EP1630344A1 - Panneau de vitrage - Google Patents

Panneau de vitrage Download PDF

Info

Publication number
EP1630344A1
EP1630344A1 EP04104142A EP04104142A EP1630344A1 EP 1630344 A1 EP1630344 A1 EP 1630344A1 EP 04104142 A EP04104142 A EP 04104142A EP 04104142 A EP04104142 A EP 04104142A EP 1630344 A1 EP1630344 A1 EP 1630344A1
Authority
EP
European Patent Office
Prior art keywords
glass
sheets
glazing panel
spacers
organic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04104142A
Other languages
German (de)
English (en)
Inventor
designation of the inventor has not yet been filed The
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
Glaverbel Belgium SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaverbel Belgium SA filed Critical Glaverbel Belgium SA
Priority to EP04104142A priority Critical patent/EP1630344A1/fr
Priority to PCT/EP2005/054224 priority patent/WO2006024632A2/fr
Priority to EP05779150.1A priority patent/EP1794404B1/fr
Priority to PL05779150T priority patent/PL1794404T3/pl
Priority to RU2007111555/03A priority patent/RU2382163C2/ru
Publication of EP1630344A1 publication Critical patent/EP1630344A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units

Definitions

  • This invention relates to glazing panels, and in particular to vacuum insulating glazing panels, and to a process for manufacturing such glazing panels.
  • Vacuum insulating glazing panels typically comprise two spaced apart sheets of glass, having a "vacuum”, i.e. a low pressure space at a pressure less than atmospheric, arranged between them. These sheets are interconnected by a peripheral joint and an array of supporting pillars, also called spacers.
  • a low emissivity (low-E) coating may be provided on one or both sheets of glass, for example on the interior surface (i.e. the surface facing the low pressure space or gap between the glass sheets) of one or both sheets of glass.
  • the emissivity of such coating is usually at most 0.2. This may lead to a further difficulty in the design and production of vacuum insulating glazing panels, as the materials forming the peripheral seal and/or the spacers should be compatible with the low-E layer, i.e. the layer should not be damaged or its performance reduced when contacted by the materials forming the peripheral seal and/or the spacers or merely by vapours which may come from these materials.
  • the present invention provides a glazing panel as defined by claim 1 and claim 3.
  • Other claims define preferred and/or alternative aspects of the invention.
  • Providing the defined combination of hermetic seal and spacers in a vacuum insulating glazing panel may provide an advantageous combination of properties.
  • the present invention may provide an advantageous combination of:
  • Glazing panels according to the invention preferably present a distance between the two sheets of glass in the range 0.1 to 0.6 mm, preferably over substantially the whole surface of the glazing panel. This distance may be maintained by means of the spacers, and/or by means of the hermetic peripheral seal.
  • the spacers preferably comprise an organic material, or alternatively, consist essentially of an organic material, or consist of an organic material. The nature of the spacers and the spacing between them are such that they may prevent the two glass sheets from moving closer to each other under atmospheric pressure.
  • Examples of convenient organic materials for the spacers are epoxy materials (for example DELO-KATIOBOND VE 13900, BISON), acrylate materials (for example DELO-PHOTOBOND 4468, CONLOC), butyl materials, polyurethane materials, polysulfide materials, acrylic materials and mixtures of one or more thereof (for example mixtures of urethane and acrylate, e.g. DELO-PHOTOBOND GB350, DELO-PHOTOBOND GB368, or mixtures of urethane and metacrylate, e.g. LOCTITE 350, LOCTITE 366, LOCTITE 661).
  • epoxy materials for example DELO-KATIOBOND VE 13900, BISON
  • acrylate materials for example DELO-PHOTOBOND 4468, CONLOC
  • butyl materials polyurethane materials, polysulfide materials, acrylic materials and mixtures of one or more thereof (for example mixtures of urethane and acrylate, e.g. DELO
  • the spacers do not adhere to either of the glass sheets, but preferably, at least some of the spacers, and more preferably all the spacers, adhere to at least one of the glass sheets. This may be advantageous in that the spacers will remain in place if the vacuum insulating glazing panel ages, loses its vacuum qualities or if the glass sheets move apart from each other.
