EP1644546B1 - Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz - Google Patents

Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz Download PDF

Info

Publication number
EP1644546B1
EP1644546B1 EP04767427.0A EP04767427A EP1644546B1 EP 1644546 B1 EP1644546 B1 EP 1644546B1 EP 04767427 A EP04767427 A EP 04767427A EP 1644546 B1 EP1644546 B1 EP 1644546B1
Authority
EP
European Patent Office
Prior art keywords
preferentially
use according
hours
stage
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04767427.0A
Other languages
English (en)
French (fr)
Other versions
EP1644546A2 (de
Inventor
Julien Boselli
Fabrice Heymes
Frank Eberl
Timothy Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP1644546A2 publication Critical patent/EP1644546A2/de
Application granted granted Critical
Publication of EP1644546B1 publication Critical patent/EP1644546B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to alloys of Al-Zn-Mg-Cu type with compromised static mechanical characteristics - improved damage tolerance, as well as structural elements for aeronautical construction incorporating wrought half-products made from these alloys.
  • Al-Zn-Mg-Cu alloys (belonging to the family of 7xxx alloys) are commonly used in aircraft construction, and in particular in the construction of civil aircraft wings.
  • a skin made of alloy plates 7150, 7055, 7449, and possibly stiffeners profiles of alloys 7150, 7055 or 7449.
  • the alloys 7150, 7050 and 7349 are also used for the manufacture of fuselage stiffeners.
  • the 7475 alloy is sometimes used for the manufacture of lower wing panels, in particular by machining of heavy plates, whereas the spun wing stiffeners are usually made of alloys of 2xxx type (eg 2024, 2224, 2027).
  • alloys 7075 and 7175 (zinc content between 5.1 and 6.1% by weight), 7475 (zinc content between 5.2 and 6.2%) , 7050 (zinc content between 5.7 and 6.7%), 7150 (zinc content between 5.9 and 6.9%) and 7049 (zinc content between 7.2 and 8.2%). These alloys have different compromises between toughness and yield strength.
  • the patent application EP 0 257 167 A1 discloses an alloy developed specifically for the reverse spin fabrication of pressure-resistant hollow bodies.
  • This alloy has the composition (in percent by mass): Zn 6.25 - 8.0 Mg 1,2 - 2,2 Cu 1,7 - 2,8 Zr ⁇ 0.05 Fe ⁇ 0.20 (Fe + Si) ⁇ 0.40 Cr 0.15 - 0.28 Mn ⁇ 0.20 Ti ⁇ 0.05.
  • R m 530 MPa
  • values of R p0.2 480 MPa
  • A 15.4%.
  • Also known alloy 7040 whose standardized chemical composition is: Zn 5.7 - 6.7 Mg 1.7 - 2.4 Cu 1,5 - 2,3 Zr 0.05 - 0.12 If ⁇ 0.10 Fe ⁇ 0.13 Ti ⁇ 0.06 Mn ⁇ 0.04 other elements ⁇ 0.05 each and ⁇ 0.15 in total.
  • Alloy 7085 is also known whose standardized chemical composition is: Zn 7.0 - 8.0 Mg 1,2 - 1,8 Cu 1,3 - 2,0 Zr 0.08 - 0.15 If ⁇ 0.06 Fe ⁇ 0.08 Ti ⁇ 0.06 Mn ⁇ 0.04 Cr ⁇ 0.04 other elements ⁇ 0.05 each and ⁇ 0.15 in total.
  • the problem to which the present invention attempts to respond is to propose a wrought product of Al-Zn-Mg-Cu type alloy which makes it possible to achieve very high levels of static mechanical resistance while presenting a level of sufficient in other properties of use, including toughness, corrosion resistance and fatigue crack propagation resistance (cracking) for use in the manufacture of structural parts or components that meet high requirements such as frames, forks and handlebars of cycles or baseball bats.
  • the metallurgical states are defined in the European standard EN 515.
  • the chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3.
  • the static mechanical characteristics ie the breaking strength R m , the yield stress R p0,2 , and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1.
  • the yield strength in compression was measured by a test according to ASTM E9.
  • Toughness K IC was measured according to ASTM E 399.
  • the R-curve is determined according to ASTM 561-98 standard. From the curve R, the critical stress intensity factor K C is calculated, ie the intensity factor which causes the instability of the crack.
