EP1626797A1 - VORRRICHTUNG ZUM BEFREIEN EINER EIN AUS EINER ERSTEN PHASE IN EINE ZWEITE PHASE GEBRACHTES EDUKTIONSMITTEL F HRENDEN ZUF&Uuml ;HRLEITUNG VON IN DIE ERSTE PHASE ZUR CKGEBILDETEM REDUKTION SMITTEL - Google Patents

VORRRICHTUNG ZUM BEFREIEN EINER EIN AUS EINER ERSTEN PHASE IN EINE ZWEITE PHASE GEBRACHTES EDUKTIONSMITTEL F HRENDEN ZUF&Uuml ;HRLEITUNG VON IN DIE ERSTE PHASE ZUR CKGEBILDETEM REDUKTION SMITTEL

Info

Publication number
EP1626797A1
EP1626797A1 EP04728227A EP04728227A EP1626797A1 EP 1626797 A1 EP1626797 A1 EP 1626797A1 EP 04728227 A EP04728227 A EP 04728227A EP 04728227 A EP04728227 A EP 04728227A EP 1626797 A1 EP1626797 A1 EP 1626797A1
Authority
EP
European Patent Office
Prior art keywords
valve
phase
reducing agent
precursor
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04728227A
Other languages
English (en)
French (fr)
Inventor
Martin Havers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HJS Fahrzeugtechnik GmbH and Co KG
Original Assignee
HJS Fahrzeugtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE20308348U external-priority patent/DE20308348U1/de
Application filed by HJS Fahrzeugtechnik GmbH and Co KG filed Critical HJS Fahrzeugtechnik GmbH and Co KG
Publication of EP1626797A1 publication Critical patent/EP1626797A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/08Preparation of ammonia from nitrogenous organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for releasing a reducing agent that has been reformed into the first phase of a supply line leading a reducing agent brought from a first phase into a second phase for supplying the reducing agent in the second phase to an SCR catalytic converter that is switched into the exhaust line of a diesel internal combustion engine ,
  • a device for feeding ammonia in its gaseous phase into the exhaust line of an internal combustion engine of a motor vehicle is known from DE 197 20 209 C 1.
  • This includes a gas-tight and pressure-resistant converter in which there is a thermolytically NH 3 -releasing substance or a thermolytically NH 3 -releasing substance mixture - a so-called NH 3 precursor.
  • Ammonium carbamate present as a solid, for example, can be provided as the NH 3 precursor.
  • the converter is connected to the exhaust line of a diesel engine via a supply line, the supply line opening into the exhaust line in the flow direction of the exhaust gas in front of the input side of an SCR catalytic converter.
  • a cycle valve is provided as the metering device, which is controlled by a control unit so that the required amount of NH 3 can be injected into the exhaust gas flow depending on certain engine operating characteristics.
  • the converter essentially consists of a pressure-resistant reaction container, which is surrounded by a heating device designed as a coil of heat. The heating device is integrated into the cooling water circuit of the diesel engine via a supply line and a discharge line.
  • ammonium carbamate used for example, as an NH 3 precursor
  • it decomposes into NH 3 and CO2
  • the reducing agent has been brought from a first, here solid phase to a second, here gaseous phase.
  • This gas mixture accumulates in the pressure-resistant reaction vessel until a corresponding internal pressure is built up.
  • a state of equilibrium is established, so that further ammonium carbamate is not decomposed.
  • the pressure in the reaction vessel corresponds to the equilibrium state, which is about 3-4 bar for ammonium carbamate.
  • the converter also serves as a reaction gas storage device in order to store a certain amount of reaction gas or the NH 3 contained therein as a reducing agent.
  • the reaction vessel is usually located at a certain distance from the exhaust line. It has been shown that the reaction gas mixture can, depending on the. ⁇ IH 3 precursors used, re-form into its solid form again when the temperatures drop. In the worst case, this can lead to the supply line becoming blocked.
  • the valves arranged within the supply line for example the timing valve described above as a metering device.
  • the invention is therefore based on the object of proposing a device with which the problems outlined above of a regression of NH 3 precursors within the feed line are countered.
  • the device is a valve for metering the reducing agent in the second phase, in which the fixed valve seat or the movable valve surface interacting with the fixed valve seat, which in the closed position Position of the valve on the valve seat is present as a condenser element that can be controlled by a control unit to form a cold trap switched into the supply line if the condenser element is controlled accordingly, and the condenser element designed as a valve seat or valve surface or the complementary valve element can be controlled by a control unit are heated.
  • This device which is designed as a metering valve, comprises a capacitor element for forming a cold trap.
  • the capacitor element is connected to a control device and, as such, is operated with appropriate control when the internal combustion engine is shut down and / or when the valve is closed.
  • Switching on the capacitor element can also be tied to other operating parameters, for example the current temperature of the valve and / or the feed line.
  • the reducing agent present in the vicinity of the cold trap and in its second phase is drawn to the cold trap and also reduced in the first phase or in an intermediate phase.
  • any reducing agent present in the second phase is pulled out of the feed line and, if appropriate, further valves, couplings or the like switched on therein to the cold trap formed by the condenser element.