  • the spacers have a diameter of less than 3 mm, less than 2 mm, or less than 1.5 mm. These values may offer a good mechanical resistance and/or an acceptable thermal conductivity whilst being aesthetically discreet.
  • the glass sheets may be sealed together along their edges with a hermetic seal comprising an organic material or alternatively, consisting essentially of an organic material, or consisting of an organic material.
  • a hermetic seal comprising an organic material or alternatively, consisting essentially of an organic material, or consisting of an organic material.
  • Convenient organic materials for the seal may be the same as those described hereinabove for the spacers.
  • the organic material used in the sealing of the glass sheets is the same as the material used for the spacers. This may facilitate manufacture as a single material may be used on the production line.
  • the hermetic seal may be made of two or more individual seals, of which at least one comprises an organic material.
  • the hermetic seal may be made of an internal seal comprising butyl material and an external seal comprising epoxy material; it may also include a median seal, between the internal and external seals, incorporating a desiccant material.
  • the internal seal of butyl may afford the advantage of being compatible with a low-E layer, and the external seal of epoxy may offer good resistance to ageing.
  • the distance between the two sheets of glass is in the range 0.1 to 0.6 mm, more preferably in the range 0.1 to 0.3 mm or 0.15 to 0.25 mm. These values may offer good thermal insulation properties to the vacuum insulating glazing panel.
  • At least some of the spacers may comprise a charge, for example a mineral charge, adapted to maintain or to assist in maintaining the spacing between the sheets of glass.
  • the hermetic peripheral seal may also comprise such a charge.
  • the charge may for example comprise alumina, e.g. corundum, and/or zirconium.
  • the organic material may have a mechanical resistance adapted and sufficient to maintain the sheets of glass spaced apart without a charge, so that a predetermined quantity of organic material allows maintenance of the desired distance between the two glass sheets.
  • the spacers may be arranged linearly or in alternate rows. Alternatively, they may be arranged without any particular organisation or be more numerous in one portion of the glazing panel and less in another, for example they may be less numerous in the central vision portion of the glazing panel.
  • the distance between the spacers is preferably equal to or greater than 1, 2, 3 or 4 cm and equal to or less than 10, 8, or 6 cm, more preferably between 1 and 10 cm and still more preferably between 4 and 6 cm. Such ranges of distances between the spacers may provide insulating glazing panels with a maintained distance between the two sheets of glass.
  • distance between the spacers it is meant herein the distance between at least 50% of the spacers, or preferably between at least 75% of the spacers, or still more preferably, the distance between all of the spacers. This means that, for example, at least 50% of the spacers do not have another neighbouring spacer inside a circle of which they are the central point and which has a radius equal to the distance between the spacers.
  • the thickness of each of the two sheets of glass is in the range 2 to 6 mm, preferably 3 to 5 mm, and more preferably of the order of 4 mm.
  • the two sheets of glass may be of the same thickness or have different thicknesses.
  • a surface of each of the two sheets of glass may be coated with a low emissivity layer, in particular the surfaces facing the space between them.
  • One of the glass sheets may, for example, be coated with a low-E layer on its surface facing the low pressure space.
  • the low emissivity layer may be deposited by known techniques including vacuum deposition or chemical vapour deposition. Examples of convenient low-E coatings are sputtered coating stacks of the type dielectric/silver/dielectric, fluorine doped tin oxide layers.
  • the glass surface provided with the low emissivity coating layer may have an emissivity of less than 0.3, less than 0.2 or preferably less than 0.1.
