EP1649473A1 - Method and system for the production of superconducting inductive components comprising thin layers, and devices containing such components - Google Patents

Method and system for the production of superconducting inductive components comprising thin layers, and devices containing such components

Info

Publication number
EP1649473A1
EP1649473A1 EP04767697A EP04767697A EP1649473A1 EP 1649473 A1 EP1649473 A1 EP 1649473A1 EP 04767697 A EP04767697 A EP 04767697A EP 04767697 A EP04767697 A EP 04767697A EP 1649473 A1 EP1649473 A1 EP 1649473A1
Authority
EP
European Patent Office
Prior art keywords
superconductive
inductive component
stack
component
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04767697A
Other languages
German (de)
French (fr)
Inventor
Pierre-Ernest Bernstein
Jean-François Maurice HAMET
Nabil Touitou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1649473A1 publication Critical patent/EP1649473A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/047Printed circuit coils structurally combined with superconductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • the present invention relates to a method for producing superconductive inductive components in thin layers. It also relates to an embodiment system implementing this method, as well as devices including such components.
  • This invention is in the field of superconductive electrical and electronic components for the telecommunications and electrical energy sectors.
  • the production of superconductive inductive components in thin layers is generally carried out by depositing a superconductive film, generally by vacuum methods such as sputtering or pulsed laser ablation, then the definition by photo lithography of one or more turns. In this technique the dimension of the device increases with the value of its inductance.
  • a practical example of embodiment consists of a coil comprising 5 turns whose external diameter is 15mm, with tracks of 0.4mm in width spaced 0.3mm having an inductance of 2.12 ⁇ H, which is described in the thesis dissertation. supported by Jean-Christophe Ginefri on December 16, 1999 at the University of Paris XI and entitled "Miniature superconductive surface antenna for RN imaging at 1.5 Tesla".
  • the technique described above has two main drawbacks: - the area occupied by each inductive component is significant. For example, the component described in the previous paragraph occupies an area of more than 700mm 2 :
  • This objective is achieved with a process for producing a superconductive inductive component in the form of one or more line segments with a surface area of the order of a few hundred square microns consisting of a stack of alternately superconductive and insulating films. . At least one of these line segments then integrates at least one part constituting one of the terminals of the component.
  • This method makes it possible in particular to produce an inductive superconductive component having at least two terminals, this component comprising at least one line segment integrating at least one terminal of the component, this line segment constituting a conductive or superconductive layer within at least one stack of alternately superconductive and insulating films.
  • each film constituting the stack is perfectly crystallized.
  • the device is dimensioned so that in working conditions it is in the eissner state, that is to say the state in which it has no measurable direct current dissipation.
  • the proposed device can be produced from any pair of materials making it possible to produce a stack of alternately superconductive and insulating films below a temperature called the critical temperature.
  • a first manufacturing process comprises the following steps: 1) deposition of a superconductive film 2) deposition of the stack of alternately superconductive and insulating films 3) etching of all of the films deposited, for example in the form of a simultaneous etching of the stack and of the superconductive film, 4) selective etching of the stack, produced in such a way as to leave it only remaining locations where one wishes to install an inductive component.
  • a second manufacturing process can also be implemented with the following steps: 1) depositing a superconductive film
  • a third possible process includes the following steps: 1) deposition of a superconductive film
  • a fourth possible process comprises the following steps: 1) deposition of the stack of alternately superconductive and insulating films 2) selective etching of the stack, carried out so as to leave it remaining only at the locations where it is desired implant an inductive component. 3) connection of the inductive components thus produced to the rest of the circuit by superconductive connections or not.
  • a system is proposed for producing a superconductive inductive component in the form of one or more line segments constituted by a stack of alternately superconductive and insulating films, implementing the method according to the invention. 'invention.
  • this embodiment system comprises:
  • an antenna device comprising an electronic circuit including a superconductive inductive component produced by the method according to the invention.
  • a delay line device is proposed comprising an inductive component in series and a capacitive component in parallel downstream of said inductive component, characterized in that the inductive component is a superconductive inductive component produced by the method according to the invention.
  • Delay lines according to the invention can be implemented in a phase shift radar device comprising a plurality of antennas each comprising an electronic circuit including a delay line according to the invention, this delay line being arranged so that each of said antennas emits a signal whose phase is offset from that of neighboring antennas.
  • an electronic frequency filtering device comprising an electronic circuit including a superconductive inductive component produced by the method according to the invention. It may for example be a high-pass filter comprising in parallel an inductive component and in series a capacitive component downstream of said inductive component, where this inductive component is a superconductive inductive component produced by the method according to the invention.
  • FIG. 3A is a photograph of the pattern used for the tests showing the location of the inputs of current II and 12, the measurement pads VI and V2 of the potential difference at the terminals of the bridge as well as the location thereof;
  • - Figure 3B shows the photolithography mask used to make the test pattern of Figure 3A;
  • - Figure 4 is a diagram of the measuring device used to characterize a superconductive inductive component according to the invention;
  • - Figure 5 illustrates a potential difference measured between pads VI and V2 (solid lines) when a sawtooth current at the frequency of 1000Hz (dotted lines) flows in the sample;
  • - Figure 7 illustrates a delay line implementing a superconductive inductive component according to the invention;
  • - Figure 8 is a block diagram of a phase shift antenna;
  • - Figure 9 is a block diagram of a high pass filter;
  • - Figure 10 is a block diagram of a low-pass filter.
  • the principle implemented in the production method according to the invention resides in a stack E of alternately superconductive thin films Cl and insulating C2 deposited on a substrate S, with reference to FIG. 1, or else on a superconductive line LS.
  • the first film deposited to make the stack E is insulating as indicated in FIG. 1.
  • the integration of inductive components in a superconductive circuit can be carried out as indicated in the figures 2A and 2B using the thin film deposition techniques well known to those skilled in the art, for example laser ablation, radio frequency cathode sputtering, vacuum evaporation, chemical vapor deposition and generally any deposition technique allowing the production of thin layers. It should be noted that in this particular version of the method according to the invention corresponding to FIGS.
  • the materials chosen are the compounds YBa 2 Cu 3 0 7 - ⁇ for the superconductive films and LaA10 3 for the insulating films.
  • the thicknesses are lOnm (10 _8 m) for the superconductive films and 4nm (4.10 "9 m) for the insulating films. 14 pairs of films were deposited. After deposition, the films were etched so as to obtain the pattern represented in FIG.
  • the measuring device used to characterize the samples of inductive superconductive components according to the invention includes a GBF generator creating a variable current in time
  • the generator delivers a sawtooth current at the frequency of 1000Hz.
  • the value of the current I (t) was directly reported. It is observed that the potential difference V (t) between VI and V2 has the form of slots, which indicates that V (t) is proportional to the derivative with respect to the time of I (t). This characteristic indicates that the sample behaves well as an inductive component.
  • the signals V (t) measured at 700 Hz and 2 kHz have been reported in FIG. 6 for a value of the peak current equal to 10 ⁇ A in both cases.
  • the ratio of the amplitude of the signals obtained is in the ratio of the applied frequencies, which again is typical of an inductive component. From the results presented in FIG. 6, it is deduced that the inductance of the component produced according to the invention is equal to 535 ⁇ H ⁇ 10 ⁇ H. The components tested did not all have such a high inductance, but values of the order of a few tens of ⁇ H were commonly obtained with components of identical shape to that presented here.
  • the superconductive inductive components obtained by the method according to the invention can find applications in the fields of electronics or electrical engineering, antennas and passive components at high frequency, in particular for medical imaging, or radars. and defense electronics.
  • inductive superconductive components are implemented in antenna systems.
  • MRI surface magnetic resonance medical imaging
  • tuned antennas are used.
  • An important parameter involved in the efficiency of the antenna is the overvoltage coefficient which is proportional to its inductance.
  • a superconductive antenna makes it possible to increase this coefficient because its ohmic resistance is very low. We can think of obtaining a further increase in the overvoltage coefficient by including in the antenna circuit a device of the type described here.
  • inductive superconductive components are implemented in delay lines.
  • Delay lines are in common use in all areas of electronics.
  • the simplest form that a delay line can take is shown in Figure 7.
  • the presence in the circuit of inductance L and capacitor C causes a phase difference between voltage V and current I.
  • An example d he use is of phase shift radars which allow the exploration of the surrounding space with a system of fixed antennas.
  • a block diagram for such a system is shown in Figure 8.
  • the main line carrying the current I is coupled to the various antennas.
  • Each of these has a delay line in its circuit. As a result, each antenna emits a signal whose phase is offset from that of neighboring antennas.
  • inductive components allows integrated circuits to be produced filters comprising only capacitors and inductors, which are not dissipative compared to filters constructed with capacitors and resistors.
  • the invention is not limited to the examples which have just been described and numerous modifications can be made to these examples without departing from the scope of the invention.
  • the number of respectively insulating and superconductive films is not limited to the examples described.
  • the dimensions of the superconductive inductive components as well as their surfaces can change according to the specific applications of these components.
  • the respectively superconductive and insulating films can be produced from compounds other than those proposed in the example described, provided that these compounds satisfy the physical conditions required for the applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Details Of Aerials (AREA)

