EP1641959B1 - Layer structure and method for producing such a layer structure - Google Patents

Layer structure and method for producing such a layer structure Download PDF

Info

Publication number
EP1641959B1
EP1641959B1 EP20040763007 EP04763007A EP1641959B1 EP 1641959 B1 EP1641959 B1 EP 1641959B1 EP 20040763007 EP20040763007 EP 20040763007 EP 04763007 A EP04763007 A EP 04763007A EP 1641959 B1 EP1641959 B1 EP 1641959B1
Authority
EP
European Patent Office
Prior art keywords
layer
layer structure
substrate
porous
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20040763007
Other languages
German (de)
French (fr)
Other versions
EP1641959A1 (en
Inventor
Hans-Thomas Bolms
Andreas Heselhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL04763007T priority Critical patent/PL1641959T3/en
Priority to EP20040763007 priority patent/EP1641959B1/en
Publication of EP1641959A1 publication Critical patent/EP1641959A1/en
Application granted granted Critical
Publication of EP1641959B1 publication Critical patent/EP1641959B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/183Blade walls being porous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249954With chemically effective material or specified gas other than air, N, or carbon dioxide in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249961With gradual property change within a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/24999Inorganic

Definitions

  • the invention relates to a layer structure according to claim 1 and to a method for producing a layer structure according to claim 18.
  • the U.S. Patent 3,825,364 shows an outer wall which is completely porous. There is a cavity between this wall and a substrate.
  • the U.S. Patent 5,080,557 shows a layer structure of a substrate, a porous intermediate layer and an absolutely dense outer layer.
  • the U.S. Patent 4,318,666 shows in comparison to U.S. Patent 5,080,557 additional cooling channels in the substrate, on which a porous intermediate layer and a dense outer layer is applied.
  • the JP 10-231 704 shows a substrate with cooling channels and a porous intermediate layer.
  • the PCT / EP02 / 07029 as well as the US 6,412,541 show a porous structure within a wall, the wall in turn having a coating on the outside.
  • the wall and the coating have cooling channels.
  • G. Cao et al. is an article "Pore Narrowing and Formation of Ultrathin Yttria-Stabilized Zirconia Layers in Ceramic Membranes by Chemical Vapor Deposition" known from the 1993 Journal of American Ceramic Society in which a ceramic is deposited within a porous ceramic.
  • US 2003/02 1905 discloses a layered structure consisting of a substrate having cooling channels and a porous layer.
  • the object is achieved by a layer structure according to claim 1 and a method for producing a layer structure according to claim 18.
  • the layer structure has cooling channels in a substrate and in a porous, gas-permeable layer on the substrate.
  • the porous layer is formed by pores, wherein the pores are bounded by walls. According to the invention, at least one coating is present on these walls.
  • the cooling capacity can be locally varied and, for example, adapted to a pressure gradient along the outside of the layer structure.
  • the thermal barrier coating is shifted in the invention as an outer layer in the porous layer into it. This eliminates external walls.
  • a larger temperature gradient is achieved in the thermal barrier coating, which thus protects the substrate from excessive temperatures.
  • FIG. 1 shows a layer structure 1 that consists of at least one substrate 4 and an at least partially porous, at least partially gas-permeable layer 7 applied thereto.
  • the substrate 4 is, for example, a turbine component, in particular a gas turbine 100 (FIG. 3) or a steam turbine, such as a support structure, a turbine blade 120, 130, a combustion liner 155 (FIGS. 4, 5), or another component that is cooled must become.
  • the substrate 4 is made of, for example, a nickel- or cobalt-based superalloy.
  • the materials of the substrate 4 and the layer 7 can be different or similar (metallic, ceramic) and / or similar, in particular if the intermediate layer 7 is produced together with the substrate 4.
  • Intermediate layers may be present between the substrate 4 and the layer 7, e.g. an adhesive layer.
  • the layer 7 is preferably metallic and consists for example of a corrosion protection alloy of the type MCrAlX, where M is at least one element of the group iron (Fe), cobalt (Co) or nickel (Ni).
  • X stands for the element yttrium (Y) and / or at least one element of the group of rare earths.
  • the layer 7 may partially, ie limited to certain areas, have a lower or greater porosity.
  • the layer 7 therefore has pores 10 in each case.
  • the pores 10 are bounded by walls 37 (FIG. 2) and / or inlets / outlets of gas-permeable joints 20 '(FIG. 2) in the layer 7.
  • at least one coating 40 is applied to the walls 37 ( Figure 2) lining the walls inside.
  • the porous layer 7 is foamy or spongy with at least partially open, i. gas permeable pore structure formed.
  • a foam or sponge-like structure can be produced, for example, by applying a slurry to the substrate 4.
  • bubbles form, for example, as a result of the formation of gas, so that a foam-like structure is formed which simultaneously connects to the substrate 4.
  • the substrate 4 has at least one cooling channel 16, through which a cooling medium, as indicated by the arrows, can flow.
  • the porous layer 7 is made gas-permeable, so that the cooling medium from the cooling channel 16 in the layer 7 and then through the pores 10 and cooling channels 19 can flow.
  • the layer 7 has at the surface 43, for example, points at which the cooling medium can escape from the layer 7.
  • at least one cooling channel 19, in particular a cooling hole 19, ie without pores, can also be formed here.
  • the cooling channels 19 can be introduced later.
  • the cooling channels 19 are formed by gas-permeable connections between the pores 10 (FIG. 2).
  • the cooling channels 16, 19 are arranged, for example, to one another such that a cooling medium flows through the layer structure 1 as perpendicularly as possible to the surface of the substrate 4 or the layer 7.
  • the layer 7 does not necessarily have a film cooling. There may also be a closed circuit of a cooling medium (gas, steam), so that no cooling medium emerges from the layer 7, but flows within the layer 7, for example along a flow direction 25 of an external hot gas. The layer 7 is then, for example, not gas-permeable in the area of the surface 43, but the area below is again permeable to gas (not shown).
  • a cooling medium gas, steam
  • intermediate walls 22 may also be present in the layer 7, which prevent the cooling medium within the intermediate layer 7 from flowing along the flow direction 25, because there is a pressure difference along the flow direction 25, as in a gas turbine 100, for example.
  • the intermediate wall 22 may form individual chambers in the layer 7, as seen from WO03 / 006883 known to be part of this disclosure.
  • the intermediate wall 22 may be formed by separate, for example. Non-porous, partitions or by non-gas permeable, but porous areas of the layer 7 or by filling or welding the porous intermediate layer 7 in these areas to dense partitions 22 are prepared. The intermediate wall 22 is then, for example, an area which is not gas-permeable and thus has a closed pore structure or no pores (non-porous).
  • the size of the pores 10 is smaller, for example, toward the outer surface 43 in order to prevent contamination of the layer 7.
  • the flow of a cooling medium can be adjusted in order to adapt it to a cooling capacity, which may be formed depending on location. This can also be adjusted by a location-dependent pore size in the intermediate layer 7.
  • FIG. 2 shows an enlargement of the layer 7 of Figure 1, which is applied to the substrate 4.
  • the layer 7 is a porous or foam-like metallic layer, as already described in FIG.
  • the pores 10 are bounded by walls 37 and / or by the inlets / outlets of the gas-permeable connections 20 between the pores 10.
  • the gas-permeable connections 20 between the individual pores 10 and the pores 10 represent the cooling channels 19. As a rule, these do not run in a straight line (shown schematically in a straight line in FIG. 1).
  • the pore structure is formed so that a gas passage from the exit opening of the cooling channel 16 in the substrate 4 to the outer surface 43 of the layer 7 is possible.
  • the coating 40 of the walls 37 of the porous layer 7 may extend over the entire thickness of the layer 7 as far as the substrate 4 or may be located only in a surface region 13 of the layer 7.
  • the coating 40 is, for example, a ceramic layer, which can act in particular as a thermal barrier coating. This is, for example, alumina or yttrium-stabilized zirconia. In particular, ceramic coatings 40 can be used which do not require a bonding layer to the metallic intermediate layer 7.
  • the outer coating 40 may be applied by dipping, slurry application, plasma spraying or other methods.
  • the porous layer 7 may be prefabricated and is applied, for example, by soldering, gluing, welding or other fastening measures on the substrate 4, in particular directly.
  • the porous layer 7 can also be produced, in particular cast, together with the substrate 4.
  • the procedure may be as follows.
  • the porous layer 7 is sprayed with a ceramic slurry or immersed in a corresponding liquid (immersion method), so that a greensheet is deposited on the walls 37 of the porous structure 7, which can still be compacted. This can be done by sintering or laser beam method.
  • the layer system 1 can be used with newly manufactured components or even with refurbished components.
  • components in particular turbine blades 120, 130 (FIG. 3) and combustor parts (FIGS. 4, 5), are refurbished after use (refurbishment) by removing the outer layers and further corrosion or oxidation layers.
  • the component is checked for cracks, which are repaired if necessary. Thereafter, the component can again be provided with protective layers 7, 40 in order to form a layer system 1.
  • FIG. 3 shows a gas turbine 100 in a partial longitudinal section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a suction housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with, for example, an annular hot gas channel 111.
  • Each turbine stage 112 is formed of two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125, for example, are mounted on the rotor 103 by means of a turbine disk 133. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
  • they are cooled by means of a coolant and have, for example, a layer 7 according to FIGS. 1, 2.
  • the thermally heavily loaded components can be formed from substrates which have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • the material used is in particular iron-, nickel- or cobalt-based superalloys.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is yttrium (Y) and / or at least one element of the rare ones Erden) and have heat through a thermal barrier coating.
  • the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • FIG. 4 shows a combustion chamber 110 of a gas turbine 100.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.
  • the heat shield elements 155 may have a layer structure 1 according to FIG. 1, 2.
  • the materials of the combustor wall and their coatings of the present invention may be similar to the turbine blades 120, 130.
  • FIG. 5 shows a heat shield arrangement 160, in which heat shield elements 155 are arranged on a supporting structure 163, one beside the other, covering the entire area.
  • a heat shield assembly 160 may, for example, line the combustor 110 and / or a transition region between combustor 110 and turbine blade 112 of a gas turbine engine 100 to prevent damage to the support structure 163 during operation of the gas turbine engine 100.
  • At least two adjacent heat shield elements 155a, 155b form a cooling air channel 166 between the support structure 163 and the surface of the heat shield elements 155a, 155b facing away from the hot gas 113.
  • the two mentioned adjacent heat shield elements 155a, 155b communicate, e.g. via the cooling air flow L flowing directly from one of the neighbors to the other in the common cooling air passage 166 formed by the neighbors.
  • heat shield elements 155 are shown as an example, which form a common cooling air duct 166. However, there is also a significantly larger number of heat shield elements in question, which can also be arranged in several rows.
  • the cooling air L which is fed through openings 169, 16 (FIG. 1) into the cooling air duct 166, cools the heat shield elements 155 at the rear, for example by means of impingement cooling, with the cooling air L practically perpendicular
  • the cooling of the heat shield elements 155 can continue to be done by convection cooling, wherein cooling air L thereby substantially parallel to the surface of the heat shield elements 155 along the back sweeps along and thereby also thermal Can absorb and dissipate energy.
  • the cooling air L as a cooling air flow largely moves from right to left in the cooling air passage 166 formed in common by the heat shield members 155, and can be supplied to a burner 107 provided in the combustion chamber 110, for example, to be used for combustion become.
  • the heat shield elements 155 have, for example, an inventive layer structure 1 according to FIG. With the layer structure 1 can also be dispensed with the cooling channel 166 by a heat shield element 155 with the layer structure 1, for example, directly on the support structure 163, 4 is applied.