  • reducing agent present in its second phase at a defined point in the feed line is collectively reduced.
  • the valve When the supply line for supplying reducing agent to the SCR catalytic converter switched into the exhaust line of the internal combustion engine is started up again, only the area of the capacitor element needs to be freed from the reducing agent which has been reformed into the first phase or into an intermediate phase by appropriate heating. For this reason, the valve also has a heating device in order to feed the reducing agent which has been regenerated in the valve by driving the capacitor element into the second phase for supplying the same to the SCR catalytic converter which is connected to the exhaust line of the internal combustion engine.
  • the capacitor element is expediently assigned either to the valve seat or to the movable valve surface interacting with the fixed valve.
  • the heating device is assigned either to the same valve element or to the complementary valve element.
  • the advantage of this device is that it is simultaneously designed as a metering valve.
  • the movable valve surface of the valve is designed as a heatable condenser element, so that this part of the valve is used both for forming the cooling case and for the Dissolving the reduced reductant is responsible. It is expedient to use one or more Peltier elements which can cool or heat depending on their control. It is advantageous if the movable valve surface itself is the heat-exchanging surface of the Peltier element or elements.
  • connection openings arranged adjacent to one another, which can be closed together by the movable valve surface.
  • the valve surface acting as a condenser element which closes both connection openings in the closed position of the valve, leads to the formation of a cold trap associated with each connection line, as a result of which, in its second phase, reducing agent still present in the respective supply line branch is particularly effective he follows.
  • One of these connection openings is connected to a container storing the reducing agent or a reducing agent precursor, while the other connection opening of the valve is connected to the exhaust line.
  • the procedure described above is particularly suitable for switching on in such a feed line through which gaseous reducing agent flows, which has been formed from an NH 3 precursor present in the solid phase by thermolytic cleavage.
  • Ammonium carbamate is particularly suitable for this purpose as an NH 3 precursor.
  • This device can also be used in connection with a system in which urea (urea) is used as an NH 3 precursor.
  • FIG. 2 the valve of Figure 1 in its closed position.
  • a device for supplying ammonia (NH 3 ) to a reduction catalytic converter which is connected to the exhaust line of a diesel engine of a motor vehicle is identified overall in FIG. 1 by reference number 1.
  • This device 1 comprises a container 2 for generating ammonia (NH 3 ) by thermolytic decomposition of an NH 3 precursor, an ammonium carbamate compact 3 being used as the NH 3 precursor in the exemplary embodiment shown.
  • the ammonium carbamate compact 3 is designed as a cylindrical body and is brought into the shape shown in the figure by pressing powdered ammonium carbamate.
  • the ammonium carbamate compact 3 has a round cross-sectional area.
  • a heating device, generally designated by the reference number 4 is arranged in the container 2.
  • the heating device 4 is designed as a radiant heater.
  • the radiant heater is formed from three individual heating elements 5, 5 ', 5 ", each of which represents an Archimedean spiral.
  • the individual heating elements 5, 5', 5" of the heating device 4 can be controlled independently of one another, so that depending on the number of the heating elements 5, 5 ', 5 "which are energized, the heat output produced and / or the course of a heating phase can be controlled.
  • the heating device 4 is located in a lower part of the container 2 below the heating elements 5, 5 ', 5 "thermal insulation 6 is arranged. Above and at a short distance from the radiant heater is a heating plate 7 as a further part of the heating device 4.
  • the heating plate 7 consists of a transparent glass-ceramic material which is permeable to the heat radiation generated by the heating device 4.
  • the side of the heating plate 7 facing the ammonium carbamate compact 3 is structured by knobs.
  • a pipe section 8 is molded onto the heating plate 7, pointing towards the lower end of the container 2. This includes a connection channel 9.
  • the connection channel 9 is connected to a feed line, generally designated by the reference number 10.
  • the connection duct 9 forms part of the feed line 10.
  • FIG. 1 shows the device 1 and in particular the container 2 with the ammonium carbamate compact 3 located therein before initial start-up, but with the feed line 10 open.
  • the lower end face of the ammonium carbamate compact 3 rests on the top of the knob structure of the heating plate 7.
  • a certain amount will have decomposed thermolytically from the end face of the ammonium carbamate compact 3.
  • the knobs press into the ammonium carbamate compact 3 and fix it.
  • the heating device 4 is designed such that, on the side of the heating plate 7 facing the ammonium carbamate compact 3, at most only those temperatures arise which are lower than the decomposition temperature of the reaction gas or mixture formed during the thermolysis of the ammonium carbamate. This is not largely achieved by the glass ceramic heating plate 7. Therefore, in the heating device 4, the advantages of radiant heating with regard to rapid reactivity and the associated spontaneous decomposition of ammonium carbamate are combined with advantages of those heating devices which are obtained, for example, when using contact heating.
  • a roller piston 11 is arranged in the container 2 and divides the interior of the container into a first container section and into a second container section.
  • the roller piston 11 separates the two container sections in a gas-tight manner.
  • the heating device 4 and the ammonium carbamate compact 3 as well as the outlet formed by the connection channel 9 are located in the first container section.