Abstract

The invention relates to a method of producing a superconducting inductive component in the form of one or more line segments comprising a stack of alternate superconducting and insulating films. The invention also relates to the system which is used to implement said method, comprising: means for depositing a superconducting film, means for depositing a stack of alternate superconducting and insulating films, and means for etching all of the deposited films, said means being arranged such that the latter only occurs at the locations where an inductive component is to be implanted.

Description

« Procédé et système de réalisation de composants inductifs supraconducteurs en couches minces, et dispositifs incluant de tels composants » La présente invention concerne un procédé pour réaliser des composants inductifs supraconducteurs en couches minces. Elle vise également un système de réalisation mettant en œuvre ce procédé, ainsi que des dispositifs incluant de tels composants. Cette invention s'inscrit dans le domaine des composants électriques et électroniques supraconducteurs pour les secteurs des télécommunications et de l'énergie électrique. La réalisation de composants inductifs supraconducteurs en couches minces est généralement effectuée par dépôt d'un film supraconducteur, généralement par des méthodes de vide telles que la pulvérisation cathodique ou l'ablation laser puisée, puis la définition par photo lithogravure de une ou plusieurs spires. Dans cette technique la dimension du dispositif croit avec la valeur de son inductance. Un exemple pratique de réalisation consiste en une bobine comportant 5 spires dont le diamètre extérieur est de 15mm, avec des pistes de 0,4mm de largeur espacées de 0,3mm présentant une inductance de 2,12μH, qui est décrite dans le mémoire de thèse soutenu par Jean-Christophe Ginefri le 16 décembre 1999 à l'Université de Paris XI et intitulé « Antenne de surface supraconductrice miniature pour l'imagerie R N à 1,5 Tesla ». La technique décrite ci-dessus présente deux inconvénients principaux : - la surface occupée par chaque composant inductif est importante. Par exemple, le composant décrit au paragraphe précédent occupe une surface de plus de 700mm2 :"Method and system for producing superconductive inductive components in thin layers, and devices including such components" The present invention relates to a method for producing superconductive inductive components in thin layers. It also relates to an embodiment system implementing this method, as well as devices including such components. This invention is in the field of superconductive electrical and electronic components for the telecommunications and electrical energy sectors. The production of superconductive inductive components in thin layers is generally carried out by depositing a superconductive film, generally by vacuum methods such as sputtering or pulsed laser ablation, then the definition by photo lithography of one or more turns. In this technique the dimension of the device increases with the value of its inductance. A practical example of embodiment consists of a coil comprising 5 turns whose external diameter is 15mm, with tracks of 0.4mm in width spaced 0.3mm having an inductance of 2.12μH, which is described in the thesis dissertation. supported by Jean-Christophe Ginefri on December 16, 1999 at the University of Paris XI and entitled "Miniature superconductive surface antenna for RN imaging at 1.5 Tesla". The technique described above has two main drawbacks: - the area occupied by each inductive component is significant. For example, the component described in the previous paragraph occupies an area of more than 700mm 2 :
- si le composant est intégré dans un circuit, il est souvent nécessaire de raccorder l'extrémité de la spire intérieure à une ligne supraconductrice . Ceci implique un processus complexe comportant après le dépôt et la gravure des spires : a) le dépôt et la gravure d'un film isolant, b) le dépôt et la gravure sur cet isolant d'un deuxième film supraconducteur présentant des propriétés similaires à celles du premier film. Cette dernière étape est particulièrement délicate car il est nécessaire de réaliser une reprise d'épitaxie, technique qui est difficilement maîtrisable. Il existe d'autres procédés permettant de déposer une bobine en couches minces, mais ils présentent des difficultés de réalisation identiques à celles décrites ici. Le but de la présente invention est de remédier à ces inconvénients en proposant un procédé de réalisation plus simple et moins coûteux que les procédés actuels. Cet objectif est atteint avec un procédé de réalisation d'un composant inductif supraconducteur sous la forme de un ou plusieurs segments de ligne d'une surface de l'ordre de quelques centaines de microns carrés constitués d'un empilement de films alternativement supraconducteurs et isolants. Au moins un de ces segments de ligne intègre alors au moins une partie constituant une des bornes du composant. Ce procédé permet en particulier de réaliser un composant inductif supraconducteur présentant au moins deux bornes, ce composant comprenant au moins un segment de ligne intégrant au moins une borne du composant, ce segment de ligne constituant une couche conductrice ou supraconductrice au sein d' au moins un empilement de films alternativement supraconducteurs et isolants. On peut ainsi accéder à des processus de fabrication automatisables et collectifs mettant en œuvre des techniques connues et largement répandues de dépôt de couches minces et de gravure, ce qui contribue à une réduction sensible des coûts de fabrication. Dans une forme de réalisation préférée de l'invention, chaque film constituant l'empilement est parfaitement cristallisé. Le dispositif est dimensionné de façon à ce que dans les conditions de travail il se trouve dans l'état eissner, c'est à dire l'état dans lequel il ne présente pas de dissipation mesurable en courant continu. Le dispositif proposé peut être réalisé à partir de tout couple de matériaux permettant de réaliser un empilement de films alternativement supraconducteurs et isolants en dessous d'une température appelée température critique. Plusieurs processus peuvent être envisagés pour la fabrication de circuits supraconducteurs intégrant l' invention. Un premier processus de fabrication comprend les étapes suivantes : 1) dépôt d'un film supraconducteur 2) dépôt de l'empilement de films alternativement supraconducteurs et isolants 3) gravure de l'ensemble des films déposés, par exemple sous la forme d'une gravure simultanée de l'empilement et du film supraconducteur, 4) gravure sélective de l'empilement, réalisée de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif. Un second processus de fabrication peut aussi êtren œuvre avec les étapes suivantes : 1) dépôt d'un film supraconducteur- if the component is integrated into a circuit, it is often necessary to connect the end of the inner coil to a superconductive line. This involves a complex process comprising, after the deposition and etching of the turns: a) the deposition and etching of an insulating film, b) the deposition and etching on this insulator of a second superconductive film having properties similar to those from the first film. This last step is particularly delicate because it is necessary to carry out a resumption of epitaxy, a technique which is difficult to control. There are other methods for depositing a coil in thin layers, but they present production difficulties identical to those described here. The object of the present invention is to remedy these drawbacks by proposing a simpler and less expensive production method than current methods. This objective is achieved with a process for producing a superconductive inductive component in the form of one or more line segments with a surface area of the order of a few hundred square microns consisting of a stack of alternately superconductive and insulating films. . At least one of these line segments then integrates at least one part constituting one of the terminals of the component. This method makes it possible in particular to produce an inductive superconductive component having at least two terminals, this component comprising at least one line segment integrating at least one terminal of the component, this line segment constituting a conductive or superconductive layer within at least one stack of alternately superconductive and insulating films. It is thus possible to access automated and collective manufacturing processes using known and widely used techniques for depositing thin layers and etching, which contributes to a significant reduction in manufacturing costs. In a preferred embodiment of the invention, each film constituting the stack is perfectly crystallized. The device is dimensioned so that in working conditions it is in the eissner state, that is to say the state in which it has no measurable direct current dissipation. The proposed device can be produced from any pair of materials making it possible to produce a stack of alternately superconductive and insulating films below a temperature called the critical temperature. Several processes can be envisaged for the manufacture of superconductive circuits incorporating the invention. A first manufacturing process comprises the following steps: 1) deposition of a superconductive film 2) deposition of the stack of alternately superconductive and insulating films 3) etching of all of the films deposited, for example in the form of a simultaneous etching of the stack and of the superconductive film, 4) selective etching of the stack, produced in such a way as to leave it only remaining locations where one wishes to install an inductive component. A second manufacturing process can also be implemented with the following steps: 1) depositing a superconductive film