Abstract

Prior art layer structures have only limited cooling properties against hot external gases. The layer structure (1) according to the invention, in addition to a porous layer (7), is at least partially provided with a coating (40) applied within the layer (7), thereby improving cooling properties and protection against too much heat input into the layer structure (1).

Description

Die Erfindung betrifft eine Schichtstruktur nach Anspruch 1 und ein Verfahren zur Herstellung einer Schichtstruktur nach Anspruch 18.The invention relates to a layer structure according to claim 1 and to a method for producing a layer structure according to claim 18.

Die US-PS 3,825,364 zeigt eine äußere Wand, die vollkommen porös ausgebildet ist. Zwischen dieser Wand und einem Substrat ist ein Hohlraum vorhanden.The U.S. Patent 3,825,364 shows an outer wall which is completely porous. There is a cavity between this wall and a substrate.

Die US-PS 5,080,557 zeigt eine Schichtstruktur aus einem Substrat, einer porösen Zwischenschicht und einer absolut dichten äußeren Schicht.The U.S. Patent 5,080,557 shows a layer structure of a substrate, a porous intermediate layer and an absolutely dense outer layer.

Die US-PS 4,318,666 zeigt im Vergleich zur US-PS 5,080,557 zusätzlich Kühlkanäle in dem Substrat, auf dem eine poröse Zwischenschicht und eine dichte äußere Schicht aufgebracht ist.The U.S. Patent 4,318,666 shows in comparison to U.S. Patent 5,080,557 additional cooling channels in the substrate, on which a porous intermediate layer and a dense outer layer is applied.

Die JP 10-231 704 zeigt ein Substrat mit Kühlkanälen und einer porösen Zwischenschicht.The JP 10-231 704 shows a substrate with cooling channels and a porous intermediate layer.

Die PCT/EP02/07029 sowie die US 6,412,541 zeigen eine poröse Struktur innerhalb einer Wand, wobei die Wand wiederum außen eine Beschichtung aufweist. Die Wand und die Beschichtung weisen Kühlkanäle auf.The PCT / EP02 / 07029 as well as the US 6,412,541 show a porous structure within a wall, the wall in turn having a coating on the outside. The wall and the coating have cooling channels.

Von G. Cao et al. ist ein Artikel "Pore Narrowing and Formation of Ultrathin Yttria-Stabilized Zirconia Layers in Ceramic Membranes by Chemical Vapor Deposition /Electrochemical Vapor Deposition" bekannt aus dem Journal of American Ceramic Society aus dem Jahr 1993 , bei dem eine Keramik innerhalb einer porösen Keramik abgeschieden wird. By G. Cao et al. is an article "Pore Narrowing and Formation of Ultrathin Yttria-Stabilized Zirconia Layers in Ceramic Membranes by Chemical Vapor Deposition" known from the 1993 Journal of American Ceramic Society in which a ceramic is deposited within a porous ceramic.

US 2003/02 1905 offenbart eine Schichtstruktur bestehend aus einem Substrat, das Kühlkanäle aufweist, und einer porösen Schicht. US 2003/02 1905 discloses a layered structure consisting of a substrate having cooling channels and a porous layer.

Die bekannten Schichtstrukturen weisen jedoch gelegentlich ein unzureichendes Kühlverhalten auf.However, the known layer structures occasionally have insufficient cooling behavior.

Es ist daher die Aufgabe der Erfindung; die Kühlung einer Schichtstruktur zu verbessern.It is therefore the object of the invention; to improve the cooling of a layered structure.

