EP1628109A2 - Cryostat arrangement - Google Patents

Cryostat arrangement Download PDF

Info

Publication number
EP1628109A2
EP1628109A2 EP05016143A EP05016143A EP1628109A2 EP 1628109 A2 EP1628109 A2 EP 1628109A2 EP 05016143 A EP05016143 A EP 05016143A EP 05016143 A EP05016143 A EP 05016143A EP 1628109 A2 EP1628109 A2 EP 1628109A2
Authority
EP
European Patent Office
Prior art keywords
arrangement according
cold
helium
neck tube
cryostat arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05016143A
Other languages
German (de)
French (fr)
Other versions
EP1628109A3 (en
EP1628109B1 (en
Inventor
Johannes Bösel
Marco Strobel
Andreas Kraus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin SAS
Original Assignee
Bruker Biospin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin SAS filed Critical Bruker Biospin SAS
Publication of EP1628109A2 publication Critical patent/EP1628109A2/en
Publication of EP1628109A3 publication Critical patent/EP1628109A3/en
Application granted granted Critical
Publication of EP1628109B1 publication Critical patent/EP1628109B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Definitions

  • the invention relates to a Kryostatan extract for storing liquid helium with an outer shell and a built-in helium container, wherein the helium container is connected to at least two suspension tubes with the outer shell, wherein the helium container further includes a neck tube, the upper warm end with the jacket and the lower cold end is connected to the helium container and in which a multi-stage cold head of a cryocooler is installed, wherein the outer shell, the helium container, the suspension tubes and the neck tube define an evacuated space, and wherein the helium container is further surrounded by at least one radiation shield, which with both the hanger ears and thermally conductively connected to the neck tube of the helium container.
  • the example two-stage cold head of the cryocooler is usually installed in a separate vacuum space (as described for example in US5613367) or directly into the vacuum space of the cryostat (as described for example in US5563566) so that the first cold stage of the cold head fixed with a radiation shield and the second cold stage be connected via a fixed, rigid or flexible, thermal bridge or directly to the helium container thermally conductive.
  • a disadvantage is that the connection from the second cold stage to the helium tank has a thermal resistance.
  • One way to avoid this thermal resistance is to insert the cold head into a neck tube which connects the outer vacuum envelope of the cryostat to the helium vessel and is correspondingly filled with helium gas, as described, for example, in document US2002 / 0002830.
  • the first cold stage of the two-stage cold head is again solidly contacted with a radiation shield, the second cold stage hangs freely in the helium atmosphere and liquefies directly evaporated helium.
  • the helium vessel is usually connected to the outer vacuum envelope on at least two thin-walled hanger tubes.
  • the helium container with the superconducting magnet is thus mechanically fixed, on the other hand, the suspension tubes provide access to the magnet, as it may, for. B. when loading is necessary and also serve the refilling of liquid helium.
  • the loss of gas is also dissipated via the suspension tubes, whereby the suspension tubes are cooled again and ideally the heat input through the pipe wall is completely compensated.
  • the object of the present invention is, therefore, the heat input via the suspension tubes of an actively cooled with a cryocooler Kryostatanssen, especially a shrinkage device containing a superconducting magnet assembly to reduce or completely eliminate and thus allow the use of a lower performance cryocooler.
  • This object is achieved in that between the warm ends of the suspension tubes and the neck tube, a direct connection exists, can flow through the helium gas.
  • a gas flow is formed by itself, which is excited and maintained by the suction effect at the cold end of the cold head.
  • the vaporized gas thus cools the wall of the tubing tubes ideally again so far that the heat input to the helium container disappears through the tubing tubes, heats up and exits at about room temperature from the tubing ears and at room temperature flange of the cold head into the neck tube.
  • the gas from the various suspension tubes is preferably collected in a conduit and then routed to the neck tube. As a result of the downward flow in the neck tube, the gas is cooled at the tubes of the cold head or at the neck tube and finally liquefied at the second cold stage of the cold head.
  • the cycle is hereby closed.
  • the suction that maintains the flow is due, among other things, to the phase change from gaseous to liquid in the second stage of the cold.
  • the performance of the cryocooler decreases slightly, but the gain due to the lower heat input is greater than the loss of cooling capacity.
  • a less powerful cryocooler can be used as in the case without circulation flow.
  • the cold head of the cryocooler is constructed in multiple stages.
  • very low temperatures in particular temperatures in the range of or less than 4K can be realized.
  • cryocooler is a pulse tube cooler, since pulse tube coolers are operated with particularly low vibration can be. Pulse tube coolers are also very reliable and low maintenance. However, it is also possible in principle to use other cryocoolers, such as Gifford-McMahon coolers.
  • helium can be liquefied at a temperature of 4.2 K or at a lower temperature, since this offers a multitude of possible uses in the lowest temperature range.
  • the helium vaporizing within the cryostat is liquefied at the freezing stage in the neck tube and drips back into the helium container.
  • the helium loss and the refilling operations can be reduced or can be achieved at sufficiently large cooling capacity of the radiator, a loss-free operation.
  • the tubes of the cold head are surrounded above the first cold stage and possibly also in the region of further cold stages with a heat insulation.
  • an undesirable heat input from the neck tube into the tubes of the cold head can be approximately avoided or at least reduced.
  • the tubes above the first cold stage of the cold head have temperatures between room temperature and temperature of the first cold stage.
  • a preferred embodiment of the cryostat arrangement provides that there is a gap or channel between the heat insulation and the neck tube wall, through which gas can flow, so that the gas can come in sufficiently good thermal contact with the tube wall.
  • the neck tube does not have to assume any mechanical support function, it is advantageous if the neck tube is of thin-walled construction and / or constructed in the form of a bellows, each of a material having poor thermal conductivity. In this way, the heat input into the helium tank is small. At the same time, the vibration transmission through the neck tube is minimized.
  • a, preferably electrical, heating is provided in or in contact with the helium container. At an excess power
  • the pressure in the helium container can be kept above the ambient pressure and constant in the cryocooler.
  • the performance of the radiator is regulated by its operating frequency and / or the amount of working gas in the radiator.
  • one or more cold stages of the cold head are thermally conductively connected to one or more radiation shields.
  • the radiation shield (s) can then be cooled directly by the cold head.
  • the or one of the radiation shields contains a container with liquid nitrogen, with which the cold head is thermally conductively connected, wherein the cold head of the cryocooler at least partially liquefies the nitrogen after evaporation.
  • the liquefaction of the nitrogen is due to the thermal connection of the radiation shield to the cold head of the cryocooler.
  • the radiation shield is not cooled directly by the cooler, but indirectly, via the evaporating nitrogen.
  • a, preferably electrical, heating is provided in or in contact with the nitrogen container in order to maintain the pressure in the nitrogen container above the ambient pressure and constant at an excess power of the cryocooler.
  • a valve for controlling the gas flow is provided in the connecting line between suspension tubes and neck tube.
  • the gas flow can be throttled when z. B. the suction effect on the cold head is so large that the gas flow is greater than it would be sufficient for the optimal cooling of the suspension tubes.
  • Another advantageous aspect includes that in the connecting line between suspension tubes and neck tube a controllable circulation pump is provided.
  • the cooling flow can actively adjust.
  • cryostat arrangement contains a superconducting magnet arrangement, in particular if the superconducting magnet arrangement is part of an apparatus for nuclear magnetic resonance, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (NMR).
  • MRI magnetic resonance imaging
  • NMR magnetic resonance spectroscopy
  • FIG. 1 shows a schematic representation of a cryostat arrangement according to the invention with a helium container 1 , which is connected to at least two suspension tubes 2 with an outer jacket 3 .
  • the helium container 1 is surrounded by a radiation shield 4 and further comprises a neck tube 5 , which houses the cold head 6 of a cryocooler. Since the neck tube 5 only as a partition to an evacuated space 7 of the outer shell 3 and does not have to carry the weight of the helium container 1, it can be designed so that the heat input and the vibration transmission can be minimized. This can be achieved advantageously with the use of bellows.
  • the weight of the helium container 1 and a superconducting magnet arrangement 26 arranged in the helium container is carried by the suspension tubes 2, which are connected via a line 8 to the warm end 9 of the neck tube 5. It forms from itself a gas flow 10 , which is excited and maintained by the suction effect at the cold end 11 of the cold head 6.
  • the vaporized helium thus cools the wall 12 of the suspension tubes 2, ideally so far that the heat input through the suspension tubes 2 disappears onto the helium vessel 1, heats up and exits the suspension tubes 2 at about room temperature and at a room temperature flange 13 of the cold head 6 again in the neck tube 5 a.
  • the gas is cooled at the tubes 14 of the cold head 6 or the neck tube 5 and finally liquefied at the second cold stage 15 of the cold head 6.
  • the cycle is hereby closed.
  • the performance of the cryocooler decreases slightly, but the gain due to the lower heat input is greater than the loss of cooling capacity.
  • a less powerful cryocooler can thus be used than in the case without circulation flow. It is advantageous if the partial flows of the various suspension tubes 2 are combined in a line 8.
  • FIG. 2 shows a heat insulation 16 between the room temperature flange 13 and the first cold stage 17 of the two-stage cold head 6.
  • a heat insulation 16 can also be provided around the tubes of further cold stages. It is only important that between the heat insulation 16 and the neck tube wall 18, a sufficiently large gap 19 is present, so that the gas with the neck tube wall 18 in good enough thermal contact can occur.
  • the neck tube wall 18 is not cooled in the proposed invention by a guided gas stream to the warm end. As already mentioned above, however, the contribution of the heat input via the neck tube wall 18 for the given case is rather small compared to the total heat input.
  • the radiation shield 4 - as in a non-actively cooled system (ie without cryocooler) - is not cooled directly, but with evaporating nitrogen, as shown in Fig. 3 .
  • the first cold stage 17 of the cold head 6 of the cryocooler must be thermally conductively connected to a nitrogen container 20 , so that nitrogen vaporized on the cold contact surface 21 can be liquefied again.
  • a flow impedance such as a valve 22
  • the cooling flow could be actively regulated (see Fig. 5 ).
  • Valve 22 or pump 23 can also be installed together in the connecting line 8.
  • the partial flows of the suspension tubes 2 are first combined in a connecting line 8, before a valve 22 or a pump 23 are integrated.
  • the cryostat arrangement according to the invention is particularly suitable for cooling a magnet arrangement 26 which is part of an apparatus for nuclear magnetic resonance, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (NMR).
  • MRI magnetic resonance imaging
  • NMR magnetic resonance spectroscopy
  • cryostat arrangement it is possible, in particular the heat input via the suspension tubes of an active, cooled with a cryocooler, high-resolution NMR magnetic system significantly reduce and thus to use a lower-performance cryocooler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A neck tube (5) in which multistage cryocooler head (6) is provided, has warm upper end connected to outer jacket (3) and cold lower end connected to helium container (1). A radiation shield (4) connected in heat conducting fashion to suspension tubes (2) and neck tube, surrounds helium container. A direct connector (8) arranged between warm end of neck tube and warm ends of suspension tubes, forms path for helium gas flow.