2) dépôt de l'empilement de films alternativement supraconducteurs et isolants2) deposition of the stack of alternately superconductive and insulating films
3) gravure sélective de l'empilement, réalisée de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif.3) selective etching of the stack, produced so as to leave it only at the locations where it is desired to implant an inductive component.
4) gravure du reste du circuit4) engraving of the rest of the circuit
Un troisième processus possible comprend les étapes suivants : 1) dépôt d'un film supraconducteurA third possible process includes the following steps: 1) deposition of a superconductive film
2) gravure du film supraconducteur2) etching of the superconductive film
3) dépôt de l'empilement de films alternativement supraconducteurs et isolants3) deposition of the stack of alternately superconductive and insulating films
4) gravure sélective de l'empilement, réalisée de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif. Un quatrième processus possible comprend les étapes suivantes : 1) dépôt de l'empilement de films alternativement supraconducteurs et isolants 2) gravure sélective de l'empilement, réalisée de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif. 3) raccordement des composants inductifs ainsi réalisés au reste du circuit par des connections supraconductrices ou non. Suivant un autre aspect de l'invention, il est proposé un système pour réaliser un composant inductif supraconducteur sous la forme d'un ou plusieurs segments de ligne constitués d'un empilement de films alternativement supraconducteurs et isolants, mettant en œuvre le procédé selon l'invention. Dans une forme particulière de l' invention, ce système de réalisation comprend :4) selective etching of the stack, carried out so as to leave it only at the locations where it is desired to implant an inductive component. A fourth possible process comprises the following steps: 1) deposition of the stack of alternately superconductive and insulating films 2) selective etching of the stack, carried out so as to leave it remaining only at the locations where it is desired implant an inductive component. 3) connection of the inductive components thus produced to the rest of the circuit by superconductive connections or not. According to another aspect of the invention, a system is proposed for producing a superconductive inductive component in the form of one or more line segments constituted by a stack of alternately superconductive and insulating films, implementing the method according to the invention. 'invention. In a particular form of the invention, this embodiment system comprises:
- des moyens pour déposer un film supraconducteur sur un substrat,- means for depositing a superconductive film on a substrate,
- des moyens pour déposer sur le film supraconducteur un empilement de films alternativement supraconducteurs et isolants, etmeans for depositing on the superconductive film a stack of alternately superconductive and insulating films, and
- des moyens pour graver l'ensemble des films déposés , ces moyens étant agencés de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif. Suivant encore un autre aspect de l'invention, il est proposé un dispositif d'antenne comprenant un circuit électronique incluant un composant inductif supraconducteur réalisé par le procédé selon l'invention. Toujours dans le cadre de la présente invention, il est proposé un dispositif de ligne à retard comportant un composant inductif en série et un composant capacitif en parallèle en aval dudit composant inductif, caractérisé en ce que le composant inductif est un composant inductif supraconducteur réalisé par le procédé selon l'invention. Des lignes à retard selon l'invention peuvent être mises en œuvre dans un dispositif radar à décalage de phase comportant une pluralité d'antennes comprenant chacune un circuit électronique incluant une ligne à retard selon l'invention, cette ligne à retard étant agencée de sorte que chacune desdites antennes émet un signal dont la phase est décalée par rapport à celle des antennes voisines. Egalement dans le cadre de la présente invention, il est proposé un dispositif de filtrage électronique de fréquence comprenant un circuit électronique incluant un composant inductif supraconducteur réalisé par le procédé selon l'invention. Il peut s'agir par exemple d'un filtre passe-haut comportant en parallèle un composant inductif et en série un composant capacitif en aval dudit composant inductif, où ce composant inductif est un composant inductif supraconducteur réalisé par le procédé selon l'invention. Il peut également s'agir d'un filtre passe-bas comportant en parallèle un composant capacitif et en série un composant inductif en aval dudit composant capacitif, où ce composant inductif est un composant inductif supraconducteur réalisé par le procédé selon l'invention. D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en œuvre nullement limitatif, et des dessins annexés sur lesquels : - la figure 1 est un schéma d'un empilement E de couches Ci et C2 déposées sur un substrat ; - la figure 2A est une vue de dessus d'une ligne supraconductrice LS comportant un composant inductif constitué de films alternativement supraconducteurs Cl et isolants C2; - la figure 2B est une vue en coupe d'une ligne supraconductrice LS comportant un composant inductif E constitué de films alternativement supraconducteurs Cl et isolants C2 ; - la figure 3A est une photographie du motif utilisé pour les tests montrant l'emplacement des entrées de courant II et 12, les plots de mesure VI et V2 de la différence de potentiel aux bornes du pont ainsi que l'emplacement de celui-ci ; - la figure 3B représente le masque de photolithogravure utilisé pour réaliser le motif de test de la figure3A ; - la figure 4 est un schéma du dispositif de mesure utilisé pour caractériser un composant inductif supraconducteur selon l'invention ; - la figure 5 illustre une différence de potentiel mesurée entre les plots VI et V2 (traits pleins) lorsque un courant en dents de scie à la fréquence de 1000Hz (pointillés) circule dans l'échantillon ; - la figure 6 représente une comparaison des différences de potentiel mesurées entre les plots VI et V2 lorsque deux courants en dents de scie de même amplitude Imax =10 microampères mais de fréquences différentes circulent dans l'échantillon ; - la figure 7 illustre une ligne de retard implementant un composant inductif supraconducteur selon l' invention ; et - la figure 8 est un schéma de principe d' une antenne à décalage de phase ; - la figure 9 est un schéma de principe d'un filtre passe-haut ; - la figure 10 est un schéma de principe d'un filtre passe-bas. Le principe mis en œuvre dans le procédé de réalisation selon l'invention réside en un empilement E de films minces alternativement supraconducteurs Cl et isolants C2 déposés sur un substrat S, en référence à la figure 1, ou bien sur une ligne supraconductrice LS . Il est déterminant que les films C2 soient rigoureusement isolants et que des défauts de croissance ne mettent pas deux films supraconducteurs voisins en contact. Dans une forme de réalisation préférée de l'invention, le premier film déposé pour réaliser l'empilement E est isolant comme indiqué sur la figure 1. L' intégration de composants inductifs dans un circuit supraconducteur peut être effectuée de la façon indiquée sur les figures 2A et 2B en utilisant les techniques de dépôt de films minces bien connues de l'homme de l'art, par exemple l'ablation laser, la pulvérisation cathodique radio-fréquence, l' évaporation sous vide, le dépôt chimique en phase vapeur et de manière générale toute technique de dépôt permettant l'obtention de couches minces . II est à noter que dans cette version particulière du procédé selon l' invention correspondant aux figures 2A et 2B, un film supraconducteur Ll déposé sur un substrat S, une fois gravé, constitue une ligne supraconductrice LS sur laquelle sera placé l'empilement inductif E. Dans un exemple particulier de réalisation selon l'invention fourni à titre non limitatif, les matériaux choisis sont les composés YBa2Cu307-δ pour les films supraconducteurs et LaA103 pour les films isolants. Les épaisseurs sont de lOnm (10_8m) pour les films supraconducteurs et de 4nm (4.10"9m) pour les films isolants. 