Die Aufgabe wird gelöst durch eine Schichtstruktur gemäß Anspruch 1 und ein Verfahren zur Herstellung einer Schichtstruktur nach Anspruch 18.The object is achieved by a layer structure according to claim 1 and a method for producing a layer structure according to claim 18.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen zur Ausgestaltung der Schichtstruktur und des Verfahrens aufgelistet.
Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Art und Weise miteinander kombiniert werden.
In the dependent claims further advantageous measures for the design of the layer structure and the method are listed.
The measures listed in the subclaims can be combined with each other in an advantageous manner.

Die Schichtstruktur weist Kühlkanäle in einem Substrat und in einer porösen, gasdurchlässigen Schicht auf dem Substrat auf. Die poröse Schicht wird durch Poren gebildet, wobei die Poren durch Wände begrenzt werden. Auf diesen Wänden ist erfindungsgemäss zumindest eine Beschichtung vorhanden.The layer structure has cooling channels in a substrate and in a porous, gas-permeable layer on the substrate. The porous layer is formed by pores, wherein the pores are bounded by walls. According to the invention, at least one coating is present on these walls.

Wenn die Durchmesser der Kühlkanäle und/oder die Porengröße der Schicht örtlich variiert werden, so kann die Kühlleistung örtlich variiert werden und beispielsweise einem Druckgradienten entlang der Außenseite der Schichtstruktur angepasst sein.If the diameters of the cooling channels and / or the pore size of the layer are varied locally, then the cooling capacity can be locally varied and, for example, adapted to a pressure gradient along the outside of the layer structure.

Die Wärmedämmschicht wird bei der Erfindung als äußere Schicht in die poröse Schicht hinein verlagert. Damit entfallen auch äußere Wände.The thermal barrier coating is shifted in the invention as an outer layer in the porous layer into it. This eliminates external walls.

Wenn keine äußere dichte Wand, wie beim Stand der Technik, mehr vorhanden ist, muss diese nicht mehr gekühlt werden, so dass die Kühlleistung sinkt.If there is no outer tight wall, as in the prior art, more, it does not have to be cooled, so that the cooling capacity decreases.

Ein größerer Temperaturgradient wird in der Wärmedämmschicht erreicht, die somit das Substrat vor zu hohen Temperaturen schützt.A larger temperature gradient is achieved in the thermal barrier coating, which thus protects the substrate from excessive temperatures.

Ausführungsbeispiele sind im folgenden näher erläutert.Embodiments are explained in more detail below.

Es zeigen

Figur 1
eine erfindungsgemäße Schichtstruktur im Querschnitt,
Figur 2
eine Vergrößerung aus Figur 1,
Figur 3
eine Gasturbine,
Figur 4
eine Brennkammer und
Figur 5
eine Hitzeschildanordnung einer Brennkammer.
Show it
FIG. 1
a layer structure according to the invention in cross-section,
FIG. 2
an enlargement from FIG. 1,
FIG. 3
a gas turbine,
FIG. 4
a combustion chamber and
FIG. 5
a heat shield assembly of a combustion chamber.

Figur 1 zeigt eine Schichtstruktur 1, die zumindest aus einem Substrat 4 und einer darauf aufgebrachten zumindest teilweisen porösen, zumindest teilweise gasdurchlässigen Schicht 7 besteht.FIG. 1 shows a layer structure 1 that consists of at least one substrate 4 and an at least partially porous, at least partially gas-permeable layer 7 applied thereto.

Das Substrat 4 ist beispielsweise ein Turbinenbauteil, insbesondere einer Gasturbine 100 (Fig. 3) oder einer Dampfturbine, wie z.B. eine Tragstruktur, eine Turbinenschaufel 120, 130, eine Brennkammerauskleidung 155 (Fig. 4, 5), oder ein anderes Bauteil, das gekühlt werden muss.
Das Substrat 4 ist beispielsweise aus einer nickel- oder kobaltbasierten Superlegierung hergestellt.
Die Materialien des Substrats 4 und der Schicht 7 können verschieden oder gleichartig (metallisch, keramisch) und/oder ähnlich sein, insbesondere wenn die Zwischenschicht 7 mit dem Substrat 4 zusammen hergestellt wird.
The substrate 4 is, for example, a turbine component, in particular a gas turbine 100 (FIG. 3) or a steam turbine, such as a support structure, a turbine blade 120, 130, a combustion liner 155 (FIGS. 4, 5), or another component that is cooled must become.
The substrate 4 is made of, for example, a nickel- or cobalt-based superalloy.
The materials of the substrate 4 and the layer 7 can be different or similar (metallic, ceramic) and / or similar, in particular if the intermediate layer 7 is produced together with the substrate 4.

Zwischen dem Substrat 4 und der Schicht 7 können Zwischenschichten vorhanden sein, z.B. eine Haftschicht.Intermediate layers may be present between the substrate 4 and the layer 7, e.g. an adhesive layer.

Die Schicht 7 ist vorzugsweise metallisch und besteht beispielsweise aus einer Korrosionsschutzlegierung des Typs MCrAlX, wobei M zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co) oder Nickel (Ni) ist. X steht für das Element Yttrium (Y) und/oder zumindest ein Element der Gruppe der Seltenen Erden.The layer 7 is preferably metallic and consists for example of a corrosion protection alloy of the type MCrAlX, where M is at least one element of the group iron (Fe), cobalt (Co) or nickel (Ni). X stands for the element yttrium (Y) and / or at least one element of the group of rare earths.

Die Schicht 7 kann teilweise, d.h. beschränkt auf bestimmte Bereiche, eine geringere oder grössere Porosität aufweisen. Die Schicht 7 weist daher in jedem Fall Poren 10 auf. Die Poren 10 werden begrenzt durch Wände 37 (Fig. 2) und/oder Ein/Ausgängen von gasdurchlässigen Verbindungen 20'(Fig. 2) in der Schicht 7.
Innerhalb dieser porösen Schicht 7 ist zumindest eine Beschichtung 40 auf den Wänden 37 aufgebracht (Fig. 2), die die Wände innen auskleidet.
The layer 7 may partially, ie limited to certain areas, have a lower or greater porosity. The layer 7 therefore has pores 10 in each case. The pores 10 are bounded by walls 37 (FIG. 2) and / or inlets / outlets of gas-permeable joints 20 '(FIG. 2) in the layer 7.
Within this porous layer 7, at least one coating 40 is applied to the walls 37 (Figure 2) lining the walls inside.

Die poröse Schicht 7 ist beispielsweise schaum- oder schwammartig mit zumindest teilweiser offener, d.h. gasdurchlässiger Porenstruktur ausgebildet. Eine solche schaum- oder schwammartige Struktur kann beispielsweise durch Aufbringen eines Schlickers auf das Substrat 4 hergestellt werden. Durch eine Wärmebehandlung bilden sich bspw. durch Gasbildung Blasen, so dass eine schaumartige Struktur entsteht, die sich gleichzeitig mit dem Substrat 4 verbindet.For example, the porous layer 7 is foamy or spongy with at least partially open, i. gas permeable pore structure formed. Such a foam or sponge-like structure can be produced, for example, by applying a slurry to the substrate 4. By means of a heat treatment, bubbles form, for example, as a result of the formation of gas, so that a foam-like structure is formed which simultaneously connects to the substrate 4.