  • the stress intensity factor K CO is also calculated by assigning to the critical load the length initial crack, at the beginning of monotonous loading. These two values are calculated for a specimen of the desired shape. K app denotes the K CO corresponding to the test piece used to perform the R curve test. The resistance to exfoliating corrosion was determined according to the EXCO test described in the ASTM G34 standard.
  • machining includes any material removal process such as turning, milling, drilling, reaming, tapping, EDM, grinding, polishing.
  • spun product also includes products that have been drawn after spinning, for example by cold drawing through a die. It also includes drawn products.
  • structural element refers to an element used in mechanical engineering for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is usually prescribed or performed. It is typically a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • fuselage such as fuselage skin (fuselage skin in English
  • stiffeners or stringers such as fuselage skin
  • bulkheads fuselage (circumferential frames)
  • wings such as wing skin
  • stiffeners stiffeners (stiffeners), ribs (ribs) and spars
  • empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • monolithic structure element refers to a structural element that has been obtained from a single piece of semi-finished product, rolled, forged or molded, without assembly, such as riveting, welding, bonding, with another room.
  • TEQ 160 ° VS exp Q R 1 160 + 273 1 t real + 273 ⁇ t real
  • TEQ (160 ° C) is the time equivalent to 160 ° C corresponding to an income of a duration of real t at real T (in ° K)
  • Q is an activation energy of 132000 kJ / mol
  • R 8.31 kJ / mol / (° K).
  • the problem is solved by the use of products spun in the form of a tube having the combination of a fine adjustment of the content of alloying elements and conditions of the heat treatment, in particular the homogenization of the raw forms. , as well as the solution and the income of the products obtained by hot transformation.
  • the content of alloying elements must not significantly exceed their solubility limit, otherwise the persistence of intermetallic phases during the dissolution process, which can adversely affect damage tolerance.
  • the copper content can be brought to a level fairly close to the solubility limit, which depends on the magnesium content.
  • a composition in which 3.8 ⁇ Cu + Mg ⁇ 4.8, and preferably 3.9 ⁇ Cu + Mg ⁇ 4.7 is preferred.
  • 4.0 ⁇ Cu + Mg ⁇ 4.8 is chosen.
  • 4.1 ⁇ Cu + Mg ⁇ 4.7 is chosen below a magnesium content of about 1.6% there is a risk of slits forming during casting, and a minimum content of about 1.7% or even 1.8% is preferred.
  • the ratio Cu / Mg must be at least 1.0 in order to obtain a good compromise of properties, and in particular a good tolerance to damage, but must not exceed 1.5 to ensure acceptable flowability. It is preferred that it be between 1.1 and 1.5, and even more preferably between 1.1 and 1.4. The applicant has found that above a magnesium content of about 2.2%, it no longer obtains acceptable toughness properties.
  • the magnesium and copper content is chosen such that 4.2 ⁇ Cu + Mg ⁇ 4.7 and Cu / Mg are between 1.15 and 1.45.
  • the addition of zirconium at a level of 0.08-0.20% limits the recrystallization.
  • a Zr content of not more than 0.15% is preferred to avoid the formation of primary phases.
  • these antirecrystallizing elements are added, their sum is limited by the appearance of the same phenomenon.
  • only zirconium is added.
  • This alloy is then cast according to one of the techniques known to those skilled in the art to obtain a raw form, such as a spinning billet or a rolling plate.
  • This raw form is then homogenized.
  • the purpose of this heat treatment is threefold: (i) to dissolve the coarse soluble phases formed on solidification (ii) to reduce the concentration gradients to facilitate the dissolution stage and (iii) to precipitate the dispersoids in order to limit / to suppress the recrystallization phenomena during the dissolution stage.
  • the Applicant has found that the alloy according to was characterized by a particularly low end of solidification temperature compared to the 7040, 7050 or 7475 type alloys. The same is true of the temperature above which the partial melting is observed. from the alloy to the thermodynamic equilibrium (so-called solidus temperature).