14 paires de films ont été déposées. Après dépôt, les films ont été gravés de façon à obtenir le motif représenté sur la figure 3A dans laquelle on distingue les contacts métallisés II, 12 qui permettent d'amener le courant dans l'échantillon et ceux qui permettent de mesurer les tensions VI et V2 aux bornes de l'élément central, appelé pont, du motif. A titre indicatif et non limitatif, la taille du pont est de lOμm x 20μm. Le dispositif de mesure utilisé pour caractériser les échantillons de composants inductifs supraconducteurs selon l'invention, représenté en figure 4, comporte un générateur GBF créant un courant variable dans le temps- Means for engraving all of the films deposited, these means being arranged so as to leave it remaining only at the locations where one wishes to implant an inductive component. According to yet another aspect of the invention, an antenna device is proposed comprising an electronic circuit including a superconductive inductive component produced by the method according to the invention. Still within the framework of the present invention, a delay line device is proposed comprising an inductive component in series and a capacitive component in parallel downstream of said inductive component, characterized in that the inductive component is a superconductive inductive component produced by the method according to the invention. Delay lines according to the invention can be implemented in a phase shift radar device comprising a plurality of antennas each comprising an electronic circuit including a delay line according to the invention, this delay line being arranged so that each of said antennas emits a signal whose phase is offset from that of neighboring antennas. Also in the context of the present invention, there is provided an electronic frequency filtering device comprising an electronic circuit including a superconductive inductive component produced by the method according to the invention. It may for example be a high-pass filter comprising in parallel an inductive component and in series a capacitive component downstream of said inductive component, where this inductive component is a superconductive inductive component produced by the method according to the invention. It can also be a low-pass filter comprising in parallel a capacitive component and in series an inductive component downstream of said capacitive component, where this inductive component is a superconductive inductive component produced by the method according to the invention. Other advantages and characteristics of the invention will appear on examining the detailed description of a mode of implementation in no way limiting, and the appended drawings in which: - Figure 1 is a diagram of a stack E of layers Ci and C 2 deposited on a substrate; - Figure 2A is a top view of a superconductive line LS comprising an inductive component consisting of alternately superconductive films C1 and insulators C2; - Figure 2B is a sectional view of a superconductive line LS comprising an inductive component E consisting of alternately superconductive films C1 and insulators C2; FIG. 3A is a photograph of the pattern used for the tests showing the location of the inputs of current II and 12, the measurement pads VI and V2 of the potential difference at the terminals of the bridge as well as the location thereof; - Figure 3B shows the photolithography mask used to make the test pattern of Figure 3A; - Figure 4 is a diagram of the measuring device used to characterize a superconductive inductive component according to the invention; - Figure 5 illustrates a potential difference measured between pads VI and V2 (solid lines) when a sawtooth current at the frequency of 1000Hz (dotted lines) flows in the sample; FIG. 6 represents a comparison of the potential differences measured between the pads VI and V2 when two sawtooth currents of the same amplitude Imax = 10 microamps but of different frequencies circulate in the sample; - Figure 7 illustrates a delay line implementing a superconductive inductive component according to the invention; and - Figure 8 is a block diagram of a phase shift antenna; - Figure 9 is a block diagram of a high pass filter; - Figure 10 is a block diagram of a low-pass filter. The principle implemented in the production method according to the invention resides in a stack E of alternately superconductive thin films Cl and insulating C2 deposited on a substrate S, with reference to FIG. 1, or else on a superconductive line LS. It is crucial that the C2 films be rigorously insulators and that growth defects do not put two neighboring superconductive films in contact. In a preferred embodiment of the invention, the first film deposited to make the stack E is insulating as indicated in FIG. 1. The integration of inductive components in a superconductive circuit can be carried out as indicated in the figures 2A and 2B using the thin film deposition techniques well known to those skilled in the art, for example laser ablation, radio frequency cathode sputtering, vacuum evaporation, chemical vapor deposition and generally any deposition technique allowing the production of thin layers. It should be noted that in this particular version of the method according to the invention corresponding to FIGS. 2A and 2B, a superconductive film Ll deposited on a substrate S, once etched, constitutes a superconductive line LS on which the inductive stack E will be placed In a particular exemplary embodiment according to the invention provided without limitation, the materials chosen are the compounds YBa 2 Cu 3 0 7 - δ for the superconductive films and LaA10 3 for the insulating films. The thicknesses are lOnm (10 _8 m) for the superconductive films and 4nm (4.10 "9 m) for the insulating films. 14 pairs of films were deposited. After deposition, the films were etched so as to obtain the pattern represented in FIG. 3A in which a distinction is made between the metallized contacts II, 12 which make it possible to bring the current into the sample and those which make it possible to measure the voltages VI and V2 at the terminals of the central element, called bridge, of the pattern . As indicative and not limiting, the size of the bridge is 10 μm x 20 μm. The measuring device used to characterize the samples of inductive superconductive components according to the invention, represented in FIG. 4, includes a GBF generator creating a variable current in time
I(t) qui traverse la résistance R et l'échantillon Ech via les contacts II et 12. La différence de potentiel aux bornes de la résistance R est amplifiée par un amplificateur différentiel AI et envoyée sur une entrée YI de l'oscilloscope Ose. Elle permet de connaître l'intensité I (t) du courant traversant l'échantillon. La différence de potentiel aux bornes de l'échantillon est prélevée en VI et V2, amplifiée par l'amplificateur Av et envoyée sur l'entrée Yv de l'oscilloscope Ose. La figure 5 montre les signaux recueillis en YI et Yv lorsque l'échantillon est à une température de 37K. Dans le cas présent, l'échantillon était placé dans un cryostat à hélium liquide, mais tout procédé permettant d'obtenir une température inférieure à la température critique de l'échantillon étudié convient. Le générateur délivre un courant en dents de scie à la fréquence de 1000Hz. On a directement reporté la valeur du courant I (t) . On observe que la différence de potentiel V(t) entre VI et V2 présente la forme de créneaux, ce qui indique que V(t) est proportionnelle à la dérivée par rapport au temps de I(t). Cette caractéristique indique que l'échantillon se comporte bien comme un composant inductif. On a reporté sur la figure 6 les signaux V(t) mesurés à 700 Hz et 2kHz pour une valeur du courant crête égale à 10 μA dans les deux cas. Dans cette figure, le trait plein correspond à la tension relevée pour un courant à la fréquence F=700Hz et le trait pointillé à celle relevée pour un courant à la fréquence F=2000Hz. On observe que le rapport de l'amplitude des signaux obtenus est dans le rapport des fréquences appliquées, ce qui là aussi est typique d'un composant inductif. Des résultats présentés sur la figure 6, on déduit que l'inductance du composant réalisé selon l'invention est égale à 535 μH ± lOμH. Les composants testés n'ont pas tous présenté une inductance aussi élevée mais des valeurs de l'ordre de quelques dizaines de μH ont été couramment obtenues avec des composants de forme identique à celui présenté ici.I (t) which crosses resistance R and the sample Ech via contacts II and 12. The potential difference across the terminals of resistance R is amplified by a differential amplifier AI and sent to an input YI of the Ose oscilloscope. It allows to know the intensity I (t) of the current passing through the sample. The potential difference across the sample is taken at VI and V2, amplified by the amplifier Av and sent to the input Yv of the Ose oscilloscope. Figure 5 shows the signals collected in YI and Yv when the sample is at a temperature of 37K. In the present case, the sample was placed in a liquid helium cryostat, but any method making it possible to obtain a temperature below the critical temperature of the studied sample is suitable. The generator delivers a sawtooth current at the frequency of 1000Hz. The value of the current I (t) was directly reported. It is observed that the potential difference V (t) between VI and V2 has the form of slots, which indicates that V (t) is proportional to the derivative with respect to the time of I (t). This characteristic indicates that the sample behaves well as an inductive component. The signals V (t) measured at 700 Hz and 2 kHz have been reported in FIG. 6 for a value of the peak current equal to 10 μA in both cases. In this figure, the solid line corresponds to the voltage recorded for a current at frequency F = 700Hz and the dotted line to that noted for a current at frequency F = 2000Hz. It is observed that the ratio of the amplitude of the signals obtained is in the ratio of the applied frequencies, which again is typical of an inductive component. From the results presented in FIG. 6, it is deduced that the inductance of the component produced according to the invention is equal to 535 μH ± 10 μH. The components tested did not all have such a high inductance, but values of the order of a few tens of μH were commonly obtained with components of identical shape to that presented here.
