EP1639375A2 - Bearing support with an instrumented movement and coder for an information recorder unit - Google Patents

Bearing support with an instrumented movement and coder for an information recorder unit

Info

Publication number
EP1639375A2
EP1639375A2 EP04767413A EP04767413A EP1639375A2 EP 1639375 A2 EP1639375 A2 EP 1639375A2 EP 04767413 A EP04767413 A EP 04767413A EP 04767413 A EP04767413 A EP 04767413A EP 1639375 A2 EP1639375 A2 EP 1639375A2
Authority
EP
European Patent Office
Prior art keywords
substrate
encoder
rotating
rotating ring
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04767413A
Other languages
German (de)
French (fr)
Inventor
Samuel Gallion
Franck Lauferon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKF AB
Original Assignee
SKF AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKF AB filed Critical SKF AB
Publication of EP1639375A2 publication Critical patent/EP1639375A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/49Devices characterised by the use of electric or magnetic means for measuring angular speed using eddy currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/73Targets mounted eccentrically with respect to the axis of rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles
    • G01D2205/775Tapered profiles

Definitions

  • the present invention relates to the field of coders capable of cooperating with a sensor for the purpose of detecting a movement, in particular the rotational movement of a rotating part with respect to a non-rotating part.
  • the encoder is generally mounted on the rotating part while the sensor is mounted on the non-rotating part, although the mounting is reversed in some applications.
  • the sensor is capable of delivering a signal making it possible to determine the value of the parameter to be measured, such as the displacement, the position, the speed or the angular acceleration of the rotating part.
  • the active part of the encoder which cooperates with one or more sensors, comprises coding elements whose shape and structure depend on the type of sensor with which the encoder operates.
  • the rotating part is a rotating ring of a rolling bearing whose non-rotating ring supports the sensor.
  • the invention relates more particularly to metal coders, the operational part of which is made of an electrically conductive material and the geometry of which makes it possible to generate the appropriate signal with the appropriate sensor or sensors, such as inductive microbool sensors.
  • metal coders such devices are known, for example from French patent applications No. 0208263 and 0208264, and are satisfactory.
  • at least the active part of the encoder is made of metal, generally by cutting and possibly stamping a sheet of metal sheet.
  • such an encoder has some drawbacks.
  • the encoder has a relatively high mass and inertia, which is rarely desirable.
  • An encoder causes a significant imbalance at high speed of rotation.
  • the shape of the teeth or windows is not always very rigorous if one wants to use conventional manufacturing processes, such as press cutting for a reasonable cost price.
  • Certain shapes of teeth or windows are moreover difficult to produce from a sheet metal blank, due to the complexity of the shape and / or the small dimensions of the teeth or windows.
  • the difficulty in obtaining teeth or windows of constant geometry results in irregularities detrimental to the quality of the output signal from the sensor.
  • the invention proposes to remedy these drawbacks.
  • the invention provides an encoder of low mass, of reduced bulk, substantially free of unbalance, and of economical manufacture.
  • the invention proposes an encoder having a great lightness, a low inertia and being able to turn at high speed without imbalance and without friction, whatever the shape of the active part of the encoder whose center of inertia can be located completely outside. of the axis of rotation of the system without consequence on the general imbalance of the coding wheel.
  • the instrumented rolling bearing is of the type comprising a non-rotating ring, a rotating ring, at least one row of rolling elements arranged between two raceways of the rotating and non-rotating rings, and a information sensor assembly comprising a non-rotating sensor unit and a rotary encoder provided with an active part.
  • the encoder comprises a substrate made of electrically non-conductive material and a thin electrically conductive layer supported by the substrate, the substrate being fixed in rotation with the rotating ring.
  • the substrate can be made of synthetic material having a density considerably lower than steel. A reduced mass and inertia encoder is thus obtained.
  • the electrically conductive thin layer may have an eccentric shape whose influence on the information of an unbalance is negligible. Indeed, the small thickness of the thin layer compared to the thickness of the substrate means that the overall center of inertia of the annular coding wheel practically does not vary with the shape of the metal deposit and remains located substantially on the axis of rotation.
  • the substrate is annular. This reduces any imbalance.
  • the substrate may have a general disc shape.
  • the substrate of planar shape, can thus be manufactured from a conventional printed circuit board.
  • the cost price of the encoder therefore remains reasonable.
  • the sensor block comprises at least one inductive sensor.
  • the sensor unit can include at least one microbool. It is thus possible to benefit from a sensor unit of reduced bulk.
  • the electrically conductive thin layer comprises a plurality of angular sectors separated from each other.
  • the electrically conductive thin layer can form a plurality of teeth each occupying a determined angle, constant or not. These teeth can be arranged in one or more concentric rings in order to cooperate with one or more radially stepped sensors.
  • the electrically conductive thin layer is circularly continuous.
  • the electrically conductive thin layer can be delimited by two circles which are offset from one another. One of the circles may be concentric with the substrate of the encoder. We then benefit from the thin thickness of the thin layer which, despite its eccentricity, does not cause any significant imbalance effect.
  • the substrate is fitted onto a bearing surface of the rotating ring. Said bearing surface can be cylindrical and centered on the axis of the rolling bearing. Said bearing surface can be arranged radially between the bottom of the raceway of the rolling elements and the opposite cylindrical surface, for example the bore of a rotating inner ring.
  • the substrate is bonded to the rotating ring. This avoids the specific machining of a bearing and uses a standard type rotating ring, particularly economical.
  • the substrate is pinched against a radial surface of the rotating ring.
  • the substrate can be pinched between said radial surface of the rotating ring and a radial surface formed by a step of the housing or of the shaft of the rotating ring.
  • the device comprises an encoder support, mounted on a cylindrical surface of the rotating ring.
  • the encoder support can be made of synthetic material, of low density, or even of light metal alloy.
  • the encoder support can be fitted on the rotating ring, for example in the bore of an outer ring or on the outer cylindrical surface of an inner ring, of standard type.
  • the encoder support can also be glued to the rotating ring or even be pinched against the rotating ring.
  • the present invention also provides an encoder provided with an active part and intended for an information sensor assembly further comprising a sensor block capable of cooperating with the encoder.
  • the encoder comprises a substrate of electrically non-conductive material and a thin electrically conductive layer supported by the substrate.
  • the thin layer is made of copper with possibly a very thin finishing layer of gold or silver. But we can also consider making the thin layer of any other electrically conductive metal that can be deposited, and, if necessary, etched on a printed circuit board.
  • the thin layer is between 5 and 100 microns thick. The invention therefore offers a particularly light encoder, easy to mount on a rotating part and whose harmful influence on any imbalance is completely negligible.
  • FIG. 1 is a view in axial section of a rolling bearing according to a first embodiment of the invention
  • FIG. 2 is a front elevation view of an encoder according to one aspect of the invention
  • FIGS. 3 and 4 show variants of FIG. 2
  • FIGS. 5 to 8 are half-views in axial section of a rolling bearing according to different embodiments of the invention. As illustrated in FIG.
  • the rolling bearing 1 comprises an outer ring 2, an inner ring 3, a row of rolling elements 4, here balls, arranged between the outer ring 2 and the inner ring 3, and held by a cage 5, a seal 6 secured to the outer ring 2 and rubbing against the inner ring 3, a sensor 7 secured to the outer ring 2 and an encoder 8 secured to the inner ring 3.
  • the outer ring 2 will generally be a non-rotating ring, while the inner ring 3 will be used as a rotating ring. However, in certain applications, it is desired to benefit from rotation information on a rotating part.
  • the encoder is then arranged integral with the non-rotating ring, while the sensor is mounted integral with the rotating ring.
  • the outer ring 2 is of the massive type, comprising a toroidal raceway 2a for the rolling elements 4, an outer cylindrical surface 2b, front radial surfaces 2c and
  • the inner ring 3 has a toroidal raceway 3a for the rolling elements 4, a cylindrical bore 3b, radial front surfaces 3c and 3d, respectively coplanar with the radial surfaces 2c and 2d of the outer ring 2, and an outer cylindrical surface 3rd.
  • a cylindrical bearing surface 3f is formed, by machining, from the external cylindrical surface 3e while being adjacent to the radial surface 3d.
  • the diameter of the bearing surface 3f is between the diameter of the bore 3b and the diameter of the bottom of the raceway 3a to provide a radial space for the encoder 8.
  • the sensor 7 comprises a metal support 11, of generally annular shape, provided of a hook part 11a projecting in the groove 10 of the outer ring 2, a radial part 1 1b in contact with the radial surface 2d of the outer ring 2, and a substantially axial part connected extending outwards from the large diameter end of the radial part 1 1b.
  • the sensor 7 further comprises a body 12 made of synthetic material and having a generally annular shape.
  • the body 12 is surrounded radially by the axial part binds from the support 1 1 and has a wired terminal 12a projecting outwardly to pass an electrical cable 13.
  • the wired terminal is disposed in a notch formed in the part axial link of the support 1 1.
  • the sensor 7 is completed by a printed circuit board 14 occupying a limited angular sector, and disposed in the body 12 while being exposed on the side of the rolling elements 4, and of the electronic components 15, in particular of the microbins, arranged on the face of the printed circuit board 14, on the side of the rolling elements 4.
  • the encoder 8 comprises a substrate 16 in the form of a flat ring, produced from a printed circuit board, for example made of resin epoxy, and an electrically conductive thin layer 17, for example made of copper, formed on one face of the substrate 16 which is electrically non-conductive.
  • the encoder 8 is mounted by fitting the bore of the substrate 16 on the cylindrical surface 3f of the inner ring 3, the thin layer 17 facing the sensor 7 and in particular the electronic component 15.
  • the electrically conductive thin layer 17 is in the form of a plurality of distinct zones separated from each other, delimited in the radial direction by two concentric circles with the substrate 16, and occupying in the circumferential direction an angle constant, of the order of 9 °.
  • the substrate 16 remains bare, devoid of electrically conductive elements.
  • the encoder 8 comprises a substrate 16 identical to that of the preceding embodiment, and a thin electrically conductive layer 17 formed of zones 19 and 20.
  • the zones 19 are delimited radially by two circles concentric with the substrate 16, having a diameter greater than the two circles concentric with the substrate 16 delimiting the zones 20.
  • the zones 19 and 20 are thus spaced radially and can occupy redundant angular sectors. In other words, the zones 19 and 20 overlap angularly.
  • the substrate 16 remains bare, devoid of electrically conductive elements. In the embodiment illustrated in FIG.
  • the electrically conductive thin layer 17 occupies a single zone 21, of circular shape, delimited internally by a circle concentric with the substrate 16 and externally by a circle eccentric with respect to the interior circle.
  • the zone 21 therefore has a large offset, its maximum radial height possibly being more than twice greater than its minimum radial height. Since the thickness of the thin layer 17 is generally less than 100 microns, the influence on any imbalance is completely negligible, which would not be the case with a solid metal coding wheel.
  • the rolling bearing is similar to that of FIG. 1, except that the ring interior 3 is of standard type, without machined surface 3f.
  • the inner ring 3 is mounted on a shaft 22 having an outer cylindrical surface 23 limited by a radial shoulder 24.
  • the encoder 8 the bore of which is of dimension substantially equal to the bore 3b of the inner ring 3, is mounted on the cylindrical surface 23 of the shaft 22, in contact on one side with the radial shoulder 24, and on the other side with the radial surface 3b of the inner ring 3.
  • the radial surface 3c of the inner ring 3 is in contact with a washer or a spacer 25 which a clamping member, not shown, such as a nut, comes to clamp axially against the face
  • the encoder 8 is similar to that of Figure 5 with a bore substantially equal to the bore of the inner ring 3.
  • the substrate 16 is here bonded to the surface 3d radial of the inner ring 3 and integral with the bearing 1 before mounting on a shaft.
  • the rolling bearing 1 further comprises an encoder support 26, made of synthetic material, for example elastomer, of generally annular shape.
  • the support 26 comprises a radial wall 26a projecting inwards and in contact with the radial surface 3d of the inner ring 3, an axial wall 26b connecting to the large diameter end of the radial wall 26a and fitted on the cylindrical outer surface 3 e of the inner ring 3, a radial wall 26c connecting to the axial wall 26b near the rolling elements 4 and extending outwards and an axial wall 26d connecting to the large diameter end of the radial wall 26c and extending opposite the rolling elements 4.
  • the axial walls 26b, radial 26c and axial 26d define an annular housing in which the encoder 8 is arranged, the substrate 16 of which may be of small axial dimension and radial.
  • the radial wall 26a allows precise axial positioning of the encoder 8 and of the support 26 relative to the inner ring 3.
  • the axial wall 26b allows the fitting on the inner ring 3.
  • the axial walls 26b and 26d form axial retaining means of the encoder 8, while the radial wall 26c forms a means of precise axial positioning of the encoder 8, allowing its cooperation with a sensor from which it is separated by a reduced air gap.
  • the embodiment illustrated in FIG. 8 is similar to the previous one, except that the support 26, made of metal, for example of light alloy, comprises radial walls 26a and axial 26b similar to those illustrated in FIG. 7, while that the radial wall
  • a coding wheel for a rolling bearing is thus obtained having a very low inertia, the metallized active part of which can be produced with very high precision and is not limited by the complexity of the shapes, hence an increase in the accuracy of the sensor output signal.
  • the use of more complex shapes, such as those illustrated in FIG. 3, makes it possible to increase the number of sensors and thereby increase the precision of the detection.
  • the active part which is very thin, has a negligible influence on any imbalance.
  • the encoder structure allows it to be easily mounted in a rolling bearing. Of course, it is understood that the sensor and the encoder are without mutual contact. A sensor and an encoder with mechanical contact would produce unacceptable heating and destruction of the encoder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Support Of The Bearing (AREA)

