EP1647590B1 - Process for the selective desulfurisation of olefinic gasolines comprising a hydrogen purification step - Google Patents

Process for the selective desulfurisation of olefinic gasolines comprising a hydrogen purification step Download PDF

Info

Publication number
EP1647590B1
EP1647590B1 EP05291688A EP05291688A EP1647590B1 EP 1647590 B1 EP1647590 B1 EP 1647590B1 EP 05291688 A EP05291688 A EP 05291688A EP 05291688 A EP05291688 A EP 05291688A EP 1647590 B1 EP1647590 B1 EP 1647590B1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
ppmv
hyd
treatment
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05291688A
Other languages
German (de)
French (fr)
Other versions
EP1647590A1 (en
Inventor
Florent Picard
Fabrice Diehl
Elsa Jolimaitre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1647590A1 publication Critical patent/EP1647590A1/en
Application granted granted Critical
Publication of EP1647590B1 publication Critical patent/EP1647590B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/42Hydrogen of special source or of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a process for producing low sulfur hydrocarbons.
  • This invention applies primarily to hydrocarbon mixtures which contain an olefin fraction generally greater than 5% by weight and most often greater than 10% by weight, and at least 50 ppm by weight of sulfur.
  • the method makes it possible to use hydrogen containing very low CO contents, but relatively high CO 2 contents without the performance of the catalysts used during the hydrodesulfurization step being significantly affected. This makes it possible to diversify the possible sources of hydrogen and / or to simplify the treatment of hydrogen, without the need for a very thorough elimination of CO2.
  • the hydrodesulphurization processes are based on the treatment of hydrocarbon cuts on a catalyst containing non-noble sulphide metals and supported on a mineral support, in the presence of hydrogen.
  • the metals used generally contain at least one Group VIII metal (for example cobalt) and optionally a Group VI B metal (for example molybdenum) of the periodic table of elements.
  • the catalytic formulations most often encountered are based on Co and Mo or Ni and Mo deposited on alumina.
  • the catalyst and the operating conditions are optimized to limit the degree of hydrogenation of olefins, while maximizing the conversion rate of organic sulfur compounds into H 2 S.
  • such processes have in particular been described in European patents EP 1 031 622 and EP 1 250 401 .
  • Hydrodesulfurization processes can use hydrogen from multiple sources.
  • the main source of hydrogen in the refinery is catalytic reforming.
  • the catalytic reforming unit produces hydrogen in aromatic naphthenes dehydrogenation and dehydrocyclization reactions. This hydrogen has a rate of purity generally between 60% and 90% but is substantially free of CO and CO 2 .
  • hydrogen can also be produced by steam reforming light hydrocarbons or by partial oxidation of various hydrocarbons, especially heavy residues.
  • the steam reforming process consists of converting a light hydrocarbon feedstock into synthesis gas (H 2 , CO 2 , CO 2 , CH 4 , H 2 O mixture) by reaction with steam on a nickel-based catalyst.
  • Partial oxidation hydrogen production consists in treating a hydrocarbon fraction by oxidation with oxygen at high temperature to produce a synthesis gas consisting of CO, CO 2 , H 2 and H 2 O.
  • a synthesis gas consisting of CO, CO 2 , H 2 and H 2 O.
  • the production hydrogen is accompanied by a production of carbon oxides which are generally substantially eliminated either by methanation or by adsorption.
  • the residual contents of carbon oxides (CO and CO2) may in some cases be greater than 50 ppmv, or 100 ppmv or more.
  • Other sources of hydrogen are also sometimes used, such as hydrogen from catalytic cracking gases, which contains significant amounts of CO and CO2.
  • CO and CO2 may be contributed by the hydrocarbon feed itself, in the form of dissolved gas, if the feed has been in contact with traces of these gases upstream.
  • Refinery hydrogen, and hydrogen at the reaction zone of a hydrotreatment may therefore contain varying amounts of CO and CO2.
  • the most used technique, when using or producing hydrogen containing CO and CO2 is to perform a treatment of total elimination of these impurities, typically by "PSA, or pressure swing adsorption", which means “Adsoption by pressure variation”. This technique is however expensive, and consumes some of the available hydrogen.
  • One of the aims of the invention is to allow the proper functioning of hydrotreatments, especially hydrotreatments for the selective desulfurization of olefinic cuts (typically gasolines), while using more diversified hydrogen sources, and typically treatments. less advanced purification.
  • Another object of the invention is to reduce hydrogen consumption by reducing the hydrogen purge rate at the hydrotreatment level (purge of a portion of the recycle gas around the hydrodesulfurization reactor).
  • a stage of pretreatment of the hydrogen of CO 2 oxidation in CO 2 without extraction of the CO 2 thus formed made it possible to overcome the harmful effect of carbon oxides, and this, even for CO 2 contents greater than 200 ppmv.
  • the economics of an expensive step of almost total CO2 removal is a very significant benefit, as well as the possibility of using less pure hydrogen sources.
  • a desulfurization process of hydrocarbon cuts compatible with a very low CO content, but a significant COx content.
  • This process preferably comprises a step of selective oxidation of the CO contained in the hydrogen to CO 2 and a hydrodesulfurization step, the two steps being carried out successively, typically without intermediate extraction of the CO 2 formed.
  • the main processes for substantially eliminating CO are the methods of oxidation of CO 2 to CO 2, which are preferred according to the invention, and the methods of methanation of CO (in methane).
  • the principal processes for oxidizing CO 2 to CO 2 are the steam conversion reaction which makes it possible to convert CO to CO 2 by reaction with water vapor carried out for example on a nickel-based catalyst, or the reaction selective oxidation of CO to CO 2 by oxygen.
  • This second option (the most preferred according to the invention) is developed in more detail in the present application. Methods for the selective oxidation of CO to CO 2 by oxygen are described in the literature.
  • the patent application WO 01/0181242 which proposes a method of hydrogen purification based on the oxidation of CO to CO 2 using a material having a thermal conductivity greater than 30 W / mK, in order to improve the selectivity of the reaction.
  • the US Patent 5,789,337 discloses a method for synthesizing catalysts containing finely dispersed gold on a carrier having increased activity.
  • the request for WO 00/17097 recommends the use of catalysts containing ruthenium or platinum or a mixture of these two elements deposited on an ⁇ -alumina support.
  • the COx content is less than 10,000 ppmv, and most often 5000 ppmv.
  • the COx content is between 120 and 1000 ppmv, and very generally between 120 and 500 ppmv.
  • the method according to the invention does not exclude an operation in which for a portion of the time the COx content is less than 120 ppmv, or 50 ppmv or even less. This can occur for example when the sources of "clean" hydrogen, substantially free of CO and CO2, are available in sufficient quantity to supply the different consuming units (which depends on the nature of the crude oil treated).
  • the invention provides a process for the hydrodesulphurization of an HC hydrocarbon fraction comprising at least 5% by weight of olefins, in which said hydrocarbon fraction is mixed, an additional hydrogen HYD stream, and generally a current REC recycling hydrogen, to form an overall feed that is fed to the inlet of at least one reactor comprising a desulfurization catalyst, under operating conditions for converting the organic sulfur compounds of the HC cut into H 2 S, in which the hydrogen source (s) forming the HYD current is chosen, and optionally at least one hydrogen purification treatment carried out on HYD, REC (or a fraction of REC), or their mixture, of so that said overall charge comprises at most 50 ppmv of CO, and comprises at least 120 ppmv of COx for at least a significant fraction of the time.
  • the aforementioned purity conditions [at most 50 ppmv of CO (or 20, or 10 ppmv) and at least 120 ppmv of COx for at least a significant fraction of the time] are according to the invention also obtained on the current Hydrogen HYD make up.
  • the best qualities of extra hydrogen are those in which the CO content is very low (less than 10 ppmv, and preferably less than 5 ppmv), and in which the CO 2 / CO ratio is high (eg greater than 5, or 10, for example between 5 and 60).
  • a recycle hydrogen recycle stream is used around the hydrodesulphurization unit, a purge stream WGAS is also used to avoid an accumulation of impurities.
  • the hydrogen loop tends to concentrate CO and CO2.
  • the invention which leads to accepting significant amounts of CO2, then makes it possible to increase the recycling rate REC / HYD, which can exceed 4, or even be between 6 and 30. This leads to reducing the hydrogen purge WGAS needed.
  • the purge rate can be advantageously controlled so that the CO content in the overall feed is less than 50 ppmv, and preferably less than 20 ppmv, but, but the COx content in the overall feed is greater than 120 ppmv.
  • the process typically comprises at least one T1 hydrogen purification treatment carried out on HYD, REC, or their mixture, this T1 treatment producing a limited CO2 removal leading to at least 200 ppmv of CO2 being obtained in the overall charge.
  • the process comprises at least one T2 treatment of hydrogen purification carried out on HYD, REC, or their mixture, this T2 treatment performing a catalytic oxidation of CO by O2 and / or H2O to obtain at most 50 ppmv of CO (and preferably at most 20 ppmv) in the overall charge.
  • the oxidation can be carried out by the process of converting CO to water vapor, known as "shift conversion", which can be carried out in one or two stages.
  • the process comprises a hydrogen purification treatment carried out on HYD, and optionally on REC (or a part of REC) or their mixture, this treatment comprising a T2 treatment producing a catalytic oxidation of CO by O 2 (preferential oxidation of CO with respect to the hydrogen present), followed directly and without secondary removal of CO2 by the desulfurization of the HC section in the presence of the stream of hydrogen thus purified. It is also possible to combine a conversion with steam, typically low temperature, and a final preferential oxidation.
  • the process may comprise at least one T3 hydrogen purification treatment carried out on HYD, REC, or their mixture, this T3 treatment producing a catalytic methanation of CO by H 2 in order to obtain at most 50 vppm of CO in the overall charge.
  • the process often comprises a hydrogen purification treatment carried out on HYD, and optionally on REC or their mixture, this treatment comprising T3 carrying out methanation of CO by H 2, directly followed and without secondary removal of CO2 by the desulfurization of the HC section in the presence of the stream of hydrogen thus purified.