  • Vacuum insulating glazing panels according to the invention may be incorporated in multiple glazing panels, for example in a double glazing panel wherein it is associated with a further sheet of glass, such that the vacuum insulating glazing panel and the further sheet of glass are spaced apart from each other and sealed together along their edges and wherein the space between them is filled with gas.
  • Vacuum insulating glazing panels according to the invention preferably show a thermal transmittance, i.e. a U value, of at most 2.6 W/m 2 .K, preferably at most 2.2, at most 1.9, at most 1.5 or at most 1.1 W/m 2 .K.
  • vacuum insulating glazing panels according to the invention satisfy standardised Fogging and CEN tests.
  • the Fogging test is described in Annex C of European Standard EN 1279-6:2002. Its purpose is to verify that no unacceptable condensation appears inside the glazing panel due to emission of volatile substances.
  • the CEN test is described in European Standard EN 1279-2:2002. It simulates ageing of an insulating glass unit and tests the humidity rate inside the glazing panel. The humidity rate is measured for example with the parameter "dew point temperature" (see Annex A of EN 1279-2:2002).
  • vacuum insulating glazing panels according to the invention do not show visible permanent condensation after the Fogging test and/or show a dew point temperature of less than -30°C after the CEN test.
  • the present invention provides a process for manufacturing a vacuum insulating glazing panel as defined by claim 18.
  • a sheet of glass is profiled (for example by grinding) on at least one portion of at least one of its edges, for example, to form a chamfered edge.
  • one entire edge or the entire periphery of the glass sheet may be profiled.
  • a groove may be provided in a surface of this sheet of glass, extending from the profiled edge portion, for example perpendicularly to the edge of the glass sheet. This groove may have for example a length in the range of 1 to 5 cm and a width in the range of 0.1 to 2 mm.
  • the groove may be adapted to receive a capillary tube, preferably made of glass. The length of the groove may be such as being the least visible whilst allowing a capillary tube to be positioned therein.
  • the width of the groove may be chosen according to the diameter of the capillary tube and the spacing desirable between the two glass sheets of the vacuum insulating glazing.
  • the capillary tube is positioned so that it extends outside of the glass sheet surface.
  • the end of the capillary tube which extends outside of the glass sheet surface has a funnel shape which may be adapted to a pumping apparatus.
  • the capillary tube may be maintained in the groove with the presence of an organic material of the type described for the spacers according to this invention, or any adhesive material.
  • the spacers and the hermetic seal may be deposited on the same surface of the same glass sheet or on a surface of the other glass sheet. It may be preferred that all these operations are made on the same glass sheet for easiness on the production line. It may also be preferred, for the same reason, to use the same organic material for the spacers, the hermetic seal and for maintaining the capillary tube in the groove.
  • a second sheet of glass may be placed in an opposing and spaced relationship with the first sheet of glass with a gap, the spacers, the hermetic seal and the capillary tube therebetween.
  • the first and second glass sheets may have different size.
  • the second sheet of glass may also be profiled on at least one portion of at least one of its edges or on an entire edge or on its entire periphery. Preferably the profiled portion of the second glass sheet is placed in front of the profiled portion of the first glass sheet.
  • the glass sheets may then be pressed together and treated under specific temperatures or under UV rays, for example, so that the organic material, if necessary, may polymerise.
  • a vacuum i.e. an environment of less than the atmospheric pressure
  • the vacuum level between the sheets of glass is in the range 10 -3 to 10 -6 bar, preferably in the range 10 -4 to 10 -5 bar.
  • the pumping-out phase is made under an ambient temperature of between 40 and 160 °C, preferably between 50 and 80 °C. This may facilitate the desorption of the glazing panel.
  • the capillary tube may then be sealed and broken, so that it no longer extends outside of the glass sheets surfaces, for example by heating and bending it, in particular when it is made of glass.