Description

Die Erfindung betrifft eine Kryostatanordnung zur Aufbewahrung von flüssigem Helium mit einem Außenmantel und einem darin eingebauten Heliumbehälter, wobei der Heliumbehälter an mindestens zwei Aufhängerohren mit dem Außenmantel verbunden ist, wobei der Heliumbehälter ferner ein Halsrohr enthält, dessen oberes warmes Ende mit dem Mantel und dessen unteres kaltes Ende mit dem Heliumbehälter verbunden ist und in das ein mehrstufiger Kaltkopf eines Kryokühlers eingebaut ist, wobei der Außenmantel, der Heliumbehälter, die Aufhängerohre und das Halsrohr einen evakuierten Raum begrenzen, und wobei der Heliumbehälter ferner von mindestens einem Strahlungsschild umgeben ist, welcher sowohl mit den Aufhängerohren als auch mit dem Halsrohr des Heliumbehälters thermisch leitend verbunden ist.The invention relates to a Kryostatanordnung for storing liquid helium with an outer shell and a built-in helium container, wherein the helium container is connected to at least two suspension tubes with the outer shell, wherein the helium container further includes a neck tube, the upper warm end with the jacket and the lower cold end is connected to the helium container and in which a multi-stage cold head of a cryocooler is installed, wherein the outer shell, the helium container, the suspension tubes and the neck tube define an evacuated space, and wherein the helium container is further surrounded by at least one radiation shield, which with both the hanger ears and thermally conductively connected to the neck tube of the helium container.

Möglichkeiten zur kryogenverlustfreien Kühlung eines supraleitenden Magnetsystems mit einem Kryokühler werden beispielsweise in EP0905436, EP0905524, WO03036207, WO03036190, US5966944, US5563566, US5613367, US5782095, US2002/0002830, US2003/230089 beschrieben.Possibilities for the cryogenic loss-free cooling of a superconducting magnet system with a cryocooler are described for example in EP0905436, EP0905524, WO03036207, WO03036190, US5966944, US5563566, US5613367, US5782095, US2002 / 0002830, US2003 / 230089.

Der beispielsweise zweistufige Kaltkopf des Kryokühlers ist üblicherweise in einem separaten Vakuumraum (wie z.B. in US5613367 beschrieben) oder direkt in den Vakuumraum des Kryostaten (wie z.B. in US5563566 beschreiben) so eingebaut, dass die erste Kältestufe des Kaltkopfs fest mit einem Strahlungsschild und die zweite Kältestufe über eine feste, starre oder flexible, Wärmebrücke oder direkt mit dem Heliumbehälter thermisch leitend verbunden werden. Durch Rückkondensation des durch Wärmeeinfall von außen verdampfenden Heliums an der kalten Kontaktfläche im Heliumbehälter kann der gesamte Wärmeeinfall auf den Heliumbehälter kompensiert und ein verlustfreier Betrieb des Systems ermöglicht werden. Ein Nachteil ist, dass die Verbindung von der zweiten Kältestufe zum Heliumbehälter einen thermischen Widerstand aufweist.The example two-stage cold head of the cryocooler is usually installed in a separate vacuum space (as described for example in US5613367) or directly into the vacuum space of the cryostat (as described for example in US5563566) so that the first cold stage of the cold head fixed with a radiation shield and the second cold stage be connected via a fixed, rigid or flexible, thermal bridge or directly to the helium container thermally conductive. By recondensation of the helium evaporating by heat from the outside at the cold contact surface in the helium container, the entire heat input to the helium container can be compensated and a loss-free operation of the system can be made possible. A disadvantage is that the connection from the second cold stage to the helium tank has a thermal resistance.

Eine Möglichkeit zur Vermeidung dieses thermischen Widerstandes ist das Einfügen des Kaltkopfes in ein Halsrohr, welches die äußere Vakuumhülle des Kryostaten mit dem Heliumbehälter verbindet und entsprechend mit Heliumgas gefüllt ist, wie es beispielsweise in der Druckschrift US2002/0002830 beschrieben wird. Die erste Kältestufe des zweistufigen Kaltkopfes ist wiederum fest leitend mit einem Strahlungsschild kontaktiert, die zweite Kältestufe hängt frei in der Helium-Atmosphäre und verflüssigt direkt verdampftes Helium.One way to avoid this thermal resistance is to insert the cold head into a neck tube which connects the outer vacuum envelope of the cryostat to the helium vessel and is correspondingly filled with helium gas, as described, for example, in document US2002 / 0002830. The first cold stage of the two-stage cold head is again solidly contacted with a radiation shield, the second cold stage hangs freely in the helium atmosphere and liquefies directly evaporated helium.

Da der Kaltkopf von Heliumgas umgeben ist und zwischen Kaltkopf und Halsrohrwand oder weiteren Halsrohreinbauten eine Temperaturdifferenz besteht, kann es zwischen der Rohrwand und dem Kaltkopf zu einem erheblichen Wärmeeintrag durch Gaswärmeleitung und Konvektionsströme kommen. In WO03036207 und WO03036190 wird daher vorgeschlagen, die Rohre des Kaltkopfes auf die eine oder andere Weise zu isolieren. Ferner kommt es durch Wärmeleitung in der Heliumgassäule und in der Halsrohrwand von oben nach unten zu einem weiteren Wärmeeintrag auf den Heliumbehälter.Since the cold head is surrounded by helium gas and there is a temperature difference between the cold head and the neck tube wall or other neck tube installations, considerable heat input through gas heat conduction and convection currents can occur between the tube wall and the cold head. In WO03036207 and WO03036190 it is therefore proposed to isolate the tubes of the cold head in one way or another. Furthermore, by heat conduction in the helium gas column and in the neck tube wall from top to bottom to a further heat input to the helium container.