  • the process comprises a hydrogen purification treatment carried out on HYD, and optionally on REC (or a part of REC) or their mixture, this treatment comprising a T2 treatment producing a catalytic oxidation of CO by O 2, followed directly and without secondary removal of CO2 by the desulfurization of the HC section in the presence of the stream of hydrogen thus purified.
  • the process also includes a preliminary T1 treatment of CO2 removal on HYD upstream of T2 or T3, for the removal of most of the CO2.
  • methane can be treated by steam reforming, followed by one or two steps of conversion of CO to steam, and T1 removal of CO2, for example by washing with a methyldiethanolamine solution, to obtain hydrogen having a low residual CO content, for example between 2000 and 5000 ppmv and a low CO2 content of between 50 and 1000 ppmv.
  • This hydrogen can then be treated by a preferential oxidation treatment T2 with oxygen (or by conversion to steam then preferential oxidation), and mix it preferably with another source of very pure hydrogen (catalytic reforming hydrogen, substantially free of CO and CO2), with a suitable flow rate to obtain a final make-up hydrogen having a CO content of less than or equal to 10, or even 5 ppmv, and a CO 2 content of between 120 and 1000 ppmv.
  • a preferential oxidation treatment T2 with oxygen or by conversion to steam then preferential oxidation
  • Another source of very pure hydrogen catalytic reforming hydrogen, substantially free of CO and CO2
  • a suitable flow rate to obtain a final make-up hydrogen having a CO content of less than or equal to 10, or even 5 ppmv, and a CO 2 content of between 120 and 1000 ppmv.
  • the amount of H 2 S contained in the hydrogen should generally not exceed 10 ppmv (ppm volume), and preferably 1 ppmv before the preferred oxidation step.
  • the copper blade test well known the person skilled in the art must prove negative. It is therefore necessary to purify hydrogen sulfide hydrogen by any method well known to those skilled in the art. There may be mentioned, for example, the methods of absorption, extraction or washing with amines or chemical conversion treatments of H 2 S, without this list being able to limit in any way the treatments that can be used according to the invention. .
  • the preferred oxidation step of CO 2 CO 2 according to the present invention can be carried out for example on a selective catalyst in the presence of hydrogen.
  • the metals which can carry out this reaction can be chosen from the group of noble metals, Pt, Pd, Ru, Rh, Ir, Au or else Cu, Cr, V, Mn or Ce.
  • the metals can be used alone or in combination with other metals or even in the form of alloys. They can be used in massive metallic form (filaments, foam, sponge etc.) or supported on porous refractory oxides such as alumina, ceria, anatase or rutile, zirconia, silica, oxide ferric iron ( ⁇ -Fe 2 O 3 ) or zinc oxide.
  • the preferred oxidation reaction of CO according to this invention can be carried out for example on a finely divided gold catalyst on ferric hydroxide.
  • Such a catalyst can be prepared according to a method described in the publication of Haruta et al., J. Catal., 1993 , 144, p.175 but it can also be prepared according to any other protocol described in the literature.
  • the catalyst is prepared, for example, by coprecipitation of a solution containing HAuCl 4 .3H 2 O and Fe (NO 3 ) 3 .9H 2 O and a solution containing sodium carbonate. These two solutions are gradually added and then vigorously stirred in a precipitation reactor containing distilled water. The reaction mixture is maintained at 80 ° C throughout the addition of the two solutions, throughout the operation the pH is maintained between 8 and 8.5.
  • the precipitate is washed with hot water until the washing water no longer contains chloride (control by reaction with silver nitrate) and then dried at 40 ° C. in a vacuum oven for 12 hours. .
  • the powder obtained is then calcined in dry air at 400 ° C. for 2 hours with an air flow rate of 0.5 l / g catalyst / h. After grinding, a powder having an average particle size of about 20 ⁇ m and a surface area of about 60 m 2 / g is obtained.
  • the catalyst contains an amount of 3% by weight of Au.
  • the shaping of the catalyst can be done by all the methods well known to those skilled in the art, for example, and without this being able to limit the scope of the invention, the deposit on monolith using a wash-coat (coating deposited in liquid phase), granulation, extrusion etc ...
  • the hydrodesulfurization step is carried out on a catalyst which comprises at least one group VIII element and preferably a group VIII element and a group VI B element.
  • the group VIII element is selected from the group consisting of nickel, cobalt, iron.
  • the group VI B element if present, is preferably molybdenum or tungsten.
  • the metals are deposited on an amorphous solid support selected from the group consisting of silica, silicon carbide or alumina, shaped in the form of beads or extrudates.
  • the hydrodesulfurization step may advantageously be carried out in two stages, a first hydrodesulphurization step making it possible to transform more than 50% of the sulfur present in the feedstock into H 2 S, and a finishing step consisting of, at the choice of a step of hydrogenolysis of saturated sulfur compounds on a catalyst containing a Group VIII metal, or a hydrodesulfurization step on a catalyst having a lower activity than the catalyst of the first step.
  • This type of sequence makes it possible to improve the selectivity of the hydrodesulfurization step.
  • the catalyst or catalysts used during this step are in sulphurized form.
  • the sulphurisation procedure can be carried out in situ or ex situ.
  • the catalyst is sulphurized before being charged to the reactor, while in the second case, the catalyst is loaded into the reactor in the form of metal oxides, the sulphurization is carried out in the reactor by injection of H 2 S or compounds capable of decomposing into H 2 S such as DMDS and hydrogen.
  • Any sulphurization method conventionally used by those skilled in the art to sulphide at least 50% and preferably 70% of the metal oxides deposited on the support can be implemented.
  • the reactor pressure is generally between 0.5 MPa and 5 MPa
  • the flow rate of hydrogen is such that the ratio of hydrogen flow rates in normal liters per hour on the hydrocarbon flow rate in liters per hour is between 50 and 800 and preferably between 60 and 600.
  • the temperature is between 200 ° C and 400 ° C and preferably between 230 ° C and 350 ° C depending on the sulfur content of the hydrocarbon fraction to be desulphurized.
  • a pilot unit consisting of a reactor with a capacity of 200 ml is charged with 100 ml of HR806S catalyst marketed by AXENS.
  • This catalyst is based on cobalt and molybdenum deposited on alumina, it is delivered in presulfided form and therefore does not require a subsequent sulphurization step before contact with the load.
  • the treated feedstock is a gasoline A from a catalytic cracking unit. This species has been depentanized in order to treat only the C 6 + fraction in hydrodesulfurization.
  • This feed contains 425 ppm of sulfur including 6 ppm of sulfur in the form of mercaptans and a bromine number measured according to the ASTM method D1159-98 of 49 g / 100 g.
  • the cutting points of this essence A were determined by simulated distillation: the essence A has points 5% weight and 95% weight respectively of 61 ° C and 229 ° C.
  • Gasoline A is mixed with pure hydrogen and is injected into the reactor.
  • the pressure is maintained at 2.1 MPa, the charge rate is 400 ml / h, which represents a space velocity hourly (VVH) of 4 h -1 , the flow rate of hydrogen is 120 liters per hour, which represents a flow rate of 300 liters (normal) of hydrogen per liter of charge.
  • VVH space velocity hourly
  • the flow rate of hydrogen is 120 liters per hour, which represents a flow rate of 300 liters (normal) of hydrogen per liter of charge.
  • Three different temperatures were tested.
  • the apparent selectivity of the catalyst is calculated for each point as being the ratio of the apparent first order rate constants between the desulphurization rate and the hydrogenation rate of the olefins.
  • the sulfur and olefin contents measured by the bromine index as well as the selectivities are collated in Table 1.
  • Table 1 Temperature ° C 260 280 300 Sulfur recipe ppm 64 18 9 I
  • Example 2 In order to measure the influence of CO and CO 2 on the performance of the catalyst, a hydrogen bottle containing 100 ppmv of CO and 350 ppmv of CO 2 is used . This hydrogen is mixed with gasoline A at flow rates identical to those of Example 1. The mixture thus formed has CO contents of 65 ppmv and CO 2 of 228 ppmv. The operating conditions are identical to Example 1. Table 2 presents the results of the tests. Table 2 Temperature ° C 260 280 300 Sulfur recipe ppm 103 25 13 HBr g / 100g 38.4 32.3 23.6 selectivity 5.8 6.8 4.8
  • Example 3 is carried out according to the invention, that is to say that the hydrogen containing CO and CO 2 used in Example 2 is pretreated to oxidize the CO 2 CO 2 .
  • the oxidation is carried out by mixing the hydrogen with oxygen and treating the mixture on an oxidation catalyst.
  • the hydrogen is mixed with a stream of pure oxygen, whose flow rate is adjusted so that the molar ratio between oxygen and CO is 1.1.
  • the reactor is operated at a temperature close to ambient temperature (50 ° C.) at a pressure of 2.1 MPa.
  • the catalyst is prepared, for example, by coprecipitation of a solution containing HAuCl 4 .3H 2 O and Fe (NO 3 ) 3 .9H 2 O and a solution containing sodium carbonate. These two solutions are gradually added and then vigorously stirred in a precipitation reactor containing distilled water. The reaction mixture is maintained at 80 ° C throughout the addition of the two solutions, throughout the operation the pH is maintained between 8 and 8.5. After filtration the precipitate is washed with hot water until the washing water contains more chloride (control by reaction with silver nitrate) and then dried at 40 ° C in a vacuum oven for 12 h. The powder obtained is then calcined in dry air at 400 ° C.
  • the catalyst contains an amount of 3% by weight of Au. X-ray diffraction analysis makes it possible, from the Au (111) line, to obtain a gold particle size of 60 ⁇ .
  • the catalyst (100 mg, diluted 1:20 with ⁇ -Al 2 O 3 ) is then placed in a stainless steel reactor of 10 mm internal diameter and then inserted into a heated tubular furnace via a double jacket at 50 ° C.
  • the hydrogen flow rate is adjusted to 5 ⁇ 10 4 Nm 2 / hr / g catalyst, so that the hourly space velocity is 5 ⁇ 10 5 h -1 , the catalyst density being equal to 1 g / cm 3 .
  • the analysis of the gas entering the reactor as well as that of the effluents (CO, CO 2 , H 2 O, O 2 ) is carried out by gas chromatography equipped with two catharometric detectors. After passage of hydrogen over the preferred oxidation catalyst under the described conditions, the stabilized CO and CO 2 content of the hydrogen thus treated is 17 ppmv and 430 ppmv, respectively.
  • a bottle of pressurized hydrogen gas containing about 17 pmv CO and 430 ppmv CO 2 was manufactured following these results.
  • the implementation of the oxidation step to pretreat the hydrogen makes it possible to significantly improve the activity in hydrodesulfurization of the catalyst and to recover performance in activity and selectivity similar to those of the tests carried out with hydrogen free of CO and CO 2 presented in Example 1.