Das Substrat 4 weist zumindest einen Kühlkanal 16 auf, durch den ein Kühlmedium, wie durch die Pfeile angedeutet, strömen kann.
Dabei ist die poröse Schicht 7 gasdurchlässig ausgestaltet, so dass das Kühlmedium aus dem Kühlkanal 16 in die Schicht 7 und danach durch die Poren 10 und Kühlkanäle 19 strömen kann.
The substrate 4 has at least one cooling channel 16, through which a cooling medium, as indicated by the arrows, can flow.
In this case, the porous layer 7 is made gas-permeable, so that the cooling medium from the cooling channel 16 in the layer 7 and then through the pores 10 and cooling channels 19 can flow.

Die Schicht 7 weist an der Oberfläche 43 beispielsweise Stellen auf, an denen das Kühlmedium aus der Schicht 7 austreten kann.
Insbesondere kann auch hier zumindest ein Kühlkanal 19, insbesondere ein Kühlloch 19, d.h. ohne Poren, ausgebildet sein. Die Kühlkanäle 19 können nachträglich eingebracht werden. Insbesondere sind die Kühlkanäle 19 durch gasdurchlässige 20 Verbindungen zwischen den Poren 10 gebildet (Fig. 2).
The layer 7 has at the surface 43, for example, points at which the cooling medium can escape from the layer 7.
In particular, at least one cooling channel 19, in particular a cooling hole 19, ie without pores, can also be formed here. The cooling channels 19 can be introduced later. In particular, the cooling channels 19 are formed by gas-permeable connections between the pores 10 (FIG. 2).

Durch den Austritt eines Kühlmediums aus vielen Öffnungen, d.h. den Poren 10 oder Kühlkanälen 19 an der Oberfläche 43 der Schicht 7 wird eine Effusionskühlung bewirkt.By the escape of a cooling medium from many openings, i. The pores 10 or cooling channels 19 on the surface 43 of the layer 7 causes an effusion cooling.

Die Kühlkanäle 16, 19 sind beispielsweise so zueinander angeordnet, dass ein Kühlmedium möglichst senkrecht zur Oberfläche des Substrats 4 oder der Schicht 7 die Schichtstruktur 1 durchströmt.The cooling channels 16, 19 are arranged, for example, to one another such that a cooling medium flows through the layer structure 1 as perpendicularly as possible to the surface of the substrate 4 or the layer 7.

Die Schicht 7 muss nicht unbedingt eine Filmkühlung aufweisen. Es kann auch ein geschlossener Kreislauf eines Kühlmediums (Gas, Dampf) vorhanden sein, so dass kein Kühlmedium aus der Schicht 7 austritt, sondern innerhalb der Schicht 7, bspw. entlang einer Strömungsrichtung 25 eines äußeren Heißgases, strömt. Die Schicht 7 ist dann bspw. im Bereich der Oberfläche 43 nicht gasdurchlässig, der Bereich darunter ist aber wieder gasdurchlässig (nicht dargestellt).The layer 7 does not necessarily have a film cooling. There may also be a closed circuit of a cooling medium (gas, steam), so that no cooling medium emerges from the layer 7, but flows within the layer 7, for example along a flow direction 25 of an external hot gas. The layer 7 is then, for example, not gas-permeable in the area of the surface 43, but the area below is again permeable to gas (not shown).

Insbesondere können auch Zwischenwände 22 (gestrichelt angedeutet) in der Schicht 7 vorhanden sein, die verhindern, dass das Kühlmedium innerhalb der Zwischenschicht 7 entlang der Strömungsrichtung 25 strömt, weil entlang der Strömungsrichtung 25 ein Druckunterschied, wie beispielsweise in einer Gasturbine 100, vorhanden ist.
Die Zwischenwand 22 kann einzelne Kammern in der Schicht 7 bilden, wie aus WO03/006883 bekannt, die Bestandteil dieser Offenbarung sein soll.
In particular, intermediate walls 22 (indicated by dashed lines) may also be present in the layer 7, which prevent the cooling medium within the intermediate layer 7 from flowing along the flow direction 25, because there is a pressure difference along the flow direction 25, as in a gas turbine 100, for example.
The intermediate wall 22 may form individual chambers in the layer 7, as seen from WO03 / 006883 known to be part of this disclosure.

Die Zwischenwand 22 kann durch separate, bspw. nicht poröse, Trennwände oder durch nichtgasdurchlässige, aber poröse Bereiche der Schicht 7 ausgebildet sein oder durch Auffüllen bzw. Verschweißen der porösen Zwischenschicht 7 in diesen Bereichen zu dichten Zwischenwänden 22 hergestellt werden.
Die Zwischenwand 22 ist dann z.B. ein Bereich, der nicht gasdurchlässig ist und damit eine geschlossene Porenstruktur oder keine Poren (nicht porös) aufweist.
The intermediate wall 22 may be formed by separate, for example. Non-porous, partitions or by non-gas permeable, but porous areas of the layer 7 or by filling or welding the porous intermediate layer 7 in these areas to dense partitions 22 are prepared.
The intermediate wall 22 is then, for example, an area which is not gas-permeable and thus has a closed pore structure or no pores (non-porous).

Die Größe der Poren 10 ist beispielsweise zur äußeren Oberfläche 43 hin kleiner ausgebildet, um eine Verschmutzung der Schicht 7 zu verhindern.The size of the pores 10 is smaller, for example, toward the outer surface 43 in order to prevent contamination of the layer 7.

Durch die Ausgestaltung der Innendurchmesser der Kühlkanäle 16, 19 kann der Durchfluss eines Kühlmediums eingestellt werden, um diesen an eine Kühlleistung anzupassen, die ortsabhängig ausgebildet sein kann.
Dies kann auch durch eine ortsabhängige Porengröße in der Zwischenschicht 7 eingestellt werden.
Due to the design of the inner diameter of the cooling channels 16, 19, the flow of a cooling medium can be adjusted in order to adapt it to a cooling capacity, which may be formed depending on location.
This can also be adjusted by a location-dependent pore size in the intermediate layer 7.

Figur 2 zeigt eine Vergrösserung der Schicht 7 aus Figur 1, die auf dem Substrat 4 aufgebracht ist.
Die Schicht 7 ist eine poröse oder schaumartige metallische Schicht, wie schon bei Figur 1 beschrieben.
Die Poren 10 werden begrenzt durch Wände 37 und/oder durch die Ein/Ausgänge der gasdurchlässigen Verbindungen 20 zwischen den Poren 10.
Die gasdurchlässigen Verbindungen 20 zwischen den einzelnen Poren 10 und die Poren 10 stellen die Kühlkanäle 19 dar. Diese verlaufen in der Regel nicht geradlinig (In der Figur 1 schematisch geradlinig dargestellt).
Die Porenstruktur ist so ausgebildet, dass ein Gasdurchlass von der Ausgangsöffnung des Kühlkanals 16 im Substrat 4 zur äußeren Oberfläche 43 der Schicht 7 möglich ist.
Figure 2 shows an enlargement of the layer 7 of Figure 1, which is applied to the substrate 4.
The layer 7 is a porous or foam-like metallic layer, as already described in FIG.
The pores 10 are bounded by walls 37 and / or by the inlets / outlets of the gas-permeable connections 20 between the pores 10.
The gas-permeable connections 20 between the individual pores 10 and the pores 10 represent the cooling channels 19. As a rule, these do not run in a straight line (shown schematically in a straight line in FIG. 1).
The pore structure is formed so that a gas passage from the exit opening of the cooling channel 16 in the substrate 4 to the outer surface 43 of the layer 7 is possible.

Es kann auch geschlossene Poren 10g geben, die von Anfang an geschlossen waren oder durch die Beschichtung 40 verschlossen werden.It may also give closed pores 10g which were closed from the beginning or closed by the coating 40.