In der US2002/0002830 wird daher vorgeschlagen, durch Einbau einer unten und oben offenen Trennhülle um den Kaltkopf einen Gasstrom so zu führen, dass das Gas an der Halsrohrwand nach oben steigt, dabei die über das Rohr einfallende Wärme aufnimmt und sich somit erwärmt. Am oberen warmen Ende wird das Gas umgelenkt und strömt an den Rohren des Kaltkopfs entlang nach unten, wobei es sich abkühlt und am kalten Ende des Kaltkopfs schließlich wieder verflüssigt wird. Der Kryokühler büsst dadurch etwas an Kälteleistung ein, wie es z. B. aus der Veröffentlichung ,Helium liquefaction with a 4 K pulse tube cryocooler' (Cryogenics 41 (2001), 491-496) bekannt ist.In US2002 / 0002830 it is therefore proposed to guide a gas flow through the installation of a downwardly and upwardly open separating sleeve around the cold head so that the gas rises up the neck tube wall, thereby absorbing the heat incident on the tube and thus heating up. At the upper warm end of the gas is deflected and flows down the tubes of the cold head along, where it cools and is finally liquefied at the cold end of the cold head. The cryocooler thus loses a bit of cooling capacity, as it is z. B. from the publication, Helium liquefaction with a 4 K pulse tube cryocooler '(Cryogenics 41 (2001), 491-496) is known.

Bei einer Anordnung eines Magnetsystems für hochauflösende Kernresonanzspektroskopie (NMR) wird der Heliumbehälter üblicherweise an mindestens zwei dünnwandigen Aufhängerohren mit der äußeren Vakuumhülle verbunden. Zum einen wird der Heliumbehälter mit dem supraleitenden Magneten somit mechanisch fixiert, zum anderen bieten die Aufhängerohre Zugang zum Magneten, wie es z. B. beim Laden notwendig ist und dienen ebenfalls dem Nachfüllen von flüssigem Helium. Bei nicht mit einem Kryokühler gekühlten, konventionellen Systemen wird zudem das Verlustgas über die Aufhängerohre abgeführt, wodurch die Aufhängerohre wiederum gekühlt werden und im Idealfall der Wärmeeintrag über die Rohrwand komplett kompensiert wird.In an arrangement of a magnet system for high-resolution nuclear magnetic resonance (NMR) spectroscopy, the helium vessel is usually connected to the outer vacuum envelope on at least two thin-walled hanger tubes. On the one hand, the helium container with the superconducting magnet is thus mechanically fixed, on the other hand, the suspension tubes provide access to the magnet, as it may, for. B. when loading is necessary and also serve the refilling of liquid helium. When not cooled with a cryocooler, conventional systems, the loss of gas is also dissipated via the suspension tubes, whereby the suspension tubes are cooled again and ideally the heat input through the pipe wall is completely compensated.

Bei einem kryogenverlustfreien (d.h. mit einem Kryokühler aktiv gekühlten) System hingegen tritt die gesamte über die Aufhängerohre geleitete Wärme in den Heliumbehälter ein, da die Rohre aufgrund des Nichtvorhandenseins eines Gasstroms ungekühlt bleiben. Diese Wärmemenge stellt in vielen Fällen - abhängig von Rohrwanddicke ,Anzahl der Aufhängerohre, Größe der Heliumbehälters, etc - den Hauptbeitrag des gesamten Wärmeeinfalls dar und bedingt unter Umständen die Verwendung eines leistungsstärkeren Kryokühlers. Auch über das Halsrohr, welches den Kaltkopf des Kryokühlers beherbergt, tritt ein zusätzlicher Wärmestrom ein.By contrast, in a cryogenic loss-free (i.e., actively cooled with a cryocooler) system, all the heat conducted via the tubing tubes enters the helium container because the tubes remain uncooled due to the absence of gas flow. This amount of heat is in many cases - depending on pipe wall thickness, number of hanger pipes, size of the helium tank, etc - the main contribution of the total heat input and may require the use of a more powerful cryocooler. Also via the neck tube, which houses the cold head of the cryocooler, enters an additional heat flow.

Aufgabe der vorliegenden Erfindung ist es daher, den Wärmeeintrag über die Aufhängerohre einer aktiv, mit einem Kryokühler gekühlten Kryostatanordnung, speziell einer Kryostatanordnung, die eine supraleitende Magnetanordnung enthält, zu verkleinern oder komplett zu unterbinden und somit die Verwendung eines leistungsschwächeren Kryokühlers zu ermöglichen.The object of the present invention is, therefore, the heat input via the suspension tubes of an actively cooled with a cryocooler Kryostatanordnung, especially a shrinkage device containing a superconducting magnet assembly to reduce or completely eliminate and thus allow the use of a lower performance cryocooler.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass zwischen den warmen Enden der Aufhängerohre und des Halsrohres eine direkte Verbindung besteht, durch die Heliumgas strömen kann.This object is achieved in that between the warm ends of the suspension tubes and the neck tube, a direct connection exists, can flow through the helium gas.

Durch die direkte Verbindung zwischen den warmen Enden der Aufhängerohre und dem Halsrohr bildet sich von selber eine Gasströmung aus, welche durch die Sogwirkung am kalten Ende des Kaltkopfes angeregt und aufrechterhalten wird. Das verdampfte Gas kühlt somit die Wand der Aufhängerohre im Idealfall wiederum soweit, dass der Wärmeeintrag auf den Heliumbehälter durch die Aufhängerohre verschwindet, erwärmt sich dabei und tritt etwa mit Raumtemperatur aus den Aufhängerohren aus und am Raumtemperaturflansch des Kaltkopfes ins Halsrohr ein. Das Gas aus den verschiedenen Aufhängerohren wird vorzugsweise in einer Leitung zusammengefasst und dann zum Halsrohr geführt. Infolge der abwärts gerichteten Strömung im Halsrohr wird das Gas an den Rohren des Kaltkopfes oder am Halsrohr abgekühlt und schließlich an der zweiten Kältestufe des Kaltkopfes verflüssigt. Der Kreislauf ist hiermit geschlossen. Der Sog, der die Strömung aufrecht hält, entsteht unter anderem aufgrund der Phasenumwandlung von gasförmig nach flüssig im Bereich der zweiten Kältestufe. Insgesamt nimmt die Leistung des Kryokühlers zwar geringfügig ab, aber der Gewinn auf Grund des geringeren Wärmeeinfalls ist größer als der Verlust an Kälteleistung. Gerade für Systeme mit massiveren Aufhängerohren kann somit ein leistungsschwächerer Kryokühler verwendet werden als für den Fall ohne Umlaufströmung.Due to the direct connection between the warm ends of the suspension tubes and the neck tube, a gas flow is formed by itself, which is excited and maintained by the suction effect at the cold end of the cold head. The vaporized gas thus cools the wall of the tubing tubes ideally again so far that the heat input to the helium container disappears through the tubing tubes, heats up and exits at about room temperature from the tubing ears and at room temperature flange of the cold head into the neck tube. The gas from the various suspension tubes is preferably collected in a conduit and then routed to the neck tube. As a result of the downward flow in the neck tube, the gas is cooled at the tubes of the cold head or at the neck tube and finally liquefied at the second cold stage of the cold head. The cycle is hereby closed. The suction that maintains the flow is due, among other things, to the phase change from gaseous to liquid in the second stage of the cold. Overall, the performance of the cryocooler decreases slightly, but the gain due to the lower heat input is greater than the loss of cooling capacity. Especially for systems with massive hanger ears thus a less powerful cryocooler can be used as in the case without circulation flow.

In einer bevorzugten Ausführungsform ist der Kaltkopf des Kryokühlers mehrstufig aufgebaut. Somit können sehr tiefe Temperaturen, insbesondere Temperaturen im Bereich von oder kleiner als 4K realisiert werden.In a preferred embodiment, the cold head of the cryocooler is constructed in multiple stages. Thus, very low temperatures, in particular temperatures in the range of or less than 4K can be realized.