  • the other container section is connected to a compressed air system D. Via the compressed air system D, which also includes a compressor for providing the necessary air pressure in the system, a pressure is built up in this container section for providing the desired contact pressure between the ammonium carbamate compact 3 and the top of the heating plate 7.
  • the ammonium carbamate compact 3 which is in solid form, is stored in the container 2 as an NH 3 precursor.
  • the Heating device 4 When energizing the Heating device 4 is thermolytically decomposed ammonium carbamate lying on the heating plate 7, so that the NH 3 precursor is brought into a second phase - the gaseous phase.
  • This gaseous reducing agent is supplied to the exhaust line or the SCR catalytic converter via the connecting duct 9 and the supply line 10.
  • a valve 12 is switched on in the feed line 10.
  • the valve 12 is shown in Figure 1 in its open position.
  • the valve 12 comprises a Peltier element 13 as a movable element, which can be brought into its open position via an actuator 14.
  • the actuator 14 can be, for example, an electromagnet.
  • the valve 12 can be brought into its closed position shown in FIG. 2 by moving the pelter element 13 by the energy stored in the force of a compression spring 15. With its surface 16, the Peltier element 13 forms the movable valve surface and thus the actuating element of the valve 12.
  • a membrane 17 seals the valve chamber 18 circumferentially.
  • reaction gas formed by thermolysis in the container 2 flows through the valve chamber 18 into the supply line 10 connecting the valve 12 to the exhaust line in order to supply the gaseous reducing agent to the SCR catalytic converter. If the valve 12 is closed, as shown in FIG. 2, the Peltier element 13 is simultaneously energized in order to cool its heat-exchanging surface 16.
  • the surface 16 of the Peltier element 13 bears against the connection opening assigned to the connection channel 9 and on of those for connecting the valve 12 to the exhaust line, which both connection openings are sealed by seals 19 with respect to the valve surface formed by the surface 16, and by the condenser effect which occurs due to the cooling, the reducing agent gas located in the two branches of the supply line 10 becomes the then drawn cold surface 16, which serves as a cold trap in this situation.
  • the lines 10 are kept clear after the heating device 4 has been switched off, so that the risk of ammonium carbamate regressing from the gaseous reducing agent within the feed line 10 is largely avoided.
  • the Peltier element 13 When opening or just before opening the valve 12, the Peltier element 13 is energized in such a way that it acts as a heating element serves, as a result of which the ammonium carbamate formed as a result of the cold trap function decomposes rapidly and then the valve 12 is intended to be conventional and thus movable and functional.
  • the two outlet openings of the valve 12 forming the valve seat with their seals 19 are arranged next to one another.
  • both exit openings are therefore closed at the same time by the surface 16 of the Peltier element 13 serving as a movable valve surface.
  • the Peltier element 13 is advantageously energized only shortly after the valve 12 is closed in order to provide its cold trap function.
  • Ammonium carbamate is the preferred NH 3 precursor material for operating the described device.
  • An advantage of using ammonium carbamate is that its thermolytic decomposition starts to a significant extent at temperatures above 70 ° C. This relatively low thermolysis temperature has the advantage that even at relatively low temperatures, the ammonium carbamate collected therein during the cold trap function of the valve can be freed from the ammonium carbamate re-formed in its first phase by decomposing it into its reaction gases with low energy in order to free the valve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Eine Vorrichtung zum Befreien einer ein aus einer ersten Phase in eine zweite Phase gebrachtes Reduktionsmittel führenden Zuführleitung 10 zum Zuführen des in der zweiten Phase befindlichen Reduktionsmittels an einen in den Abgasstrang einer Dieselbrennkraftmaschine eingeschalte­ten SCR-Katalysator von in die erste Phase zurückgebildetem Redukti­onsmittel ist dadurch bestimmt, dass die Vorrichtung ein Ventil 12 zum Dosieren des in der zweiten Phase befindlichen Reduktionsmittels ist, bei dem der feststehende Ventilsitz oder die mit dem feststehenden Ventilsitz zusammenwirkende bewegliche Ventilfläche 16, die in der Geschlossen­Stellung des Ventils 12 an dem Ventilsitz anliegt, als durch eine Steuer- einheit ansteuerbares Kondensatorelement zum Ausbilden einer in die Zuführleitung 10 eingeschalteten Kühlfalle ausgebildet ist, wenn das Kon­densatorelement entsprechend angesteuert ist, und das als Ventilsitz oder Ventilfläche ausgebildete Kondensatorelement oder das zu diesem kom­plementäre Ventilelement durch eine Steuereinheit ansteuerbar beheizbar sind.

Description

Vorrichtung zum Befreien einer ein aus einer ersten Phase in eine zweite Phase gebrachtes Reduktionsmittel führenden Zuführleitung von in die erste Phase zurückgebildetem Reduktionsmittel
Die Erfindung betrifft eine Vorrichtung zum Befreien einer ein aus einer ersten Phase in eine zweite Phase gebrachtes Reduktionsmittel führen- den Zuführleitung zum Zuführen des in der zweiten Phase befindlichen Reduktionsmittels an einen in den Abgasstrang einer Dieselbrennkraftmaschine eingeschalteten SCR-Katalysator von in die erste Phase zurückgebildetem Reduktionsmittel.