  • the homogenization is carried out in two stages, with a first stage between 452 and 473 ° C., typically for a period of between 4 and 30 hours (preferably between 4 and 15 hours), followed by second step between 465 and 484 ° C, and preferably between 467 and 481 ° C, typically for a period of between 4 and 30 hours (preferably between 4 and 16 hours).
  • the first step is carried out between 457 and 463 ° C, and the second between 467 and 474 ° C.
  • the homogenization is carried out in a single stage with a linear rise at 40 ° C. per hour to a temperature of between 467 and 481 ° C., preferably between 471 and 481 ° C., and typically during a duration of between 4 and 30 hours. It is also possible to homogenize in three stages.
  • the homogenization can also be carried out in a single step, with a temperature rise below 200 ° C./h, and preferably between 20 and 50 ° C./h up to a plateau between 465 and 484 ° C., and preferentially between 471 and 481 ° C.
  • the raw form is then hot processed to form products spun in the form of tubes.
  • the spinning is preferably done at a die temperature included between 380 and 430 ° C, and preferably between 390 and 420 ° C, by one of the methods known to those skilled in the art, such as direct spinning or reverse spinning. It is preferred that the hot-spinning process be carried out with a billet temperature between 400 and 460 ° C, and preferably between 420 ° C and 440 ° C. It is thus possible to obtain spun products which nowhere show a coarse cortical layer with a thickness greater than 3 mm, and preferably limited to 1 mm, especially in the case of less thick spun products.
  • the hot transformation can optionally be followed by a cold transformation.
  • spun and drawn tubes can be made.
  • the temperature is continuously increased for a period of between 2 and 6 hours, and preferably approximately 4 hours, up to a temperature of between 470 and 500 ° C. (preferentially not exceeding 485 ° C.). ° C), preferably between 474 and 484 ° C, and even more preferably between 477 and 483 ° C, and maintains the product at this temperature for a period of between 1 and 10 hours, and preferably about 2 to 4 hours.
  • the products are quenched, preferably in a preferably liquid quenching medium such as water, said liquid preferably having a temperature not exceeding 40 ° C.
  • the products can be subjected to controlled traction with a permanent elongation of the order of 1 to 5%, and preferably 1.5 to 3%.
  • a first stage of between 110 ° C and 130 ° C is suitable.
  • the first stage is between 115 ° C and 125 ° C.
  • an equivalent TEQ treatment time (160 ° C.) of between 0.1 and 2 hours, and preferably between 0.1 and 0.5 hours, may be used.
  • the second stage is advantageously between 150 and 170 ° C.
  • the equivalent treatment time TEQ (160 ° C) for this second stage is advantageously between 4 and 16 hours, and preferably included between 6 and 12 o'clock. If the aim is to optimize the compromise between R 0.2 and K IC , a second longer stage at a temperature of between 150 ° C and 170 ° C is preferable, for example an equivalent treatment time TEQ (160 ° C) included between 16 and 30 hours. In an advantageous embodiment, the second stage was carried out at a temperature of 160 ° C. for 24 hours. In a first particular embodiment, the temperature of the second stage is between 155 and 165 ° C.
  • this second stage is particularly important for the final properties of the product.
  • the second stage is between 157 and 163 ° C, and its duration is between 6 and 10 hours.
  • the second stage is carried out at a slightly lower temperature, between 150 and 160 ° C.
  • a temperature of the order of 115 to 145 ° C for a duration of the order of 4 to 50 hours, for example 48 hours at 120 ° C.
  • an equivalent TEQ processing time (160 ° C.) of the order of 0.6 hours to 1.20 hours can be used.
  • the use according to the invention is very interesting for applications that require both a high mechanical strength, and a high tolerance against occasional overloads without leading to the sudden rupture of the part.