Insbesondere für hochauflösende NMR-Verfahren ist es vorteilhaft, wenn der Kryokühler ein Pulsrohrkühler ist, da Pulsrohrkühler besonders vibrationsarm betrieben werden können. Pulsrohrkühler sind ferner auch sehr betriebssicher und wartungsarm. Es ist jedoch prinzipiell auch möglich andere Kryokühler, wie z.B. Gifford-McMahon Kühler zu verwenden.In particular for high-resolution NMR methods, it is advantageous if the cryocooler is a pulse tube cooler, since pulse tube coolers are operated with particularly low vibration can be. Pulse tube coolers are also very reliable and low maintenance. However, it is also possible in principle to use other cryocoolers, such as Gifford-McMahon coolers.

Besonders vorteilhaft ist es, wenn an der kältesten Kältestufe des Kaltkopfes Helium bei einer Temperatur von 4,2 K oder bei tieferer Temperatur verflüssigt werden kann, da sich hierdurch eine Vielzahl an Einsatzmöglichkeiten im Tiefsttemperaturenbereich bietet. Das innerhalb des Kryostaten verdampfende Helium wird an der frei im Halsrohr hängenden Kältestufe verflüssigt und tropft in den Heliumbehälter zurück. Somit können der Helium-Verlust und die Nachfüllvorgänge reduziert werden bzw. kann bei genügend großer Kälteleistung des Kühlers ein verlustfreier Betrieb erreicht werden.It is particularly advantageous if at the coldest cold stage of the cold head, helium can be liquefied at a temperature of 4.2 K or at a lower temperature, since this offers a multitude of possible uses in the lowest temperature range. The helium vaporizing within the cryostat is liquefied at the freezing stage in the neck tube and drips back into the helium container. Thus, the helium loss and the refilling operations can be reduced or can be achieved at sufficiently large cooling capacity of the radiator, a loss-free operation.

In einer bevorzugten Ausführungsform der Erfindung sind die Rohre des Kaltkopfes oberhalb der ersten Kältestufe und unter Umständen auch im Bereich weiterer Kältestufen mit einer Wärmeisolation umgeben. Somit kann ein unerwünschter Wärmeeintrag von dem Halsrohr in die Rohre des Kaltkopfes annähernd vermieden oder zumindest reduziert werden. Die Rohre oberhalb der ersten Kältestufe des Kaltkopfes weisen Temperaturen zwischen Raumtemperatur und Temperatur der ersten Kältestufe auf.In a preferred embodiment of the invention, the tubes of the cold head are surrounded above the first cold stage and possibly also in the region of further cold stages with a heat insulation. Thus, an undesirable heat input from the neck tube into the tubes of the cold head can be approximately avoided or at least reduced. The tubes above the first cold stage of the cold head have temperatures between room temperature and temperature of the first cold stage.

Eine bevorzugte Ausführungsform der Kryostatanordnung sieht vor, dass zwischen der Wärmeisolation und der Halsrohrwand ein Spalt oder ein Kanal besteht, durch den Gas strömen kann, so dass das Gas mit der Rohrwand in ausreichend guten Wärmekontakt treten kann.A preferred embodiment of the cryostat arrangement provides that there is a gap or channel between the heat insulation and the neck tube wall, through which gas can flow, so that the gas can come in sufficiently good thermal contact with the tube wall.

Da das Halsrohr keine mechanische Stützfunktion übernehmen muss, ist es vorteilhaft, wenn das Halsrohr dünnwandig und/ oder in Form eines Faltenbalgs jeweils aus einem schlecht wärmeleitenden Material aufgebaut ist. Auf diese Weise ist der Wärmeintrag in den Heliumbehälter nur klein. Gleichzeitig wird die Vibrationsübertragung über das Halsrohr minimiert.Since the neck tube does not have to assume any mechanical support function, it is advantageous if the neck tube is of thin-walled construction and / or constructed in the form of a bellows, each of a material having poor thermal conductivity. In this way, the heat input into the helium tank is small. At the same time, the vibration transmission through the neck tube is minimized.

In einer weiten Ausführungsform ist im oder in Kontakt mit dem Heliumbehälter eine, vorzugsweise elektrische, Heizung vorgesehen. Bei einer Überschussleistung des Kryokühlers kann somit der Druck im Heliumbehälter über dem Umgebungsdruck und konstant gehalten werden. Es ist jedoch auch vorstellbar, dass die Leistung des Kühlers über seine Betriebsfrequenz und/ oder die Füllmenge an Arbeitsgas im Kühler geregelt wird.In a broad embodiment, a, preferably electrical, heating is provided in or in contact with the helium container. At an excess power Thus, the pressure in the helium container can be kept above the ambient pressure and constant in the cryocooler. However, it is also conceivable that the performance of the radiator is regulated by its operating frequency and / or the amount of working gas in the radiator.

In einer bevorzugten Ausführungsform sind - abgesehen von der kältesten Kältestufe - eine oder mehrere Kältestufen des Kaltkopfes mit einem oder mehreren Strahlungsschilden thermisch leitend verbunden. Der oder die Strahlungsschilde können dann direkt durch den Kaltkopf gekühlt werden.In a preferred embodiment, apart from the coldest cold stage, one or more cold stages of the cold head are thermally conductively connected to one or more radiation shields. The radiation shield (s) can then be cooled directly by the cold head.

Eine weitere Ausführungsform der erfindungsgemäßen Kryostatanordnung sieht vor, dass der oder einer der Strahlungsschilde einen Behälter mit flüssigem Stickstoff enthält, mit welchem der Kaltkopf thermisch leitend verbunden ist, wobei der Kaltkopf des Kryokühlers den Stickstoff nach dem Verdampfen mindestens teilweise wieder verflüssigt. Die Verflüssigung des Stickstoffs erfolgt aufgrund der thermischen Anbindung des Strahlungsschildes an den Kaltkopf des Kryokühlers. Der Strahlungsschild wird in diesem Fall nicht direkt durch den Kühler, sondern indirekt, über den verdampfenden Stickstoff, gekühlt.Another embodiment of the cryostat arrangement according to the invention provides that the or one of the radiation shields contains a container with liquid nitrogen, with which the cold head is thermally conductively connected, wherein the cold head of the cryocooler at least partially liquefies the nitrogen after evaporation. The liquefaction of the nitrogen is due to the thermal connection of the radiation shield to the cold head of the cryocooler. In this case, the radiation shield is not cooled directly by the cooler, but indirectly, via the evaporating nitrogen.

Bei einer Weiterbildung dieser Ausführungsform ist im oder in Kontakt mit dem Stickstoffbehälter eine, vorzugsweise elektrische, Heizung vorgesehen, um bei einer Überschussleistung des Kryokühlers den Druck im Stickstoffbehälter über dem Umgebungsdruck und konstant zu halten.In a further development of this embodiment, a, preferably electrical, heating is provided in or in contact with the nitrogen container in order to maintain the pressure in the nitrogen container above the ambient pressure and constant at an excess power of the cryocooler.

In einer vorteilhaften Ausführungsform ist in der Verbindungsleitung zwischen Aufhängerohren und Halsrohr ein Ventil zur Regelung des Gasflusses vorgesehen. Somit kann bei Bedarf der Gasstrom gedrosselt werden, wenn z. B. die Sogwirkung am Kaltkopf so groß ist, dass der Gasstrom größer wird als es für die optimale Kühlung der Aufhängerohre ausreichend wäre.In an advantageous embodiment, a valve for controlling the gas flow is provided in the connecting line between suspension tubes and neck tube. Thus, if necessary, the gas flow can be throttled when z. B. the suction effect on the cold head is so large that the gas flow is greater than it would be sufficient for the optimal cooling of the suspension tubes.

Ein weiterer vorteilhafter Aspekt beinhaltet, dass in der Verbindungsleitung zwischen Aufhängerohren und Halsrohr eine regelbare Umwälzpumpe vorgesehen ist. Somit lässt sich der Kühlstrom aktiv einregeln.Another advantageous aspect includes that in the connecting line between suspension tubes and neck tube a controllable circulation pump is provided. Thus, the cooling flow can actively adjust.