Neben Kohlenmonoxid (CO), Partikeln und Kohlenwasserstoffen (HC) gehören insbesondere die Stickstoffoxide (NOx) zu den umweltgefährdenden direkt emittierten Primärschadstoffen, die beim Betrieb von Verbrennungsmotoren, insbesondere Dieselmotoren, entstehen. Ein Einsatz von Dreiwegekatalysatoren, wie sie bei Ottomotoren und Gasmotoren verwendet werden, sind aufgrund eines Sauerstoffüberschusses im dieselmotorischen Abgas nicht einsetzbar. Aus diesem Grunde wurden zur Reduktion der Stickoxidemission bei Dieselmotoren selektiv arbeitende SCR-Katalysatoren (Selective Catalytic Reduction-Katalysator) entwickelt, in dem mit einem zugeführten Reduktionsmittel, nämlich Ammoniak (NH3) die ausgestoßenen Stickstoffoxide zu lufteigenem N2 und H2O reduziert werden.
Eine Vorrichtung zum Zuführen von Ammoniak in seiner gasförmigen Phase in den Abgasstrang eines Verbrennungsmotors eines Kraftfahr- zeuges ist aus der DE 197 20 209 C 1 bekannt. Diese umfasst einen gasdichten und druckfesten Konverter, in dem sich ein thermolytisch NH3-ab- spaltender Stoff oder ein thermolytisch NH3-abspaltendes Stoffgemisch - ein sogenannter NH3-Precursor - befindet. Als NH3-Precursor kann beispielsweise als Feststoff vorliegendes Ammoniumcarbamat vorgesehen sein. Der Konverter ist über eine Zuführleitung mit dem Abgasstrang eines Dieselmotors verbunden, wobei die Zuführleitung in den Abgasstrang in Strömungsrichtung des Abgases vor der Eingangsseite eines SCR-Kata- lysators mündet. Als Dosiereinrichtung ist ein Taktventil vorgesehen, welches durch eine Steuereinheit angesteuert ist, so dass in Abhängigkeit bestimmter Motorbetriebskenndaten die benötigte NH3-Menge in den Abgasstrom eingedüst werden kann. Der Konverter besteht im Wesentlichen aus einem druckfesten Reaktionsbehälter, der von einer als Wärme- schlänge ausgebildeten Heizeinrichtung umgeben ist. Die Heizeinrichtung ist über eine Zuleitung und eine Ableitung in den Kühlwasserkreislauf des Dieselmotors eingebunden.
Durch Aufheizen des beispielsweise als NH3-Precursor eingesetzten Am- moniumcarbamats zersetzt sich dieses in NH3 und CO2, wodurch das Reduktionsmittel von einer ersten, hier festen Phase in eine zweite, hier gasförmige Phase gebracht worden ist. Dieses Gasgemisch sammelt sich in dem druckfesten Reaktionsbehälter bis zum Aufbau eines entsprechenden Innendruckes an. Bei Erreichen eines bestimmten Innendruckes in dem Reaktionsbehälter stellt sich ein Gleichgewichtszustand ein, so dass weiteres Ammoniumcarbamat nicht zersetzt wird. Unter Betriebsbedingungen des Motors, bei dem das die Heizeinrichtung durchströmende Kühlwasser in der Regel eine Temperatur zwischen 80 und 100°C aufweist, herrscht in dem Reaktionsbehälter ein dem Gleichge- wichtszustand entsprechender Druck, der bei Ammoniumcarbamat bei etwa 3 - 4 bar liegt. Damit eine ausreichende NH3-Menge zum Eindüsen in den Abgasstrom bei einem dynamischen Betrieb des Dieselmotors bereitgestellt werden kann, dient der Konverter gleichfalls als Reaktionsgasspeicher, um eine bestimmte Reaktionsgasmenge bzw. das darin enthal- tene NH3 als Reduktionsmittel zu bevorraten.
Der Reaktionsbehälter befindet sich üblicherweise in einem gewissen Abstand zum Abgasstrang. Es hat sich gezeigt, dass innerhalb des Zuleitungsstranges bei sinkenden Temperaturen das Reaktionsgasgemisch in Abhängigkeit von dem eingesetzten .\IH3-Precurs0rs sich wieder in seine feste Form zurückbilden kann. Im ungünstigen Fall kann dies zu einem Verstopfen des Zuleitungsstranges führen. Entsprechendes gilt für die innerhalb des Zuleitungsstranges angeordneten Ventile, beispielsweise das als Dosiereinrichtung vorbeschriebene Taktventil. Letztendlich ist das Zusetzen der Zuführleitung und insbesondere des darin eingeschalteten Taktventils bei einer Außerbetriebnahme der Brennkraftmaschine bei einigen Reduktionsmitteln wie etwa bei Einsatz von Ammoniumcarbamat nicht übermäßig problematisch, da bei einer erneuten Inbetriebnahme sich der in der Zuführleitung und insbesondere in dem oder den Ventilen abgelagerte NH3-Precursor bei einer erneuten Inbetriebnahme bei steigenden Temperaturen wieder zersetzt und die Zuführleitung und das oder die Ventile danach frei sind. Zum Beschleunigen einer erneuten Inbetriebnahme der Zuführleitung ist bereits vorgeschlagen worden, die Zuführleitung und die darin eingeschalteten Ventile zu beheizen. In Abhängigkeit von dem Abstand des Reaktionsbehälters von dem Abgasstrang ist die Realisierung einer solchen Heizeinrichtung zum Erwärmen des gesamten Zuführstranges einschließlich des darin eingeschalteten Taktventils beträchtlich.