Abstract

Hydrodesulfuration of a hydrocarbon cut(HC) containing at least 5% of olefins in wich the cut is mixed with a hydrogen supply(HYD) and recycled hydrogen(REC) at the inlet to the reactor.The reactor contains a desulfuration catalyst in conditions enabling transformation of sulfur compounds to hydrogen sulfide ; a purification process may be effected on the HYD/REC supply so that the overall charge comprises no more than 50 vppm of carbon monoxide and at least 120 vppm of carbon monoxide + 1/2 carbon dioxide.

Description

Domaine de l'invention :Field of the invention

La présente invention concerne un procédé de production d'hydrocarbures à faible teneur en soufre. Cette invention s'applique principalement aux mélanges d'hydrocarbures qui contiennent une fraction d'oléfines généralement supérieure à 5 % poids et le plus souvent supérieure à 10 % poids, et au moins 50 ppm poids de soufre. Le procédé permet d'utiliser de l'hydrogène contenant des teneurs en CO très basses, mais des teneurs en CO2 relativement élevées sans que les performances des catalyseurs mis en oeuvre au cours de l'étape d'hydrodésulfuration soient significativement affectées. Ceci permet de diversifier les sources d'hydrogène possibles et/ou de simplifier le traitement de l'hydrogène, sans qu'il soit nécessaire de procéder à une élimination très poussée du CO2.The present invention relates to a process for producing low sulfur hydrocarbons. This invention applies primarily to hydrocarbon mixtures which contain an olefin fraction generally greater than 5% by weight and most often greater than 10% by weight, and at least 50 ppm by weight of sulfur. The method makes it possible to use hydrogen containing very low CO contents, but relatively high CO 2 contents without the performance of the catalysts used during the hydrodesulfurization step being significantly affected. This makes it possible to diversify the possible sources of hydrogen and / or to simplify the treatment of hydrogen, without the need for a very thorough elimination of CO2.

Art antérieur :Prior art:

Les futures spécifications sur les carburants automobiles prévoient une forte diminution de la teneur en soufre dans ces carburants, et notamment dans les essences. En Europe, les spécifications sur les teneurs en soufre sont de 150 ppm poids et diminueront dans les années à venir pour atteindre des teneurs inférieures à 10 ppm après une transition à 50 ppm poids. L'évolution des spécifications de teneur en soufre dans les carburants nécessite ainsi la mise au point de nouveaux procédés de désulfuration profonde des essences.
Les sources principales de soufre dans les bases pour essences sont les essences dites de craquage, et principalement, la fraction d'essence issue d'un procédé de craquage catalytique d'un résidu de la distillation atmosphérique ou d'un distillat sous vide d'un pétrole brut. La fraction d'essence issue du craquage catalytique, qui représente en moyenne 40 % des bases essence, contribue en effet pour plus de 90% à l'apport de soufre dans les essences. Par conséquent, la production d'essences peu soufrées nécessite une étape de désulfuration des essences de craquage catalytique. Cette désulfuration est classiquement réalisée par une ou plusieurs étapes de mise en contact des composes soufrés contenus dans lesdites essences avec un catalyseur en présence d'un gaz riche en hydrogène dans un procédé dit d'hydrodésulfuration.
Par ailleurs, l'indice d'octane de telles essences est très fortement lié à leur teneur en oléfines. La préservation de l'indice d'octane de ces essences nécessite de limiter les réactions de transformation des oléfines en paraffines. Ces réactions d'hydrogénation sont inhérentes aux procédés d'hydrodésulfuration, ce qui induit une perte d'octane qui peut atteindre 5 à 10 points principalement en raison d'une diminution de la teneur en oléfines.
En outre, dans les raffineries, le procédé d'hydrodésulfuration des essences est souvent installé sur la coupe essence, directement en sortie des unités de craquage, comme par exemple les unités de craquage catalytique dont la durée de fonctionnement continu est souvent de plusieurs années. Le procédé d'hydrodésulfuration doit donc être opéré de façon ininterrompue pendant souvent 3 à 5 ans. Les catalyseurs utilisés pour transformer le soufre en H2S doivent présenter une bonne activité et une bonne stabilité pour être opérés continûment pendant plusieurs années.
Pour être compétitifs, les procédés d'hydrodésulfuration doivent répondre à deux contraintes principales qui sont :

  • une hydrogénation des oléfines limitée
  • une bonne stabilité du système catalytique et une opération continue pendant plusieurs années.
Future specifications for automotive fuels predict a sharp decrease in the sulfur content of these fuels, especially in gasoline. In Europe, specifications for sulfur levels are 150 ppm by weight and will decrease in the coming years to levels below 10 ppm after a transition to 50 ppm by weight. The evolution of sulfur content specifications in fuels thus requires the development of new processes for the deep desulphurisation of gasolines.
The main sources of sulfur in gasoline bases are so-called cracking gasoline, and mainly, the gasoline fraction resulting from a process for the catalytic cracking of a residue of atmospheric distillation or a vacuum distillate of a crude oil. The gasoline fraction from catalytic cracking, which represents on average 40% of gasoline bases, contributes more than 90% to the sulfur input in gasoline. Therefore, the production of low sulfur species requires a step of desulfurization of catalytic cracking gasolines. This desulfurization is conventionally carried out by one or more steps of contacting the sulfur compounds contained in said gasolines with a catalyst in the presence of a hydrogen-rich gas in a so-called hydrodesulfurization process.
Moreover, the octane number of such species is very strongly related to their olefin content. Preserving the octane number of these species requires limiting the reactions of transformation of olefins into paraffins. These hydrogenation reactions are inherent in hydrodesulphurization processes, which induces an octane loss that can reach 5 to 10 points mainly due to a decrease in olefin content.
In addition, in refineries, the hydrodesulphurization process of gasolines is often installed on the petrol cut, directly at the outlet of the cracking units, such as catalytic cracking units whose continuous operating time is often several years. The hydrodesulphurization process must therefore be operated uninterrupted for often 3 to 5 years. Catalysts used to convert sulfur to H 2 S must have good activity and stability to be operated continuously for several years.
To be competitive, hydrodesulfurization processes must meet two main constraints which are:
  • a limited hydrogenation of olefins
  • good stability of the catalytic system and continuous operation for several years.

Les procédés d'hydrodésulfuration sont basés sur le traitement des coupes hydrocarbonées sur un catalyseur contenant des métaux non nobles sulfurés et supportés sur un support minéral, en présence d'hydrogène. Les métaux utilisés contiennent généralement au moins un métal du groupe VIII (par exemple le cobalt) et éventuellement un métal du groupe VIB (par exemple le molybdène) de la classification périodique des éléments. Les formulations catalytiques le plus souvent rencontrées sont à base de Co et Mo ou Ni et Mo déposés sur alumine. Dans le cas du traitement des essences oléfiniques issues d'unités de craquage, le catalyseur et les conditions opératoires sont optimisées pour limiter le taux d'hydrogénation des oléfines, tout en maximisant le taux de transformation des composés soufrés organiques en H2S. De tels procédés ont notamment été décrits dans les brevets européens EP 1 031 622 et EP 1 250 401 .The hydrodesulphurization processes are based on the treatment of hydrocarbon cuts on a catalyst containing non-noble sulphide metals and supported on a mineral support, in the presence of hydrogen. The metals used generally contain at least one Group VIII metal (for example cobalt) and optionally a Group VI B metal (for example molybdenum) of the periodic table of elements. The catalytic formulations most often encountered are based on Co and Mo or Ni and Mo deposited on alumina. In the case of the treatment of olefinic species from cracking units, the catalyst and the operating conditions are optimized to limit the degree of hydrogenation of olefins, while maximizing the conversion rate of organic sulfur compounds into H 2 S. such processes have in particular been described in European patents EP 1 031 622 and EP 1 250 401 .

Les procédés d'hydrodésulfuration peuvent utiliser de l'hydrogène provenant de plusieurs sources. La source principale d'hydrogène dans la raffinerie est le reformage catalytique. L'unité de reformage catalytique produit de l'hydrogène lors de réactions de déshydrogénation de naphtènes en aromatiques et de déshydrocyclisation. Cet hydrogène présente un taux de pureté généralement compris entre 60% et 90% mais il est sensiblement exempt de CO et CO2.
Selon les besoins de la raffinerie, l'hydrogène peut également être produit par vaporéformage d'hydrocarbures légers ou par oxydation partielle de divers hydrocarbures, notamment de résidus lourds. Le vaporéformage consiste à transformer une charge légère d'hydrocarbures en gaz de synthèse (mélange H2, CO, CO2, CH4, H2O) par réaction avec de la vapeur d'eau sur un catalyseur à base de nickel. La production d'hydrogène par oxydation partielle consiste à traiter une fraction hydrocarbure par oxydation par l'oxygène à haute température pour produire un gaz de synthèse constitué de CO, CO2, H2 et H2O. Dans ces deux derniers cas la production d'hydrogène s'accompagne d'une production d'oxydes de carbone qui sont généralement sensiblement éliminés soit par méthanation, soit par adsorption. Toutefois, les teneurs résiduelles en oxydes de carbone (CO et CO2) peuvent dans certains cas être supérieures à 50 ppmv, ou à 100 ppmv voire plus. D'autres sources d'hydrogène sont aussi parfois utilisées, comme de l'hydrogène issu des gaz de craquage catalytique, qui contient des quantités notables de CO et de CO2. Enfin, du CO et du CO2 peuvent être apportés dans certain cas par la charge d'hydrocarbures elle-même, sous forme de gaz dissous, si la charge a été en contact avec des traces de ces gaz en amont.
L'hydrogène de raffinerie, et l'hydrogène au niveau de la zone réactionnelle d'un hydrotraitement peut donc contenir des quantités variables de CO et de CO2. La technique la plus utilisée, lorsqu'on utilise, ou produit de l'hydrogène contenant du CO et du CO2 est de réaliser un traitement d'élimination totale de ces impuretés, typiquement par « PSA, ou pressure swing adsorption », ce qui signifie « adsoption par variation de pression ». Cette technique est cependant onéreuse, et consomme une partie de l'hydrogène disponible.
L'un des buts de l'invention est de permettre le bon fonctionnement d'hydrotraitements, notamment d'hydrotraitements pour la désulfuration sélective de coupes oléfiniques (typiquement essences), tout en utilisant des sources d'hydrogène plus diversifiées, et typiquement des traitements de purification moins poussés.
Un autre but de l'invention est de réduire la consommation d'hydrogène, en réduisant le débit de purge d'hydrogène au niveau de l'hydrotraitement (purge d'une partie du gaz de recyclage autour du réacteur d'hydrodésulfuration).
Hydrodesulfurization processes can use hydrogen from multiple sources. The main source of hydrogen in the refinery is catalytic reforming. The catalytic reforming unit produces hydrogen in aromatic naphthenes dehydrogenation and dehydrocyclization reactions. This hydrogen has a rate of purity generally between 60% and 90% but is substantially free of CO and CO 2 .
Depending on the needs of the refinery, hydrogen can also be produced by steam reforming light hydrocarbons or by partial oxidation of various hydrocarbons, especially heavy residues. The steam reforming process consists of converting a light hydrocarbon feedstock into synthesis gas (H 2 , CO 2 , CO 2 , CH 4 , H 2 O mixture) by reaction with steam on a nickel-based catalyst. Partial oxidation hydrogen production consists in treating a hydrocarbon fraction by oxidation with oxygen at high temperature to produce a synthesis gas consisting of CO, CO 2 , H 2 and H 2 O. In the latter two cases the production hydrogen is accompanied by a production of carbon oxides which are generally substantially eliminated either by methanation or by adsorption. However, the residual contents of carbon oxides (CO and CO2) may in some cases be greater than 50 ppmv, or 100 ppmv or more. Other sources of hydrogen are also sometimes used, such as hydrogen from catalytic cracking gases, which contains significant amounts of CO and CO2. Finally, in some cases CO and CO2 may be contributed by the hydrocarbon feed itself, in the form of dissolved gas, if the feed has been in contact with traces of these gases upstream.
Refinery hydrogen, and hydrogen at the reaction zone of a hydrotreatment may therefore contain varying amounts of CO and CO2. The most used technique, when using or producing hydrogen containing CO and CO2 is to perform a treatment of total elimination of these impurities, typically by "PSA, or pressure swing adsorption", which means "Adsoption by pressure variation". This technique is however expensive, and consumes some of the available hydrogen.
One of the aims of the invention is to allow the proper functioning of hydrotreatments, especially hydrotreatments for the selective desulfurization of olefinic cuts (typically gasolines), while using more diversified hydrogen sources, and typically treatments. less advanced purification.
Another object of the invention is to reduce hydrogen consumption by reducing the hydrogen purge rate at the hydrotreatment level (purge of a portion of the recycle gas around the hydrodesulfurization reactor).