Les composants inductifs supraconducteurs obtenus par le procédé selon l'invention peuvent trouver des applications dans les domaines de l'électronique ou de l' électrotechnique, des antennes et des composants passifs à haute fréquence, en particulier pour l'imagerie médicale, ou les radars et l'électronique de défense. Dans un premier exemple d'application, des composants inductifs supraconducteurs sont implémentés dans des systèmes d'antennes. Ainsi, dans un certain nombre de cas, par exemple en imagerie médicale par résonance magnétique (IRM) de surface, on utilise des antennes accordées. Un paramètre important intervenant dans l'efficacité de l'antenne est le coefficient de surtension qui est proportionnel à son inductance. Une antenne supraconductrice permet de faire croître ce coefficient car sa résistance ohmique est très faible. On peut penser obtenir un nouvel accroissement du coefficient de surtension en incluant dans le circuit d'antenne un dispositif du type de ceux décrits ici Un cas particulièrement favorable sera celui ou l'antenne elle-même est réalisée à partir d'un film mince supraconducteur . Dans un autre exemple d'application, des composants inductifs supraconducteurs sont mis en œuvre dans des lignes à retard. Les lignes à retard sont d'usage courant dans tous les domaines de l'électronique. La forme la plus simple que peut prendre une ligne à retard est représentée sur la figure 7. La présence dans le circuit de l'inductance L et du condensateur C provoque une différence de phase entre la tension V et le courant I. Un exemple d'utilisation est celui des radars à décalage de phase qui permettent d'explorer l'espace environnant avec un système d'antennes fixes. Un schéma de principe pour un tel système est reporté sur la figure 8. Dans ce dispositif la ligne principale portant le courant I est couplé aux différentes antennes. Chacune de celles-ci comporte dans son circuit une ligne à retard. Il en résulte que chaque antenne émet un signal dont la phase est décalée par rapport à celle des antennes voisines. En faisant varier ce décalage de phase on change la direction du rayonnement émis. En électronique de défense, on étudie depuis longtemps l'introduction de composants supraconducteurs dans les circuits électroniques, en particulier pour les radars et plus généralement les contre-mesures. La présence de composants à forte inductance, de petites dimensions et dont la fabrication utilise des processus similaires à ceux employés pour le reste du circuit serait une innovation importante dans ce domaine. De tels composants inductifs performants et facilement intégrables peuvent également être utilisés de façon générique dans la plupart des applications générales de l'électronique, en particulier pour réaliser des fonctions de filtrage de tous types, par exemple passe- haut, passe-bas ou passe-bande. Il est alors possible de réaliser des filtres très intégrés et/ou miniaturisés. L'utilisation d'un composant selon l'invention permet en effet d' intégrer une inductance de valeur importante dans un circuit de faible encombrement Ainsi qu'illustré en figures 9 et 10 pour des filtres passe-haut et passe-bas, il est alors possible de filtrer une tension d'entrée Vin pour obtenir une tension de sortie Vout, en utilisant une inductance L. Ainsi qu'illustré dans cet exemple, l'utilisation de composants inductifs selon l'invention permet de réaliser dans des circuits intégrés des filtres ne comportant que des condensateurs et des inductances, qui sont peu dissipatifs par rapport à des filtres construits avec des condensateurs et des résistances. Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. Ainsi, le nombre de films respectivement isolants et supraconducteurs n'est pas limités aux exemples décrits. Par ailleurs, les dimensions des composants inductifs supraconducteurs ainsi que leurs surfaces peuvent évoluer en fonction des applications spécifiques de ces composants. De plus, les films respectivement supraconducteurs et isolants peuvent être réalisés à partir d'autres composés que ceux proposés dans l'exemple décrit, pourvu que ces composés satisfassent aux conditions physiques requises pour les applications. The superconductive inductive components obtained by the method according to the invention can find applications in the fields of electronics or electrical engineering, antennas and passive components at high frequency, in particular for medical imaging, or radars. and defense electronics. In a first application example, inductive superconductive components are implemented in antenna systems. Thus, in a certain number of cases, for example in surface magnetic resonance medical imaging (MRI), tuned antennas are used. An important parameter involved in the efficiency of the antenna is the overvoltage coefficient which is proportional to its inductance. A superconductive antenna makes it possible to increase this coefficient because its ohmic resistance is very low. We can think of obtaining a further increase in the overvoltage coefficient by including in the antenna circuit a device of the type described here. A particularly favorable case will be that where the antenna itself is made from a thin superconductive film. In another application example, inductive superconductive components are implemented in delay lines. Delay lines are in common use in all areas of electronics. The simplest form that a delay line can take is shown in Figure 7. The presence in the circuit of inductance L and capacitor C causes a phase difference between voltage V and current I. An example d he use is of phase shift radars which allow the exploration of the surrounding space with a system of fixed antennas. A block diagram for such a system is shown in Figure 8. In this device the main line carrying the current I is coupled to the various antennas. Each of these has a delay line in its circuit. As a result, each antenna emits a signal whose phase is offset from that of neighboring antennas. By varying this phase shift, the direction of the emitted radiation is changed. In defense electronics, we have long studied the introduction of superconducting components in electronic circuits, in particular for radars and more generally countermeasures. The presence of components with high inductance, of small dimensions and whose manufacture uses processes similar to those used for the rest of the circuit would be an important innovation in this field. Such efficient and easily integrated inductive components can also be used generically in most general applications. electronics, in particular for performing filtering functions of all types, for example high-pass, low-pass or band-pass. It is then possible to produce very integrated and / or miniaturized filters. The use of a component according to the invention makes it possible in fact to integrate an inductance of significant value in a circuit of small size As illustrated in FIGS. 9 and 10 for high pass and low pass filters, it is then possible to filter an input voltage Vin to obtain an output voltage Vout, using an inductance L. As illustrated in this example, the use of inductive components according to the invention allows integrated circuits to be produced filters comprising only capacitors and inductors, which are not dissipative compared to filters constructed with capacitors and resistors. Of course, the invention is not limited to the examples which have just been described and numerous modifications can be made to these examples without departing from the scope of the invention. Thus, the number of respectively insulating and superconductive films is not limited to the examples described. Furthermore, the dimensions of the superconductive inductive components as well as their surfaces can change according to the specific applications of these components. In addition, the respectively superconductive and insulating films can be produced from compounds other than those proposed in the example described, provided that these compounds satisfy the physical conditions required for the applications.