  • the zone where the broken end of the capillary tube is exposed may further be provided with an organic material, for example of the type used for the spacers.
  • This method may have the advantage of avoiding the presence of a hole in one of the glass sheet, which was previously necessary for the pumping-out process. It may also be advantageous in that the system is very discreet and may be hidden by the frame of the finished window, when the vacuum insulating glazing panel is incorporated in such a window.
  • FIG. 1 shows a glazing panel according to the present invention.
  • Figure 2 shows a transversal view through the glazing panel of figure 1 along line A-A'.
  • Figure 3 shows a portion of a glazing panel according to the present invention fitted with the capillary tube for the pumping out process.
  • Figures 4 and 5 show transversal views through the glazing panel of figure 3 along line B-B' at different stages of the glazing manufacture.
  • the drawings are not to scale.
  • Figure 1 and 2 show a glazing panel 1 comprising two sheets of glass 2 and 2' disposed in an opposing and spaced relationship with a gap 3 formed therebetween, the gap being a low pressure space having a pressure less than atmospheric pressure.
  • This low pressure space is sealed off with a hermetic seal 4 positioned at or towards and running around the periphery of the glazing.
  • the glazing panel is provided with a plurality of spacers 5 between the two sheets of glass 2 and 2'. In these figures, the spacers are arranged linearly and form an array of spacers with a regular interval between them.
  • FIGs 3, 4 and 5 illustrate a process of manufacturing a vacuum insulating glazing panel according to the invention.
  • both glass sheets have chamfered edges 6 and 6'.
  • a groove 7 is present at the surface of one of the glass sheet and a capillary tube 8 is positioned in the groove where it is maintained with an organic material, represented in the figures by the hatching.
  • Figures 3 and 4 show the system while gases are being pumped out through the capillary tube, and figure 5 shows the finished glazing panel.
  • a sheet of glass of 4 mm thickness with a dimension of 1 x 1 m is provided with a low emissivity coating layer.
  • the layer consists of the following coating stack: TiO x /ZnO x /Ag/TiO x /ZnO x /SnO x .
  • the edges of the sheet of glass are chamfered in such a way that the coated surface of the glass sheet is smaller than the other surface.
  • On one edge of the glass sheet a groove is made at the coated surface of the glass sheet. The groove is made perpendicularly to the edge of the glass sheet with a length of 2 cm, a width of 1 mm and a depth of about 2 mm.
  • the capillary tube is maintained in the groove by placing an organic material around it.
  • This material is a modified urethane acrylate, available from the company DELO under the name DELO-PHOTOBOND GB350. Attention should be given to the fact that the capillary tube should not be obstructed by the organic material.
  • Spacers of DELO-PHOTOBOND GB350 comprising a corundum core are deposited on the coated side of the sheet of glass, linearly in an array, with a regular interval between the deposits of 5 cm and a seal of DELO-PHOTOBOND GB350 is positioned at the periphery of the glass sheet.
  • a second sheet of glass of 4 mm thickness with a dimension of 1 x 1 m and with chamfered edges is placed over the first glass sheet in a manner represented in figure 4.
  • the glass sheets are pressed together and placed under an UV-light for the curing of the DELO-PHOTOBOND GB350.
  • a pumping apparatus is connected to the capillary tube and gas present between the two sheets of glass is evacuated to create a vacuum of about 10 -4 bar. This operation is carried out at an ambient temperature of approximately 70°C.
  • the capillary tube is then heated, bended, sealed and broken in the space created by the chamfered edges of the glass sheets, as represented in figure 5, and this space is filled with DELO-PHOTOBOND GB350.
  • the glazing panel is then placed again under an UV-light for the curing of the DELO-PHOTOBOND GB350.
  • This vacuum insulating glazing panel may then incorporated in a double-glazing, where it is associated with a glass sheet of 4 mm thickness and with a gap filled with gas between them.
  • the structure of this double-glazing is thus:

