006-03-03 2007-09-06 Mtu Aero Engines Gmbh Verfahren zur Herstellung eines Dichtsegments und Dichtsegment zur Verwendung in Verdichter- und Turbinenkomponenten
US20080237403A1 (en) * 2007-03-26 2008-10-02 General Electric Company Metal injection molding process for bimetallic applications and airfoil
US7543383B2 (en) * 2007-07-24 2009-06-09 Pratt & Whitney Canada Corp. Method for manufacturing of fuel nozzle floating collar
US10226818B2 (en) 2009-03-20 2019-03-12 Pratt & Whitney Canada Corp. Process for joining powder injection molded parts
FR2944724B1 (fr) * 2009-04-24 2012-01-20 Snecma Procede de fabrication d'un ensemble comprenant une pluralite d'aubes montees dans une plateforme
DE102013004807B4 (de) 2013-03-15 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von gesinterten Bauteilen
DE102013207440A1 (de) * 2013-04-24 2014-10-30 Bosch Mahle Turbo Systems Gmbh & Co. Kg Verfahren zur Herstellung eines Hebels einer variablen Turbinengeometrie
US9970318B2 (en) 2014-06-25 2018-05-15 Pratt & Whitney Canada Corp. Shroud segment and method of manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601385A1 (de) * 1986-01-18 1987-07-23 Krupp Gmbh Verfahren zur herstellung von sinterkoerpern mit inneren kanaelen, strangpresswerkzeug zur durchfuehrung des verfahrens und bohrwerkzeug
US5393484A (en) * 1991-10-18 1995-02-28 Fujitsu Limited Process for producing sintered body and magnet base
TW415859B (en) * 1998-05-07 2000-12-21 Injex Kk Sintered metal producing method
DE10053199B4 (de) * 1999-10-28 2008-10-30 Denso Corp., Kariya-shi Verfahren zum Herstellen eines Metallverbundstoff-Presslings

Also Published As

Publication number Publication date
DE502004003171D1 (de) 2007-04-19
DE10343782A1 (de) 2005-04-14
EP1663554A1 (de) 2006-06-07
WO2005030417A1 (de) 2005-04-07

Similar Documents

Publication Publication Date Title
WO2007085230A1 (de) Leitschaufelsegment einer gasturbine und verfahren zu dessen herstellung
EP1691946B1 (de) Verfahren zur herstellung von gasturbinenbauteilen und bauteil für eine gasturbine
EP2643111B1 (de) Verfahren zur herstellung von triebwerksbauteilen mit geometrisch komplexer struktur
EP3069803A1 (de) Schaufel einer strömungsmaschine aus unterschiedlichen werkstoffen und verfahren zur herstellung derselben
DE102012206087A1 (de) Verfahren zur Herstellung eines Bauteils eines Flugtriebwerks durch Metallpulverspritzgießen
DE102006016147A1 (de) Verfahren zum Herstellen einer Wabendichtung
EP1663554B1 (de) Verfahren zur herstellung von bauteilen einer gastubine
DE102016208761A1 (de) Pulverspritzgießverfahren, Pulverspritzgießvorrichtung und Pulverspritzgussteil
EP3450056A1 (de) Verfahren zur herstellung eines titanaluminid-bauteils mit zähem kern und entsprechend hergestelltes bauteil
US20070202000A1 (en) Method For Manufacturing Components
DE102004057360B4 (de) Verfahren zum Herstellen einer Wabendichtung
WO2005007326A2 (de) Verfahren zur herstellung von bauteilen einer gasturbine sowie entsprechendes bauteil
DE10331599A1 (de) Bauteil für eine Gasturbine sowie Verfahren zur Herstellung desselben
DE102004029789A1 (de) Verfahren zum Fertigen von Bauteilen einer Gasturbine sowie Bauteil einer Gasturbine
DE102005019077A1 (de) Schaufel einer Strömungsmaschine und Verfahren zur Herstellung und/oder Reparatur derselben
DE102005033625B4 (de) Verfahren zur Herstellung und /oder Reparatur eines integral beschaufelten Rotors
DE10343780A1 (de) Verfahren zur Herstellung von Bauteilen und Halteeinrichtung
DE10343781B4 (de) Verfahren zur Herstellung von Bauteilen
EP2869961B1 (de) Verfahren zum herstellen eines bauteils mit erwärmung der ersten komponente und des zweiten materials auf einer reaktionstemperatur
DE10336701B4 (de) Verfahren zur Herstellung von Bauteilen
DE102004060023B4 (de) Verfahren zum Herstellen eines Wabendichtungssegments
DE102018212624A1 (de) Verfahren zur Herstellung eines Bauteils für eine Turbomaschine
DE102018212625A1 (de) Verfahren zur Herstellung eines Bauteils unter Verwendung eines Sinterfügeprozesses
DE102004029547B4 (de) Verfahren zur Herstellung von Bauteilen einer Gasturbine
DE10355313A1 (de) Leitschaufelgitter sowie Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RTI1 Title (correction)

Free format text: METHOD FOR THE PRODUCTION OF COMPONENTS OF A GAS TURBINE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004003171

Country of ref document: DE

Date of ref document: 20070419

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070515

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080822

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080813

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080821

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090824

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090824