Claims

REVENDICATIONS
1. Procédé pour réaliser un composant inductif supraconducteur présentant au moins deux bornes, ce composant comprenant au moins un segment de ligne intégrant au moins une borne du composant, ce segment de ligne constituant une couche conductrice ou supraconductrice au sein d'un empilement (E) de films alternativement supraconducteurs (Cl) et isolants (C2) .1. Method for producing a superconductive inductive component having at least two terminals, this component comprising at least one line segment integrating at least one terminal of the component, this line segment constituting a conductive or superconductive layer within a stack (E ) alternately superconductive (Cl) and insulating (C2) films.
2. Procédé selon la revendication 1, caractérisé en ce que chaque film constituant l'empilement (E) est parfaitement cristallisé .2. Method according to claim 1, characterized in that each film constituting the stack (E) is perfectly crystallized.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu' il comprend une étape préalable de dépôt d'un film isolant (C2) sur un substrat (S).3. Method according to one of claims 1 or 2, characterized in that it comprises a prior step of depositing an insulating film (C2) on a substrate (S).
4. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu' il comprend une étape préalable de dépôt d'un film supraconducteur (Cl) sur un substrat (S).4. Method according to one of claims 1 or 2, characterized in that it comprises a prior step of depositing a superconductive film (Cl) on a substrate (S).
5. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu' il comprend une étape préalable de dépôt d'un film supraconducteur (Ll) sur un substrat (S) suivi du dépôt de l'empilement (E) .5. Method according to one of claims 1 or 2, characterized in that it comprises a prior step of depositing a superconductive film (L1) on a substrate (S) followed by the deposition of the stack (E).
6. Procédé selon l'une des revendications 3 ou 4, caractérisé en ce qu'il comprend en outre les étapes suivantes : - un dépôt de l'empilement (E) de films alternativement supraconducteurs (Cl) et isolants (C2), - une gravure de l'empilement (E) réalisé de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif.6. Method according to one of claims 3 or 4, characterized in that it further comprises the following steps: - deposition of the stack (E) of alternately superconductive (Cl) and insulating (C2) films, - An engraving of the stack (E) produced so as to leave it remaining only at the locations where it is desired to implant an inductive component.
7. Procédé selon la revendication 5, caractérisé en ce qu' il comprend en outre les étapes suivantes : - une gravure de l'empilement (E) réalisé de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif. - une gravure du film supraconducteur (Ll) .7. Method according to claim 5, characterized in that it further comprises the following steps: - an etching of the stack (E) produced so as to leave it remaining only at the locations where it is desired implant an inductive component. - an etching of the superconductive film (L1).
8. Procédé selon la revendication 5, caractérisé en ce qu' il comprend en outre les étapes suivantes : - une gravure simultanée de l'empilement (E) et du film supraconducteur (Ll) - une gravure de l'empilement (E) réalisé de façon à ne laisser subsister celui-ci qu'aux emplacements où l'on souhaite implanter un composant inductif.8. Method according to claim 5, characterized in that it further comprises the following steps: - a simultaneous etching of the stack (E) and of the superconductive film (Ll) - an etching of the stack (E) produced so as to leave it only at the locations where one wishes to implant an inductive component.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins un des films supraconducteurs (Cl) est réalisé à partir de composés YBa2Cu307.δ. 9. Method according to one of the preceding claims, characterized in that at least one of the superconductive films (Cl) is produced from compounds YBa 2 Cu 3 0 7 . δ .
10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moins un des films isolants (C2) est réalisé à partir de composés LaA103.10. Method according to one of the preceding claims, characterized in that at least one of the insulating films (C2) is produced from LaA10 3 compounds.
11. Système pour réaliser un composant inductif supraconducteur présentant au moins deux bornes, ce composant comprenant au moins un segment de ligne intégrant au moins une borne du composant, ce segment de ligne constituant une couche conductrice ou supraconductrice au sein d'un empilement (E) de films alternativement supraconducteurs (Cl) et isolants (C2), mettant en œuvre le procédé selon l'une des revendications précédentes .11. System for producing a superconductive inductive component having at least two terminals, this component comprising at least one line segment integrating at least one terminal of the component, this line segment constituting a conductive layer or superconductive within a stack (E) of alternately superconductive (Cl) and insulating (C2) films, implementing the method according to one of the preceding claims.
12. Système selon la revendication 11, caractérisé en ce qu'il comprend:12. System according to claim 11, characterized in that it comprises:
- des moyens pour déposer un empilement (E) de films alternativement supraconducteurs et isolants, et - des moyens pour graver l'ensemble des films déposés, ces moyens étant agencés de façon à ne laisser subsister lesdits films déposés qu'aux emplacements où l'on souhaite implanter un composant inductif.- Means for depositing a stack (E) of alternately superconductive and insulating films, and - means for etching all of the films deposited, these means being arranged so as to leave said films deposited only at the locations where the we wish to install an inductive component.