  • the use of spun products in the form of tubes according to the invention is suitable for the manufacture of parts or structural elements which meet high safety requirements. Applicant has manufactured by spinning, possibly followed by a cold drawing, tubes for the manufacture of frames, forks and handlebar cycles (bicycles, tricycles, motorcycles etc.), or baseball bats.
  • a method of manufacture is preferably chosen which leads to a fiber structure of the tubes.
  • Examples 1 to 5 and the alloys N and O of Example 6 are not part of the invention but are useful for understanding the invention.
  • the content of Cu, Mg and Zn was determined by chemical analysis after dissolution of a part of the sample, while the other elements were determined by solid X-ray spectroscopy.
  • Section sections "I" were spun (see Figure 1 : thickness of the order of 17 mm to 22 mm, width of the order of 160 mm and height of the order of 80 mm) from peeled billet diameter 270 mm, at a temperature of between 390 and 410 ° C and a container temperature of between 400 and 420 ° C, with an exit velocity of about 0.5 m / min.
  • the profiles were dissolved by increasing the temperature continuously for 3 hours to 481 ⁇ 3 ° C and keeping them at this temperature for 6 hours, then quenched in water between 22 and 25 hours. ° C and tractionned with a permanent deformation between 1.5 and 3%. Over-treatment was then performed to obtain T76 products.
  • the over-income was carried out in two stages: first at 120 ° C for 6 hours, then at 160 ° C for a variable period.
  • the thickness of the recrystallized coarse grain layer measured in the center of the soleplate is less than 1 mm.
  • To characterize the products obtained their static mechanical characteristics (R m , R p0.2 , A) according to EN 10001-2, their resistance to exfoliating corrosion according to ASTM G34 ("Exco" test), their resistance were determined.
  • Table 2 shows the influence of the duration of the second income stage on certain properties measured at the end of the profile; the mechanical characteristics having been measured at 20 ° C.
  • the results of the tensile test were obtained on specimen of circular section, diameter 10 mm, half-thickness and half-width in the long branch.
  • the KIc toughness results were obtained on specimens taken at mid-thickness and mid-width in the long branch or the thickest branch.
  • the EXCO corrosion results were obtained on specimens taken at mid-thickness and half-width in the branch.
  • the results of Kapp were obtained on specimens mid-thickness and centered in the sole of the profile containing the long branch.
  • the "Compact-voltage panel" type samples were taken at mid-thickness and half-width of the sole at the end of the profile.
  • the products were put in solution with a rise in temperature in 35 minutes up to 479 ⁇ 2 ° C, with a step of 4 hours at this temperature.
  • the quenching was carried out in cold water.
  • the flats were tractionned with a permanent elongation of between 1.5 and 3%.
  • the income was made in two stages: 6 hours at 120 ° C + 8 hours at 160 ° C.
  • Ultrasonic testing verified the absence of internal defects (class AA MIL-STD-2154).
  • the thickness of the recrystallized coarse grain layer measured at the center of the soleplate is less than 1 mm.
  • results of the tensile and compressive test are given in Table 6.
  • the results of the tensile test were obtained on specimens of circular section, diameter 10 mm, at mid-thickness at the end of the flat and in two positions. in the section: mid-width and edge.
  • the results of the compression test were obtained on specimen of circular section, diameter 10 mm, at mid-thickness at the end of the flat and at two positions in the section: at mid-width and edge.
  • the T6 state is close to the 6 hour point at 120 ° C + 1 h at 160 ° C.
  • Table 10 shows some tenacity-static mechanical characteristics compromise for some points corresponding to T7x states. The test conditions are the same as those presented in Example 1.
  • Table 10 Duration of the 2nd stage of income 8 am 12 h 24 h TEQ (160 ° C) 8.71 h 12.71 h 24.71
  • EXCO surface P P P EXCO: T / 2 EB EB EA / EB K app (LT) [MPa ⁇ m] 86.4 83.1 80.0 R m (L) [MPa] 619 614 576 R p0.2 (L) [MPa] 588 577 522 A (L) [%] 12.5 10.9 11.7