Description sommaire de l'invention : Brief description of the invention :

Il été trouvé au cours des études réalisés par le demandeur, que la présence de CO dans l'hydrogène, même à des teneurs de l'ordre de 100 ppmv (parties par million en volume), ou même de 50 ppmv, voire de 20 ppmv entraînait une diminution significative de l'activité des catalyseurs d'hydrodésulfuration. Par ailleurs, il est apparu que la vitesse de la réaction d'hydrogénation des oléfines était peu affectée par la présence de CO. La présence de CO dans l'hydrogène entraîne donc une baisse de l'activité catalytique et une perte d'octane accrue au cours de l'étape d'hydrodésulfuration, si l'on augmente le volume catalytique pour maintenir le niveau de désulfuration. La baisse d'activité peut être compensée par une augmentation de température, mais dans ce cas, c'est la durée de vie du catalyseur qui s'en trouve affectée. Certaines observations similaires sont également reportées dans la demande de brevet US 2003/0221994 . Ainsi, selon ce brevet, il est préconisé d'utiliser, pour l'étape d'hydrodésulfuration sélective, de l'hydrogène contenant des oxydes de carbone dans des teneurs telles que la somme CO + ½ CO2 (notée COx dans ce qui suit) ne doit pas dépasser 100 ppmv dans le mélange d'hydrocarbures et d'hydrogène.
Le demandeur a toutefois trouvé, de façon étonnante, que si la teneur en CO était un paramètre directement lié à une inhibition notable du catalyseur de désulfuration, la teneur en CO2 pouvait par contre varier dans des limites assez larges sans impact très significatif. Il a également trouvé qu'une étape de prétraitement de l'hydrogène consistant à oxyder le CO en CO2, sans extraction du CO2 ainsi formé permettait de s'affranchir de l'effet néfaste des oxydes de carbone, et ce, même pour des teneurs en CO2 supérieures à 200 ppmv. L'économie d'une étape coûteuse d'élimination quasi-totale du CO2 est un avantage tout-à-fait significatif, ainsi que la possibilité de recourir à des sources d'hydrogène moins pur. Il est donc proposé dans la présente invention, un procédé de désulfuration des coupes hydrocarbonées compatible avec une teneur en CO très basse, mais une teneur en COx notable. Ce procédé comprend de préférence une étape d'oxydation sélective du CO contenu dans l'hydrogène en CO2 et une étape d'hydrodésulfuration, les deux étapes étant réalisées successivement, typiquement sans extraction intermédiaire du CO2 formé. Cette approche présente l'avantage, par rapport aux procédés décrits dans l'art antérieur, d'utiliser une solution simple et peu coûteuse pour s'affranchir des problèmes d'inhibition des catalyseurs d'hydrodésulfuration par les oxydes de carbone.
Les principaux procédés permettant d'éliminer sensiblement le CO sont les procédés d'oxydation du CO en CO2, préférés selon l'invention, et les procédés de méthanation du CO (en méthane).
Les principaux procédés permettant d'oxyder le CO en CO2 sont la réaction de conversion à la vapeur qui permet de transformer le CO en CO2 par réaction avec la vapeur d'eau réalisée par exemple sur catalyseur à base de nickel, ou la réaction d'oxydation sélective du CO en CO2 par l'oxygène. Cette deuxième option (la plus préférée selon l'invention) est développée plus en détail dans la présente demande.
Des méthodes d'oxydation sélective du CO en CO2 par l'oxygène sont décrites dans la littérature. On peut citer, par exemple, la demande de brevet WO 01/0181242 qui propose une méthode de purification d'hydrogène basée sur l'oxydation du CO en CO2 à l'aide d'un matériau présentant une conductivité thermique supérieure à 30 W/m.K, afin d'améliorer la sélectivité de la réaction. Le brevet US 5,789,337 décrit une méthode de synthèse de catalyseurs contenant de l'or finement dispersé sur un support présentant une activité accrue. La demande de brevet WO 00/17097 préconise l'utilisation de catalyseurs contenant du ruthénium ou du platine ou un mélange de ces deux éléments déposés sur un support à base d'alumine α.
It has been found in the applicant's studies that the presence of CO in hydrogen, even at levels of the order of 100 ppmv (parts per million by volume), or even 50 ppmv, or even ppmv resulted in a significant decrease in the activity of the hydrodesulfurization catalysts. Moreover, it appeared that the rate of the hydrogenation reaction of olefins was little affected by the presence of CO. The presence of CO in the hydrogen therefore results in a decrease in catalytic activity and an increased octane loss during the hydrodesulfurization step, if the catalytic volume is increased to maintain the desulphurization level. The decrease in activity can be offset by an increase in temperature, but in this case, it is the life of the catalyst that is affected. Some similar observations are also reported in the patent application US 2003/0221994 . Thus, according to this patent, it is recommended to use, for the selective hydrodesulfurization step, hydrogen containing carbon oxides in contents such that the sum CO + ½ CO 2 (denoted COx in the following ) must not exceed 100 ppmv in the mixture of hydrocarbons and hydrogen.
The applicant, however, surprisingly found that if the CO content was a parameter directly related to a significant inhibition of the desulphurization catalyst, the CO 2 content could instead vary within fairly wide limits without a very significant impact. He also found that a stage of pretreatment of the hydrogen of CO 2 oxidation in CO 2 , without extraction of the CO 2 thus formed made it possible to overcome the harmful effect of carbon oxides, and this, even for CO 2 contents greater than 200 ppmv. The economics of an expensive step of almost total CO2 removal is a very significant benefit, as well as the possibility of using less pure hydrogen sources. It is therefore proposed in the present invention, a desulfurization process of hydrocarbon cuts compatible with a very low CO content, but a significant COx content. This process preferably comprises a step of selective oxidation of the CO contained in the hydrogen to CO 2 and a hydrodesulfurization step, the two steps being carried out successively, typically without intermediate extraction of the CO 2 formed. This approach has the advantage, over the methods described in the prior art, of using a simple and inexpensive solution to overcome the problems of inhibition of hydrodesulfurization catalysts by carbon oxides.
The main processes for substantially eliminating CO are the methods of oxidation of CO 2 to CO 2, which are preferred according to the invention, and the methods of methanation of CO (in methane).
The principal processes for oxidizing CO 2 to CO 2 are the steam conversion reaction which makes it possible to convert CO to CO 2 by reaction with water vapor carried out for example on a nickel-based catalyst, or the reaction selective oxidation of CO to CO 2 by oxygen. This second option (the most preferred according to the invention) is developed in more detail in the present application.
Methods for the selective oxidation of CO to CO 2 by oxygen are described in the literature. For example, the patent application WO 01/0181242 which proposes a method of hydrogen purification based on the oxidation of CO to CO 2 using a material having a thermal conductivity greater than 30 W / mK, in order to improve the selectivity of the reaction. The US Patent 5,789,337 discloses a method for synthesizing catalysts containing finely dispersed gold on a carrier having increased activity. The request for WO 00/17097 recommends the use of catalysts containing ruthenium or platinum or a mixture of these two elements deposited on an α-alumina support.

Description détaillée de l'inventionDetailed description of the invention

La présente invention est un procédé d'hydrodésulfuration de fractions hydrocarbonées utilisant une source d'hydrogène d'appoint, et généralement de l'hydrogène de recyclage, de façon à ce que à l'entrée du réacteur d'hydrodésulfuration, la teneur en CO de la charge globale soit au plus 50 ppmv, de façon préférée au plus 20 ppmv et de façon préférée au plus 10 ppmv voire moins, alors que la teneur en COx = CO +½CO2 est supérieure à 120 ppmv pendant une partie au moins du temps (par exemple au moins 30%, ou 50% du temps, ou de préférence 100% du temps de fonctionnement). Souvent, la teneur en COx est inférieure à 10 000 ppmv, et le plus souvent à 5000 ppmv. Typiquement, la teneur en COx est comprise entre 120 et 1000 ppmv, et très généralement entre 120 et 500 ppmv. Le procédé selon l'invention n'exclut pas un fonctionnement dans lequel pendant une partie du temps la teneur en COx est inférieure à 120 ppmv, ou 50 ppmv voire encore moins. Ceci peut se produire par exemple lorsque les sources d'hydrogène « propre », sensiblement sans CO ni CO2, sont disponibles en en quantité suffisante pour alimenter les différentes unités consommatrices (ce qui dépend de la nature du pétrole brut traité).The present invention is a process for the hydrodesulfurization of hydrocarbon fractions using an additional source of hydrogen, and generally of recycle hydrogen, so that at the inlet of the hydrodesulfurization reactor, the CO content the overall charge is at most 50 ppmv, preferably at most 20 ppmv and preferably at most 10 ppmv or less, while the COx content = CO + ½CO2 is greater than 120 ppmv for at least part of the time (For example at least 30%, or 50% of the time, or preferably 100% of the operating time). Often the COx content is less than 10,000 ppmv, and most often 5000 ppmv. Typically, the COx content is between 120 and 1000 ppmv, and very generally between 120 and 500 ppmv. The method according to the invention does not exclude an operation in which for a portion of the time the COx content is less than 120 ppmv, or 50 ppmv or even less. This can occur for example when the sources of "clean" hydrogen, substantially free of CO and CO2, are available in sufficient quantity to supply the different consuming units (which depends on the nature of the crude oil treated).