Ausgehend von diesem diskutierten Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, eine Vorrichtung vorzuschlagen, mit der der oben aufgezeigten Problematik einer Zurückbildung von NH3-Precursor innerhalb der Zuführleitung begegnet ist.
Diese Aufgabe wird erfindungsgemäß durch eine eingangs genannte, gattungsgemäße Vorrichtung dadurch gelöst, dass die Vorrichtung ein Ventil zum Dosieren des in der zweiten Phase befindlichen Reduktionsmittels ist, bei dem der feststehende Ventilsitz oder die mit dem feststehenden Ventilsitz zusammenwirkende bewegliche Ventilfläche, die in der Geschlossen-Stellung des Ventils an dem Ventilsitz anliegt, als durch eine Steuereinheit ansteuerbares Kondensatorelement zum Ausbilden einer in die Zuführleitung eingeschalteten Kühlfalle ausgebildet ist, wenn das Kondensatorelement entsprechend angesteuert ist, und das als Ventilsitz oder Ventilfläche ausgebildete Kondensatorelement oder das zu diesem komplementäre Ventilelement durch eine Steuereinheit ansteuerbar beheizbar sind.
Diese Vorrichtung, die als Dosierventil ausgebildet ist, umfasst ein Kondensatorelement zum Ausbilden einer Kühlfalle. Das Kondensatorelement ist an eine Steuereinrichtung angeschlossen und wird als solches bei entsprechender Ansteuerung betrieben, wenn die Brennkraftmaschine außer Betrieb gesetzt und/oder wenn das Ventil geschlossen wird. Das Einschalten des Kondensatorelements kann auch an weitere Betriebsparameter gebunden sein, beispielsweise die aktuelle Temperatur des Ventils und/oder der Zuführleitung. Durch das Einschalten des Kondensatorelements wird dessen Temperatur zur Ausbildung der Kühlfalle herabgesetzt mit der Folge, dass in der zweiten Phase befindliches Reduktionsmittel in der Umgebung des Kondensatorelementes in seine erste Phase (etwa bei Einsatz von Ammoniumcarbamat) oder in eine Zwischenphase zurückbildet. Bei diesem Vorgang wird insbesondere auch das in der Umgebung der Kühlfalle vorhandene, in seiner zweiten Phase befindliche Reduktionsmittel zur Kühlfalle hingezogen und ebenfalls in die erste Phase oder in eine Zwischenphase zurückgebildet. Durch diesen Effekt wird noch vor- handenes, in der zweiten Phase befindliches Reduktionsmittel aus der Zuführleitung und gegebenenfalls darin eingeschalteten weiteren Ventilen, Kupplungen oder dergleichen zu der durch das Kondensatorelement gebildeten Kühlfalle herausgezogen. Durch diese Maßnahme wird an definierter Stelle innerhalb der Zuführleitung in seiner zweiten Phase befind- liches Reduktionsmittel gesammelt zurückgebildet. Bei einer erneuten Inbetriebnahme der Zuführleitung zum Zuführen von Reduktionsmittel an den in den Abgasstrang der Brennkraftmaschine eingeschalteten SCR- Katalysator braucht dann lediglich der Bereich des Kondensatorelementes von den in die erste Phase oder in eine Zwischenphase zurückgebildetem Reduktionsmittel durch entsprechende Erwärmung befreit zu werden. Aus diesem Grunde verfügt das Ventil gleichfalls über eine Heizeinrichtung, um das in dem Ventil durch Ansteuern des Kondensatorelementes zurückgebildete Reduktionsmittel erneut in die zweite Phase zum Zuführen desselben an den in den Abgasstrang der Brennkraftmaschine einge- schalteten SCR-Katalysator zuzuführen.
Das Kondensatorelement ist zweckmäßigerweise entweder dem Ventilsitz oder der mit dem feststehenden Ventil zusammenwirkenden beweglichen Ventilfläche zugeordnet. Die Heizeinrichtung ist entweder demselben Ventilelement oder dem komplementären Ventilelement zugeordnet.
Von Vorteil ist bei dieser Vorrichtung, dass diese gleichzeitig als Dosierventil ausgebildet ist.
Bevorzugt ist eine Ausgestaltung, bei der die bewegliche Ventilfläche des Ventils als beheizbares Kondensatorelement ausgebildet ist, so dass dieser Teil des Ventils sowohl zum Ausbilden der Kühlfalie als auch für das Auflösen von zurückgebildetem Reduktionsmittel verantwortlich ist. Zweckmäßig ist der Einsatz von einem oder mehreren Peltier-Elementen, die in Abhängigkeit von ihrer Ansteuerung kühlen oder erwärmen können. Dabei ist es vorteilhaft, wenn die bewegliche Ventilfläche selbst die wär- metauschende Oberfläche des oder der Peltier-Elemente ist.