Abstract

The invention relates to a bearing support with an instrumented movement (1), comprising a non-rotating bush (2), a rotating bush (3), roller elements (4), arranged between the rotating (3) and non-rotating (2) bushes and an information recorder unit, with a sensor (7) and a coder (8), comprising a substrate (16) made from an electrically non-conducting material and a thin layer (17) of electrically-conducting material, supported by the substrate (16). The substrate (16) is fixed in rotation with the rotating bush (3).

Description

Palier à roulement instrumenté et codeur pour ensemble capteur d'informations. Instrumented rolling bearing and encoder for information sensor assembly.
La présente invention concerne le domaine des codeurs susceptibles de coopérer avec un capteur en vue de la détection d'un mouvement, notamment le mouvement de rotation d'une partie tournante par rapport à une partie non tournante. Le codeur est en général monté sur la partie tournante tandis que le capteur est monté sur la partie non tournante, bien que le montage soit inversé dans certaines applications. Le capteur est capable de délivrer un signal permettant de déterminer la valeur du paramètre à mesurer, tel que le déplacement, la position, la vitesse ou l'accélération angulaire de la partie tournante. La partie active du codeur, qui coopère avec un ou plusieurs capteurs, comporte des éléments de codage dont la forme et la structure dépendent du type de capteur avec lequel fonctionne le codeur. Dans de nombreuses applications, la partie tournante est une bague tournante d'un palier à roulement dont la bague non tournante supporte le capteur. L'invention concerne plus particulièrement les codeurs métalliques dont la partie opérationnelle est réalisée dans un matériau électriquement conducteur et dont la géométrie permet de générer le signal adéquat avec le ou les capteurs adaptés, tels que des capteurs inductifs à microbobine. De tels dispositifs sont connus, par exemple par les demandes de brevet français n° 0208263 et 0208264, et donnent satisfaction. Dans les dispositifs connus, au moins la partie active du codeur est réalisée en métal, généralement par découpe et éventuellement emboutissage d'un feuillard de tôle métallique. Un tel codeur présente toutefois quelques inconvénients. Le codeur présente une masse et une inertie relativement élevées, ce qui est rarement souhaitable. Un codeur, dont la partie active est de type excentrique, provoque un balourd non négligeable à haute vitesse de rotation. En outre, la forme des dents ou des fenêtres n'est pas toujours très rigoureuse si on veut utiliser des procédés conventionnels de fabrication, tels que la découpe à la presse en vue d'un prix de revient raisonnable. Certaines formes de dents ou de fenêtres sont par ailleurs difficiles à réaliser à partir d'une ébauche en tôle, du fait de la complexité de la forme et/ou des petites dimensions des dents ou des fenêtres. La difficulté d'obtention de dents ou de fenêtres de géométrie constante se traduit par des irrégularités nuisibles à la qualité du signal de sortie du capteur. L'invention propose de remédier à ces inconvénients. L' invention propose un codeur de faible masse, d' encombrement réduit, sensiblement dépourvu de balourd, et de fabrication économique. Plus particulièrement, l'invention propose un codeur présentant une grande légèreté, une faible inertie et pouvant tourner à haute vitesse sans balourd et sans frottement, quelque soit la forme de la partie active du codeur dont le centre d'inertie peut être située complètement hors de l'axe de rotation du système sans conséquence sur le balourd général de la roue codeuse. Le palier à roulement instrumenté, selon un aspect de l'invention, est du type comprenant une bague non tournante, une bague tournante, au moins une rangée d' éléments roulants disposés entre deux chemins de roulement des bagues tournante et non tournante, et un ensemble capteur d'informations comprenant un bloc capteur non tournant et un codeur tournant pourvu d'une partie active. Le codeur comprend un substrat en matériau électriquement non conducteur et une couche mince électriquement conductrice supportée par le substrat, le substrat étant solidaire en rotation de la bague tournante. Le substrat peut être réalisé en matériau synthétique présentant une densité considérablement plus faible que l'acier. On obtient ainsi un codeur de masse et d'inertie réduites. En outre, la couche mince électriquement conductrice peut présenter une forme excentrique dont l'influence sur l'information d'un balourd est négligeable. En effet, la faible épaisseur de la couche mince par rapport à l'épaisseur du substrat fait que le centre d'inertie global de la roue codeuse annulaire ne varie pratiquement pas avec la forme du dépôt métallique et reste situé sensiblement sur l'axe de rotation. Avantageusement, le substrat est annulaire. On réduit ainsi un éventuel balourd. Le substrat peut présenter une forme générale de disque. Le substrat, de forme plane, peut ainsi être fabriqué à partir d'une carte conventionnelle de circuit imprimé. Le prix de revient du codeur reste donc raisonnable. Dans un mode de réalisation de l'invention, le bloc-capteur comprend au moins un capteur inductif. Le bloc-capteur peut comprendre au moins une microbobine. On peut ainsi bénéficier d'un bloc-capteur d' encombrement réduit. Dans un mode de réalisation de l'invention, la couche mince électriquement conductrice comprend une pluralité de secteurs angulaires séparés les uns des autres. La couche mince électriquement conductrice peut former une pluralité de dents occupant chacune un angle déterminé, constant ou non. Ces dents peuvent être disposées selon un ou plusieurs anneaux concentriques dans le but de coopérer avec un ou plusieurs capteurs étages radialement. Dans un autre mode de réalisation de l'invention, la couche mince électriquement conductrice est continue circulairement. La couche mince électriquement conductrice peut être délimitée par deux cercles excentrés l'un par rapport à l'autre. L'un des cercles peut être concentrique avec le substrat du codeur. On bénéficie alors de la faible épaisseur de la couche mince qui, malgré son excentricité, ne provoque aucun effet significatif de balourd. Dans un mode de réalisation de l'invention, le substrat est emmanché sur une portée de la bague tournante. Ladite portée peut être cylindrique et centrée sur l'axe du palier à roulement. Ladite portée peut être disposée radialement entre le fond du chemin de roulement des éléments roulants et la surface cylindrique opposée, par exemple l'alésage d'une bague intérieure tournante. Dans un autre mode de réalisation de l'invention, le substrat est collé sur la bague tournante. On peut ainsi éviter l'usinage spécifique d'une portée et utiliser une bague tournante de type standard, particulièrement économique. Dans un autre mode de réalisation de l'invention, le substrat est pincé contre une surface radiale de la bague tournante. Le substrat peut être pincé entre ladite surface radiale de la bague tournante et une surface radiale formée par un redan du logement ou de l'arbre de la bague tournante. Dans un mode de réalisation de l'invention, le dispositif comprend un support de codeur, monté sur une surface cylindrique de la bague tournante. Le support de codeur peut être réalisé en matériau synthétique, de faible densité, ou encore en alliage métallique léger. Le support de codeur peut être emmanché sur la bague tournante, par exemple dans l'alésage d'une bague extérieure ou sur la surface cylindrique extérieure d'une bague intérieure, de type standard. Le support de codeur peut également être collé sur la bague tournante ou encore être pincé contre la bague tournante. La présente invention propose également un codeur pourvu d'une partie active et destiné à un ensemble capteur d'informations comprenant en outre un bloc-capteur apte à coopérer avec le codeur. Le codeur comprend un substrat en matériau électriquement non conducteur et une couche mince électriquement conductrice supportée par le substrat. Avantageusement, la couche mince est réalisée en cuivre avec éventuellement une très mince couche de finition en or ou en argent. Mais on peut aussi envisager de réaliser la couche mince en tout autre métal électriquement conducteur que l'on peut déposer, et, si nécessaire, graver sur une carte de circuit imprimé. Avantageusement, la couche mince est d'épaisseur comprise entre 5 et 100 microns. L' invention offre donc un codeur particulièrement léger, facile à monter sur une partie tournante et dont l'influence néfaste sur un éventuel balourd est tout à fait négligeable. La présente invention sera mieux comprise à l' étude de la description détaillée de quelques modes de réalisation pris à titre d' exemples nullement limitatifs et illustrés par les dessins annexés, sur lesquels : -la figure 1 est une vue en coupe axiale d'un palier à roulement selon un premier mode de réalisation de l'invention ; -la figure 2 est une vue de face en élévation d'un codeur selon un aspect de l'invention ; -les figures 3 et 4 montrent des