Die Vorteile der erfindungsgemäßen Kryostatanordnung kommen besonders gut zur Geltung, wenn die Kryostatanordnung eine supraleitende Magnetanordnung enthält, insbesondere wenn die supraleitende Magnetanordnung Teil einer Apparatur zur Kernspinresonanz, insbesondere Magnetic Resonance Imaging (MRI) oder Magnetresonanzspektroskopie (NMR) ist.The advantages of the cryostat arrangement according to the invention are particularly effective if the cryostat arrangement contains a superconducting magnet arrangement, in particular if the superconducting magnet arrangement is part of an apparatus for nuclear magnetic resonance, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (NMR).

Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und den Zeichnungen. Ebenso können die vorstehend genannten und die weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.Further advantages of the invention will become apparent from the description and the drawings. Likewise, the features mentioned above and those listed further can be used individually or in any combination. The embodiments shown and described are not to be understood as exhaustive enumeration, but rather have exemplary character for the description of the invention.

Es zeigen:

Fig. 1
eine schematische Darstellung einer erfindungsgemäßen Kryostatanordnung;
Fig. 2
eine schematische Darstellung einer erfindungsgemäßen Kryostatanordnung mit isolierten Kaltkopfrohren;
Fig. 3
eine schematische Darstellung einer erfindungsgemäßen Kryostatanordnung mit einem Stickstofftank;
Fig. 4
einen schematischen Ausschnitt einer erfindungsgemäßen Kryostatanordnung mit einem in der Verbindungsleitung integrierten Ventil; und
Fig. 5
einen schematischen Ausschnitt einer erfindungsgemäßen Kryostatanordnung mit einer in der Verbindungsleitung integrierten Pumpe;
Show it:
Fig. 1
a schematic representation of a cryostat arrangement according to the invention;
Fig. 2
a schematic representation of a cryostat arrangement according to the invention with insulated cold head tubes;
Fig. 3
a schematic representation of a cryostat arrangement according to the invention with a nitrogen tank;
Fig. 4
a schematic section of a cryostat assembly according to the invention with a valve integrated in the connecting line; and
Fig. 5
a schematic section of a cryostat assembly according to the invention with an integrated in the connecting line pump;

Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Kryostatanordnung mit einem Heliumbehälter 1, der an mindestens zwei Aufhängerohren 2 mit einem Außenmantel 3 verbunden ist. Der Heliumbehälter 1 ist von einem Strahlungsschild 4 umgeben und umfasst ferner ein Halsrohr 5, welches den Kaltkopf 6 eines Kryokühlers beherbergt. Da das Halsrohr 5 nur als Trennwand zu einem evakuiertem Raum 7 des Außenmantels 3 dient und nicht das Gewicht des Heliumbehälters 1 tragen muss, kann es so ausgelegt werden, dass der Wärmeeintrag und die Vibrationsübertragung minimiert werden können. Dies kann vorteilhaft mit der Verwendung von Faltenbälgen erreicht werden. Das Gewicht des Heliumbehälters 1 und einer im Heliumbehälter angeordneten supraleitenden Magnetanordnung 26 wird durch die Aufhängerohre 2 getragen, die über eine Leitung 8 mit dem warmen Ende 9 des Halsrohres 5 verbunden sind. Es bildet sich von selber eine Gasströmung 10 aus, welche durch die Sogwirkung am kalten Ende 11 des Kaltkopfes 6 angeregt und aufrechterhalten wird. Das verdampfte Helium kühlt somit die Wand 12 der Aufhängerohre 2, im Idealfall soweit, dass der Wärmeeintrag durch die Aufhängerohre 2 auf den Heliumbehälter 1 verschwindet, erwärmt sich dabei und tritt etwa mit Raumtemperatur aus den Aufhängerohren 2 aus und an einem Raumtemperaturflansch 13 des Kaltkopfes 6 wieder ins Halsrohr 5 ein. Infolge der abwärts gerichteten Gasströmung 10 wird das Gas an den Rohren 14 des Kaltkopfes 6 oder am Halsrohr 5 abgekühlt und schließlich an der zweiten Kältestufe 15 des Kaltkopfes 6 verflüssigt. Der Kreislauf ist hiermit geschlossen. Die Leistung des Kryokühlers nimmt dadurch geringfügig ab, aber der Gewinn auf Grund des geringeren Wärmeeinfalls ist größer als der Verlust an Kälteleistung. Gerade für Systeme mit massiveren Aufhängerohren 2 kann somit ein leistungsschwächerer Kryokühler verwendet werden als für den Fall ohne Umlaufströmung. Es ist vorteilhaft, wenn die Teilströme der verschiedenen Aufhängerohre 2 in einer Leitung 8 zusammengefasst werden. 1 shows a schematic representation of a cryostat arrangement according to the invention with a helium container 1 , which is connected to at least two suspension tubes 2 with an outer jacket 3 . The helium container 1 is surrounded by a radiation shield 4 and further comprises a neck tube 5 , which houses the cold head 6 of a cryocooler. Since the neck tube 5 only as a partition to an evacuated space 7 of the outer shell 3 and does not have to carry the weight of the helium container 1, it can be designed so that the heat input and the vibration transmission can be minimized. This can be achieved advantageously with the use of bellows. The weight of the helium container 1 and a superconducting magnet arrangement 26 arranged in the helium container is carried by the suspension tubes 2, which are connected via a line 8 to the warm end 9 of the neck tube 5. It forms from itself a gas flow 10 , which is excited and maintained by the suction effect at the cold end 11 of the cold head 6. The vaporized helium thus cools the wall 12 of the suspension tubes 2, ideally so far that the heat input through the suspension tubes 2 disappears onto the helium vessel 1, heats up and exits the suspension tubes 2 at about room temperature and at a room temperature flange 13 of the cold head 6 again in the neck tube 5 a. As a result of the downward gas flow 10, the gas is cooled at the tubes 14 of the cold head 6 or the neck tube 5 and finally liquefied at the second cold stage 15 of the cold head 6. The cycle is hereby closed. The performance of the cryocooler decreases slightly, but the gain due to the lower heat input is greater than the loss of cooling capacity. Especially for systems with more massive suspension tubes 2, a less powerful cryocooler can thus be used than in the case without circulation flow. It is advantageous if the partial flows of the various suspension tubes 2 are combined in a line 8.

Da es unerheblich ist, ob das wieder zurückgeführte Gas an der Halsrohrwand 18 oder den Rohren 14 des Kaltkopfes 6 entlang strömt und sich abkühlt, kann der Kaltkopf 6 auch mit einer Wärmeisolation 16 versehen sein, um den Wärmekontakt zwischen Halsrohr 5 und den Rohren 14 des Kaltkopfes 6 zu erschweren. Fig. 2 zeigt eine Wärmeisolation 16 zwischen dem Raumtemperaturflansch 13 und der ersten Kältestufe 17 des zweistufigen Kaltkopfes 6. Bei Kaltköpfen mit mehreren Kältestufen kann auch um die Rohre weiterer Kältestufen eine Wärmeisolation 16 vorgesehen sein. Wichtig ist nur, dass zwischen der Wärmeisolation 16 und der Halsrohrwand 18 ein genügend großer Spalt 19 vorhanden ist, so dass das Gas mit der Halsrohrwand 18 in ausreichend guten Wärmekontakt treten kann. Die Halsrohrwand 18 wird bei der vorgeschlagenen Erfindung nicht von einem zum warmen Ende hin geführten Gasstrom gekühlt. Wie oben schon erwähnt, ist jedoch der Beitrag des Wärmeeinfalls über die Halsrohrwand 18 für den gegebenen Fall im Vergleich zu dem Gesamtwärmeeintrag eher gering.Since it is irrelevant whether the recirculated gas flows along the neck tube wall 18 or the tubes 14 of the cold head 6 and cools, the cold head 6 may also be provided with a thermal insulation 16 , to heat contact between the neck tube 5 and the tubes 14 of the Cold head 6 to complicate. FIG. 2 shows a heat insulation 16 between the room temperature flange 13 and the first cold stage 17 of the two-stage cold head 6. In the case of cold heads having a plurality of cold stages, a heat insulation 16 can also be provided around the tubes of further cold stages. It is only important that between the heat insulation 16 and the neck tube wall 18, a sufficiently large gap 19 is present, so that the gas with the neck tube wall 18 in good enough thermal contact can occur. The neck tube wall 18 is not cooled in the proposed invention by a guided gas stream to the warm end. As already mentioned above, however, the contribution of the heat input via the neck tube wall 18 for the given case is rather small compared to the total heat input.