Plus précisément, l'invention propose un procédé d'hydrodésulfuration d'une coupe hydrocarbonée HC comprenant au moins 5 % poids d'oléfines, dans lequel on mélange ladite coupe hydrocarbonée, un courant HYD d'hydrogène d'appoint, et généralement un courant REC d'hydrogène de recyclage, pour former une charge globale que l'on alimente à l'entrée d'au moins un réacteur comprenant un catalyseur de désulfuration, dans des conditions opératoires permettant de transformer les composés soufrés organiques de la coupe HC en H2S, dans lequel on choisit la ou les sources d'hydrogène formant le courant HYD, et optionnellement on réalise au moins un traitement de purification d'hydrogène effectué sur HYD, REC (ou une fraction de REC), ou leur mélange, de façon à ce que ladite charge globale comprenne au plus 50 ppmv de CO, et qu'elle comprenne au moins 120 ppmv de COx pendant au moins une fraction notable du temps.
De préférence, les conditions de pureté précitées : [au plus 50 ppmv de CO (ou 20, ou 10 ppmv) et au moins 120 ppmv de COx pendant au moins une fraction notable du temps] sont selon l'invention obtenues également sur le courant HYD d'hydrogène d'appoint. Les meilleures qualités d'hydrogène d'appoint, selon l'invention, sont celles dans lesquelles la teneur en CO est très basse (moins de 10 ppmv, et de préférence moins de 5 ppmv), et dans lesquelles le rapport CO2 / CO est élevé (par exemple supérieur à 5, ou à 10, par exemple compris entre 5 et 60).
De plus, quand on utilise un courant REC d'hydrogène de recyclage autour de l'unité d'hydrodésulfuration, on utilise aussi un courant de purge WGAS, pour éviter une accumulation d'impuretés. La boucle d'hydrogène tend en effet à concentrer le CO et le CO2 . L'invention, qui conduit à accepter des quantités notables de CO2, permet alors d'augmenter le taux de recyclage REC/HYD, qui peut dépasser 4, ou même être compris entre 6 et 30. Ceci conduit à réduire la purge d'hydrogène WGAS nécessaire. On peut avantageusement contrôler le débit de purge pour que la teneur en CO dans la charge globale soit inférieure à 50 ppmv, et de préférence inférieure à 20 ppmv, mais, mais que la teneur en COx dans la charge globale soit supérieure à 120 ppmv.
More specifically, the invention provides a process for the hydrodesulphurization of an HC hydrocarbon fraction comprising at least 5% by weight of olefins, in which said hydrocarbon fraction is mixed, an additional hydrogen HYD stream, and generally a current REC recycling hydrogen, to form an overall feed that is fed to the inlet of at least one reactor comprising a desulfurization catalyst, under operating conditions for converting the organic sulfur compounds of the HC cut into H 2 S, in which the hydrogen source (s) forming the HYD current is chosen, and optionally at least one hydrogen purification treatment carried out on HYD, REC (or a fraction of REC), or their mixture, of so that said overall charge comprises at most 50 ppmv of CO, and comprises at least 120 ppmv of COx for at least a significant fraction of the time.
Preferably, the aforementioned purity conditions: [at most 50 ppmv of CO (or 20, or 10 ppmv) and at least 120 ppmv of COx for at least a significant fraction of the time] are according to the invention also obtained on the current Hydrogen HYD make up. The best qualities of extra hydrogen, according to the invention, are those in which the CO content is very low (less than 10 ppmv, and preferably less than 5 ppmv), and in which the CO 2 / CO ratio is high (eg greater than 5, or 10, for example between 5 and 60).
In addition, when a recycle hydrogen recycle stream is used around the hydrodesulphurization unit, a purge stream WGAS is also used to avoid an accumulation of impurities. The hydrogen loop tends to concentrate CO and CO2. The invention, which leads to accepting significant amounts of CO2, then makes it possible to increase the recycling rate REC / HYD, which can exceed 4, or even be between 6 and 30. This leads to reducing the hydrogen purge WGAS needed. The purge rate can be advantageously controlled so that the CO content in the overall feed is less than 50 ppmv, and preferably less than 20 ppmv, but, but the COx content in the overall feed is greater than 120 ppmv.

Le procédé comprend typiquement au moins un traitement T1 de purification d'hydrogène effectué sur HYD, REC, ou leur mélange, ce traitement T1 réalisant une élimination de CO2 limitée conduisant à l'obtention d'au moins 200 ppmv de CO2 dans la charge globale.
De préférence, le procédé comprend au moins un traitement T2 de purification d'hydrogène effectué sur HYD, REC, ou leur mélange, ce traitement T2 réalisant une oxydation catalytique de CO par 02 et/ou H2O pour l'obtention d'au plus 50 ppmv de CO (et de préférence au plus 20 ppmv) dans la charge globale.
L'oxydation peut être réalisée par le procédé de conversion du CO à la vapeur d'eau, connu sous l'appellation de « shift conversion », qui peut être réalisée en un ou 2 étages.
De façon préférée, le procédé comprend un traitement de purification d'hydrogène effectué sur HYD, et optionnellement sur REC (ou une partie de REC) ou leur mélange, ce traitement comprenant un traitement T2 réalisant une oxydation catalytique de CO par 02 (oxydation préférentielle de CO par rapport à l'hydrogène présent), suivie directement et sans élimination secondaire de CO2 par la désulfuration de la coupe HC en présence du courant d'hydrogène ainsi purifié. On peut également combiner une conversion à la vapeur, typiquement basse température, et une oxydation préférentielle finale.
En variante, le procédé peut comprendre au moins un traitement T3 de purification d'hydrogène effectué sur HYD, REC, ou leur mélange, ce traitement T3 réalisant une méthanation catalytique de CO par H2 pour l'obtention d'au plus 50 vppm de CO dans la charge globale. Dans ce cas, le procédé comprend souvent un traitement de purification d'hydrogène effectué sur HYD, et optionnellement sur REC ou leur mélange, ce traitement comprenant T3 réalisant une méthanation de CO par H2, suivi directement et sans élimination secondaire de CO2 par la désulfuration de la coupe HC en présence du courant d'hydrogène ainsi purifié. Bien que la méthanation tende à éliminer aussi le CO2, les conditions de la méthanation peuvent être telles et/ou associées à la présence de CO2 dissous dans la charge, que la charge globale contient tout de même des quantités notables de CO2 (et de COx pouvant être supérieures à 120 ppmv).
De façon préférée, le procédé comprend un traitement de purification d'hydrogène effectué sur HYD, et optionnellement sur REC (ou une partie de REC) ou leur mélange, ce traitement comprenant un traitement T2 réalisant une oxydation catalytique de CO par 02, suivi directement et sans élimination secondaire de CO2 par la désulfuration de la coupe HC en présence du courant d'hydrogène ainsi purifié.
The process typically comprises at least one T1 hydrogen purification treatment carried out on HYD, REC, or their mixture, this T1 treatment producing a limited CO2 removal leading to at least 200 ppmv of CO2 being obtained in the overall charge. .
Preferably, the process comprises at least one T2 treatment of hydrogen purification carried out on HYD, REC, or their mixture, this T2 treatment performing a catalytic oxidation of CO by O2 and / or H2O to obtain at most 50 ppmv of CO (and preferably at most 20 ppmv) in the overall charge.
The oxidation can be carried out by the process of converting CO to water vapor, known as "shift conversion", which can be carried out in one or two stages.
Preferably, the process comprises a hydrogen purification treatment carried out on HYD, and optionally on REC (or a part of REC) or their mixture, this treatment comprising a T2 treatment producing a catalytic oxidation of CO by O 2 (preferential oxidation of CO with respect to the hydrogen present), followed directly and without secondary removal of CO2 by the desulfurization of the HC section in the presence of the stream of hydrogen thus purified. It is also possible to combine a conversion with steam, typically low temperature, and a final preferential oxidation.
Alternatively, the process may comprise at least one T3 hydrogen purification treatment carried out on HYD, REC, or their mixture, this T3 treatment producing a catalytic methanation of CO by H 2 in order to obtain at most 50 vppm of CO in the overall charge. In this case, the process often comprises a hydrogen purification treatment carried out on HYD, and optionally on REC or their mixture, this treatment comprising T3 carrying out methanation of CO by H 2, directly followed and without secondary removal of CO2 by the desulfurization of the HC section in the presence of the stream of hydrogen thus purified. Although methanation tends to also remove CO2, methanation conditions may be such and / or associated with the presence of dissolved CO2 in the feed, that the overall load still contains significant amounts of CO2 (and COx may be greater than 120 ppmv).
Preferably, the process comprises a hydrogen purification treatment carried out on HYD, and optionally on REC (or a part of REC) or their mixture, this treatment comprising a T2 treatment producing a catalytic oxidation of CO by O 2, followed directly and without secondary removal of CO2 by the desulfurization of the HC section in the presence of the stream of hydrogen thus purified.

Souvent, le procédé comprend également un traitement préliminaire T1 d'élimination de CO2 effectué sur HYD en amont de T2 ou de T3, pour l'élimination de la plus grande partie du CO2.
A titre d'exemple pour la production d'hydrogène d'appoint, on peut traiter du méthane par vaporéformage, suivi de une ou deux étapes de conversion du CO à la vapeur, et d'une élimination T1 de CO2, par exemple par lavage avec une solution de méthyldiéthanolamine, pour obtenir de l'hydrogène ayant une basse teneur résiduelle en CO, par exemple entre 2000 et 5000 ppmv et une teneur en CO2 faible comprise entre 50 et 1000 ppmv. On peut alors traiter cet hydrogène par un traitement T2 d'oxydation préférentielle à l'oxygène (ou par conversion à la vapeur puis oxydation préférentielle), et le mélanger de préférence à une autre source d'hydrogène très pur (hydrogène de réformage catalytique, sensiblement dépourvu de CO et CO2), avec un débit adéquat pour obtenir un hydrogène final d'appoint ayant une teneur en CO inférieure ou égale à 10, ou même à 5 ppmv, et une teneur en CO2 comprise entre 120 et 1000 ppmv.
On trouvera des éléments techniques complémentaires, concernant les traitements de conversion à la vapeur, de méthanation , et d'élimination de CO2 par lavage aux amines (ou autres liquides d'absorption) dans l'ouvrage de référence « Procédés de transformation », 1998, de P. LEPRINCE, aux éditions TECHNIP (Paris), pages 476-490 .
Often, the process also includes a preliminary T1 treatment of CO2 removal on HYD upstream of T2 or T3, for the removal of most of the CO2.
By way of example for the production of additional hydrogen, methane can be treated by steam reforming, followed by one or two steps of conversion of CO to steam, and T1 removal of CO2, for example by washing with a methyldiethanolamine solution, to obtain hydrogen having a low residual CO content, for example between 2000 and 5000 ppmv and a low CO2 content of between 50 and 1000 ppmv. This hydrogen can then be treated by a preferential oxidation treatment T2 with oxygen (or by conversion to steam then preferential oxidation), and mix it preferably with another source of very pure hydrogen (catalytic reforming hydrogen, substantially free of CO and CO2), with a suitable flow rate to obtain a final make-up hydrogen having a CO content of less than or equal to 10, or even 5 ppmv, and a CO 2 content of between 120 and 1000 ppmv.
Further technical information on steam conversion, methanation, and CO2 removal by washing with amines (or other absorption liquids) can be found in the reference book. "Processes of transformation", 1998, by P. LEPRINCE, published by TECHNIP (Paris), pages 476-490 .