variantes de la figure 2 ; et -les figures 5 à 8 sont des demi-vues en coupe axiale de palier à roulement selon différents modes de réalisation de l'invention. Tel qu'illustré sur la figure 1 , le palier à roulement 1 comprend une bague extérieure 2, une bague intérieure 3, une rangée d'éléments roulants 4, ici des billes, disposés entre la bague extérieure 2 et la bague intérieure 3, et maintenus par une cage 5, un joint d'étanchéité 6 solidaire de la bague extérieure 2 et venant frotter sur la bague intérieure 3 , un capteur 7 solidaire de la bague extérieure 2 et un codeur 8 solidaire de la bague intérieure 3. Plus précisément, la bague extérieure 2 sera en général une bague non tournante, tandis que la bague intérieure 3 sera utilisée comme bague tournante. Toutefois, dans certaines applications, l'on souhaite bénéficier d'informations de rotation sur une partie tournante. Le codeur est alors disposé solidaire de la bague non tournante, tandis que le capteur est monté solidaire de la bague tournante. En outre, on peut parfaitement prévoir un capteur solidaire de la bague intérieure et un codeur solidaire de la bague extérieure, que cette dernière soit tournante ou non tournante. La bague extérieure 2 est de type massive, comprenant un chemin de roulement toroïdal 2a pour les éléments roulants 4, une surface cylindrique extérieure 2b, des surfaces radiales frontales 2c etThe present invention relates to the field of coders capable of cooperating with a sensor for the purpose of detecting a movement, in particular the rotational movement of a rotating part with respect to a non-rotating part. The encoder is generally mounted on the rotating part while the sensor is mounted on the non-rotating part, although the mounting is reversed in some applications. The sensor is capable of delivering a signal making it possible to determine the value of the parameter to be measured, such as the displacement, the position, the speed or the angular acceleration of the rotating part. The active part of the encoder, which cooperates with one or more sensors, comprises coding elements whose shape and structure depend on the type of sensor with which the encoder operates. In many applications, the rotating part is a rotating ring of a rolling bearing whose non-rotating ring supports the sensor. The invention relates more particularly to metal coders, the operational part of which is made of an electrically conductive material and the geometry of which makes it possible to generate the appropriate signal with the appropriate sensor or sensors, such as inductive microbool sensors. Such devices are known, for example from French patent applications No. 0208263 and 0208264, and are satisfactory. In known devices, at least the active part of the encoder is made of metal, generally by cutting and possibly stamping a sheet of metal sheet. However, such an encoder has some drawbacks. The encoder has a relatively high mass and inertia, which is rarely desirable. An encoder, the active part of which is of eccentric type, causes a significant imbalance at high speed of rotation. In addition, the shape of the teeth or windows is not always very rigorous if one wants to use conventional manufacturing processes, such as press cutting for a reasonable cost price. Certain shapes of teeth or windows are moreover difficult to produce from a sheet metal blank, due to the complexity of the shape and / or the small dimensions of the teeth or windows. The difficulty in obtaining teeth or windows of constant geometry results in irregularities detrimental to the quality of the output signal from the sensor. The invention proposes to remedy these drawbacks. The invention provides an encoder of low mass, of reduced bulk, substantially free of unbalance, and of economical manufacture. More particularly, the invention proposes an encoder having a great lightness, a low inertia and being able to turn at high speed without imbalance and without friction, whatever the shape of the active part of the encoder whose center of inertia can be located completely outside. of the axis of rotation of the system without consequence on the general imbalance of the coding wheel. The instrumented rolling bearing, according to one aspect of the invention, is of the type comprising a non-rotating ring, a rotating ring, at least one row of rolling elements arranged between two raceways of the rotating and non-rotating rings, and a information sensor assembly comprising a non-rotating sensor unit and a rotary encoder provided with an active part. The encoder comprises a substrate made of electrically non-conductive material and a thin electrically conductive layer supported by the substrate, the substrate being fixed in rotation with the rotating ring. The substrate can be made of synthetic material having a density considerably lower than steel. A reduced mass and inertia encoder is thus obtained. In addition, the electrically conductive thin layer may have an eccentric shape whose influence on the information of an unbalance is negligible. Indeed, the small thickness of the thin layer compared to the thickness of the substrate means that the overall center of inertia of the annular coding wheel practically does not vary with the shape of the metal deposit and remains located substantially on the axis of rotation. Advantageously, the substrate is annular. This reduces any imbalance. The substrate may have a general disc shape. The substrate, of planar shape, can thus be manufactured from a conventional printed circuit board. The cost price of the encoder therefore remains reasonable. In one embodiment of the invention, the sensor block comprises at least one inductive sensor. The sensor unit can include at least one microbool. It is thus possible to benefit from a sensor unit of reduced bulk. In one embodiment of the invention, the electrically conductive thin layer comprises a plurality of angular sectors separated from each other. The electrically conductive thin layer can form a plurality of teeth each occupying a determined angle, constant or not. These teeth can be arranged in one or more concentric rings in order to cooperate with one or more radially stepped sensors. In another embodiment of the invention, the electrically conductive thin layer is circularly continuous. The electrically conductive thin layer can be delimited by two circles which are offset from one another. One of the circles may be concentric with the substrate of the encoder. We then benefit from the thin thickness of the thin layer which, despite its eccentricity, does not cause any significant imbalance effect. In one embodiment of the invention, the substrate is fitted onto a bearing surface of the rotating ring. Said bearing surface can be cylindrical and centered on the axis of the rolling bearing. Said bearing surface can be arranged radially between the bottom of the raceway of the rolling elements and the opposite cylindrical surface, for example the bore of a rotating inner ring. In another embodiment of the invention, the substrate is bonded to the rotating ring. This avoids the specific machining of a bearing and uses a standard type rotating ring, particularly economical. In another embodiment of the invention, the substrate is pinched against a radial surface of the rotating ring. The substrate can be pinched between said radial surface of the rotating ring and a radial surface formed by a step of the housing or of the shaft of the rotating ring. In one embodiment of the invention, the device comprises an encoder support, mounted on a cylindrical surface of the rotating ring. The encoder support can be made of synthetic material, of low density, or even of light metal alloy. The encoder support can be fitted on the rotating ring, for example in the bore of an outer ring or on the outer cylindrical surface of an inner ring, of standard type. The encoder support can also be glued to the rotating ring or even be pinched against the rotating ring. The present invention also provides an encoder provided with an active part and intended for an information sensor assembly further comprising a sensor block capable of cooperating with the encoder. The encoder comprises a substrate of electrically non-conductive material and a thin electrically conductive layer supported by the substrate. Advantageously, the thin layer is made of copper with possibly a very thin finishing layer of gold or silver. But we can also consider making the thin layer of any other electrically conductive metal that can be deposited, and, if necessary, etched on a printed circuit board. Advantageously, the thin layer is between 5 and 100 microns thick. The invention therefore offers a particularly light encoder, easy to mount on a rotating part and whose harmful influence on any imbalance is completely negligible. The present invention will be better understood on studying the detailed description of a few embodiments taken by way of non-limiting examples and illustrated by the appended drawings, in which: FIG. 1 is a view in axial section of a rolling bearing according to a first embodiment of the invention; FIG. 2 is a front elevation view of an encoder according to one aspect of the invention; FIGS. 3 and 4 show variants of FIG. 2; and FIGS. 5 to 8 are half-views in axial section of a rolling bearing according to different embodiments of the invention. As illustrated in FIG. 1, the rolling bearing 1 comprises an outer ring 2, an inner ring 3, a row of rolling elements 4, here balls, arranged between the outer ring 2 and the inner ring 3, and held by a cage 5, a seal 6 secured to the outer ring 2 and rubbing against the inner ring 3, a sensor 7 secured to the outer ring 2 and an encoder 8 secured to the inner ring 3. More precisely, the outer ring 2 will generally be a non-rotating ring, while the inner ring 3 will be used as a rotating ring. However, in certain applications, it is desired to benefit from rotation information on a rotating part. The encoder is then arranged integral with the non-rotating ring, while the sensor is mounted integral with the rotating ring. In addition, it is perfectly possible to provide a sensor integral with the inner ring and an encoder integral with the outer ring, whether the latter is rotating or not rotating. The outer ring 2 is of the massive type, comprising a toroidal raceway 2a for the rolling elements 4, an outer cylindrical surface 2b, front radial surfaces 2c and