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
EP04104142A 2004-08-30 2004-08-30 Panneau de vitrage Withdrawn EP1630344A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04104142A EP1630344A1 (fr) 2004-08-30 2004-08-30 Panneau de vitrage
PCT/EP2005/054224 WO2006024632A2 (fr) 2004-08-30 2005-08-29 Pare-brise
EP05779150.1A EP1794404B1 (fr) 2004-08-30 2005-08-29 Panneau de vitrage
PL05779150T PL1794404T3 (pl) 2004-08-30 2005-08-29 Szyba zespolona
RU2007111555/03A RU2382163C2 (ru) 2004-08-30 2005-08-29 Панель остекления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04104142A EP1630344A1 (fr) 2004-08-30 2004-08-30 Panneau de vitrage

Publications (1)

Publication Number Publication Date
EP1630344A1 true EP1630344A1 (fr) 2006-03-01

Family

ID=34929500

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04104142A Withdrawn EP1630344A1 (fr) 2004-08-30 2004-08-30 Panneau de vitrage
EP05779150.1A Active EP1794404B1 (fr) 2004-08-30 2005-08-29 Panneau de vitrage

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05779150.1A Active EP1794404B1 (fr) 2004-08-30 2005-08-29 Panneau de vitrage

Country Status (4)

Country Link
EP (2) EP1630344A1 (fr)
PL (1) PL1794404T3 (fr)
RU (1) RU2382163C2 (fr)
WO (1) WO2006024632A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253874A (zh) * 2013-05-17 2013-08-21 洛阳兰迪玻璃机器股份有限公司 作为真空玻璃中间支撑物的球状微粒的分离方法及其应用
WO2013162463A1 (fr) * 2012-04-25 2013-10-31 Singapore Safety Glass Pte Ltd Verre isolé sous vide et son procédé de fabrication
WO2016063007A1 (fr) 2014-10-20 2016-04-28 Pilkington Group Limited Unité de vitrage isolant
EP2627957A4 (fr) * 2010-10-11 2016-12-07 Lg Electronics Inc Panneau en verre d'isolation sous vide et réfrigérateur équipé de ce dernier
WO2019219595A1 (fr) 2018-05-14 2019-11-21 Agc Glass Europe Unité de vitrage isolant sous vide asymétrique
CN110700728A (zh) * 2019-11-14 2020-01-17 岳志铁 真空有机板复合中空玻璃
JP2020507544A (ja) * 2017-02-06 2020-03-12 ショット ジェムトロン コーポレイションSCHOTT Gemtron Corporation 不均一なコーティング層およびガス分子の封止されたキャビティを有する断熱ガラス積層体
WO2020187588A1 (fr) 2019-03-19 2020-09-24 Agc Glass Europe Unité de vitrage isolé sous vide asymétrique
WO2020187584A1 (fr) 2019-03-19 2020-09-24 Agc Glass Europe Unité de vitrage isolé sous vide asymétrique
WO2020187592A1 (fr) 2019-03-19 2020-09-24 Agc Glass Europe Unité de vitrage isolé sous vide asymétrique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454521C2 (ru) * 2010-07-13 2012-06-27 Андрей Юрьевич Калашников Стальная каркасно-рамная несущая конструкция в пределах внутреннего периметра стекла с одно- и многослойным, одно- и многоконтурным остеклением посредством клеевых герметиков с функцией дистанционной рамки, с электроподогревом, обслуживаемой вакуумизацией межслойных камер, противовзломной решеткой внутри усиленного стеклопакета
HUE056728T2 (hu) * 2017-12-07 2022-03-28 Saint Gobain Membránnal és kapillárissal rendelkezõ nyomáskiegyenlítõ testet tartalmazó szigetelõ üvegezés
IT201900009759A1 (it) 2019-06-21 2020-12-21 Getters Spa Vetri evacuati