Description du traitement préféré d'oxydation préférentielle du CO par l'oxygène :Description of the preferred oxidation treatment of CO by oxygen:

De nombreux catalyseurs à base de métaux nobles supportés ou non peuvent catalyser la réaction d'oxydation du CO en CO2 en présence d'oxygène. En présence d'hydrogène, il est néanmoins nécessaire d'utiliser un catalyseur qui ne transforme pas l'hydrogène en eau de façon trop importante. L'utilisation d'un catalyseur sélectif pour réaliser la réaction d'oxydation préférentielle du CO est donc une solution très intéressante pour résoudre les problèmes de purification d'hydrogène. Un très haut degré de sélectivité n'est cependant pas nécessaire dans le cadre de cette demande d'invention, la présence d'un peu de vapeur d'eau dans l'hydrogène ayant été purifié sur un catalyseur d'oxydation préférentielle n'étant pas totalement rédhibitoire pour une utilisation de l'hydrogène dans un procédé d'hydrodésulfuration sélectif d'essences oléfiniques. La quantité d'H2S contenue dans l'hydrogène ne doit généralement pas excéder 10 ppmv (ppm volume), et de préférence 1 ppmv avant l'étape d'oxydation préférentielle. Le test à la lame de cuivre, bien connu de l'homme du métier, doit s'avérer négatif. Il y a donc lieu de purifier éventuellement l'hydrogène de l'hydrogène sulfuré par toute méthode bien connue de l'homme du métier. On peut citer, par exemple, les procédés d'absorption, d'extraction ou de lavage aux amines ou des traitements de conversion chimique de l'H2S, sans que cette liste puisse limiter d'une quelconque façon les traitements utilisables selon l'invention.
L'étape d'oxydation préférentielle du CO en CO2 selon la présente invention peut être réalisée par exemple sur un catalyseur sélectif en présence d'hydrogène. Les métaux qui peuvent réaliser cette réaction peuvent être choisis parmi le groupe des métaux nobles, Pt, Pd, Ru, Rh, Ir, Au ou encore Cu, Cr, V, Mn ou Ce. Les métaux peuvent être utilisés seuls ou en association avec d'autres métaux ou bien encore sous forme d'alliages. Ils peuvent être utilisés sous forme métallique massive (filaments, mousse, éponge etc..) ou supportés sur des oxydes réfractaires poreux tels que l'alumine, la cérine, l'anatase ou le rutile, la zircone, la silice, l'oxyde de fer ferrique (α-Fe2O3) ou encore l'oxyde de zinc. Sans que cela puisse aucunement limiter la portée de cette invention, la réaction d'oxydation préférentielle du CO conforme à cette invention peut être réalisée par exemple sur un catalyseur à base d'or finement divisé sur hydroxyde ferrique. Un tel catalyseur peut être préparé selon une méthode décrite dans la publication de Haruta et coll, J. Catal.,1993, 144, p.175 mais il peut être également préparé selon tout autre protocole décrit dans la littérature.
Le catalyseur est préparé par exemple par coprécipitation d'une solution contenant HAuCl4.3H2O et Fe(NO3)3.9H2O et d'une solution contenant du carbonate de sodium. Ces deux solutions sont graduellement ajoutées puis vigoureusement agitées dans un réacteur de précipitation contenant de l'eau distillée. Le mélange réactionnel est maintenu à 80°C tout au long de l'ajout des deux solutions, pendant toute l'opération le pH est maintenu entre 8 et 8,5. Après filtration le précipité est lavé à l'eau chaude jusqu'à ce que l'eau de lavage ne contienne plus de chlorure (contrôle par réaction au nitrate d'argent) puis séché à 40°C dans une étuve sous vide pendant 12 h. La poudre obtenue est ensuite calcinée sous air sec à 400°C pendant 2h avec un débit d'air de 0,5 1/g catalyseur/h. Après broyage, une poudre de granulométrie moyenne voisine de 20 µm et da surface environ 60 m2/g est obtenue. Le catalyseur contient une quantité de 3% poids d'Au.
La mise en forme du catalyseur peut se faire par toutes les méthodes bien connues de l'homme du métier, on peut citer par exemple et sans que cela puisse limiter la portée de l'invention, le dépôt sur monolithe à l'aide d'un wash-coat (revêtement déposé en phase liquide), la granulation, l'extrusion etc...
Many catalysts based noble metals supported or not can catalyze the oxidation reaction of CO in CO 2 in the presence of oxygen. In the presence of hydrogen, it is nevertheless necessary to use a catalyst which does not convert hydrogen to water too much. The use of a selective catalyst to carry out the preferential oxidation reaction of CO is therefore a very interesting solution for solving hydrogen purification problems. A very high degree of selectivity is however not necessary in the context of this invention, the presence of a little water vapor in hydrogen having been purified on a preferential oxidation catalyst being not totally unacceptable for the use of hydrogen in a process of selective hydrodesulfurization of olefinic species. The amount of H 2 S contained in the hydrogen should generally not exceed 10 ppmv (ppm volume), and preferably 1 ppmv before the preferred oxidation step. The copper blade test, well known the person skilled in the art must prove negative. It is therefore necessary to purify hydrogen sulfide hydrogen by any method well known to those skilled in the art. There may be mentioned, for example, the methods of absorption, extraction or washing with amines or chemical conversion treatments of H 2 S, without this list being able to limit in any way the treatments that can be used according to the invention. .
The preferred oxidation step of CO 2 CO 2 according to the present invention can be carried out for example on a selective catalyst in the presence of hydrogen. The metals which can carry out this reaction can be chosen from the group of noble metals, Pt, Pd, Ru, Rh, Ir, Au or else Cu, Cr, V, Mn or Ce. The metals can be used alone or in combination with other metals or even in the form of alloys. They can be used in massive metallic form (filaments, foam, sponge etc.) or supported on porous refractory oxides such as alumina, ceria, anatase or rutile, zirconia, silica, oxide ferric iron (α-Fe 2 O 3 ) or zinc oxide. Without in any way limiting the scope of this invention, the preferred oxidation reaction of CO according to this invention can be carried out for example on a finely divided gold catalyst on ferric hydroxide. Such a catalyst can be prepared according to a method described in the publication of Haruta et al., J. Catal., 1993 , 144, p.175 but it can also be prepared according to any other protocol described in the literature.
The catalyst is prepared, for example, by coprecipitation of a solution containing HAuCl 4 .3H 2 O and Fe (NO 3 ) 3 .9H 2 O and a solution containing sodium carbonate. These two solutions are gradually added and then vigorously stirred in a precipitation reactor containing distilled water. The reaction mixture is maintained at 80 ° C throughout the addition of the two solutions, throughout the operation the pH is maintained between 8 and 8.5. After filtration, the precipitate is washed with hot water until the washing water no longer contains chloride (control by reaction with silver nitrate) and then dried at 40 ° C. in a vacuum oven for 12 hours. . The powder obtained is then calcined in dry air at 400 ° C. for 2 hours with an air flow rate of 0.5 l / g catalyst / h. After grinding, a powder having an average particle size of about 20 μm and a surface area of about 60 m 2 / g is obtained. The catalyst contains an amount of 3% by weight of Au.
The shaping of the catalyst can be done by all the methods well known to those skilled in the art, for example, and without this being able to limit the scope of the invention, the deposit on monolith using a wash-coat (coating deposited in liquid phase), granulation, extrusion etc ...

Description de l'étape d'hydrodésulfurationDescription of the hydrodesulfurization step

L'étape d'hydrodésulfuration est réalisée sur un catalyseur qui comprend au moins un élément du groupe VIII et de préférence un élément du groupe VIII et un élément du groupe VIB. L'élément du groupe VIII est choisi parmi le groupe constitué du nickel, cobalt, fer. L'élément du groupe VIB, si il est présent est de préférence du molybdène ou du tungstène. Les métaux sont déposés sur un support solide amorphe choisi parmi le groupe constitué de la silice, du carbure de silicium ou de l'alumine, mis en forme sous forme de billes ou d'extrudés. Pour hydrodésulfurer sélectivement les fractions carbonées contenant des oléfines, il est préférable d'utiliser des catalyseurs contenant du cobalt et du molybdène sur un support à base d'alumine.
L'étape d'hydrodésulfuration pourra avantageusement être mise en oeuvre en deux étapes, une première étape d'hydrodésulfuration permettant de transformer plus de 50 % du soufre présent dans la charge en H2S, et une étape de finition constituée, au choix d'une étape d'hydrogénolyse des composés soufrés saturés sur un catalyseur contenant un métal du groupe VIII, ou d'une étape d'hydrodésulfuration sur un catalyseur présentant une activité plus faible que le catalyseur de la première étape. Ce type d'enchaînement permet d'améliorer la sélectivité de l'étape d'hydrodésulfuration.
The hydrodesulfurization step is carried out on a catalyst which comprises at least one group VIII element and preferably a group VIII element and a group VI B element. The group VIII element is selected from the group consisting of nickel, cobalt, iron. The group VI B element, if present, is preferably molybdenum or tungsten. The metals are deposited on an amorphous solid support selected from the group consisting of silica, silicon carbide or alumina, shaped in the form of beads or extrudates. In order to selectively hydrodesulphurize olefin-containing carbon fractions, it is preferable to use catalysts containing cobalt and molybdenum on an alumina support.
The hydrodesulfurization step may advantageously be carried out in two stages, a first hydrodesulphurization step making it possible to transform more than 50% of the sulfur present in the feedstock into H 2 S, and a finishing step consisting of, at the choice of a step of hydrogenolysis of saturated sulfur compounds on a catalyst containing a Group VIII metal, or a hydrodesulfurization step on a catalyst having a lower activity than the catalyst of the first step. This type of sequence makes it possible to improve the selectivity of the hydrodesulfurization step.

Le ou les catalyseurs mis en oeuvre au cours de cette étape sont sous forme sulfurée. La procédure de sulfuration peut être réalisée in situ ou ex situ. Dans le premier cas, le catalyseur est sulfuré avant son chargement dans le réacteur, alors que dans le deuxième cas, le catalyseur est chargé dans le réacteur sous forme d'oxydes métalliques, la sulfuration est réalisée dans le réacteur par injection d'H2S ou de composés susceptibles de se décomposer en H2S tels que le DMDS et d'hydrogène. Toute méthode de sulfuration classiquement utilisée par l'homme du métier permettant de sulfurer au moins 50% et de préférence 70% des oxydes métalliques déposés sur le support peut être mise en oeuvre.The catalyst or catalysts used during this step are in sulphurized form. The sulphurisation procedure can be carried out in situ or ex situ. In the first case, the catalyst is sulphurized before being charged to the reactor, while in the second case, the catalyst is loaded into the reactor in the form of metal oxides, the sulphurization is carried out in the reactor by injection of H 2 S or compounds capable of decomposing into H 2 S such as DMDS and hydrogen. Any sulphurization method conventionally used by those skilled in the art to sulphide at least 50% and preferably 70% of the metal oxides deposited on the support can be implemented.