2d et un alésage cylindrique 2e. Des rainures 9 et 10 sont formées dans l'alésage 2e à proximité des surfaces radiales 2c et 2d et présentent une forme annulaire. Le joint d'étanchéité 6 est monté dans la rainure 9, tandis que le capteur 7 est monté dans la rainure 10 tout en étant en contact avec la surface radiale 2d. La bague intérieure 3 présente un chemin de roulement toroïdal 3a pour les éléments roulants 4, un alésage cylindrique 3b, des surfaces frontales radiales 3c et 3d, respectivement coplanaires avec les surfaces radiales 2c et 2d de la bague extérieure 2, et une surface cylindrique extérieure 3e. Une portée cylindrique 3f est formée, par usinage, à partir de la surface cylindrique extérieure 3e tout en étant adjacente à la surface radiale 3d. Le diamètre de la portée 3f est compris entre le diamètre de l'alésage 3b et le diamètre du fond du chemin de roulement 3a pour ménager un espace radial au codeur 8. Le capteur 7 comprend un support métallique 11 , de forme générale annulaire, pourvu d'une partie formant crochet l i a en saillie dans la rainure 10 de la bague extérieure 2, une partie radiale 1 1b en contact avec la surface radiale 2d de la bague extérieure 2, et une partie sensiblement axiale l i e s' étendant vers l'extérieur à partir de l'extrémité de grand diamètre de la partie radiale 1 1b. Le capteur 7 comprend en outre un corps 12 réalisé en matériau synthétique et présentant une forme générale annulaire. Le corps 12 est entouré radialement par la partie axiale l i e du support 1 1 et comporte un terminal filaire 12a s' étendant en saillie vers l'extérieur pour laisser passer un câble électrique 13. Le terminal filaire est disposé dans une encoche formée dans la partie axiale l i e du support 1 1. Le capteur 7 se complète par une carte de circuit imprimé 14 occupant un secteur angulaire limité, et disposée dans le corps 12 tout en étant exposée du côté des éléments roulants 4, et des composants électroniques 15, notamment des microbobines, disposés sur la face de la carte de circuit imprimé 14, du côté des éléments roulants 4. Le codeur 8 comprend un substrat 16 en forme d'anneau plat, réalisé à partir d'une carte de circuit imprimé, par exemple en résine époxyde, et une couche mince 17 électriquement conductrice, par exemple en cuivre, formée sur une face du substrat 16 qui est électriquement non conducteur. Le codeur 8 est monté par emmanchement de l'alésage du substrat 16 sur la portée cylindrique 3f de la bague intérieure 3, la couche mince 17 faisant face au capteur 7 et en particulier au composant électronique 15. Dans le mode de réalisation illustré sur la figure 2, la couche mince électriquement conductrice 17 se présente sous la forme d'une pluralité de zones distinctes et séparées les unes des autres, délimitées dans le sens radial par deux cercles concentriques avec le substrat 16, et occupant dans le sens circonférentiel un angle constant, de l'ordre de 9°. Entre deux zones électriquement conductrices, le substrat 16 reste nu, dépourvu d'éléments électriquement conducteurs. Dans le mode de réalisation illustré sur la figure 3, le codeur 8 comprend un substrat 16 identique à celui du mode de réalisation précédent, et une couche mince électriquement conductrice 17 formée de zones 19 et 20. Les zones 19 sont délimitées radialement par deux cercles concentriques au substrat 16, présentant un diamètre supérieur aux deux cercles concentriques au substrat 16 délimitant les zones 20. Les zones 19 et 20 sont ainsi espacées radialement et peuvent occuper des secteurs angulaires redondants. En d' autres termes, les zones 19 et 20 se recouvrent angulairement. Entre deux zones électriquement conductrices, le substrat 16 reste nu, dépourvu d'éléments électriquement conducteurs. Dans le mode de réalisation illustré sur la figure 4, la couche mince électriquement conductrice 17 occupe une seule zone 21 , de forme circulaire, délimitée intérieurement par un cercle concentrique au substrat 16 et extérieurement par un cercle excentré par rapport au cercle intérieur. La zone 21 présente donc une excentration importante, sa hauteur radiale maximale pouvant être plus de deux fois supérieure à sa hauteur radiale minimale. L' épaisseur de la couche mince 17 étant généralement inférieure à 100 microns, l'influence sur un éventuel balourd est tout à fait négligeable, ce qui ne serait pas le cas avec une roue codeuse métallique massive. Dans le mode de réalisation illustré sur la figure 5, le palier à roulement est semblable à celui de la figure 1 , à ceci près que la bague intérieure 3 est de type standard, dépourvue de portée usinée 3f. La bague intérieure 3 est montée sur un arbre 22 présentant une surface cylindrique extérieure 23 limitée par un épaulement radial 24. Le codeur 8, dont l' alésage est de dimension sensiblement égale à l'alésage 3b de la bague intérieure 3, est monté sur la surface cylindrique 23 de l'arbre 22, en contact d'un côté avec l' épaulement radial 24, et de l'autre côté avec la surface radiale 3b de la bague intérieure 3. La surface radiale 3c de la bague intérieure 3 est en contact avec une rondelle ou une entretoise 25 qu'un organe de serrage non représenté, tel qu'un écrou, vient serrer axialement contre la face2d and a cylindrical bore 2e. Grooves 9 and 10 are formed in the bore 2e near the radial surfaces 2c and 2d and have an annular shape. The seal 6 is mounted in the groove 9, while the sensor 7 is mounted in the groove 10 while being in contact with the radial surface 2d. The inner ring 3 has a toroidal raceway 3a for the rolling elements 4, a cylindrical bore 3b, radial front surfaces 3c and 3d, respectively coplanar with the radial surfaces 2c and 2d of the outer ring 2, and an outer cylindrical surface 3rd. A cylindrical bearing surface 3f is formed, by machining, from the external cylindrical surface 3e while being adjacent to the radial surface 3d. The diameter of the bearing surface 3f is between the diameter of the bore 3b and the diameter of the bottom of the raceway 3a to provide a radial space for the encoder 8. The sensor 7 comprises a metal support 11, of generally annular shape, provided of a hook part 11a projecting in the groove 10 of the outer ring 2, a radial part 1 1b in contact with the radial surface 2d of the outer ring 2, and a substantially axial part connected extending outwards from the large diameter end of the radial part 1 1b. The sensor 7 further comprises a body 12 made of synthetic material and having a generally annular shape. The body 12 is surrounded radially by the axial part binds from the support 1 1 and has a wired terminal 12a projecting outwardly to pass an electrical cable 13. The wired terminal is disposed in a notch formed in the part axial link of the support 1 1. The sensor 7 is completed by a printed circuit board 14 occupying a limited angular sector, and disposed in the body 12 while being exposed on the side of the rolling elements 4, and of the electronic components 15, in particular of the microbins, arranged on the face of the printed circuit board 14, on the side of the rolling elements 4. The encoder 8 comprises a substrate 16 in the form of a flat ring, produced from a printed circuit board, for example made of resin epoxy, and an electrically conductive thin layer 17, for example made of copper, formed on one face of the substrate 16 which is electrically non-conductive. The encoder 8 is mounted by fitting the bore of the substrate 16 on the cylindrical surface 3f of the inner ring 3, the thin layer 17 facing the sensor 7 and in particular the electronic component 15. In the embodiment illustrated in the Figure 2, the electrically conductive thin layer 17 is in the form of a plurality of distinct zones separated from each other, delimited in the radial direction by two concentric