  • EXCO resistance to exfoliating corrosion, determined by EXCO surface test; mid-thickness (T / 2)
  • Inverted section 'T' sections were spun (see Figure 3 : thickness of the sole of the order of 25 mm, width of the reinforcement of the order of 40 mm, width of the sole of the order of 180 mm and height of the order of 70 mm) from billets of composition K (see example 2).
  • the spinning conditions were similar to those of Example 2.
  • the profiles labeled X, Y and Z have separately undergone the stages of solution dissolution, quenching and traction.
  • the profiles X and Y have been dissolved as in Example 2.
  • the Z profile has been dissolved in a temperature rise between 1h and 2h and maintaining 3 hours at 480 ⁇ 2 ° C.
  • the three sections were soaked in cold water and triturated between 1.5% and 3%.
  • the profiles have been rectified to improve their straightness.
  • the income was made in two stages with a first 6 hour stage at 120 ° C.
  • Ultrasonic testing was performed to check for internal defects (Class A, MIL-STD-2154).
  • the thickness of the recrystallized coarse grain layer measured at the center of the soleplate is less than 1 mm.
  • Tables 11, 12 and 13 show the influence of the duration of the second income stage on certain properties of the product for the three profiles respectively X, Y and Z; the mechanical characteristics having been measured at 20 ° C.
  • the test conditions are the same as those presented in Example 1.
  • the results of the tensile test were obtained on specimen of circular section, diameter 10 mm, half-thickness and half-width in the long limb. .
  • the KIc toughness results and EXCO corrosion was obtained on specimens taken at mid-thickness and mid-width in the long limb.
  • the results of Kapp were obtained on specimens centered in the sole of the profile containing the long branch.
  • the products were dissolved with a rise in temperature between 1h and 2h up to 480 ⁇ 2 ° C, with a plateau of 3 hours at this temperature.
  • the quenching was carried out in cold water between 21 and 22 ° C. Then the extruded sections and quenched were triturated with a permanent elongation of between 1.5 and 3%.
  • the profiles have been rectified to improve their straightness.
  • a first income of 6h at 120 ° C was achieved.
  • Ultrasonic testing was performed to check for internal defects (Class A, MIL-STD-2154).
  • a second income was made for 8 hours at 160 ° C.
  • the thickness of the recrystallized coarse grain layer measured at the center of the soleplate is less than 1 mm.
  • the results of the tensile test (on specimen of circular section, diameter 10 mm, taken at the end of the profile, at mid-thickness and half-width in the long branch) are collated in table 16.
  • This table also contains the toughness results and Kapp both taken from the soleplate.
  • the test conditions are the same as those presented in Example 1 except for the thickness B of the CCT test specimen for Kapp characterization which is 5 mm.
  • Bills with L, M, N and O compositions were cast with diameters of 200 mm (see Table 17). All the compositions have undergone the same homogenization between 473 ° C. and 481 ° C. for 15 hours. After homogenization the billets were crimped and drilled in the center to allow needle spinning. Seamless tubes were spun. The spinning blanks were cold drawn to produce tubes with a diameter of between 20 and 30 mm and a wall thickness between 2 and 5 mm. Cold drawing increases the stored energy that is the main driver of recrystallization. The variation of the transition elements (see Table 17) made it possible to generate different microstructures. After stretching; the tubes were dissolved at temperatures above 480 ° C for 1 h before cold water quenching ( ⁇ 20 ° C).
  • the T6 state is close to the 6 hour point at 120 ° C + 1 h at 160 ° C.
  • alloy tube L is used for sports and leisure market applications: frames, forks and handlebars cycles, baseball bats, such use of alloy tube L being according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Extrusion Of Metal (AREA)
  • Conductive Materials (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Articles (AREA)
  • Forging (AREA)