La pression du réacteur est généralement comprise entre 0,5 MPa et 5 MPa, le débit d'hydrogène est tel que le rapport des débits d'hydrogène en normaux litres par heure sur le débit d'hydrocarbures en litres par heure soit compris entre 50 et 800 et de préférence entre 60 et 600. La température est comprise entre 200°C et 400°C et de préférence entre 230°C et 350°C selon la teneur en soufre de la fraction hydrocarbonée à désulfurer.The reactor pressure is generally between 0.5 MPa and 5 MPa, the flow rate of hydrogen is such that the ratio of hydrogen flow rates in normal liters per hour on the hydrocarbon flow rate in liters per hour is between 50 and 800 and preferably between 60 and 600. The temperature is between 200 ° C and 400 ° C and preferably between 230 ° C and 350 ° C depending on the sulfur content of the hydrocarbon fraction to be desulphurized.

Exemples : Examples : Exemple 1 : comparatifExample 1: comparative

Une unité pilote constituée d'un réacteur d'une capacité de 200 ml est chargée de 100 ml de catalyseur HR806S commercialisé par la société AXENS. Ce catalyseur est à base de cobalt et molybdène déposé sur alumine, il est livré sous forme présulfurée et ne nécessite donc pas d'étape de sulfuration ultérieure avant mise en contact avec la charge. La charge traitée est une essence A issue d'une unité de craquage catalytique. Cette essence a été dépentanisée afin de ne traiter que la fraction C6+ en hydrodésulfuration. Cette charge contient 425 ppm de soufre dont 6 ppm de soufre sous forme de mercaptans et un indice de brome mesuré selon la méthode ASTM D1159-98 de 49 g/100 g. Les points de coupe de cette essence A ont été déterminés par distillation simulée : l'essence A présente des points 5% poids et 95% poids respectivement de 61°C et 229 °C.A pilot unit consisting of a reactor with a capacity of 200 ml is charged with 100 ml of HR806S catalyst marketed by AXENS. This catalyst is based on cobalt and molybdenum deposited on alumina, it is delivered in presulfided form and therefore does not require a subsequent sulphurization step before contact with the load. The treated feedstock is a gasoline A from a catalytic cracking unit. This species has been depentanized in order to treat only the C 6 + fraction in hydrodesulfurization. This feed contains 425 ppm of sulfur including 6 ppm of sulfur in the form of mercaptans and a bromine number measured according to the ASTM method D1159-98 of 49 g / 100 g. The cutting points of this essence A were determined by simulated distillation: the essence A has points 5% weight and 95% weight respectively of 61 ° C and 229 ° C.

L'essence A est mélangée à de l'hydrogène pur et est injectée dans le réacteur. La pression est maintenue à 2,1 MPa, le débit de charge est de 400 ml/h, ce qui représente une vitesse spatiale horaire (VVH) de 4 h-1, le débit d'hydrogène est de 120 litre par heure, ce qui représente un débit de 300 litres (normaux) d'hydrogène par litre de charge. Trois températures différentes ont été testées.
La sélectivité apparente du catalyseur est calculée pour chaque point comme étant le rapport des constantes de vitesse apparente d'ordre 1 entre la vitesse de désulfuration et la vitesse d'hydrogénation des oléfines.
Les teneurs en soufre et en oléfines mesurées par l'indice de brome ainsi que les sélectivités sont rassemblés dans le tableau 1. Tableau 1 Température °C 260 280 300 Soufre recette ppm 64 18 9 IBr recette g/100g 37.9 31.4 22.4 Sélectivité 7.4 7.1 4.9
Gasoline A is mixed with pure hydrogen and is injected into the reactor. The pressure is maintained at 2.1 MPa, the charge rate is 400 ml / h, which represents a space velocity hourly (VVH) of 4 h -1 , the flow rate of hydrogen is 120 liters per hour, which represents a flow rate of 300 liters (normal) of hydrogen per liter of charge. Three different temperatures were tested.
The apparent selectivity of the catalyst is calculated for each point as being the ratio of the apparent first order rate constants between the desulphurization rate and the hydrogenation rate of the olefins.
The sulfur and olefin contents measured by the bromine index as well as the selectivities are collated in Table 1. Table 1 Temperature ° C 260 280 300 Sulfur recipe ppm 64 18 9 IBr recipe g / 100g 37.9 31.4 22.4 selectivity 7.4 7.1 4.9

Exemple 2 : comparatifExample 2: Comparative

Afin de mesurer l'influence du CO et du CO2 sur les performances du catalyseur, on utilise une bouteille d'hydrogène contenant 100 ppmv de CO et 350 ppmv de CO2. Cet hydrogène est mélangé à l'essence A selon des débits identiques à ceux de l'exemple 1. Le mélange ainsi constitué présente des teneurs en CO de 65 ppmv et en CO2 de 228 ppmv. Les conditions opératoires sont identiques à l'exemple 1. Le tableau 2 présente les résultats des essais. Tableau 2 Température °C 260 280 300 Soufre recette ppm 103 25 13 IBr g/100g 38.4 32.3 23.6 Sélectivité 5.8 6.8 4.8 In order to measure the influence of CO and CO 2 on the performance of the catalyst, a hydrogen bottle containing 100 ppmv of CO and 350 ppmv of CO 2 is used . This hydrogen is mixed with gasoline A at flow rates identical to those of Example 1. The mixture thus formed has CO contents of 65 ppmv and CO 2 of 228 ppmv. The operating conditions are identical to Example 1. Table 2 presents the results of the tests. Table 2 Temperature ° C 260 280 300 Sulfur recipe ppm 103 25 13 HBr g / 100g 38.4 32.3 23.6 selectivity 5.8 6.8 4.8

La présence de CO et CO2 à hauteur respectivement de 65 ppmv et 228 ppmv dans le mélange de l'hydrogène et de l'essence A dégrade l'activité hydrodésulfurante du catalyseur. Par contre, l'activité hydrogénante est peu affectée, ce qui induit une dégradation de la sélectivité.The presence of CO and CO 2 at respectively 65 ppmv and 228 ppmv in the mixture of hydrogen and gasoline A degrades the hydrodesulphurizing activity of the catalyst. On the other hand, the hydrogenating activity is little affected, which induces a degradation of the selectivity.

Exemple 3 : selon l'inventionExample 3 According to the invention

L'exemple 3 est réalisé selon l'invention, c'est à dire que l'hydrogène contenant le CO et CO2 utilisé dans l'exemple 2 est prétraité pour oxyder le CO en CO2. L'oxydation est réalisée en mélangeant l'hydrogène à de l'oxygène et en traitant le mélange sur un catalyseur d'oxydation. L'hydrogène est mélangé à un flux d'oxygène pur, dont le débit est ajusté de sorte que le rapport molaire entre l'oxygène et le CO est de 1,1. Le réacteur est opéré à une température proche de la température ambiante (50°C), à une pression de 2,1 MPa.Example 3 is carried out according to the invention, that is to say that the hydrogen containing CO and CO 2 used in Example 2 is pretreated to oxidize the CO 2 CO 2 . The oxidation is carried out by mixing the hydrogen with oxygen and treating the mixture on an oxidation catalyst. The hydrogen is mixed with a stream of pure oxygen, whose flow rate is adjusted so that the molar ratio between oxygen and CO is 1.1. The reactor is operated at a temperature close to ambient temperature (50 ° C.) at a pressure of 2.1 MPa.

Le catalyseur est préparé par exemple par coprécipitation d'une solution contenant HAuCl4.3H2O et Fe(NO3)3.9H2O et d'une solution contenant du carbonate de sodium. Ces deux solutions sont graduellement ajoutées puis vigoureusement agitées dans un réacteur de précipitation contenant de l'eau distillée. Le mélange réactionnel est maintenu à 80°C tout au long de l'ajout des deux solutions, pendant toute l'opération le pH est maintenu entre 8 et 8,5. Après filtration le précipité est lavé à l'eau chaude jusqu'à ce que l'eau de lavage ne contienne plus de chlorure (contrôle par réaction au nitrate d'argent) puis séché à 40°C dans une étuve sous vide pendant 12 h. La poudre obtenue est ensuite calcinée sous air sec à 400°C pendant 2h avec un débit d'air de 0,5 l/g catalyseur/h. Après broyage, une poudre de granulométrie moyenne voisine de 20 µm et de surface environ 60 m2/g est obtenue. Le catalyseur contient une quantité de 3% poids d'Au. Une analyse par diffraction des rayons X permet à partir de la raie Au (111) d'obtenir la taille des particules d'or qui est de 60 Å. Le catalyseur (100 mg, dilué dans un rapport 1:20 avec de l'α-Al2O3) est ensuite disposé dans un réacteur en inox de diamètre interne 10 mm puis inséré dans un four tubulaire chauffé par l'intermédiaire d'une double enveloppe à 50°C. Le débit d'hydrogène est ajusté à 5x104 Nml /h/ g catalyseur, de telle sorte que la vitesse spatiale horaire est de 5x105 h-1, la densité du catalyseur étant égale à 1 g/cm3. L'analyse du gaz entrant dans le réacteur ainsi que celle des effluents (CO, CO2, H2O, O2) est réalisée par chromatographie en phase gazeuse équipée de deux détecteurs catharométriques.
Après passage de l'hydrogène sur le catalyseur d'oxydation préférentielle dans les conditions décrites, la teneur stabilisée en CO et CO2 de l'hydrogène ainsi traité est respectivement de 17 ppmv et 430 ppmv.
Une bouteille de gaz hydrogène sous pression contenant environ 17 pmv de CO et 430 ppmv de CO2 a été fabriquée suite à ces résultats. Le gaz qu'elle contient a ensuite été mélangé à l'essence A et envoyé dans le réacteur utilisé dans les exemples 1 et 2, dans les mêmes conditions opératoires. Le mélange ainsi constitué présente une teneur en CO de 11 ppmv et une teneur en CO2 de 283 ppmv. Le tableau 3 présente les résultats des essais. Tableau 3 Température °C 260 280 300 Soufre recette ppm 71 20 10 IBr g/100g 38.1 31.8 22.9 Sélectivité 7.1 7.1 4.9
The catalyst is prepared, for example, by coprecipitation of a solution containing HAuCl 4 .3H 2 O and Fe (NO 3 ) 3 .9H 2 O and a solution containing sodium carbonate. These two solutions are gradually added and then vigorously stirred in a precipitation reactor containing distilled water. The reaction mixture is maintained at 80 ° C throughout the addition of the two solutions, throughout the operation the pH is maintained between 8 and 8.5. After filtration the precipitate is washed with hot water until the washing water contains more chloride (control by reaction with silver nitrate) and then dried at 40 ° C in a vacuum oven for 12 h. The powder obtained is then calcined in dry air at 400 ° C. for 2 hours with an air flow rate of 0.5 l / g catalyst / h. After grinding, a powder with an average particle size of about 20 μm and a surface area of about 60 m 2 / g is obtained. The catalyst contains an amount of 3% by weight of Au. X-ray diffraction analysis makes it possible, from the Au (111) line, to obtain a gold particle size of 60 Å. The catalyst (100 mg, diluted 1:20 with α-Al 2 O 3 ) is then placed in a stainless steel reactor of 10 mm internal diameter and then inserted into a heated tubular furnace via a double jacket at 50 ° C. The hydrogen flow rate is adjusted to 5 × 10 4 Nm 2 / hr / g catalyst, so that the hourly space velocity is 5 × 10 5 h -1 , the catalyst density being equal to 1 g / cm 3 . The analysis of the gas entering the reactor as well as that of the effluents (CO, CO 2 , H 2 O, O 2 ) is carried out by gas chromatography equipped with two catharometric detectors.
After passage of hydrogen over the preferred oxidation catalyst under the described conditions, the stabilized CO and CO 2 content of the hydrogen thus treated is 17 ppmv and 430 ppmv, respectively.
A bottle of pressurized hydrogen gas containing about 17 pmv CO and 430 ppmv CO 2 was manufactured following these results. The gas which it contains was then mixed with gasoline A and sent to the reactor used in Examples 1 and 2, under the same operating conditions. The mixture thus formed has a CO content of 11 ppmv and a CO2 content of 283 ppmv. Table 3 presents the results of the tests. Table 3 Temperature ° C 260 280 300 Sulfur recipe ppm 71 20 10 HBr g / 100g 38.1 31.8 22.9 selectivity 7.1 7.1 4.9