Es ist auch möglich, dass der Strahlungsschild 4 - ähnlich wie in einem nicht aktiv gekühlten System (d.h. ohne Kryokühler) - nicht direkt, sondern mit verdampfendem Stickstoff gekühlt wird, wie in Fig. 3 gezeigt. In diesem Fall muss die erste Kältestufe 17 des Kaltkopfes 6 des Kryokühlers mit einem Stickstoffbehälter 20 thermisch leitend verbunden sein, so dass an der kalten Kontaktfläche 21 verdampfter Stickstoff wieder verflüssigt werden kann.It is also possible that the radiation shield 4 - as in a non-actively cooled system (ie without cryocooler) - is not cooled directly, but with evaporating nitrogen, as shown in Fig. 3 . In this case, the first cold stage 17 of the cold head 6 of the cryocooler must be thermally conductively connected to a nitrogen container 20 , so that nitrogen vaporized on the cold contact surface 21 can be liquefied again.

Um den Gasstrom zu regulieren bietet sich die Möglichkeit an, eine Strömungsimpedanz (wie z. B. ein Ventil 22) in die Verbindungsleitung 8 zu integrieren (s. Fig. 4). Mit einer Pumpe 23 ließe sich der Kühlstrom aktiv einregeln (s. Fig. 5). Ventil 22 oder Pumpe 23 können auch beide zusammen in der Verbindungsleitung 8 eingebaut werden. Vorzugsweise werden die Teilströme der Aufhängerohre 2 zuerst in einer Verbindungsleitung 8 zusammengefasst, bevor ein Ventil 22 oder eine Pumpe 23 integriert werden.In order to regulate the gas flow, it is possible to integrate a flow impedance (such as a valve 22 ) into the connection line 8 (see Fig. 4 ). With a pump 23 , the cooling flow could be actively regulated (see Fig. 5 ). Valve 22 or pump 23 can also be installed together in the connecting line 8. Preferably, the partial flows of the suspension tubes 2 are first combined in a connecting line 8, before a valve 22 or a pump 23 are integrated.

In allen Fällen ist es vorteilhaft, den Druck im Heliumbehälter 1 (und unter Umständen auch im Stickstoffbehälter 20) über dem Umgebungsdruck und konstant zu halten. Dies kann mit einer Heizung 24 im flüssigen Helium, wie in Fig. 1, Fig. 2 und Fig. 3 gezeigt, beziehungsweise mit einer Heizung im flüssigen Stickstoff 25, realisiert werden (Fig. 3).In all cases, it is advantageous to keep the pressure in the helium container 1 (and under certain circumstances also in the nitrogen container 20) above the ambient pressure and constant. This can be realized with a heater 24 in liquid helium, as shown in FIGS. 1, 2 and 3, or with a heater in liquid nitrogen 25 (FIG. 3).

Die erfindungsgemäße Kryostatanordnung eignet sich besonders zur Kühlung einer Magnetanordnung 26, die ein Teil einer Apparatur zur Kernspinresonanz, insbesondere Magnetic Resonance Imaging (MRI) oder Magnetresonanzspektroskopie (NMR) ist.The cryostat arrangement according to the invention is particularly suitable for cooling a magnet arrangement 26 which is part of an apparatus for nuclear magnetic resonance, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (NMR).

Mit der erfindungsgemäßen Kryostatanordnung ist es möglich, insbesondere den Wärmeeintrag über die Aufhängerohre eines aktiv, mit einem Kryokühler gekühlten, hochauflösenden NMR-Magnetsystems erheblich zu verringern und somit auch einen leistungsschwächeren Kryokühler zu verwenden.With the cryostat arrangement according to the invention, it is possible, in particular the heat input via the suspension tubes of an active, cooled with a cryocooler, high-resolution NMR magnetic system significantly reduce and thus to use a lower-performance cryocooler.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Heliumbehälterhelium container
22
Aufhängerohresuspension tubes
33
Außenmantelouter sheath
44
Strahlungsschildradiation shield
55
Halsrohrneck tube
66
Kaltkopf eines KryokühlersCold head of a cryocooler
77
evakuierter Raumevacuated room
88th
Leitungmanagement
99
warmes Ende des Halsrohrswarm end of the neck tube
1010
Gasströmunggas flow
1111
kaltes Ende des Kaltkopfescold end of the cold head
1212
Wand der AufhängerohreWall of hanger pipes
1313
RaumtemperaturflanschRaumtemperaturflansch
1414
Rohre des KaltkopfesTubes of the cold head
1515
zweite Kältestufe des Kaltkopfessecond cold stage of the cold head
1616
Wärmeisolationthermal insulation
1717
erste Kältestufe des Kaltkopfesfirst cold stage of the cold head
1818
HalsrohrwandNeck tube wall
1919
Spaltgap
2020
Stickstoffbehälternitrogen Storage
2121
kalte Kontaktflächecold contact surface
2222
VentilValve
2323
Pumpepump
2424
Heizung im flüssigen HeliumHeating in liquid helium
2525
Heizung im flüssigen StickstoffHeating in liquid nitrogen
2626
Magnetanordungof magnets

Claims (15)