13. Système selon la revendication 11, caractérisé en ce qu'il comprend:13. System according to claim 11, characterized in that it comprises:
- des moyens pour déposer un film supraconducteur (Ll) sur un substrat (S) , - des moyens pour déposer sur le film supraconducteur (Ll) un empilement (E) de films alternativement supraconducteurs et isolants, et - des moyens pour graver l'ensemble des films déposés, ces moyens étant agencés de façon à ne laisser subsister le film (Ll) qu'aux emplacements où l'on souhaite implanter une ligne supraconductrice et l'empilement (E) qu'aux emplacements où l'on souhaite implanter un composant inductif.- means for depositing a superconductive film (L1) on a substrate (S), - means for depositing on the superconductive film (L1) a stack (E) of alternately superconductive and insulating films, and - means for etching the all of the films deposited, these means being arranged so as to leave the film (L1) remaining only at the locations where it is desired to implant a superconductive line and the stack (E) only at the locations where it is desired to implant an inductive component.
14. Dispositif d' antenne comprenant un circuit électronique incluant un composant inductif supraconducteur réalisé par le procédé selon l'une des revendications 1 à 10. 14. An antenna device comprising an electronic circuit including a superconductive inductive component produced by the method according to one of claims 1 to 10.
15. Dispositif d'antenne selon la revendication 14, caractérisé en ce que l'antenne est réalisée à partir d'un film mince supraconducteur.15. An antenna device according to claim 14, characterized in that the antenna is produced from a thin superconductive film.
16. Dispositif de ligne à retard comportant en série un composant inductif et en parallèle un composant capacitif en aval dudit composant inductif, caractérisé en ce que le composant inductif est un composant inductif supraconducteur réalisé par le procédé selon l'une des revendications 1 à 10.16. Delay line device comprising in series an inductive component and in parallel a capacitive component downstream of said inductive component, characterized in that the inductive component is a superconductive inductive component produced by the method according to one of claims 1 to 10 .
17. Dispositif radar à décalage de phase comportant une pluralité d'antennes comprenant chacune un circuit électronique incluant une ligne à retard selon la revendication 16, cette ligne à retard étant agencée de sorte que chacune desdites antennes émet un signal dont la phase est décalée par rapport à celle des antennes voisines . 17. A phase shift radar device comprising a plurality of antennas each comprising an electronic circuit including a delay line according to claim 16, this delay line being arranged so that each of said antennas emits a signal whose phase is shifted by compared to that of neighboring antennas.
18. Dispositif de filtrage électronique de fréquence comprenant un circuit électronique incluant un composant inductif supraconducteur réalisé par le procédé selon l'une des revendications 1 à 10. 18. Electronic frequency filtering device comprising an electronic circuit including a superconductive inductive component produced by the method according to one of claims 1 to 10.
19. Dispositif de filtre passe-haut comportant en parallèle un composant inductif et en série un composant capacitif en aval dudit composant inductif, caractérisé en ce que le composant inductif est un composant inductif supraconducteur réalisé par le procédé selon l'une des revendications 1 à 10.19. High-pass filter device comprising in parallel an inductive component and in series a capacitive component downstream of said inductive component, characterized in that the inductive component is a superconductive inductive component produced by the method according to one of claims 1 to 10.
20. Dispositif de filtre passe-bas comportant en parallèle un composant capacitif et en série un composant inductif en aval dudit composant capacitif, caractérisé en ce que le composant inductif est un composant inductif supraconducteur réalisé par le procédé selon l'une des revendications 1 à 10. 20. Low-pass filter device comprising in parallel a capacitive component and in series an inductive component downstream of said capacitive component, characterized in that the inductive component is a superconductive inductive component produced by the method according to one of claims 1 to 10.
EP04767697A 2003-07-28 2004-07-16 Method and system for the production of superconducting inductive components comprising thin layers, and devices containing such components Withdrawn EP1649473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309212A FR2858463B1 (en) 2003-07-28 2003-07-28 METHOD AND SYSTEM FOR MAKING THIN-FILM SUPERCONDUCTING INDUCTIVE COMPONENTS, AND DEVICES INCLUDING SUCH COMPONENTS
PCT/FR2004/001873 WO2005022566A1 (en) 2003-07-28 2004-07-16 Method and system for the production of superconducting inductive components comprising thin layers, and devices containing such components

Publications (1)

Publication Number Publication Date
EP1649473A1 true EP1649473A1 (en) 2006-04-26

Family

ID=34043577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767697A Withdrawn EP1649473A1 (en) 2003-07-28 2004-07-16 Method and system for the production of superconducting inductive components comprising thin layers, and devices containing such components

Country Status (5)