circles with the substrate 16, and occupying in the circumferential direction an angle constant, of the order of 9 °. Between two electrically conductive zones, the substrate 16 remains bare, devoid of electrically conductive elements. In the embodiment illustrated in FIG. 3, the encoder 8 comprises a substrate 16 identical to that of the preceding embodiment, and a thin electrically conductive layer 17 formed of zones 19 and 20. The zones 19 are delimited radially by two circles concentric with the substrate 16, having a diameter greater than the two circles concentric with the substrate 16 delimiting the zones 20. The zones 19 and 20 are thus spaced radially and can occupy redundant angular sectors. In other words, the zones 19 and 20 overlap angularly. Between two electrically conductive zones, the substrate 16 remains bare, devoid of electrically conductive elements. In the embodiment illustrated in FIG. 4, the electrically conductive thin layer 17 occupies a single zone 21, of circular shape, delimited internally by a circle concentric with the substrate 16 and externally by a circle eccentric with respect to the interior circle. The zone 21 therefore has a large offset, its maximum radial height possibly being more than twice greater than its minimum radial height. Since the thickness of the thin layer 17 is generally less than 100 microns, the influence on any imbalance is completely negligible, which would not be the case with a solid metal coding wheel. In the embodiment illustrated in FIG. 5, the rolling bearing is similar to that of FIG. 1, except that the ring interior 3 is of standard type, without machined surface 3f. The inner ring 3 is mounted on a shaft 22 having an outer cylindrical surface 23 limited by a radial shoulder 24. The encoder 8, the bore of which is of dimension substantially equal to the bore 3b of the inner ring 3, is mounted on the cylindrical surface 23 of the shaft 22, in contact on one side with the radial shoulder 24, and on the other side with the radial surface 3b of the inner ring 3. The radial surface 3c of the inner ring 3 is in contact with a washer or a spacer 25 which a clamping member, not shown, such as a nut, comes to clamp axially against the face
3c de la bague intérieure 3. Ainsi, une zone de petit diamètre du substrat 16 du codeur 8 est pincée axialement entre la bague intérieure 3 et l'épaulement 24 de l' arbre 22 et est donc solidarisée en rotation avec ladite bague intérieure 3 et ledit arbre 22. Dans le mode de réalisation illustré sur la figure 6, le codeur 8 est semblable à celui de la figure 5 avec un alésage sensiblement égal à l' alésage de la bague intérieure 3. Le substrat 16 est ici collé sur la surface radiale 3d de la bague intérieure 3 et solidaire du palier 1 avant son montage sur un arbre. Dans le mode de réalisation illustré sur la figure 7, le palier à roulement 1 comprend en outre un support de codeur 26, réalisé en matériau synthétique, par exemple en élastomère, de forme générale annulaire. Le support 26 comprend une paroi radiale 26a en saillie vers l'intérieur et en contact avec la surface radiale 3d de la bague intérieure 3, une paroi axiale 26b se raccordant à l'extrémité de grand diamètre de la paroi radiale 26a et emmanchée sur la surface extérieure cylindrique 3 e de la bague intérieure 3 , une paroi radiale 26c se raccordant à la paroi axiale 26b à proximité des éléments roulants 4 et s'étendant vers l'extérieur et une paroi axiale 26d se raccordant à l'extrémité de grand diamètre de la paroi radiale 26c et s' étendant à l'opposé des éléments roulants 4. Les parois axiale 26b, radiale 26c et axiale 26d définissent un logement annulaire dans lequel est disposé le codeur 8, dont le substrat 16 peut être de faible dimension axiale et radiale. Eventuellement, un léger rebord radial dirigé vers l'intérieur ou des griffes peuvent être prévus à l'extrémité libre de la paroi axiale 26d pour retenir axialement le substrat. La paroi radiale 26a permet un positionnement axial précis du codeur 8 et du support 26 par rapport à la bague intérieure 3. La paroi axiale 26b permet l'emmanchement sur la bague intérieure 3. Les parois axiales 26b et 26d forment des moyens de retenue axiale du codeur 8, tandis que la paroi radiale 26c forme un moyen de positionnement axial précis du codeur 8, permettant sa coopération avec un capteur dont il est séparé par un entrefer réduit. Le mode de réalisation illustré sur la figure 8 se rapproche du précédent, à ceci près que le support 26, réalisé en métal, par exemple en alliage léger, comprend des parois radiale 26a et axiale 26b similaires à celles illustrées sur la figure 7, tandis que la paroi radiale3c of the inner ring 3. Thus, a small diameter area of the substrate 16 of the encoder 8 is pinched axially between the inner ring 3 and the shoulder 24 of the shaft 22 and is therefore secured in rotation with said inner ring 3 and said shaft 22. In the embodiment illustrated in Figure 6, the encoder 8 is similar to that of Figure 5 with a bore substantially equal to the bore of the inner ring 3. The substrate 16 is here bonded to the surface 3d radial of the inner ring 3 and integral with the bearing 1 before mounting on a shaft. In the embodiment illustrated in Figure 7, the rolling bearing 1 further comprises an encoder support 26, made of synthetic material, for example elastomer, of generally annular shape. The support 26 comprises a radial wall 26a projecting inwards and in contact with the radial surface 3d of the inner ring 3, an axial wall 26b connecting to the large diameter end of the radial wall 26a and fitted on the cylindrical outer surface 3 e of the inner ring 3, a radial wall 26c connecting to the axial wall 26b near the rolling elements 4 and extending outwards and an axial wall 26d connecting to the large diameter end of the radial wall 26c and extending opposite the rolling elements 4. The axial walls 26b, radial 26c and axial 26d define an annular housing in which the encoder 8 is arranged, the substrate 16 of which may be of small axial dimension and radial. Possibly a slight radial edge directed inward or claws may be provided at the free end of the axial wall 26d to axially retain the substrate. The radial wall 26a allows precise axial positioning of the encoder 8 and of the support 26 relative to the inner ring 3. The axial wall 26b allows the fitting on the inner ring 3. The axial walls 26b and 26d form axial retaining means of the encoder 8, while the radial wall 26c forms a means of precise axial positioning of the encoder 8, allowing its cooperation with a sensor from which it is separated by a reduced air gap. The embodiment illustrated in FIG. 8 is similar to the previous one, except that the support 26, made of metal, for example of light alloy, comprises radial walls 26a and axial 26b similar to those illustrated in FIG. 7, while that the radial wall
26c est de dimension réduite, nettement inférieure à la dimension radiale du substrat 16. Le substrat 16 peut alors être emmanché sur le support 26 ou encore collé. On comprendra que, dans tous les cas, il est possible de compléter l' emmanchement par un collage. Grâce à l'invention, on obtient ainsi une roue codeuse pour palier à roulement présentant une très faible inertie, dont la partie active métallisée peut être réalisée avec une très grande précision et n'est pas limitée par la complexité des formes, d'où un accroissement de la précision du signal de sortie du capteur. L'utilisation de formes plus complexes, telles que celles illustrées sur la figure 3, permet d'augmenter le nombre de capteurs et d'augmenter par là même la précision de la détection. Enfin, la partie active, de très faible épaisseur, est d'influence négligeable sur un éventuel balourd. La structure du codeur permet son montage aisé dans un palier à roulement. Bien entendu, on comprend que le capteur et le codeur sont sans contact mutuel. Un capteur et un codeur avec contact mécanique produiraient des échauffements inacceptables et une destruction du codeur. 26c is of reduced size, clearly smaller than the radial dimension of the substrate 16. The substrate 16 can then be fitted onto the support 26 or even glued. It will be understood that, in all cases, it is possible to complete the fitting with a bonding. Thanks to the invention, a coding wheel for a rolling bearing is thus obtained having a very low inertia, the metallized active part of which can be produced with very high precision and is not limited by the complexity of the shapes, hence an increase in the accuracy of the sensor output signal. The use of more complex shapes, such as those illustrated in FIG. 3, makes it possible to increase the number of sensors and thereby increase the precision of the detection. Finally, the active part, which is very thin, has a negligible influence on any imbalance. The encoder structure allows it to be easily mounted in a rolling bearing. Of course, it is understood that the sensor and the encoder are without mutual contact. A sensor and an encoder with mechanical contact would produce unacceptable heating and destruction of the encoder.