Zweckmäßig ist eine Ausgestaltung, bei der der feststehende Ventilsitz zwei benachbart zueinander angeordnete Anschlussöffnungen aufweist, die gemeinsam von der beweglichen Ventilfläche verschlossen werden können. Die als Kondensatorelement wirkende Ventilfläche, die in der Ge- schlossen-Stellung des Ventils beide Anschlussöffnungen verschließt, führt zu einer Ausbildung von einer jeder Anschlussleitung zugehörigen Kühlfalle, wodurch besonders effektiv ein Heranziehen von in dem jeweiligen Zuführleitungsstrang noch vorhandenem, in seiner zweiten Phase befindlichen Reduktionsmittel erfolgt. Eine dieser Anschlussöffnungen ist an einen das Reduktionsmittel oder einen Reduktionsmittel-Precursor bevorratenden Behälter angeschlossen, während die andere Anschlussöffnung des Ventils mit dem Abgasstrang verbunden ist.
Die vorbeschriebene Vorgehensweise ist insbesondere zum Einschalten in eine solche Zuführleitung geeignet, durch die gasförmiges Reduktionsmittel strömt, das aus einem in fester Phase vorliegenden NH3-Precursor durch thermolytische Abspaltung gebildet worden ist. Hierzu eignet sich insbesondere Ammoniumcarbamat als NH3-Precursor. Einsetzbar ist diese Vorrichtung auch im Zusammenhang mit einem System, bei dem Harnstoff (Urea) als NH3-Precursor eingesetzt wird.
Nachfolgend ist die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen:
Fig. 1 : eine schematisierte Darstellung einer Vorrichtung zum Zuführen von Ammoniak als Reduktionsmittel an einen in den Abgasstrang einer Brennkraftmaschine eingeschalteten SCR-Ka- talysator mit einem in die Zuführleitung eingeschalteten Ventil in seiner Offen-Stellung und
Fig. 2: das Ventil der Figur 1 in seiner Geschlossen-Stellung. Eine Vorrichtung zum Zuführen von Ammoniak (NH3) an einen in den Abgasstrang eines Dieselmotors eines Kraftfahrzeuges eingeschalteten Reduktionskatalysator ist in Figur 1 insgesamt mit den Bezugszeichen 1 ge- kennzeichnet. Diese Vorrichtung 1 umfasst einen Behälter 2 zum Erzeugen von Ammoniak (NH3) durch thermolytische Zersetzung eines NH3- Precursors, wobei bei dem dargestellten Ausführungsbeispiels ein Ammoniumcarbamatpressling 3 als NH3-Precursor eingesetzt ist. Der Ammoniumcarbamatpressling 3 ist als zylindrischer Körper ausgebildet und durch Pressen von pulverförmigem Ammoniumcarbamat in seine in der Figur gezeigte Form gebracht. Der Ammoniumcarbamatpressling 3 weist eine runde Querschnittsfläche auf. In dem Behälter 2 ist eine insgesamt mit den Bezugszeichen 4 gekennzeichnete Heizeinrichtung angeordnet. Die Heizeinrichtung 4 ist als Strahlungsheizung ausgelegt.
Die Strahlungsheizung ist bei dem dargestellten Ausführungsbeispiel aus drei einzelnen, jeweils eine archimedische Spirale darstellenden, verschachtelt zueinander angeordneten Heizelementen 5, 5', 5" gebildet. Die einzelnen Heizelemente 5, 5', 5" der Heizeinrichtung 4 sind unabhängig voneinander ansteuerbar, so dass in Abhängigkeit von der Anzahl der jeweils bestromten Heizelemente 5, 5', 5" die produzierte Wärmeleistung und/oder auch der Verlauf einer Erwärmungsphase gesteuert werden kann. Die Heizeinrichtung 4 befindet sich in einem unteren Behälterteil des Behälters 2. Unterhalb der Heizelemente 5, 5', 5" ist eine Wärme- dämmung 6 angeordnet. Oberhalb und mit geringem Abstand zu der Strahlungsheizung befindet sich eine Heizplatte 7 als weiterer Teil der Heizeinrichtung 4. Die Heizplatte 7 besteht bei dem dargestellten Ausführungsbeispiel aus einem durchsichtigen glaskeramischen Werkstoff, der durchlässig ist für die durch die Heizeinrichtung 4 erzeugte Wärmestrah- lung. Die zu dem Ammoniumcarbamatpressling 3 weisende Seite der Heizplatte 7 ist durch Noppen oberflächenstrukturiert. An die Heizplatte 7 ist zum unteren Abschluss des Behälters 2 weisend ein Rohrstück 8 angeformt. Dieses schließt einen Anschlusskanal 9 ein. Der Anschlusskanai 9 ist an eine insgesamt mit den Bezugszeichen 10 bezeichnete Zuführlei- tung angeschlossen. Letztendlich bildet der Anschlusskanal 9 einen Teil der Zuführleitung 10. Figur 1 zeigt die Vorrichtung 1 und insbesondere den Behälter 2 mit dem darin befindlichen Ammoniumcarbamatpressling 3 vor einer ersten Inbetriebnahme, jedoch mit geöffneter Zuführleitung 10. Aus diesem Grunde liegt die untere Stirnseite des Ammoniumcarbamatpresslings 3 auf der Oberseite der Noppenstruktur der Heizplatte 7 an. Nach einer ersten Inbetriebnahme der Vorrichtung 1 durch Ansteuern der Heizeinrichtung 4 wird sich von der Stirnseite des Ammoniumcarbamatpresslings 3 eine gewisse Menge thermolytisch zersetzt haben. Dies hat zur Folge, dass sich die Noppen in den Ammoniumcarbamatpressling 3 eindrücken und diesen fixieren.