Kryostatanordnung zur Aufbewahrung von flüssigem Helium mit einem Außenmantel (3) und einem darin eingebauten Heliumbehälter (1),
wobei der Heliumbehälter (1) an mindestens zwei Aufhängerohren (2) mit dem Außenmantel (3) verbunden ist,
wobei der Heliumbehälter (1) ferner ein Halsrohr (5) enthält, dessen oberes warmes Ende mit dem Außenmantel (3) und dessen unteres kaltes Ende mit dem Heliumbehälter (1) verbunden ist und in das ein Kaltkopf (6) eines mehrstufigen Kryokühlers eingebaut ist, wobei der Außenmantel (3), der Heliumbehälter (1), die Aufhängerohre (2) und das Halsrohr (5) einen evakuierten Raum (7) begrenzen,
und wobei der Heliumbehälter (1) ferner von mindestens einem Strahlungsschild (4) umgeben ist, welcher sowohl mit den Aufhängerohren (2) als auch mit dem Halsrohr (5) des Heliumbehälters (1) thermisch leitend verbunden ist
dadurch gekennzeichnet,
dass zwischen den warmen Enden der Aufhängerohre (2) und des Halsrohres (5) eine direkte Verbindung (8) besteht, durch welche Heliumgas strömen kann.
Cryostat arrangement for storing liquid helium with an outer jacket (3) and a helium container (1) installed therein,
wherein the helium container (1) is connected to the outer jacket (3) on at least two suspension tubes (2),
wherein the helium container (1) further includes a neck tube (5) whose upper warm end with the outer shell (3) and the lower cold end to the helium container (1) is connected and in which a cold head (6) of a multi-stage cryocooler is installed in which the outer casing (3), the helium container (1), the suspension tubes (2) and the neck tube (5) delimit an evacuated space (7),
and wherein the helium container (1) is further surrounded by at least one radiation shield (4), which is thermally conductively connected both to the suspension tubes (2) and to the neck tube (5) of the helium container (1)
characterized,
in that between the warm ends of the suspension tubes (2) and the neck tube (5) there is a direct connection (8) through which helium gas can flow.
Kryostatanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Kaltkopf (6) des Kryokühlers mehrstufig aufgebaut ist.Cryostat arrangement according to claim 1, characterized in that the cold head (6) of the cryocooler is constructed in multiple stages. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der Kryokühler (6) ein Pulsrohrkühler ist.Cryostat arrangement according to one of the preceding claims, characterized in that the cryocooler (6) is a pulse tube cooler. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass an der kältesten Kältestufe (15) des Kaltkopfes (6) des Kryokühlers Helium bei einer Temperatur von 4,2 K oder bei tieferer Temperatur verflüssigt werden kann.Cryostat arrangement according to one of the preceding claims, characterized in that at the coldest cold stage (15) of the cold head (6) of the cryocooler helium can be liquefied at a temperature of 4.2 K or at a lower temperature. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass die Rohre (14) des Kaltkopfes (6) des Kryokühlers oberhalb der ersten Kältestufe und unter Umständen auch im Bereich weiterer Kältestufen mit einer Wärmeisolation (16) umgeben sind.Cryostat arrangement according to one of the preceding claims, characterized in that the tubes (14) of the cold head (6) of the cryocooler are surrounded above the first cold stage and possibly also in the region of further cold stages with a heat insulation (16). Kryostatanordnung nach Anspruch 5, dadurch gekennzeichnet, dass zwischen der Wärmeisolation (16) und der Halsrohrwand (18) ein Spalt (19) oder ein Kanal besteht, durch den Gas strömen kann.Cryostat arrangement according to claim 5, characterized in that between the heat insulation (16) and the neck tube wall (18) there is a gap (19) or a channel through which gas can flow. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass das Halsrohr (5) dünnwandig und/ oder in Form eines Faltenbalgs jeweils aus einem schlecht wärmeleitenden Material aufgebaut ist.Kryostatanordnung according to any one of the preceding claims, characterized in that the neck tube (5) is thin-walled and / or constructed in the form of a bellows each of a poor thermal conductivity material. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass im oder in Kontakt mit dem Heliumbehälter (1) eine, vorzugsweise elektrische, Heizung (24) vorgesehen ist.Cryostat arrangement according to one of the preceding claims, characterized in that in or in contact with the helium container (1) a, preferably electrical, heating (24) is provided. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass, abgesehen von der kältesten Kältestufe (15), eine oder mehrere Kältestufe(n) (17) des Kaltkopfs (6) mit einem oder mehreren Strahlungsschild(en) (4) thermisch leitend verbunden sind.Cryostat arrangement according to one of the preceding claims, characterized in that , apart from the coldest cold stage (15), one or more cold stage (s) (17) of the cold head (6) with one or more radiation shield (s) (4) thermally conductively connected are. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass der Strahlungsschild (4) oder einer der Strahlungsschilde (4) einen Behälter (20) mit flüssigem Stickstoff enthält, mit welchem der Kaltkopf (6) des Kryokühlers thermisch leitend verbunden ist, wobei der Kaltkopf (6) des Kryokühlers den Stickstoff nach dem Verdampfen mindestens teilweise wieder verflüssigt.Cryostat arrangement according to one of the preceding claims, characterized in that the radiation shield (4) or one of the radiation shields (4) contains a container (20) with liquid nitrogen, with which the cold head (6) of the cryocooler thermally conductively connected is, wherein the cold head (6) of the cryocooler at least partially liquefies the nitrogen after evaporation. Kryostatanordnung nach Anspruch 10, dadurch gekennzeichnet, dass im oder in Kontakt mit dem Stickstoffbehälter (20) eine, vorzugsweise elektrische, Heizung (25) vorgesehen ist.Cryostat arrangement according to claim 10, characterized in that in or in contact with the nitrogen container (20) a, preferably electrical, heating (25) is provided. Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass in der Verbindungsleitung (8) zwischen Aufhängerohren (2) und Halsrohr (5) ein Ventil (22) zur Regelung des Gasflusses vorgesehen ist.Cryostat arrangement according to one of the preceding claims, characterized in that a valve (22) for controlling the gas flow is provided in the connecting line (8) between suspension hoses (2) and neck tube (5). Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass in der Verbindungsleitung (8) zwischen Aufhängerohren (2) und Halsrohr (5) eine regelbare Umwälzpumpe (23) vorgesehen ist.Cryostat arrangement according to one of the preceding claims, characterized in that a controllable circulating pump (23) is provided in the connecting line (8) between suspension hoses (2) and neck tube (5). Kryostatanordnung nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass die Kryostatanordnung eine supraleitende Magnetanordnung (26) enthält.Cryostat arrangement according to one of the preceding claims, characterized in that the cryostat arrangement contains a superconducting magnet arrangement (26). Kryostatanordnung nach Anspruch 14, dadurch gekennzeichnet, dass die supraleitende Magnetanordnung (26) Teil einer Apparatur zur Kernspinresonanz, insbesondere Magnetic Resonance Imaging (MRI) oder Magnetresonanzspektroskopie (NMR) ist.Cryostat arrangement according to claim 14, characterized in that the superconducting magnet arrangement (26) is part of an apparatus for nuclear magnetic resonance, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (NMR).
EP05016143A 2004-07-30 2005-07-26 Cryostat arrangement Not-in-force EP1628109B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004037172A DE102004037172B4 (en) 2004-07-30 2004-07-30 cryostat

Publications (3)

Publication Number Publication Date
EP1628109A2 true EP1628109A2 (en) 2006-02-22
EP1628109A3 EP1628109A3 (en) 2009-03-25
EP1628109B1 EP1628109B1 (en) 2012-06-13

Family

ID=35457012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05016143A Not-in-force EP1628109B1 (en) 2004-07-30 2005-07-26 Cryostat arrangement

Country Status (4)

Country Link
US (1) US20060021355A1 (en)
EP (1) EP1628109B1 (en)
JP (1) JP3996935B2 (en)
DE (1) DE102004037172B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112987A3 (en) * 2010-03-11 2012-11-08 Quantum Design, Inc. Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
EP2584286A4 (en) * 2010-06-16 2015-08-26 Kobe Steel Ltd Re-condensation device and nmr analysis device provided therewith

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0424725D0 (en) * 2004-11-09 2004-12-08 Oxford Instr Superconductivity Cryostat assembly
JP5833284B2 (en) * 2006-03-17 2015-12-16 シーメンス ピーエルシー Cooling system
US8375742B2 (en) * 2007-08-21 2013-02-19 Cryomech, Inc. Reliquifier and recondenser with vacuum insulated sleeve and liquid transfer tube
US8485387B2 (en) 2008-05-13 2013-07-16 Tokitae Llc Storage container including multi-layer insulation composite material having bandgap material
US20120085070A1 (en) * 2007-12-11 2012-04-12 TOKITAE LLC, a limited liability company of the State of Delaware Establishment and maintenance of low gas pressure within interior spaces of temperature-stabilized storage systems
US8377030B2 (en) 2007-12-11 2013-02-19 Tokitae Llc Temperature-stabilized storage containers for medicinals
US9139351B2 (en) * 2007-12-11 2015-09-22 Tokitae Llc Temperature-stabilized storage systems with flexible connectors
US8887944B2 (en) 2007-12-11 2014-11-18 Tokitae Llc Temperature-stabilized storage systems configured for storage and stabilization of modular units
US8215518B2 (en) * 2007-12-11 2012-07-10 Tokitae Llc Temperature-stabilized storage containers with directed access
US20090145912A1 (en) * 2007-12-11 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Temperature-stabilized storage containers
US9174791B2 (en) * 2007-12-11 2015-11-03 Tokitae Llc Temperature-stabilized storage systems
US9140476B2 (en) 2007-12-11 2015-09-22 Tokitae Llc Temperature-controlled storage systems
US8603598B2 (en) 2008-07-23 2013-12-10 Tokitae Llc Multi-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods
US8211516B2 (en) 2008-05-13 2012-07-03 Tokitae Llc Multi-layer insulation composite material including bandgap material, storage container using same, and related methods
US8215835B2 (en) 2007-12-11 2012-07-10 Tokitae Llc Temperature-stabilized medicinal storage systems
US9205969B2 (en) * 2007-12-11 2015-12-08 Tokitae Llc Temperature-stabilized storage systems
US8069680B2 (en) 2007-12-11 2011-12-06 Tokitae Llc Methods of manufacturing temperature-stabilized storage containers
US9372016B2 (en) 2013-05-31 2016-06-21 Tokitae Llc Temperature-stabilized storage systems with regulated cooling
US9447995B2 (en) 2010-02-08 2016-09-20 Tokitac LLC Temperature-stabilized storage systems with integral regulated cooling
US20120167598A1 (en) * 2010-09-14 2012-07-05 Quantum Design, Inc. Vacuum isolated multi-well zero loss helium dewar
DE102011078608B4 (en) 2011-07-04 2023-06-22 Bruker Switzerland Ag cryostat assembly
CN103077797B (en) * 2013-01-06 2016-03-30 中国科学院电工研究所 For the superconducting magnet system of head imaging
JP5969944B2 (en) * 2013-03-27 2016-08-17 ジャパンスーパーコンダクタテクノロジー株式会社 Cryostat
DE102015212314B3 (en) 2015-07-01 2016-10-20 Bruker Biospin Gmbh Cryostat with active neck tube cooling by a second cryogen
JP6626816B2 (en) * 2016-11-24 2019-12-25 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting coil precooling method and superconducting magnet device
DE102017217930A1 (en) * 2017-10-09 2019-04-11 Bruker Biospin Ag Magnet arrangement with cryostat and magnetic coil system, with cold accumulators on the power supply lines
CN110486970B (en) * 2019-08-29 2021-08-24 上海理工大学 Multi-stage single-side precooling laminated microchannel throttling heat exchange refrigerator
CN110486974B (en) * 2019-08-29 2021-08-24 上海理工大学 Two-stage laminated staggered micro-channel throttling heat exchange refrigerator with middle inlet
CN110486972B (en) * 2019-08-29 2021-08-24 上海理工大学 Multistage two-side precooling laminated staggered micro-channel throttling heat exchange refrigerator
CN110486971B (en) * 2019-08-29 2021-08-24 上海理工大学 Wave-shaped laminated micro-channel refrigerator
CN110486973B (en) * 2019-08-29 2021-08-24 上海理工大学 Multi-stage precooling microchannel throttling heat exchange refrigerator with intermediate inlet
CN110486980B (en) * 2019-08-29 2021-08-24 上海理工大学 Micro-channel throttling refrigerator
KR102142312B1 (en) * 2019-12-27 2020-08-07 한국기초과학지원연구원 Helium gas liquefier and method for liquefying helium gas
DE102020201522A1 (en) 2020-02-07 2021-08-12 Bruker Switzerland Ag NMR measurement setup with cold bore of the cryostat
CN117128442B (en) * 2023-08-07 2024-05-17 北京航天试验技术研究所 Constant-temperature constant-pressure low-temperature dewar, system and method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563566A (en) 1995-11-13 1996-10-08 General Electric Company Cryogen-cooled open MRI superconductive magnet
US5613367A (en) 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
US5782095A (en) 1997-09-18 1998-07-21 General Electric Company Cryogen recondensing superconducting magnet
EP0905436A2 (en) 1997-09-30 1999-03-31 Oxford Magnet Technology Limited Load bearing means in NMR cryostat systems
EP0905524A1 (en) 1997-09-30 1999-03-31 Oxford Magnet Technology Limited NMR magnet assembly with a neck tube housing a pulse tube refrigerator
US5966944A (en) 1997-04-09 1999-10-19 Aisin Seiki Kabushiki Kaisha Superconducting magnet system outfitted with cooling apparatus
US20020002830A1 (en) 2000-07-08 2002-01-10 Bruker Analytik Gmbh Circulating cryostat
WO2003036190A1 (en) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. A pulse tube refrigerator with an insulating sleeve
WO2003036207A2 (en) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. A pulse tube refrigeration with an insulating sleeve
US20030230089A1 (en) 2002-06-14 2003-12-18 Bruker Biospin Gmbh Cryostat configuration with improved properties