Zumindest auf den Wänden 37 in den Poren 10 der porösen Struktur der Schicht 7 ist zumindest eine Beschichtung 40 aufgebracht. Auch in den Verbindungen 20 und den Kühlkanälen 16 kann zumindest eine Beschichtung 40 aufgebracht werden. Die Beschichtung 40 der Wände 37 der porösen Schicht 7 kann sich über die ganze Dicke der Schicht 7 hin bis zum Substrat 4 erstrecken oder kann sich nur in einem Oberflächenbereich 13 der Schicht 7 befinden.At least on the walls 37 in the pores 10 of the porous structure of the layer 7, at least one coating 40 is applied. Also in the connections 20 and the cooling channels 16 at least one coating 40 can be applied. The coating 40 of the walls 37 of the porous layer 7 may extend over the entire thickness of the layer 7 as far as the substrate 4 or may be located only in a surface region 13 of the layer 7.

Beispiele für Schichtfolgen innerhalb der Schicht 7 bzw. der Schichtstruktur 1.

  • Substrat 4: Superlegierung
    Schicht 7: MCrAlX
    Beschichtung 40: Keramik
  • Substrat 4: Superlegierung
    Zwischenschicht aus Platin
    Schicht 7: MCrAlX
    Beschichtung 40: Keramik
  • Substrat 4: Superlegierung
    Schicht 7: Superlegierung
    Erste Beschichtung 40: MCrAlX
    Zweite Beschichtung 40: Keramik (auf erste Beschichtung)
  • Substrat 4: Superlegierung
    Schicht 7: MCrAlX
    Erste Beschichtung 40:MCrAlX, modifiziert gegenüber Schicht 7 Zweite Beschichtung 40: Keramik (auf erste Beschichtung)
    Weitere Kombinationen der Materialien für Substrat, Zwischenschichten, Beschichtungen und Schichtabfolge sind möglich.
    Wesentlich ist eine Beschichtung 40 innerhalb einer porösen Schicht 7.
Examples of layer sequences within the layer 7 or the layer structure 1.
  • Substrate 4: superalloy
    Layer 7: MCrAlX
    Coating 40: ceramic
  • Substrate 4: superalloy
    Intermediate layer of platinum
    Layer 7: MCrAlX
    Coating 40: ceramic
  • Substrate 4: superalloy
    Layer 7: Superalloy
    First Coating 40: MCrAlX
    Second coating 40: ceramic (on first coating)
  • Substrate 4: superalloy
    Layer 7: MCrAlX
    First coating 40: MCrAlX, modified with respect to layer 7 Second coating 40: ceramic (on first coating)
    Further combinations of the materials for substrate, intermediate layers, coatings and layer sequence are possible.
    What is essential is a coating 40 within a porous layer 7.

Die Beschichtung 40 ist beispielsweise eine keramische Schicht, die insbesondere als Wärmedämmschicht wirken kann. Dies ist bspw. Aluminiumoxid oder Yttrium-stabilisiertes Zirkonoxid.
Insbesondere können keramische Beschichtungen 40 verwendet werden, die keine Anbindungsschicht an die metallische Zwischenschicht 7 benötigen.
Die äußere Beschichtung 40 kann durch Eintauchverfahren, Schlickerauftrag, Plasmaspritzen oder sonstige Verfahren aufgebracht werden.
The coating 40 is, for example, a ceramic layer, which can act in particular as a thermal barrier coating. This is, for example, alumina or yttrium-stabilized zirconia.
In particular, ceramic coatings 40 can be used which do not require a bonding layer to the metallic intermediate layer 7.
The outer coating 40 may be applied by dipping, slurry application, plasma spraying or other methods.

Die poröse Schicht 7 kann vorgefertigt sein und ist beispielsweise durch Löten, Kleben, Schweißen oder sonstige Befestigungsmaßnahmen auf dem Substrat 4, insbesondere direkt, aufgebracht.
Die poröse Schicht 7 kann auch zusammen mit dem Substrat 4 hergestellt, insbesondere gegossen, werden.
The porous layer 7 may be prefabricated and is applied, for example, by soldering, gluing, welding or other fastening measures on the substrate 4, in particular directly.
The porous layer 7 can also be produced, in particular cast, together with the substrate 4.

Bei der Herstellung der Beschichtung 40 kann beispielsweise wie folgt vorgegangen werden.
Die poröse Schicht 7 wird mit einem keramischen Schlicker bespritzt oder in eine entsprechende Flüssigkeit eingetaucht (Eintauchverfahren), so dass sich eine Grünschicht auf den Wänden 37 der porösen Struktur 7 abscheidet, die noch verdichtet werden kann. Dies kann durch Sinterung oder Laserstrahlverfahren erfolgen.
In the production of the coating 40, for example, the procedure may be as follows.
The porous layer 7 is sprayed with a ceramic slurry or immersed in a corresponding liquid (immersion method), so that a greensheet is deposited on the walls 37 of the porous structure 7, which can still be compacted. This can be done by sintering or laser beam method.

Das Schichtsystem 1 kann bei neu hergestellten Bauteilen oder auch bei wieder aufgearbeiteten Bauteilen verwendet werden.The layer system 1 can be used with newly manufactured components or even with refurbished components.

Bei wieder aufgearbeiteten Bauteilen werden Bauteile, insbesondere Turbinenschaufeln 120, 130 (Fig. 3) und Brennkammerteilen (Fig. 4, 5), nach dem Einsatz wieder aufgearbeitet (Refurbishment), indem die äußeren Schichten sowie weitere Korrosions- oder Oxidationsschichten entfernt werden. Ebenso wird das Bauteil dabei überprüft auf Risse, die gegebenenfalls repariert werden.
Danach kann das Bauteil wieder mit Schutzschichten 7, 40 versehen werden, um ein Schichtsystem 1 zu bilden.
In the case of refurbished components, components, in particular turbine blades 120, 130 (FIG. 3) and combustor parts (FIGS. 4, 5), are refurbished after use (refurbishment) by removing the outer layers and further corrosion or oxidation layers. Likewise, the component is checked for cracks, which are repaired if necessary.
Thereafter, the component can again be provided with protective layers 7, 40 in order to form a layer system 1.

Die Figur 3 zeigt eine Gasturbine 100 in einem Längsteilschnitt.
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hinter einander geschaltete Turbinenstufen 112 die Turbine 108.
Jede Turbinenstufe 112 ist aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
FIG. 3 shows a gas turbine 100 in a partial longitudinal section.
The gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
Along the rotor 103 follow one another a suction housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
The annular combustion chamber 106 communicates with, for example, an annular hot gas channel 111. There, for example, four turbine stages 112 connected in series form the turbine 108.
Each turbine stage 112 is formed of two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.

Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stator 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 bspw. mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125, for example, are mounted on the rotor 103 by means of a turbine disk 133. Coupled to the rotor 103 is a generator or work machine (not shown).

Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt.
Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
During operation of the gas turbine 100, air 105 is sucked in and compressed by the compressor 105 through the intake housing 104. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110.
From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. On the rotor blades 120, the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.

Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.
Um den dort herrschenden Temperaturen standzuhalten, werden diese mittels eines Kühlmittels gekühlt und weisen bspw. eine Schicht 7 gemäss Figur 1, 2 auf.
Die thermisch stark belasteten Bauteile können aus Substraten gebildet sein, die eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
Als Material werden insbesondere eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X steht für Yttrium (Y) und/oder zumindest ein Element der Seltenen Erden) und Wärme durch eine Wärmedämmschicht aufweisen. Die Wärmedämmschicht besteht beispielsweise aus ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
In order to withstand the temperatures prevailing there, they are cooled by means of a coolant and have, for example, a layer 7 according to FIGS. 1, 2.
The thermally heavily loaded components can be formed from substrates which have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
The material used is in particular iron-, nickel- or cobalt-based superalloys.
Also, the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is yttrium (Y) and / or at least one element of the rare ones Erden) and have heat through a thermal barrier coating. The thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide. By means of suitable coating processes, such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.

Figur 4 zeigt eine Brennkammer 110 einer Gasturbine 100.
Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 103 herum angeordneten Brennern 102 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 103 herum positioniert ist.
FIG. 4 shows a combustion chamber 110 of a gas turbine 100.
The combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space. For this purpose, the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.

Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen. Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt.
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 ist zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen. Die Hitzeschildelemente 155 können eine Schichtstruktur 1 gemäss Figur 1, 2 aufweisen.
To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C. In order to enable a comparatively long service life even with these, for the materials unfavorable operating parameters, the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155. Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material.
Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements. The heat shield elements 155 may have a layer structure 1 according to FIG. 1, 2.

Die Materialien der Brennkammerwand und deren Beschichtungen gemäß vorliegender Erfindung können ähnlich der Turbinenschaufeln 120, 130 sein.The materials of the combustor wall and their coatings of the present invention may be similar to the turbine blades 120, 130.

In Figur 5 ist eine Hitzeschildanordnung 160 dargestellt, bei welcher auf einer Tragstruktur 163 flächendeckend nebeneinander Hitzeschildelemente 155 angeordnet sind. Üblicherweise sind beispielsweise zur Auskleidung eines größeren Heißgasraumes, wie z.B. einer Brennkammer-110, mehrere Reihen von Hitzeschildelementen 155 aneinandergrenzend auf der Tragstruktur 163 angeordnet.
Die Hitzeschildanordnung 160 kann beispielsweise die Brennkammer 110 und/oder einen Übergangsbereich zwischen Brennkammer 110 und Turbinenschaufel 112 einer Gasturbine 100 auskleiden, um eine Beschädigung der Tragstruktur 163 während des Betriebs der Gasturbine 100 zu verhindern.
FIG. 5 shows a heat shield arrangement 160, in which heat shield elements 155 are arranged on a supporting structure 163, one beside the other, covering the entire area. Typically, for example, for lining a larger hot gas space, such as a combustor 110, a plurality of rows of heat shield elements 155 are disposed adjacent to each other on the support structure 163.
The heat shield assembly 160 may, for example, line the combustor 110 and / or a transition region between combustor 110 and turbine blade 112 of a gas turbine engine 100 to prevent damage to the support structure 163 during operation of the gas turbine engine 100.

Um die thermischen Belastungen zu reduzieren, ist es beispielsweise vorgesehen, die Hitzeschildelemente 155 jeweils auf deren der Brennkammer 110 abgewandten Fläche mittels Kühlluft zu kühlen.In order to reduce the thermal loads, it is provided, for example, to cool the heat shield elements 155 in each case on their surface facing away from the combustion chamber 110 by means of cooling air.

Mindestens zwei benachbarte Hitzeschildelemente 155a, 155b bilden zwischen der Tragstruktur 163 und jeweils der dem Heißgas 113 abgewandten Fläche der Hitzeschildelemente 155a, 155b einen Kühlluftkanal 166. Auf diese Weise kommunizieren die beiden genannten benachbarten Hitzeschildelemente 155a, 155b z.B. über den Kühlluftstrom L, welcher direkt von einem der Nachbarn zum anderen in dem durch die Nachbarn gebildeten, gemeinsamen Kühlluftkanal 166 fließt.At least two adjacent heat shield elements 155a, 155b form a cooling air channel 166 between the support structure 163 and the surface of the heat shield elements 155a, 155b facing away from the hot gas 113. In this way, the two mentioned adjacent heat shield elements 155a, 155b communicate, e.g. via the cooling air flow L flowing directly from one of the neighbors to the other in the common cooling air passage 166 formed by the neighbors.

In der Figur 5 sind als Beispiel vier Hitzeschildelemente 155 dargestellt, welche einen gemeinsamen Kühlluftkanal 166 bilden. Es kommt jedoch auch eine deutlich größere Anzahl an Hitzeschildelementen in Frage, welche auch in mehreren Reihen angeordnet sein können.In the figure 5 four heat shield elements 155 are shown as an example, which form a common cooling air duct 166. However, there is also a significantly larger number of heat shield elements in question, which can also be arranged in several rows.

Die Kühlluft L, welche durch Öffnungen 169, 16 (Fig. 1) in den Kühlluftkanal 166 eingespeist ist, kühlt die Hitzeschildelemente 155 rückseitig beispielsweise mittels Prallkühlung, wobei die Kühlluft L praktisch senkrecht auf die dem-Heißgas abgewandte Fläche der Hitzeschildelemente 155 trifft und dadurch thermische Energie aufnehmen und abführen kann Die Kühlung der Hitzeschildelemente 155 kann weiterhin durch Konvektionskühlung erfolgen, wobei Kühlluft L dabei im Wesentlichen parallel zur Oberfläche der Hitzeschildelemente 155 an deren Rückseite entlang streicht und dadurch ebenfalls thermische Energie aufnehmen und abführen kann.
In der Figur 5 bewegt sich die Kühlluft L als Kühlluftstrom größtenteils von rechts nach links in dem von den Hitzeschildelementen 155 gemeinsam gebildeten Kühlluftkanal 166 und kann einem Brenner 107, welcher sich beispielsweise in der Brennkammer 110 befindet, zugeführt werden, um für die Verbrennung genutzt zu werden.
The cooling air L, which is fed through openings 169, 16 (FIG. 1) into the cooling air duct 166, cools the heat shield elements 155 at the rear, for example by means of impingement cooling, with the cooling air L practically perpendicular The cooling of the heat shield elements 155 can continue to be done by convection cooling, wherein cooling air L thereby substantially parallel to the surface of the heat shield elements 155 along the back sweeps along and thereby also thermal Can absorb and dissipate energy.
In FIG. 5, the cooling air L as a cooling air flow largely moves from right to left in the cooling air passage 166 formed in common by the heat shield members 155, and can be supplied to a burner 107 provided in the combustion chamber 110, for example, to be used for combustion become.

Die Hitzeschildelemente 155 weisen bspw. eine erfindungsgemässe Schichtstruktur 1 gemäss Figur 1 auf.
Mit der Schichtstruktur 1 kann auch auf den Kühlkanal 166 verzichtet werden, indem ein Hitzeschildelement 155 mit der Schichtstruktur 1 bspw. direkt auf der Tragstruktur 163, 4 aufgebracht ist.
The heat shield elements 155 have, for example, an inventive layer structure 1 according to FIG.
With the layer structure 1 can also be dispensed with the cooling channel 166 by a heat shield element 155 with the layer structure 1, for example, directly on the support structure 163, 4 is applied.