Claims

REVENDICATIONS
1 -Palier à roulement instrumenté (1), du type comprenant une bague non tournante (2), une bague tournante (3), au moins une rangée d' éléments roulants (4) disposés entre deux chemins de roulement des bagues tournante (3) et non tournante (2), et un ensemble capteur d'informations comprenant un bloc capteur (7) non tournant et un codeur (8) tournant pourvu d'une partie active, le codeur et le bloc capteur étant séparés par un entrefer, caractérisé par le fait que le codeur (8) comprend un substrat (16) en matériau électriquement non conducteur et une couche mince électriquement conductrice (17) supportée par le substrat, le substrat (16) étant solidaire en rotation de la bague tournante (3). 2-Dispositif selon la revendication 1 , caractérisé par le fait que le substrat (16) est annulaire. 3-Dispositif selon la revendication 2, caractérisé par le fait que le substrat (16) présente une forme générale de disque. 4-Dispositif selon l'une quelconque des revendications précédentes, caractérisé par le fait que le bloc capteur (7) comprend au moins un capteur inductif. 5-Dispositif selon l'une quelconque des revendications précédentes, caractérisé par le fait que le bloc capteur (7) comprend au moins une microbobine. 6-Dispositif selon l'une quelconque des revendications précédentes, caractérisé par le fait que la couche mince (17) électriquement conductrice comprend une pluralité de secteurs angulaires (18) séparés les uns des autres. 7-Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé par le fait que la couche mince (17) électriquement conductrice est continue circulairement. 8-Dispositif selon la revendication 7, caractérisé par le fait que la couche mince (17) électriquement conductrice est délimitée par deux cercles excentrés l'un par rapport à l'autre. 9-Dispositif selon l'une quelconque des revendications précédentes, caractérisé par le fait que le substrat (16) est emmanché sur une portée (3f) de la bague tournante (3). 10-Palier selon l'une quelconque des revendications précédentes, caractérisé par le fait que le substrat (16) est collé sur la bague tournante (3). 1 1 -Palier selon l'une quelconque des revendications 1 à 8, caractérisé par le fait que le substrat (16) est pincé contre une surface radiale de la bague tournante (3). 12-Palier selon l'une quelconque des revendications "précédentes, caractérisé par le fait qu'il comprend un support (26) de codeur monté "sur une surface cylindrique de la bague tournante 1 - Instrumented rolling bearing (1), of the type comprising a non-rotating ring (2), a rotating ring (3), at least one row of rolling elements (4) disposed between two raceways of the rotating rings (3 ) and non-rotating (2), and an information sensor assembly comprising a non-rotating sensor block (7) and a rotary encoder (8) provided with an active part, the encoder and the sensor block being separated by an air gap, characterized by the fact that the encoder (8) comprises a substrate (16) of electrically non-conductive material and a thin electrically conductive layer (17) supported by the substrate, the substrate (16) being rotatably integral with the rotating ring (3 ). 2-Device according to claim 1, characterized in that the substrate (16) is annular. 3-Device according to claim 2, characterized in that the substrate (16) has a general shape of disc. 4-Device according to any one of the preceding claims, characterized in that the sensor block (7) comprises at least one inductive sensor. 5-Device according to any one of the preceding claims, characterized in that the sensor block (7) comprises at least one microbool. 6-Device according to any one of the preceding claims, characterized in that the electrically conductive thin layer (17) comprises a plurality of angular sectors (18) separated from each other. 7-Device according to any one of claims 1 to 5, characterized in that the thin layer (17) electrically conductive is circularly continuous. 8-Device according to claim 7, characterized in that the thin electrically conductive layer (17) is delimited by two circles eccentric relative to one another. 9-Device according to any one of the preceding claims, characterized in that the substrate (16) is fitted on a surface (3f) of the rotating ring (3). 10-bearing according to any one of the preceding claims, characterized in that the substrate (16) is bonded to the rotating ring (3). 1 1 -Palier according to any one of claims 1 to 8, characterized in that the substrate (16) is pinched against a radial surface of the rotating ring (3). 12-bearing according to any one of claims " preceding, characterized in that it comprises a support (26) encoder mounted " on a cylindrical surface of the rotating ring
EP04767413A 2003-06-27 2004-06-22 Bearing support with an instrumented movement and coder for an information recorder unit Withdrawn EP1639375A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0307772A FR2856757B1 (en) 2003-06-27 2003-06-27 INSTRUMENT BEARING BEARING AND ENCODER FOR INFORMATION SENSOR ASSEMBLY
PCT/FR2004/001557 WO2005001301A2 (en) 2003-06-27 2004-06-22 Bearing support with an instrumented movement and coder for an information recorder unit