Claims (17)

  1. Verwendung eines Strangpresserzeugnisses in Form eines Rohres aus Aluminiumlegierung, dadurch gekennzeichnet, dass es aufweist (in Massen-%):
    (a) Zn 6,7 - 7,5 % Cu 2,0 - 2,8 % Mg 1,6 - 2,2 %;
    (b) Zr 0,08 - 0,20 % Fe + Si < 0,20 %;
    (c) weitere Elemente jeweils ≤ 0,05 % und insgesamt ≤ 0,15%;
    (d) Rest Aluminium,
    für die Herstellung von Fahrradrahmen, -gabeln- oder -lenkern oder Baseballschlägern.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass sein Gehalt an Magnesium und Kupfer so gewählt ist, dass 3,8 < (Cu + Mg) < 4,8, und bevorzugt 3,9 < (Cu + Mg) < 4,7, und besonders bevorzugt 4,1 < (Cu + Mg) < 4,7.
  3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Cu/Mg-Verhältnis zwischen 1,0 und 1,5, bevorzugt zwischen 1,1 und 1,5 und besonders bevorzugt zwischen 1,1 und 1,4 liegt.
  4. Verwendung nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Zn zwischen 6,9 und 7,3 % liegt.
  5. Verwendung nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Cu zwischen 2,2 und 2,6 % liegt.
  6. Verwendung nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Mg zwischen 1,7 und 2,0 % und vorzugsweise zwischen 1,8 und 2,0 % liegt.
  7. Verwendung nach irgendeinem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Legierung zusätzlich bis zu 0,8 % Mangan enthält.
  8. Verwendung nach irgendeinem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Si + Fe nicht mehr als 0,15 % beträgt.
  9. Verwendung nach irgendeinem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Rohr einer Lösungsglüh-, Abschreck- und Warmauslagerungsbehandlung unterworfen wurde, wobei die Warmauslagerungsbehandlung eine erste Stufe bei einer Temperatur zwischen 110 und 125 °C und vorzugsweise zwischen 115 und 125 °C und eine zweite Stufe bei einer Temperatur zwischen 150 und 170 °C und vorzugsweise zwischen 150 und 165 °C umfasst.
  10. Verwendung eines Strangpresserzeugnisses in Form eines Rohres aus Aluminiumlegierung nach irgendeinem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Verfahren zur Herstellung des Rohres folgende Schritte umfasst:
    (a) Herstellen einer Legierung mit einer Zusammensetzung nach einem der Ansprüche 1 bis 9,
    (b) Gießen einer Rohform, wie z. B. eines Walzbarrens oder eines Press- oder Schmiedebarrens,
    (c) Homogenisieren der Rohform,
    (d) Warmumformen zur Gewinnung eines ersten Halbzeuges,
    (e) Lösungsglühen des ersten Halbzeuges,
    (f) Abschrecken,
    (g) eventuell kontrolliertes Recken,
    (h) Warmauslagern.
  11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass die Homogenisierung (Schritt (a)) in zwei Schritten durchgeführt wird, mit einer ersten Stufe zwischen 452 und 473 °C, vorzugsweise zwischen 457 und 473 °C, und einer zweiten Stufe zwischen 465 und 484 °C und vorzugsweise zwischen 467 und 481 °C.
  12. Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass die Homogenisierung (Schritt (a)) in einem einzigen Schritt durchgeführt wird, mit einem Temperaturanstieg kleiner als 200 °C/h und vorzugsweise zwischen 20 und 50 °C/h bis zu einer Stufe zwischen 465 und 484 °C und vorzugsweise zwischen 471 und 481 °C.
  13. Verwendung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Warmumformung durch Strangpressen mit einer Halbzeugtemperatur zwischen 400 bis 460 °C und vorzugsweise zwischen 420 und 440 °C erfolgt.
  14. Verwendung nach irgendeinem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Lösungsglühtemperatur nicht höher als 500 °C und in bevorzugter Weise nicht höher als 485 °C ist.
  15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, dass das Lösungsglühen mit einer Stufe zwischen 470 und 485 °C, bevorzugt zwischen 475 und 484 °C und besonders bevorzugt zwischen 477 und 483 °C während einer Dauer von 1 bis 10 Stunden endet.
  16. Verwendung nach irgendeinem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass das kontrollierte Recken zur einer bleibenden Dehnung von 1 bis 5 % und vorzugsweise 1,5 bis 3 % führt.
  17. Verwendung nach irgendeinem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass die Warmauslagerungsbehandlung beinhaltet:
    a) eine erste Stufe bei einer Temperatur zwischen 110 und 130 °C und vorzugsweise zwischen 115 und 125 °C, und im letztgenannten Fall in bevorzugter Weise für eine Dauer von 2 bis 10 Stunden und in besonders bevorzugter Weise 5 bis 7 Stunden;
    b) eine zweite Stufe bei einer Temperatur zwischen 150 und 170 °C, bevorzugt zwischen 155 und 165 °C und besonders bevorzugt zwischen 157 bis 163 °C, und in bevorzugter Weise für eine Dauer von 4 bis 12 Stunden und in besonders bevorzugter Weise 6 bis 10 Stunden.
EP04767427.0A 2003-06-24 2004-06-23 Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz Expired - Lifetime EP1644546B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48074303P 2003-06-24 2003-06-24
PCT/FR2004/001571 WO2005001149A2 (fr) 2003-06-24 2004-06-23 Produits en alliages al-zn-mg-cu a compromis caracteristiques mecaniques statiques/tolerance aux dommages ameliore