Die Heizeinrichtung 4 ist so ausgelegt, dass an der zum Ammoniumcarbamatpressling 3 weisenden Seite der Heizplatte 7 maximal nur solche Temperaturen entstehen, die kleiner sind als die Zersetzungstemperatur des bei der Thermolyse des Ammoniumcarbamats gebildeten Reaktionsgases bzw. -gemisches. Dieses wird nicht unmaßgeblich durch die glaskeramische Heizplatte 7 erreicht. Daher werden bei der Heizeinrichtung 4 die Vorteile einer Strahlungsheizung hinsichtlich einer raschen Reaktionsfähigkeit und der damit verbundenen Spontanzersetzung von Ammo- niumcarbamat mit Vorteilen derjenigen Heizeinrichtungen verbunden, die sich beispielsweise bei Einsatz einer Kontaktheizung einstellen.
In dem Behälter 2 ist ein Rollkolben 11 angeordnet, der das Behälterinnere in einen ersten Behälterabschnitt und in einen zweiten Behälterab- schnitt unterteilt. Durch den Rollkolben 11 sind beide Behälterabschnitte gasdicht voneinander getrennt. In dem ersten Behälterabschnitt befinden sich die Heizeinrichtung 4 und der Ammoniumcarbamatpressling 3 sowie der durch den Anschlusskanal 9 gebildete Ausgang. Der andere Behälterabschnitt ist an ein Druckluftsystem D angeschlossen. Über das Druckluft- System D, zu dem ebenfalls ein Kompressor zum Bereitstellen des notwendigen Luftdruckes in dem System zugehörig ist, wird in diesem Behälterabschnitt ein zum Bereitstellen des gewünschten Anpressdruckes zwischen dem Ammoniumcarbamatpressling 3 und der Oberseite der Heizplatte 7 Druck aufgebaut.
In dem Behälter 2 wird der in fester Form vorliegende Ammoniumcarbamatpressling 3 als NH3-Precursor bevorratet. Bei einer Bestromung der Heizeinrichtung 4 wird an der Heizplatte 7 anliegendes Ammoniumcarbamat thermolytisch zersetzt, so dass der NH3-Precursor in eine zweite Phase - die gasförmigen Phase - gebracht wird. Dieses gasförmige Reduktionsmittel wird über den Anschlusskanal 9 und die Zuführleitung 10 dem Abgasstrang bzw. dem SCR-Katalysator zugeführt.
In die Zuführleitung 10 ist ein Ventil 12 eingeschaltet. Das Ventil 12 ist in Figur 1 in seiner Offen-Stellung gezeigt. Das Ventil 12 umfasst als bewegliches Element ein Peltier-Element 13, das über ein Stellglied 14 in seine Offen-Stellung gebracht werden kann. Bei dem Stellglied 14 kann es sich beispielsweise um einen Elektromagneten handeln. In seine in Figur 2 gezeigte Geschlossen-Stellung ist das Ventil 12 durch Bewegen des Pel- tier-Elementes 13 durch die in der Kraft einer Druckfeder 15 gespeicherte Energie bringbar. Das Peltier-Element 13 bildet mit seiner Oberfläche 16 die bewegliche Ventilfläche und somit das Stellelement des Ventils 12. Eine Membran 17 dichtet den Ventilraum 18 umfänglich ab.
In der Offen-Stellung des Ventils 12 strömt durch Thermolyse in dem Behälter 2 gebildetes Reaktionsgas durch den Ventilraum 18 in die das Ven- til 12 mit dem Abgasstrang verbindende Zuführleitung 10, um das gasförmige Reduktionsmittel dem SCR-Katalysator zuzuführen. Wird das Ventil 12 geschlossen, wie dies in Figur 2 gezeigt ist, erfolgt gleichzeitig eine Bestromung des Peltier-Elements 13 zum Kühlen seiner wärmetauschenden Oberfläche 16. Durch das Anliegen der Oberfläche 16 des Peltier-Elements 13 an der dem Anschlusskanal 9 zugeordneten Anschlussöffnung sowie an derjenigen zum Verbinden des Ventils 12 mit dem Abgasstrang, welche beide Anschlussöffnungen durch Dichtungen 19 gegenüber der durch die Oberfläche 16 gebildeten Ventilfläche abgedichtet sind, und durch den durch die Kühlung eintretenden Kondensator- Effekt, wird in den beiden Ästen der Zuführleitung 10 befindliches Reduktionsmittelgas zu der dann kalten Oberfläche 16 gezogen, die in dieser Situation als Kühlfalle dient. Dadurch werden die Leitungen 10 nach Abschalten der Heizeinrichtung 4 freigehalten, so dass die Gefahr einer Rückbildung von Ammoniumcarbamat aus dem gasförmigen Re- duktionsmittel innerhalb der Zuführleitung 10 weitestgehend vermieden ist. Beim Öffnen oder auch kurz vor dem Öffnen des Ventils 12 wird das Peltier-Element 13 dergestalt bestromt, damit dieses als Heizelement dient, wodurch sich das infolge der Kühlfallenfunktion gebildete Ammoniumcarbamat rasch zersetzt und anschließend das Ventil 12 bestimmungsgemäß gängig und somit bewegbar und funktionstüchtig ist.