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270084A (en) * 1989-09-28 1993-12-14 Parker Design Limited Insulating glass unit
US5657607A (en) * 1989-08-23 1997-08-19 University Of Sydney Thermally insulating glass panel and method of construction
EP0999330A1 (fr) * 1998-05-07 2000-05-10 Nippon Sheet Glass Co., Ltd. Panneau de verre et son procede de fabrication, et entretoises utilisees pour ce panneau de verre
WO2001090525A1 (fr) * 2000-05-23 2001-11-29 Guardian Industries Corporation Unite de vitrage isolant sous vide comportant des espaceurs entre un premier et un deuxieme joint de bordure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657607A (en) * 1989-08-23 1997-08-19 University Of Sydney Thermally insulating glass panel and method of construction
US5270084A (en) * 1989-09-28 1993-12-14 Parker Design Limited Insulating glass unit
EP0999330A1 (fr) * 1998-05-07 2000-05-10 Nippon Sheet Glass Co., Ltd. Panneau de verre et son procede de fabrication, et entretoises utilisees pour ce panneau de verre
WO2001090525A1 (fr) * 2000-05-23 2001-11-29 Guardian Industries Corporation Unite de vitrage isolant sous vide comportant des espaceurs entre un premier et un deuxieme joint de bordure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2627957A4 (fr) * 2010-10-11 2016-12-07 Lg Electronics Inc Panneau en verre d'isolation sous vide et réfrigérateur équipé de ce dernier
WO2013162463A1 (fr) * 2012-04-25 2013-10-31 Singapore Safety Glass Pte Ltd Verre isolé sous vide et son procédé de fabrication
CN103253874B (zh) * 2013-05-17 2015-08-26 洛阳兰迪玻璃机器股份有限公司 作为真空玻璃中间支撑物的球状微粒的分离方法及其应用
CN103253874A (zh) * 2013-05-17 2013-08-21 洛阳兰迪玻璃机器股份有限公司 作为真空玻璃中间支撑物的球状微粒的分离方法及其应用
US10526244B2 (en) 2014-10-20 2020-01-07 Pilkington Group Limited Insulated glazing unit
WO2016063007A1 (fr) 2014-10-20 2016-04-28 Pilkington Group Limited Unité de vitrage isolant
JP2020507544A (ja) * 2017-02-06 2020-03-12 ショット ジェムトロン コーポレイションSCHOTT Gemtron Corporation 不均一なコーティング層およびガス分子の封止されたキャビティを有する断熱ガラス積層体
EP3576941A4 (fr) * 2017-02-06 2020-12-09 Schott Gemtron Corporation Stratifiés de verre thermiquement isolants avec une couche de revêtement non uniforme et des cavités scellées de molécules de gaz
WO2019219595A1 (fr) 2018-05-14 2019-11-21 Agc Glass Europe Unité de vitrage isolant sous vide asymétrique
WO2020187588A1 (fr) 2019-03-19 2020-09-24 Agc Glass Europe Unité de vitrage isolé sous vide asymétrique
WO2020187584A1 (fr) 2019-03-19 2020-09-24 Agc Glass Europe Unité de vitrage isolé sous vide asymétrique
WO2020187592A1 (fr) 2019-03-19 2020-09-24 Agc Glass Europe Unité de vitrage isolé sous vide asymétrique
US20220154524A1 (en) * 2019-03-19 2022-05-19 Agc Glass Europe Asymmetrical vacuum-insulated glazing unit
EP3942141B1 (fr) * 2019-03-19 2024-05-15 AGC Glass Europe Unité de vitrage à isolation par le vide asymétrique
CN110700728A (zh) * 2019-11-14 2020-01-17 岳志铁 真空有机板复合中空玻璃

Also Published As

Publication number Publication date
PL1794404T3 (pl) 2017-08-31
WO2006024632A2 (fr) 2006-03-09
EP1794404B1 (fr) 2017-02-15
RU2382163C2 (ru) 2010-02-20
EP1794404A2 (fr) 2007-06-13
RU2007111555A (ru) 2008-10-10
WO2006024632A3 (fr) 2006-12-07

Similar Documents

Publication Publication Date Title
EP1794404B1 (fr) Panneau de vitrage
US5270084A (en) Insulating glass unit
US8701363B2 (en) Windows, doors and glazing assemblies therefor
EP2893112B1 (fr) Système d'espaceur pour installation de bloc fenêtre à vitrage isolant sous vide (vig) dans un dormant de fenêtre conçu pour recevoir un bloc fenêtre à vitrage isolant/vitrage intégré (ig) plus épais
EP2893111B1 (fr) Système d'espaceur pour installation de bloc fenêtre à vitrage isolant sous vide (vig) dans un dormant de fenêtre configuré pour recevoir un bloc fenêtre à vitrage isolant/vitrage intégré (ig) plus épais
US9074415B2 (en) Spacer bar for a multiple panel glazing unit and method of making a spacer bar and a multiple panel glazing unit
US10435938B2 (en) Vacuum insulated glass (VIG) window unit with reduced seal height variation and method for making same
US20140083026A1 (en) Insulating glass unit with asymmetrical between-pane spaces
CN105074113B (zh) 具有真空绝缘玻璃(vig)单元和含有真空绝缘结构的窗
US5989659A (en) Double-glazing unit
WO2009078906A1 (fr) Profilé de bord métallique permettant d'espacer et de sceller des panneaux dans un panneau à double vitrage isolant
EP3577299B1 (fr) Système de remplacement de gaz d'isolation thermique pour unités de vitrage isolant sous vide
RU2597585C1 (ru) Тройной стеклопакет с улучшенной изоляцией края
CN113939485A (zh) 用于vig组件的特定经涂覆的玻璃
EP3749516B1 (fr) Panneau de verre isolé sous vide comprenant une unité de colonne structurée
EP3865463A1 (fr) Unité de panneau de verre et fenêtre vitrée
EA043067B1 (ru) Специальное стекло с покрытием для vig в сборе

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060310