La mise en oeuvre de l'étape d'oxydation pour prétraiter l'hydrogène permet d'améliorer significativement l'activité en hydrodésulfuration du catalyseur et de retrouver des performances en activité et sélectivité proches de celles des essais réalisés avec de l'hydrogène exempt de CO et CO2 présentés à l'exemple 1.The implementation of the oxidation step to pretreat the hydrogen makes it possible to significantly improve the activity in hydrodesulfurization of the catalyst and to recover performance in activity and selectivity similar to those of the tests carried out with hydrogen free of CO and CO 2 presented in Example 1.

Par conséquent, la mise en oeuvre d'une étape de prétraitement oxydant du CO permet, à l'aide d'un dispositif simple, de limiter fortement l'effet néfaste de la présence de CO dans l'hydrogène sur les performances des catalyseurs d'hydrodésulfuration, et ceci sans qu'il soit nécessaire d'éliminer également de façon importante le CO2.Consequently, the implementation of a step of oxidative CO pretreatment makes it possible, by means of a simple device, to greatly limit the detrimental effect of the presence of CO in hydrogen on the performance of the catalysts. hydrodesulfurization, and this without the need to also substantially eliminate CO2.

Claims (11)

  1. A process for hydrodesulphurization of a hydrocarbon cut HC comprising at least 5% by weight of olefins, in which said hydrocarbon cut, a stream HYD of makeup hydrogen and optionally a stream REC of recycle hydrogen are mixed to form an overall feed which is supplied to the inlet to at least one reactor comprising a desulphurization catalyst, under operating conditions that can transform the organic sulphur-containing compounds of the HC cut into H2S, in which the source or sources of hydrogen forming the stream HYD is selected, and optionally at least one hydrogen purification treatment is carried out on HYD, REC or a mixture thereof such that said overall feed comprises at most 50 ppmv of CO and at least 120 ppmv of COx, where COx = CO + ½ CO2.
  2. A process according to claim 1, in which the source or sources of hydrogen forming the stream HYD is selected and at least one hydrogen purification treatment is carried out on at least a portion of HYD so that HYD comprises at most 50 ppmv of CO and at least 120 ppmv of COx.
  3. A process according to claim 1 or claim 2, comprising at least one hydrogen purification treatment T1 carried out on HYD, REC or a mixture thereof, said treatment T1 carrying out limited CO2 elimination to obtain at least 200 ppmv of CO2 in the overall feed.
  4. A process according to one of claims 1 to 3, comprising at least one treatment T2 for the purification of hydrogen carried out on HYD, REC or a mixture thereof, said treatment T2 carrying out catalytic oxidation of CO by O2 and/or H2O to obtain at most 50 ppmv of CO in the overall feed.
  5. A process according to one of claims 1 to 3, comprising at least one treatment T3 for the purification of hydrogen carried out on HYD, REC or a mixture thereof, said treatment T3 carrying out catalytic methanation of CO by H2 to obtain at most 50 ppmv of CO in the overall feed.
  6. A process according to claim 4, comprising a hydrogen purification treatment carried out on HYD, and optionally on REC or a mixture thereof, said treatment comprising a treatment T2 carrying out catalytic oxidation of CO by O2 followed directly, and with no secondary elimination of CO2, by desulphurization of the HC cut in the presence of a stream of the purified hydrogen.
  7. A process according to claim 5, comprising a hydrogen purification treatment carried out on HYD, and optionally on REC or a mixture thereof, said treatment T3 comprising carrying out methanation of CO by H2 followed directly, and with no secondary elimination of CO2, by desulphurization of the HC cut in the presence of a stream of the purified hydrogen.
  8. A process according to claim 6 or claim 7, comprising a treatment T1 for eliminating CO2 carried out on HYD upstream of T2 or T3.
  9. A process according to one of the preceding claims, comprising a hydrogen recycle REC and a purge of recycled hydrogen WGAS in which the flow rate of the purge WGAS is controlled so that the CO content in the overall feed is less than 50 ppmv but that the COx content in the overall feed is more than 120 ppmv.
  10. A process according to one of the preceding claims, for hydrodesulphurization of an olefinic gasoline cut, carried out on a catalyst which comprises at least one element from group VIII and optionally an element from group VIB, the element from group VIII being selected from the group constituted by nickel, cobalt and iron, the optional group VIB element is molybdenum or tungsten, in which the reactor pressure is in the range 0.5 MPa to 5 MPa, the ratio of the flow rate of hydrogen in normal litres of hydrogen per hour to the flow rate of hydrocarbons in litres per hour is in the range 50 to 800, and the temperature is in the range 200°C to 400°C.
  11. A process according to claim 10, in which the catalyst comprises cobalt and molybdenum.
EP05291688A 2004-09-28 2005-08-05 Process for the selective desulfurisation of olefinic gasolines comprising a hydrogen purification step Active EP1647590B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0410260A FR2875809B1 (en) 2004-09-28 2004-09-28 PROCESS FOR SELECTIVELY DESULFURIZING OLEFINIC ESSENCES COMPRISING A HYDROGEN PURIFICATION STEP

Publications (2)

Publication Number Publication Date
EP1647590A1 EP1647590A1 (en) 2006-04-19
EP1647590B1 true EP1647590B1 (en) 2008-01-23

Family

ID=34948841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05291688A Active EP1647590B1 (en) 2004-09-28 2005-08-05 Process for the selective desulfurisation of olefinic gasolines comprising a hydrogen purification step

Country Status (5)

Country Link
EP (1) EP1647590B1 (en)
JP (1) JP4938278B2 (en)
AT (1) ATE384777T1 (en)
DE (1) DE602005004474T2 (en)
FR (1) FR2875809B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447057A (en) * 2012-05-31 2013-12-18 武汉科林精细化工有限公司 Preparation method of pre-vulcanized selective hydrodesulfurization catalyst for FCC gasoline
US10144883B2 (en) 2013-11-14 2018-12-04 Uop Llc Apparatuses and methods for desulfurization of naphtha
US11136514B2 (en) * 2019-06-07 2021-10-05 Uop Llc Process and apparatus for recycling hydrogen to hydroprocess biorenewable feed

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE636417A (en) * 1962-08-21
GB2003916B (en) * 1977-09-02 1982-05-19 Hitachi Ltd Process for hydrodesulphurizing hydrocarbon oil
JP2832336B2 (en) 1995-11-07 1998-12-09 工業技術院長 Gold ultrafine particle-immobilized substance and method for producing the same
US6409913B1 (en) 1996-02-02 2002-06-25 Exxonmobil Research And Engineering Company Naphtha desulfurization with reduced mercaptan formation
NL1010140C2 (en) 1998-09-21 2000-03-22 Stichting Energie Catalysts for the selective oxidation of carbon monoxide in hydrogen-containing gases.
FR2790000B1 (en) 1999-02-24 2001-04-13 Inst Francais Du Petrole PROCESS FOR PRODUCING LOW SULFUR ESSENCE
EP1272424A1 (en) 2000-04-14 2003-01-08 Shell Internationale Researchmaatschappij B.V. Process for the selective oxidation of carbon monoxide
US7422679B2 (en) * 2002-05-28 2008-09-09 Exxonmobil Research And Engineering Company Low CO for increased naphtha desulfurization

Also Published As

Publication number Publication date
EP1647590A1 (en) 2006-04-19
DE602005004474T2 (en) 2008-04-30
DE602005004474D1 (en) 2008-03-13
JP4938278B2 (en) 2012-05-23
FR2875809A1 (en) 2006-03-31
JP2006097029A (en) 2006-04-13
FR2875809B1 (en) 2006-11-17
ATE384777T1 (en) 2008-02-15

Similar Documents

Publication Publication Date Title
US20060076271A1 (en) Process for the selective desulphurization of olefinic gasolines, comprising a hydrogen purification step
CA2352408C (en) Process consisting of two stages of gasoline hydrodesulfurization and intermediate elimination of h2s formed during the first stage
CA2312211C (en) Low-sulphur species production method
EP1923452B1 (en) Method of deep sulphur removal from cracked petrol with minimum loss of octane number
EP2161076B1 (en) Selective hydrogenation method using a sulphurated catalyst with a specific composition
EP3428248B1 (en) Partially coked catalysts for use in the hydrotreatment of cuts containing sulphurous compounds and olefins
WO2006037884A1 (en) Method for selectively removing arsenic in sulphur-and olefin-rich gasolines
CA2299152C (en) Process for the production of low-sulfur fuels
EP1354930A1 (en) Process for the preparation of hydrocarbons of low sulfur and mercaptans content.
EP1369466B1 (en) Hydrodesulfurization of sulphur and olefins containing fractions with a metals of groups VIII and VIB containing supported catalyst.
EP1661965B1 (en) process for hydrotreating an olefinic gasoline comprising a selective hydrogenation step
EP1647590B1 (en) Process for the selective desulfurisation of olefinic gasolines comprising a hydrogen purification step
EP1370627B1 (en) Method for producing petrol having a low sulphur content
CA2440189C (en) Method for producing desulphurised petrol from a petroleum fraction containing cracked petrol
EP1659163B1 (en) process for converting saturated sulfur compounds in a hydrocarbon fraction containing few or no olefins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061019

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080128

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005004474

Country of ref document: DE

Date of ref document: 20080313

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080805

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005004474

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230825

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 19

Ref country code: GB

Payment date: 20230822

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230828

Year of fee payment: 19