Claims (25)

  1. Layer structure (1),
    at least comprising a substrate (4) and an at least partially porous, at least partially gas-permeable layer (7) on the substrate (4), the substrate (4) having cooling passages (16), through which a cooling medium can pass through the substrate (4) into the porous layer (7),
    characterized in that
    the porous layer (7) has pores (10) which are delimited by walls (37), at least one coating (40) being present on at least part of the walls (37).
  2. Layer structure according to claim 1,
    characterized in that
    the layer (7) is metallic or ceramic.
  3. Layer structure according to claim 1,
    characterized in that
    the substrate (4) is metallic or ceramic.
  4. Layer structure according to claim 1 or 2,
    characterized in that
    the layer (7) is in foam-like or sponge-like form.
  5. Layer structure according to claim 1,
    characterized in that
    the coating (40) is a ceramic layer, in particular a thermal barrier coating.
  6. Layer structure (1) according to claim 1, 2, 3 or 4,
    characterized in that
    the materials of the substrate (4) and the layer (7) are different.
  7. Layer structure (1) according to claim 1 or 4,
    characterized in that
    the layer (7) has cooling passages (19).
  8. Layer structure (1) according to claim 7,
    characterized in that
    the cooling passages (19) are formed by gas-permeable connections (20) between pores (10) in the layer (7) and the pores (10).
  9. Layer structure (1) according to claim 1, 7 or 8,
    characterized in that
    the cooling passages (16, 19) have different internal cross sections, in particular internal diameters, thereby defining the flow of a cooling medium through the cooling passages (16, 19).
  10. Layer structure (1) according to claim 1 or 4,
    characterized in that
    the pore size of the layer (7) is locally variable.
  11. Layer structure (1) according to claim 10,
    characterized in that
    the pore size is smaller toward the outer surface (43) of the layer (7) than in the vicinity of the substrate (4).
  12. Layer structure (1) according to claim 1, 2 or 4,
    characterized in that
    the layer (7) has the composition MCrAlX,
    where M is at least one element selected from the group consisting of iron (Fe), cobalt (Co) or nickel (Ni) and
    X is the element yttrium (Y) and/or at least one rare earth element.
  13. Layer structure (1) according to claim 1 or 3,
    characterized in that
    the substrate (4) is a nickel-base or cobalt-base superalloy.
  14. Layer structure (1) according to claim 1, 2 or 3,
    characterized in that
    the materials of the substrate (4) and the layer (7) are identical.
  15. Layer structure (1) according to claim 1 or 5,
    characterized in that
    only a surface region (13) of the layer (7) is provided with the at least one coating (40).
  16. Layer structure (1) according to claim 1,
    characterized in that
    the layer structure (1) is at least part of a turbine component,
    in particular a turbine blade or vane (120, 130) or a lining (155) of a combustion chamber (110),
    in particular of a gas turbine (100).
  17. Layer structure (1) according to claim 1, 15 or 16,
    characterized in that
    the layer structure (1) can be cooled by effusion cooling,
    wherein a cooling medium can emerge from the surface (43) of the porous layer (7).
  18. Process for producing the layer structure (1) according to one or more of claims 1 to 18,
    in which an at least partially porous, at least partially gas-permeable layer (7) is applied to the substrate (4),
    the porous layer (7) having pores (10) which are delimited by walls (37),
    and then at least one coating (40) is at least partially applied to the walls (37).
  19. Process according to claim 18,
    characterized in that
    the porous layer (7) is produced separately and then joined to the substrate (4).
  20. Process according to claim 18 or 19,
    characterized in that
    the porous layer (7) is soldered, welded or adhesively bonded to the substrate (4) or is secured to the substrate (4) using holding means.
  21. Process according to claim 18,
    characterized in that
    the porous layer (7) is produced together with the substrate (4).
  22. Process according to claim 18 or 21,
    characterized in that
    the porous layer (7) is cast together with the substrate (4).
  23. Process according to claim 18,
    characterized in that
    the coating (40) is applied by a dip-coating method, layer build-up or plasma spraying.
  24. Process according to claim 18,
    characterized in that
    the layer structure (1) is applied to a newly produced component.
  25. Process according to claim 18,
    characterized in that
    the layer structure (1) is applied to a refurbished component.
EP20040763007 2003-07-09 2004-06-17 Layer structure and method for producing such a layer structure Not-in-force EP1641959B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL04763007T PL1641959T3 (en) 2003-07-09 2004-06-17 Layer structure and method for producing such a layer structure
EP20040763007 EP1641959B1 (en) 2003-07-09 2004-06-17 Layer structure and method for producing such a layer structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20030015495 EP1496140A1 (en) 2003-07-09 2003-07-09 Layered structure and process for producing a layered structure
PCT/EP2004/006556 WO2005005688A1 (en) 2003-07-09 2004-06-17 Layer structure and method for producing such a layer structure
EP20040763007 EP1641959B1 (en) 2003-07-09 2004-06-17 Layer structure and method for producing such a layer structure

Publications (2)

Publication Number Publication Date
EP1641959A1 EP1641959A1 (en) 2006-04-05
EP1641959B1 true EP1641959B1 (en) 2007-06-13

Family

ID=33442767

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20030015495 Withdrawn EP1496140A1 (en) 2003-07-09 2003-07-09 Layered structure and process for producing a layered structure
EP20040763007 Not-in-force EP1641959B1 (en) 2003-07-09 2004-06-17 Layer structure and method for producing such a layer structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20030015495 Withdrawn EP1496140A1 (en) 2003-07-09 2003-07-09 Layered structure and process for producing a layered structure

Country Status (7)

Country Link
US (1) US7402335B2 (en)
EP (2) EP1496140A1 (en)
CN (1) CN100540743C (en)
DE (1) DE502004004097D1 (en)
ES (1) ES2287758T3 (en)
PL (1) PL1641959T3 (en)
WO (1) WO2005005688A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057428A1 (en) * 2008-11-07 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Protective structure and its use