Publications (1)

Publication Number Publication Date
EP1639375A2 true EP1639375A2 (en) 2006-03-29

Family

ID=33515455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767413A Withdrawn EP1639375A2 (en) 2003-06-27 2004-06-22 Bearing support with an instrumented movement and coder for an information recorder unit

Country Status (5)

Country Link
US (1) US20070053622A1 (en)
EP (1) EP1639375A2 (en)
JP (1) JP2007514924A (en)
FR (1) FR2856757B1 (en)
WO (1) WO2005001301A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851624B1 (en) 2003-02-26 2006-03-31 Skf Ab INSTRUMENT BEARING BEARING
FR2858376B1 (en) * 2003-07-28 2006-03-03 Skf France FREEWHEEL BEARING DEVICE WITH TORQUE LIMITER.
FR2861459B1 (en) * 2003-10-22 2006-02-24 Skf Ab ABSOLUTE MULTITOUR HIGH RESOLUTION ROTATION MEASUREMENT SYSTEM AND BEARING EQUIPPED WITH SUCH A SYSTEM.
EP1801545A1 (en) * 2005-12-24 2007-06-27 Zf Friedrichshafen Ag Rotary encoder for an eddy current sensor system
FR2902699B1 (en) 2006-06-26 2010-10-22 Skf Ab SUSPENSION STOP DEVICE AND FORCE LEG.
FR2906587B1 (en) 2006-10-03 2009-07-10 Skf Ab TENDERING ROLLER DEVICE.
FR2913081B1 (en) 2007-02-27 2009-05-15 Skf Ab DEBRAYABLE PULLEY DEVICE
FR2915280B1 (en) * 2007-04-19 2009-07-10 Skf Ab INSTRUMENT JOINT SYSTEM.
US9227823B2 (en) * 2009-06-12 2016-01-05 Aktiebolaget Skf Rolling bearing assembly with rotation sensing means, electric machine provided with such an assembly and fork lift truck comprising such an electric machine
EP2685116A4 (en) * 2011-03-10 2014-10-15 Ihi Corp Bearing, lubricant distribution acquisition device, and lubricant distribution acquisition method
WO2016138546A2 (en) 2015-02-27 2016-09-01 Azoteq (Pty) Ltd Inductance sensing

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2304829A1 (en) * 1975-03-21 1976-10-15 Ferodo Sa RELEASE STOP
US4046238A (en) * 1976-02-03 1977-09-06 Mendoza Orozco Hector Free-wheeling mechanism for bicycles
US4319220A (en) * 1976-08-31 1982-03-09 Dennis G. Pappas Alarm system for monitoring pressurized vehicular tires
JPS57161344A (en) * 1981-03-27 1982-10-04 Nippon Denso Co Ltd Belt tension control device
US4601374A (en) * 1982-04-22 1986-07-22 Federal-Mogul Corporation Hydraulic clutch piston and seal
FR2544429B1 (en) * 1983-04-15 1985-08-02 Valeo METHOD FOR MOUNTING A RELEASE STOPPER, AND CORRESPONDING RELEASE STOPPER, PARTICULARLY FOR A MOTOR VEHICLE
DE3445541A1 (en) * 1984-01-04 1985-07-11 Skandiafabriken AB, Mullsjö LIQUID LEVEL INDICATOR
US5033013A (en) * 1985-04-22 1991-07-16 Yamasa Tokei Meter Co., Ltd. Method and apparatus for measuring the amount of exercise
US4699530A (en) * 1985-06-28 1987-10-13 Oiless Industry Co., Ltd. Thrust ball bearing unit
EP0272544B1 (en) * 1986-12-22 1990-09-26 Siemens Aktiengesellschaft Angular-position encoder with a photo-electrically palpable encoder disc and double axle bearing
FR2609126B1 (en) * 1986-12-29 1989-10-27 Valeo RELEASE STOP, ESPECIALLY FOR A MOTOR VEHICLE
FR2611009B1 (en) * 1987-02-17 1989-05-19 Valeo RELEASE STOP, ESPECIALLY FOR A MOTOR VEHICLE
JPS63246516A (en) * 1987-04-02 1988-10-13 Nippon Seiko Kk Clutch release bearing device
US4815867A (en) * 1987-09-23 1989-03-28 Federal-Mogul Corporation Side assembled clip for self-aligning bearing
DE3742030C2 (en) * 1987-12-11 1997-06-19 Skf Gmbh Swivel bearing for clamping devices
DE8810259U1 (en) * 1988-08-12 1988-11-17 Messer Griesheim Gmbh, 6000 Frankfurt Flushing block
FR2640706B1 (en) * 1988-12-20 1991-02-01 Roulements Soc Nouvelle INFORMATION SENSOR BEARING
US5008647A (en) * 1989-02-06 1991-04-16 Orleander S.A. Wireless bicycle wheel monitor system
US5017741A (en) * 1989-03-29 1991-05-21 Hamilton Standard Controls, Inc. Rotary digital contact encoder substrate
US5018384A (en) * 1989-07-21 1991-05-28 Nippon Seiko Kabushiki Kaisha Rotational speed detector
IT1240481B (en) * 1990-07-04 1993-12-17 Skf Ind Spa DEVICE SUITABLE FOR ALLOWING THE ROTATION SPEED TO BE DETECTED BETWEEN TWO BODIES IN RELATIVE ROTATION SUCH AS THE SUPPORT BODIES OF A WHEEL OF A VEHICLE.
FR2667947B1 (en) * 1990-10-16 1993-01-15 Skf France ROTATION SPEED SENSOR DEVICE.
IT1256785B (en) * 1992-01-28 1995-12-15 Skf Ind Spa SEALING COMPLEX WITH A SENSOR DEVICE ON BOARD, FOR A ROLLING BEARING.
JP2559157Y2 (en) * 1993-02-25 1998-01-14 内山工業株式会社 Wheel bearing seal with rotation speed detection function
FR2712048B1 (en) * 1993-11-04 1995-12-15 Roulements Soc Nouvelle Seal for information sensor bearings and bearing fitted in this way.
US6539336B1 (en) * 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
DE19503469C1 (en) * 1995-02-03 1996-05-30 Freudenberg Carl Fa Seal for relatively rotating components cooperating with rotation sensor
FR2730566B1 (en) * 1995-02-09 1997-06-13 Skf France ENCODER DEVICE FOR ROTATION SPEED SENSOR AND BEARING PROVIDED WITH SUCH A DEVICE
FR2730534B1 (en) * 1995-02-09 1997-04-04 Valeo HYDRAULICALLY CONTROLLED CLUTCH STOPPER FOR A MOTOR VEHICLE DIAPHRAGM CLUTCH
US5592401A (en) * 1995-02-28 1997-01-07 Virtual Technologies, Inc. Accurate, rapid, reliable position sensing using multiple sensing technologies
JPH08292111A (en) * 1995-04-24 1996-11-05 Mitsubishi Electric Corp Belt-tension measuring apparatus
US5598913A (en) * 1995-06-07 1997-02-04 Ntn Corporation One-way over-running clutch pulley
US6011491A (en) * 1995-10-10 2000-01-04 Goetzl; Brent A. Speedometer for in-line skates
US5721539A (en) * 1995-10-10 1998-02-24 Goetzl; Brent A. Speedometer for in-line skates
US5845230A (en) * 1996-01-30 1998-12-01 Skf Condition Monitoring Apparatus and method for the remote monitoring of machine condition
DE19614385A1 (en) * 1996-03-04 1997-09-11 Schaeffler Waelzlager Kg Seal for an annular piston of a hydraulic clutch release device
US5780731A (en) * 1996-04-11 1998-07-14 Denso Corporation Method for judging the locked state of auxiliaries for automobiles
FR2754903B1 (en) * 1996-10-23 1998-12-04 Skf France ENCODER DEVICE FOR ROTATION SPEED SENSOR AND BEARING PROVIDED WITH SUCH A DEVICE
US6415900B1 (en) * 1996-12-23 2002-07-09 Valeo Hydraulic control receiver with closing plate
DE19716218C2 (en) * 1997-04-18 2001-08-30 Schaeffler Waelzlager Ohg Clutch release bearing
FR2772920B1 (en) * 1997-12-18 2000-02-04 Skf France IN-LINE SKATE WHEEL MOUNTING WITH ROTATION SPEED DETECTION DEVICE
ITTO980035A1 (en) * 1998-01-16 1999-07-16 Skf Ind Spa ROLLING BEARING WITH ROTATION SPEED DETECTION DEVICE.
US6013007A (en) * 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
FR2779096B1 (en) * 1998-05-28 2000-12-15 Skf France SUSPENSION STOP DEVICE
US6196552B1 (en) * 1998-06-08 2001-03-06 Automotive Products (Usa), Inc. Seal assembly for annular hydraulic cylinder
GB9813961D0 (en) * 1998-06-30 1998-08-26 Renold Plc Method and apparatus for tensioning a chain of an internal combustion engine
JP2000018241A (en) * 1998-07-06 2000-01-18 Nippon Seiko Kk Rolling bearing unit with rotation speed detecting device
FR2791103B1 (en) * 1999-03-17 2001-04-13 Skf France INSTRUMENT BEARING
JP2000314638A (en) * 1999-04-28 2000-11-14 Asahi Optical Co Ltd Encoder
US6160480A (en) * 1999-09-24 2000-12-12 Su-Yueh; Hsien Huang Wireless inline-skate and skate board pulse watch with speed and heart rate monitoring
US6666784B1 (en) * 1999-10-06 2003-12-23 Ntn Corporation Piston rod piston detector, autotensioner and belt tension adjuster
DE19960699B4 (en) * 1999-12-16 2010-09-30 Schaeffler Technologies Gmbh & Co. Kg Strut bearing
JP4740438B2 (en) * 1999-12-17 2011-08-03 株式会社アミテック Cylinder position detector
JP3905284B2 (en) * 2000-05-10 2007-04-18 株式会社ジェイテクト Hub unit
IT1320364B1 (en) * 2000-05-25 2003-11-26 A E Assemblaggi Elettromeccani WEAR SENSOR DEVICE OF A DRIVE BELT OR CHAIN, IN PARTICULAR FOR A DRIVE SHAFT OF THE DRIVE SHAFT
DE50011024D1 (en) * 2000-06-16 2005-09-29 Amo Automatisierung Mestechnik Inductive length measuring system
FR2813644B1 (en) * 2000-09-06 2003-01-24 Skf France INSTRUMENTED ROLLING BEARING DEVICE, PARTICULARLY FOR CONTROL WHEEL
US7117986B2 (en) * 2000-12-22 2006-10-10 Valeo Embrayages Clutch release bearing, in particular for motor vehicle
FR2819864B1 (en) * 2001-01-23 2003-04-25 Skf Ab SELF-CENTERING RELEASE STOP DEVICE
FR2820476B1 (en) * 2001-02-02 2004-04-02 Skf Ab DEVICE FOR DETECTING THE ROTATION SPEED OF A ROTATING ELEMENT
US20020125113A1 (en) * 2001-03-06 2002-09-12 Mayur Bhakta Contacting incremental encoder
US6828517B2 (en) * 2001-05-16 2004-12-07 Bourns, Inc. Position encoder
FR2829429B1 (en) * 2001-09-12 2003-12-12 Skf Ab STOP SUSPENSION DEVICE
FR2832201B1 (en) * 2001-11-13 2004-03-19 Skf Ab INSTRUMENT TENSIONING DEVICE AND ASSOCIATED CONTROL METHOD
FR2835297B1 (en) * 2002-01-29 2004-04-16 Skf Ab FIXING SUPPORT, ROLLING BEARING AND ASSEMBLY METHOD THEREFOR
FR2841304B1 (en) * 2002-06-20 2007-01-05 Skf Ab VOLTAGE DEVICE FOR PRECONTRATING ROD AND ASSOCIATED VOLTAGE METHOD
FR2841990B1 (en) * 2002-07-02 2005-07-29 Skf Ab INSTRUMENTAL BEARING BEARING DEVICE AND ELECTRIC MOTOR THUS EQUIPPED
FR2851624B1 (en) * 2003-02-26 2006-03-31 Skf Ab INSTRUMENT BEARING BEARING
FR2856447B1 (en) * 2003-06-18 2005-09-09 Skf Ab CLUTCH FASTENING AND MOUNTING METHOD
FR2856448B1 (en) * 2003-06-18 2006-09-01 Skf Ab STOP CLUTCH
FR2859412B1 (en) * 2003-09-04 2006-02-24 Skf Ab STOP SUSPENSION DEVICE
FR2860847B1 (en) * 2003-10-14 2006-03-31 Skf Ab CLUTCH STOPPING DEVICE
FR2872558B1 (en) * 2004-07-02 2006-09-29 Skf Ab CLUTCH FASTER AND METHOD OF MANUFACTURE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005001301A2 *