Country Link
US (1) US20080039332A1 (en)
EP (1) EP1649473A1 (en)
JP (1) JP2007503107A (en)
FR (1) FR2858463B1 (en)
WO (1) WO2005022566A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300046B2 (en) 2009-03-09 2016-03-29 Nucurrent, Inc. Method for manufacture of multi-layer-multi-turn high efficiency inductors
US11476566B2 (en) * 2009-03-09 2022-10-18 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
US9439287B2 (en) 2009-03-09 2016-09-06 Nucurrent, Inc. Multi-layer wire structure for high efficiency wireless communication
US9444213B2 (en) 2009-03-09 2016-09-13 Nucurrent, Inc. Method for manufacture of multi-layer wire structure for high efficiency wireless communication
US9208942B2 (en) * 2009-03-09 2015-12-08 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
EP4234001A3 (en) 2009-03-09 2023-10-18 NuCurrent, Inc. System and method for wireless power transfer in implantable medical devices
US9306358B2 (en) 2009-03-09 2016-04-05 Nucurrent, Inc. Method for manufacture of multi-layer wire structure for high efficiency wireless communication
US9232893B2 (en) 2009-03-09 2016-01-12 Nucurrent, Inc. Method of operation of a multi-layer-multi-turn structure for high efficiency wireless communication
US20110082045A1 (en) * 2009-10-02 2011-04-07 Gilbert Douglas J Extremely low resistance materials and methods for modifying and creating same
US9287844B2 (en) * 2011-07-07 2016-03-15 Kemet Electronics Corporation Surface mountable multi-layer ceramic filter
US9941590B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission using magnetic field coupling having magnetic shielding
US9948129B2 (en) 2015-08-07 2018-04-17 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission using magnetic field coupling having an internal switch circuit
US9941729B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single layer multi mode antenna for wireless power transmission using magnetic field coupling
US9941743B2 (en) 2015-08-07 2018-04-10 Nucurrent, Inc. Single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US10063100B2 (en) 2015-08-07 2018-08-28 Nucurrent, Inc. Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US9960629B2 (en) 2015-08-07 2018-05-01 Nucurrent, Inc. Method of operating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US9960628B2 (en) 2015-08-07 2018-05-01 Nucurrent, Inc. Single structure multi mode antenna having a single layer structure with coils on opposing sides for wireless power transmission using magnetic field coupling
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US11205848B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US10985465B2 (en) 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
US10069662B2 (en) 2015-11-10 2018-09-04 Infineon Technologies Ag Mixed analog-digital pulse-width modulator
US9800236B2 (en) 2015-11-10 2017-10-24 Infineon Technologies Ag Integrated analog delay line of a pulse-width modulator
CN105387353B (en) * 2015-11-26 2017-02-15 安徽中安巨能电器科技有限公司 Intelligent LED lamp with suspension loop
US10879705B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module with an electrical connector
US10892646B2 (en) 2016-12-09 2021-01-12 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US11223235B2 (en) 2017-02-13 2022-01-11 Nucurrent, Inc. Wireless electrical energy transmission system
US11282638B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11881716B2 (en) 2020-12-22 2024-01-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US11831174B2 (en) 2022-03-01 2023-11-28 Nucurrent, Inc. Cross talk and interference mitigation in dual wireless power transmitter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194979A (en) * 1989-12-22 1991-08-26 Sumitomo Electric Ind Ltd Microwave resonator
JPH03286601A (en) * 1990-04-03 1991-12-17 Res Dev Corp Of Japan Microwave resonator
DE69116422D1 (en) * 1990-05-18 1996-02-29 Ibm Superconducting multilayer ceramic substrate
JP2560001Y2 (en) * 1991-09-04 1998-01-21 三菱電機株式会社 Transmission / reception module
US5329225A (en) * 1992-11-02 1994-07-12 General Electric Co. Thin film superconductor inductor with shield for high frequency resonant circuit
KR960700533A (en) * 1992-12-01 1996-01-20 스티븐 에이취 앤드레이드 Tunable MICROWAVE DEVICES INCORPORATING HIFH RWMPWEruew SUPERCONDUCTING AND FERROELECTRIC FILMS
US5472935A (en) * 1992-12-01 1995-12-05 Yandrofski; Robert M. Tuneable microwave devices incorporating high temperature superconducting and ferroelectric films
US6148221A (en) * 1993-08-27 2000-11-14 Murata Manufacturing Co., Ltd. Thin film multilayered electrode of high frequency electromagnetic field coupling
US6239674B1 (en) * 1993-12-27 2001-05-29 Matsushita Electric Industrial Co., Ltd Elliptical resonator with an input/output capacitive gap
JP3125618B2 (en) * 1995-03-27 2001-01-22 株式会社村田製作所 Superconducting multilayer electrode, high-frequency transmission line using superconducting multilayer electrode, high-frequency resonator, high-frequency filter, high-frequency device, and method for designing superconducting multilayer electrode
KR0175359B1 (en) * 1995-12-15 1999-02-01 양승택 Method for fabricating superconductor-insulator-superconductor josephson tunnel junction structure
US20030036483A1 (en) * 2000-12-06 2003-02-20 Arendt Paul N. High temperature superconducting thick films
FR2866979A1 (en) * 2004-02-27 2005-09-02 Centre Nat Rech Scient Inductive superconductor component for e.g. telephone, has tuning substance providing resistive connection between superconductor materials, where resistivity of connection varies according to visible radiation received from display unit
FR2880991B1 (en) * 2005-01-17 2007-04-06 Centre Nat Rech Scient USE OF THIN-FILM SUPERCONDUCTING COMPONENTS AS VARIABLE INDUCTANCE, DEVICES INCLUDING SUCH COMPONENTS, AND METHOD OF CONTROLLING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005022566A1 *

Also Published As

Publication number Publication date
FR2858463B1 (en) 2007-08-24
FR2858463A1 (en) 2005-02-04
WO2005022566A1 (en) 2005-03-10
US20080039332A1 (en) 2008-02-14
JP2007503107A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
EP1649473A1 (en) Method and system for the production of superconducting inductive components comprising thin layers, and devices containing such components
EP1726021A1 (en) Tunable-inductance thin-layered superconductor components, method for the production thereof and devices including said components
EP0078187B1 (en) High-frequency subharmonic mixing device, and its use in a h.f. frequency-converter
EP2246931B1 (en) Common-mode filter with coupled inductors
EP0779704A1 (en) Image rejection mixer
EP1844499B1 (en) Use of superconductor components in thin layers as variable inductance and devices including said components and corresponding control method
EP0300893B1 (en) Ultra-high frequency delay device
EP2800957A1 (en) Capacitive temperature sensor comprising two capacitors as a voltage divider bridge
EP1178500B1 (en) Inductive integrated structure with split values on a semiconductor substrate
FR3083321A1 (en) FLOW VALVE CURRENT SENSOR
EP2202838B1 (en) Compact mems switched capacitor
EP2131494A1 (en) Circuit with switched capacitances with reduced consumption
EP3293880A1 (en) Adaptation circuit for low noise amplifier and low noise amplifier including such a circuit
EP4127736B1 (en) Very-wide-bandwidth current sensor
EP0699359B1 (en) Polarization current controlled electronic circuit such as an adjustable resistance, a negative resistance or a filter or similar
EP2036116B1 (en) Adjustable capacity device and process thereof
FR3096797A1 (en) PROCESS FOR DESIGNING A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES
FR3014205A1 (en) ANALOG SPECTRUM ANALYZER
WO2020120266A1 (en) Method for manufacturing a superconducting lc-type resonator and superconducting resonator thus obtained
FR2622067A1 (en) HIGH FREQUENCY AMPLIFIER WITH AUTOMATIC NEUTRODYNAGE CIRCUIT
WO2022058534A1 (en) Voltage source and method for calibrating this voltage source
FR3102857A1 (en) Current detector, sensor, associated system and method
FR2570867A1 (en) Inductor, in particular for microwave monolithic integrated circuits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081124

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203