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106135A1 (en) * 1991-02-27 1992-09-03 Spectrospin Ag CRYOMAGNETIC SYSTEM WITH LOW-LOSS HELIUM CRYOSTAT
DE19548273A1 (en) * 1995-12-22 1997-06-26 Spectrospin Ag NMR measuring device with pulse tube cooler
GB0121603D0 (en) * 2001-09-06 2001-10-24 Oxford Instr Superconductivity Magnet assembly
GB0401835D0 (en) * 2004-01-28 2004-03-03 Oxford Instr Superconductivity Magnetic field generating assembly
DE102004012416B4 (en) * 2004-03-13 2006-04-20 Bruker Biospin Gmbh Superconducting magnet system with pulse tube cooler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563566A (en) 1995-11-13 1996-10-08 General Electric Company Cryogen-cooled open MRI superconductive magnet
US5613367A (en) 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
US5966944A (en) 1997-04-09 1999-10-19 Aisin Seiki Kabushiki Kaisha Superconducting magnet system outfitted with cooling apparatus
US5782095A (en) 1997-09-18 1998-07-21 General Electric Company Cryogen recondensing superconducting magnet
EP0905436A2 (en) 1997-09-30 1999-03-31 Oxford Magnet Technology Limited Load bearing means in NMR cryostat systems
EP0905524A1 (en) 1997-09-30 1999-03-31 Oxford Magnet Technology Limited NMR magnet assembly with a neck tube housing a pulse tube refrigerator
US20020002830A1 (en) 2000-07-08 2002-01-10 Bruker Analytik Gmbh Circulating cryostat
WO2003036190A1 (en) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. A pulse tube refrigerator with an insulating sleeve
WO2003036207A2 (en) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. A pulse tube refrigeration with an insulating sleeve
US20030230089A1 (en) 2002-06-14 2003-12-18 Bruker Biospin Gmbh Cryostat configuration with improved properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRYOGENICS, vol. 41, 2001, pages 491 - 496

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112987A3 (en) * 2010-03-11 2012-11-08 Quantum Design, Inc. Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
GB2490836A (en) * 2010-03-11 2012-11-14 Quantum Design Inc Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
CN102971594A (en) * 2010-03-11 2013-03-13 量子设计有限公司 Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
EP2584286A4 (en) * 2010-06-16 2015-08-26 Kobe Steel Ltd Re-condensation device and nmr analysis device provided therewith

Also Published As

Publication number Publication date
DE102004037172A1 (en) 2006-03-23
EP1628109A3 (en) 2009-03-25
US20060021355A1 (en) 2006-02-02
JP3996935B2 (en) 2007-10-24
EP1628109B1 (en) 2012-06-13
JP2006046897A (en) 2006-02-16
DE102004037172B4 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
EP1628109B1 (en) Cryostat arrangement
EP1628089B1 (en) Device for cooling of a cryostat arrangement
DE102005029151B4 (en) Cryostat arrangement with cryocooler
DE102004053972B3 (en) NMR spectrometer with common refrigerator for cooling NMR probe head and cryostat
DE69838866T2 (en) Improvements in or related to cryostat systems
DE102005041383B4 (en) NMR apparatus with co-cooled probe head and cryocontainer and method of operation thereof
DE102016218000B3 (en) Cryostat arrangement with a vacuum container and an object to be cooled, with evacuable cavity
EP1617157A2 (en) Cryostatic device with cryocooler and gas slit heat exchanger
DE10033410C1 (en) Kreislaufkryostat
DE102004061869B4 (en) Device for superconductivity and magnetic resonance device
DE102016214731B3 (en) NMR apparatus with superconducting magnet arrangement and cooled probe components
DE10137552C1 (en) Apparatus comprises cryo-generator consisting of cooling device having regenerator and pulse tube with heat exchangers arranged between them
DE69828128T2 (en) Magnetic arrangement for nuclear magnetic resonance with a neck tube in which a pulse tube cooler is housed
DE102004060832B3 (en) NMR spectrometer with common refrigerator for cooling NMR probe head and cryostat
DE102006020772B3 (en) Cooled NMR probe head with flexible cooled connection line
DE112011100875T5 (en) Method and apparatus for controlling the temperature in a cryostat cooled to cryogenic temperatures using stagnant and moving gas
EP3230666B1 (en) Cryostat having a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
DE102015215919B4 (en) Method and device for precooling a cryostat
DE60222920T2 (en) SOCKET FOR PULSATION TUBE COOLING DEVICE
EP1504516B1 (en) Superconductive device comprising a refrigeration unit, equipped with a refrigeration head that is thermally coupled to a rotating superconductive winding
DE102011078608A1 (en) cryostat
DE102016214728B3 (en) NMR apparatus with cooled probe head components insertable through a vacuum lock in the cryostats of a superconducting magnet assembly, and methods of assembling and removing same
EP3382411B1 (en) Cryostatic device with a neck pipe with a load-bearing structure and an outer tube surrounding the load bearing structure for reducing cryogenic consumption
DE10226498B4 (en) Cryostat arrangement with improved properties
EP3611528B1 (en) Cryostat arrangement with superconducting magnetic coil system with thermal anchoring of the fixing structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20090917

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

17Q First examination report despatched

Effective date: 20110309

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): CH FR GB LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20120321

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190724

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BRUKER SWITZERLAND AG, CH

Free format text: FORMER OWNER: BRUKER BIOSPIN AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190725

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190725

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200726

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731