Also Published As

Publication number Publication date
WO2005001301A3 (en) 2005-03-17
FR2856757A1 (en) 2004-12-31
JP2007514924A (en) 2007-06-07
WO2005001301A2 (en) 2005-01-06
FR2856757B1 (en) 2006-10-20
US20070053622A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
EP0821240B1 (en) Roller bearing with measuring sensor
EP1452753B1 (en) Roller bearing with integrated sensor
EP1518126B1 (en) Roller bearing equipped with a sensor and electrical motor equipped therewith
EP1639375A2 (en) Bearing support with an instrumented movement and coder for an information recorder unit
WO2002063311A1 (en) Device for detecting the rotation speed of a rotating element
FR2762652A1 (en) ROLLING BEARING WITH INFORMATION SENSOR
EP0544575B1 (en) Variable reluctance absolute angular position sensor
EP1366370B1 (en) Roller device with instrumented ball bearing
EP0511105B1 (en) Rollbearing with speed sensor
WO2009004198A1 (en) Indexation instrumented bearing device
FR2925643A1 (en) Main bearing's e.g. antifriction bearing, rolling space sealing device for motor vehicle, has sealing element connected with inner core, and including sealing rings arranged in friction radial contact with free axial face of outer core
FR2991739A1 (en) PENDULUM DAMPING DEVICE WITH STABILIZED BEARING ELEMENT
CA2404305A1 (en) Instrumented antifriction bearing provided with a sealing device
FR2882139A1 (en) Coaxial rotating units e.g. shafts, rotational parameters detecting device for e.g. machine`s transmission, has sensor unit groups, detecting angular displacement of each shaft, housed in same sensor block and cooperating with coder rings
FR3001510A1 (en) CAGE FOR BEARING, IN PARTICULAR FOR THE ELECTRIC DIRECTION BEARING OF A MOTOR VEHICLE
EP1178910B1 (en) Neutral point setting device for steering wheel in particular
EP1324046A1 (en) Roller bearing comprising a wireless data transmission assembly
WO2003071284A2 (en) Monitored roller bearing
EP1287267A1 (en) Locked antifriction bearing
FR2463312A1 (en) DEVICE FOR FIXING AND ADJUSTING MECHANICAL ELEMENTS IN THE DIRECTION OF THE AXIS ON TREES, AXES, OR THE LIKE, IN PARTICULAR FOR FIXING THE BEARINGS
EP0902257B1 (en) Procedure for fabrication of an optical encoder device for a roller bearing and corresponding roller bearing
WO2007110525A1 (en) Instrumented rolling bearing device
EP0325073B1 (en) Mounting device for a bearing
FR3080679A1 (en) DEVICE FOR DETECTING THE ANGULAR POSITION OF A ROTOR OF A ROTATING ELECTRIC MACHINE
FR2863706A1 (en) Mechanical load measuring device for e.g. dryer`s antifriction bearing, has insulator disposed in contact with external ring of antifriction bearing, where ring acts as electrode and thickness of insulator varies according to applied load

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051201

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071121

RTI1 Title (correction)

Free format text: INSTRUMENTED ROLLER BEARING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090812