Publications (2)

Publication Number Publication Date
EP1644546A2 EP1644546A2 (de) 2006-04-12
EP1644546B1 true EP1644546B1 (de) 2016-04-20

Family

ID=33551944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767427.0A Expired - Lifetime EP1644546B1 (de) 2003-06-24 2004-06-23 Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz

Country Status (6)

Country Link
US (1) US7452429B2 (de)
EP (1) EP1644546B1 (de)
BR (1) BRPI0411873B1 (de)
CA (1) CA2528614C (de)
DE (1) DE04767427T1 (de)
WO (1) WO2005001149A2 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932473B2 (ja) * 2003-03-17 2012-05-16 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 一体化されたモノリシックアルミニウム構造の製造方法およびその構造から機械加工されたアルミニウム製品
ES2393706T3 (es) * 2003-12-16 2012-12-27 Constellium France Producto modelado en forma de chapa laminada y elemento de estructura para aeronave de aleación Al-Zn-Cu-Mg
ES2292075T5 (es) * 2005-01-19 2010-12-17 Otto Fuchs Kg Aleacion de aluminio no sensible al enfriamiento brusco, asi como procedimiento para fabricar un producto semiacabado a partir de esta aleacion.
JP5149629B2 (ja) * 2005-02-10 2013-02-20 コンステリウム ロールド プロダクツ−レイヴンズウッド,エルエルシー アルミニウムを主成分とするAl‐Zn‐Cu‐Mg合金及びその製造方法と使用方法
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
US8840737B2 (en) * 2007-05-14 2014-09-23 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8673209B2 (en) * 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8206517B1 (en) 2009-01-20 2012-06-26 Alcoa Inc. Aluminum alloys having improved ballistics and armor protection performance
US8348785B2 (en) * 2009-03-10 2013-01-08 Fusheng Precision Co., Ltd. Golf-club head having a striking plate made of high-strength aluminum alloy
US9163304B2 (en) 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
RU2569275C1 (ru) * 2014-11-10 2015-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Плита из высокопрочного алюминиевого сплава и способ ее изготовления
DE102016001500A1 (de) * 2016-02-11 2017-08-17 Airbus Defence and Space GmbH Al-Mg-Zn-Legierung für den integralen Aufbau von ALM-Strukturen
EP3504086B1 (de) 2016-08-26 2022-08-03 Shape Corp. Warmformverfahren zum transversalen biegen eines extrudierten aluminiumträgers zum warmformen eines karosseriebauteils
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
FR3068370B1 (fr) * 2017-07-03 2019-08-02 Constellium Issoire Alliages al- zn-cu-mg et procede de fabrication
FR3071513B1 (fr) 2017-09-26 2022-02-11 Constellium Issoire Alliages al-zn-cu-mg a haute resistance et procede de fabrication
CN111876638B (zh) * 2020-07-30 2022-01-11 中铝材料应用研究院有限公司 一种控制Al-Mg-Si-Mn合金中弥散粒子尺寸的热处理方法
CN115821131B (zh) * 2022-12-05 2024-05-14 山东南山铝业股份有限公司 一种低疲劳裂纹扩展速率2系铝合金型材及其制造方法
CN115627396B (zh) * 2022-12-08 2023-03-17 中国航发北京航空材料研究院 一种超高强韧、耐腐蚀的超长铝合金板材及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305763A (en) * 1978-09-29 1981-12-15 The Boeing Company Method of producing an aluminum alloy product
CA1173277A (en) * 1979-09-29 1984-08-28 Yoshio Baba Aircraft stringer material and method for producing the same
US4954188A (en) * 1981-12-23 1990-09-04 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
FR2601967B1 (fr) 1986-07-24 1992-04-03 Cerzat Ste Metallurg Alliage a base d'al pour corps creux sous pression.
US5312498A (en) * 1992-08-13 1994-05-17 Reynolds Metals Company Method of producing an aluminum-zinc-magnesium-copper alloy having improved exfoliation resistance and fracture toughness
FR2695942B1 (fr) 1992-09-22 1994-11-18 Gerzat Metallurg Alliage d'aluminium pour corps creux sous pression.
US5865911A (en) * 1995-05-26 1999-02-02 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
US6027582A (en) * 1996-01-25 2000-02-22 Pechiney Rhenalu Thick alZnMgCu alloy products with improved properties
FR2744136B1 (fr) * 1996-01-25 1998-03-06 Pechiney Rhenalu Produits epais en alliage alznmgcu a proprietes ameliorees
JPH11140610A (ja) * 1997-11-13 1999-05-25 Furukawa Electric Co Ltd:The 靱性および溶接性に優れるアルミニウム合金構造材の製造方法
FR2805282B1 (fr) * 2000-02-23 2002-04-12 Gerzat Metallurg Procede de fabrication de corps creux sous pression en alliage a1znmgcu
CN1489637A (zh) * 2000-12-21 2004-04-14 �Ƹ��� 铝合金产品及人工时效方法
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy

Also Published As

Publication number Publication date
WO2005001149A2 (fr) 2005-01-06
DE04767427T1 (de) 2006-10-12
US20050058568A1 (en) 2005-03-17
BRPI0411873B1 (pt) 2016-11-22
US7452429B2 (en) 2008-11-18
CA2528614A1 (fr) 2005-01-06
WO2005001149A3 (fr) 2005-05-26
BRPI0411873A (pt) 2006-08-08
EP1644546A2 (de) 2006-04-12
CA2528614C (fr) 2012-06-05

Similar Documents

Publication Publication Date Title
EP1644546B1 (de) Verwendung von rohren aus al/zn/mg/cu-legierungen mit verbessertem kompromiss zwischen statischen mechanischen eigenschaften und schadenstoleranz
EP2449142B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserten mechanische beständigkeit und zähigkeit
EP1114877B1 (de) Strukturelement eines Flugzeugs aus Al-Cu-Mg Legierung
EP2655680B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter druckfestigkeit und beständigkeit
EP1492895B1 (de) Produkte aus al-zn-mg-cu-legierung
CA2836531C (fr) Alliage aluminium magnesium lithium a tenacite amelioree
EP1809779B1 (de) Produkte aus hochfester aluminiumlegierung und herstellungsverfahren dafür
CA2560672C (fr) Element de structure pour construction aeronautique presentant une variation des proprietes d&#39;emploi
FR2838135A1 (fr) PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D&#39;AERONEF
EP1382698B1 (de) Knetprodukt aus Al-Cu-Mg-Legierung für das Strukturbauteil eines Flugzeugs
EP2364378A1 (de) Produkte aus einer aluminium-kupfer-lithium-legierung
EP3384061B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter mechanischer festigkeit und erhöhter zähigkeit
EP1544315B1 (de) Knetprodukt in Form eines gewalzten Bleches und Strukturbauteil für Flugzeug aus Al-Zn-Cu-Mg-Legierung
EP3526358B1 (de) Dünne bleche aus aluminium-magnesium-scandium-legierung für anwendungen in der luft- und raumfahrt
EP3728667B1 (de) Verbessertes verfahren zur herstellung von blechen aus einer aluminium-kupfer-lithium-legierung für die herstellung von flugzeugrümpfen und entsprechendem blech
CA3064802A1 (fr) Alliage d&#39;aluminium comprenant du lithium a proprietes en fatigue ameliorees
EP3788178B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter kompressionsfestigkeit und erhöhter beständigkeit
EP1544316A2 (de) Dickes Bech aus Al-Zn-Cu-Mg Zirkonarmen rekristallisierten Legierung
EP3362584B1 (de) Dünne bleche aus aluminium-magnesium-zirkonium-legierungen für luft- und raumfahrtanwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051227

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

GBC Gb: translation of claims filed (gb section 78(7)/1977)
DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

DET De: translation of patent claims
17Q First examination report despatched

Effective date: 20110413

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/053 20060101ALI20140328BHEP

Ipc: C22C 21/10 20060101AFI20140328BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM ISSOIRE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004049114

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004049114

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230626

Year of fee payment: 20

Ref country code: DE

Payment date: 20230626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 20

Ref country code: GB

Payment date: 20230627

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004049114

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240622

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240622