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533113A1 (en) * 2003-11-14 2005-05-25 Siemens Aktiengesellschaft High temperature layered system for heat dissipation and method for making it
US7704049B1 (en) * 2006-12-08 2010-04-27 Florida Turbine Technologies, Inc. TBC attachment construction for a cooled turbine airfoil and method of forming a TBC covered airfoil
CN101078354B (en) * 2007-06-06 2013-03-27 北京航空航天大学 Porous metal vane coupling design method
JP4668976B2 (en) 2007-12-04 2011-04-13 株式会社日立製作所 Steam turbine seal structure
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US8739404B2 (en) 2010-11-23 2014-06-03 General Electric Company Turbine components with cooling features and methods of manufacturing the same
US20120156054A1 (en) * 2010-12-15 2012-06-21 General Electric Company Turbine component with near-surface cooling passage and process therefor
US8793871B2 (en) 2011-03-17 2014-08-05 Siemens Energy, Inc. Process for making a wall with a porous element for component cooling
US20130086784A1 (en) * 2011-10-06 2013-04-11 General Electric Company Repair methods for cooled components
CH706090A1 (en) * 2012-02-17 2013-08-30 Alstom Technology Ltd A method for manufacturing a near-surface cooling passage in a thermally highly stressed component and component with such a channel.
WO2013144022A1 (en) 2012-03-28 2013-10-03 Alstom Technology Ltd Method for removing a ceramic
JP6054137B2 (en) * 2012-10-24 2016-12-27 三菱日立パワーシステムズ株式会社 High temperature member for gas turbine having thermal barrier coating
US9493228B2 (en) 2012-11-28 2016-11-15 The Boeing Company High heat transfer rate reusable thermal protection system
WO2014105109A1 (en) 2012-12-28 2014-07-03 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US10018052B2 (en) 2012-12-28 2018-07-10 United Technologies Corporation Gas turbine engine component having engineered vascular structure
WO2014127160A2 (en) * 2013-02-15 2014-08-21 Virginia Tech Intellectual Properties, Inc. Fabricating porous metallic coatings via electrodeposition and compositions thereof
US10100666B2 (en) 2013-03-29 2018-10-16 General Electric Company Hot gas path component for turbine system
EP2845918A1 (en) * 2013-09-04 2015-03-11 Siemens Aktiengesellschaft Method for at least partially coating a blade, a coating device and a blade
EP3060695B1 (en) 2013-10-21 2019-12-11 United Technologies Corporation Ceramic attachment configuration and method for manufacturing same
EP2884048A1 (en) * 2013-12-13 2015-06-17 Siemens Aktiengesellschaft Thermal barrier coating of a turbine blade
GB201403404D0 (en) 2014-02-27 2014-04-16 Rolls Royce Plc A combustion chamber wall and a method of manufacturing a combustion chamber wall
US9718735B2 (en) * 2015-02-03 2017-08-01 General Electric Company CMC turbine components and methods of forming CMC turbine components
US10094287B2 (en) 2015-02-10 2018-10-09 United Technologies Corporation Gas turbine engine component with vascular cooling scheme
US10472976B2 (en) * 2015-06-05 2019-11-12 Rolls-Royce Corporation Machinable CMC insert
US10458653B2 (en) * 2015-06-05 2019-10-29 Rolls-Royce Corporation Machinable CMC insert
US10465534B2 (en) * 2015-06-05 2019-11-05 Rolls-Royce North American Technologies, Inc. Machinable CMC insert
DE102015111788A1 (en) 2015-07-21 2017-01-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. sliding bearing device
US10221694B2 (en) 2016-02-17 2019-03-05 United Technologies Corporation Gas turbine engine component having vascular engineered lattice structure
US20170328207A1 (en) * 2016-05-12 2017-11-16 General Electric Company Cooled component with porous skin
US10145000B2 (en) * 2016-05-27 2018-12-04 General Electric Company Thermally dissipative article and method of forming a thermally dissipative article
US10508551B2 (en) * 2016-08-16 2019-12-17 General Electric Company Engine component with porous trench
US10309238B2 (en) * 2016-11-17 2019-06-04 United Technologies Corporation Turbine engine component with geometrically segmented coating section and cooling passage
US10662779B2 (en) * 2016-11-17 2020-05-26 Raytheon Technologies Corporation Gas turbine engine component with degradation cooling scheme
US10400608B2 (en) * 2016-11-23 2019-09-03 General Electric Company Cooling structure for a turbine component
WO2018144064A1 (en) * 2017-02-03 2018-08-09 Siemens Aktiengesellschaft Air-cooled panel for turbine engine, with monolithic, three-dimensional lattice and method for manufacture
US10774653B2 (en) 2018-12-11 2020-09-15 Raytheon Technologies Corporation Composite gas turbine engine component with lattice structure
DE102019204746A1 (en) * 2019-04-03 2020-10-08 Siemens Aktiengesellschaft Heat shield tile with damping function
US11702992B2 (en) * 2021-12-03 2023-07-18 Raytheon Company Combustor wall core with resonator and/or damper elements

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825364A (en) 1972-06-09 1974-07-23 Gen Electric Porous abradable turbine shroud
GB2053367B (en) 1979-07-12 1983-01-26 Rolls Royce Cooled shroud for a gas turbine engine
US4761654A (en) 1985-06-25 1988-08-02 Communications Satellite Corporation Electromagnetically coupled microstrip antennas having feeding patches capacitively coupled to feedlines
US5080557A (en) 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly
DE4303135C2 (en) * 1993-02-04 1997-06-05 Mtu Muenchen Gmbh Thermal insulation layer made of ceramic on metal components and process for their production
EP0852223A1 (en) * 1996-12-04 1998-07-08 European Atomic Energy Community (Euratom) Method of sealing open-pore ceramic coatings, in particular thermal barriers
JPH10231704A (en) 1997-02-18 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd Oozing cooling turbine shroud
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
DE10024302A1 (en) 2000-05-17 2001-11-22 Alstom Power Nv Process for producing a thermally stressed casting
US6511762B1 (en) * 2000-11-06 2003-01-28 General Electric Company Multi-layer thermal barrier coating with transpiration cooling
US6428280B1 (en) * 2000-11-08 2002-08-06 General Electric Company Structure with ceramic foam thermal barrier coating, and its preparation
GB0117110D0 (en) 2001-07-13 2001-09-05 Siemens Ag Coolable segment for a turbomachinery and combustion turbine
EP1327703A1 (en) * 2002-01-15 2003-07-16 Siemens Aktiengesellschaft Coating system with a porous layer
EP1533113A1 (en) * 2003-11-14 2005-05-25 Siemens Aktiengesellschaft High temperature layered system for heat dissipation and method for making it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057428A1 (en) * 2008-11-07 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Protective structure and its use
DE102008057428B4 (en) 2008-11-07 2019-01-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Protective structure and its use

Also Published As

Publication number Publication date
US7402335B2 (en) 2008-07-22
DE502004004097D1 (en) 2007-07-26
WO2005005688A1 (en) 2005-01-20
CN100540743C (en) 2009-09-16
CN1816646A (en) 2006-08-09
PL1641959T3 (en) 2007-10-31
EP1641959A1 (en) 2006-04-05
ES2287758T3 (en) 2007-12-16
US20060153685A1 (en) 2006-07-13
EP1496140A1 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
EP1641959B1 (en) Layer structure and method for producing such a layer structure
DE60216177T2 (en) Cooling system of a coated turbine blade tip
EP1682342B1 (en) High temperature layered system for heat dissipation and method for making it
CH703549A2 (en) The combustor liner with cooling system.
DE102014116796A1 (en) Components with multilayer cooling structures and method for producing the same
EP2614174A1 (en) Porous layer system having a porous inner layer
EP1816316B1 (en) Method for Repairing a Component
EP2373824B1 (en) Method for coating a component with film cooling holes and component
EP2241397A1 (en) Soldering of holes, method for coating and soldered rods
EP2230041A2 (en) Process for the fabrication of a hole
DE102013111874A1 (en) Manufacturing method of component for gas turbine engine involves forming grooves, each with cross-sectional are in predetermined ranged with respect to area derived from product of width of opening and depth of re-entrant shaped groove
EP2239079A1 (en) Method for welding with a multi-layer temperature profile
EP1820939A1 (en) Method and apparatus for the coating of turbine blades
EP2487006A1 (en) Multiple laser processing from various angles
EP1967615A1 (en) Method for applying a heat insulation coating and turbine components with a heat insulation coating
EP1772529A1 (en) Dry chemical composition, use thereof to form a layer system and method for coating
EP1806430A1 (en) Ceramic layer having high porosity, use of this layer and component comprising such a layer
WO2008049456A1 (en) Coating optimization process using a coupon and component comprising a coupon
EP1586675B1 (en) Method for coating the interior of a hollow component
EP2322683B1 (en) Coating method for a component with partially closed holes and method for opening the holes
EP1811055A1 (en) Method for manufacturing a component with holes
WO2007144217A1 (en) Method of applying material to a component
WO2011057661A1 (en) Component having areas of different ductility and method for producing a component
EP1932935A1 (en) Method for the manufacture of a turbine blade with an oxide layer on a metallic coating, a turbine blade and its use, and a method for the operation of a turbine.
EP1783243A1 (en) Dry composition, use thereof, coating system and process of coating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES GB IT LI PL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE ES GB IT LI PL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOLMS, HANS-THOMAS

Inventor name: HESELHAUS, ANDREAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070704

REF Corresponds to:

Ref document number: 502004004097

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2287758

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130610

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20130522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130909

Year of fee payment: 10

Ref country code: ES

Payment date: 20130711

Year of fee payment: 10

Ref country code: DE

Payment date: 20130819

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004097

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004097

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140618