Bei dem in den Figuren beschriebenen Ausführungsbeispiel sind die beiden den Ventilsitz mit ihren Dichtungen 19 bildenden Ausgangsöffnungen des Ventils 12 nebeneinander angeordnet. Beide Ausgangsöffnungen werden bei dieser Ausgestaltung daher gleichzeitig durch die als bewegliche Ventilfläche dienende Oberfläche 16 des Peltier-Elements 13 ver- schlössen. Eine Bestromung des Peltier-Elements 13 zum Bereitstellen seiner Kühlfallenfunktion erfolgt zweckmäßigerweise erst kurz nachdem das Ventil 12 geschlossen ist.
Ammoniumcarbamat ist zum Betreiben der beschriebenen Vorrichtung das bevorzugte NH3-Precursormaterial. Vorteilhaft bei Einsatz von Ammoniumcarbamat ist, dass seine thermolytische Zersetzung in nennenswertem Umfange bereits bei Temperaturen oberhalb von 70 °C einsetzt. Diese relativ niedrige Thermolysetemperatur hat zum Vorteil, dass bereits bei relativ tiefen Temperaturen das bei der Kühlfallenfunktion des Ventils darin gesammelte Ammoniumcarbamat mit geringer Energie zum Befreien des Ventils von dem in seine erste Phase zurückgebildeten Ammoniumcarbamat durch Zersetzen desselben erneut in seine Reaktionsgase befreit werden kann.
Bezugszeichenliste
Vorrichtung
Behälter
Ammoniumcarbamatpressling
Heizeinrichtung
Heizelement
Wärmedämmung
Heizplatte
Rohrstück
Anschlusskanal
Zuführleitung
Rollkolben
Ventil
Peltier-Element
Stellelement
Druckfeder
Oberseite
Membran
Ventilraum
Dichtung
Druckluftsystem

Claims

Patentansprüche
1. Vorrichtung zum Befreien einer ein aus einer ersten Phase in eine zweite Phase gebrachtes Reduktionsmittel führenden Zuführleitung
(10) zum Zuführen des in der zweiten Phase befindlichen Reduktionsmittels an einen in den Abgasstrang einer Dieselbrennkraftmaschine eingeschalteten SCR-Katalysator von in die erste Phase zurückgebildetem Reduktionsmittel, dadurch gekennzeichnet, dass die Vorrichtung ein Ventil (12) zum Dosieren des in der zweiten
Phase befindlichen Reduktionsmittels ist, bei dem der feststehende Ventilsitz oder die mit dem feststehenden Ventilsitz zusammenwirkende bewegliche Ventilfläche (16), die in der Geschlossen-Stel- lung des Ventils (12) an dem Ventilsitz anliegt, als durch eine Steu- ereinheit ansteuerbares Kondensatorelement zum Ausbilden einer in die Zuführleitung (10) eingeschalteten Kühlfalle ausgebildet ist, wenn das Kondensatorelement entsprechend angesteuert ist, und das. als Ventilsitz oder Ventilfläche ausgebildete Kondensatorelement oder das zu diesem komplementäre Ventilelement durch eine Steuereinheit ansteuerbar beheizbar sind.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die bewegliche Ventilfläche (16) des Ventils als beheizbares Kondensatorelement ausgebildet ist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die bewegliche Ventilfläche (16) durch die wärmetauschende Oberfläche eines oder mehrerer Peltier-Elemente (13) gebildet ist.
4. Vorrichtung nach eircem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der feststehende Ventilsitz zwei benachbart zueinander angeordnete Anschlussöffnungen aufweist, von denen die eine Anschlussöffnung mit einem das Reduktionsmittel oder einen Reduktionsmittelprecursor bevorratenden und das Reduktionsmittel in seine zweite Phase bringenden Behälter und die andere Anschlussöffnung mit dem Abgasstrang verbunden ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass in der Geschlossen-Stellung des Ventils (12) beide Anschlussöffnungen des Ventilsitzes durch die bewegliche Ventilfläche (16) verschlossen sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Ventil (12) ausgangsseitig an einen Behälter (2) zum Bevorraten eines unter Wärmezufuhr NH3 abspaltenden Precursors (3), aus dessen Reaktionsgas oder Reaktionsgasge- misch nach einer NH3- Abspaltung bei sinkender Temperatur sich ein Feststoff, insbesondere das Precursormaterial zurückbildet, sowie umfassend eine Heizeinrichtung (4) zum Herbeiführen einer thermolytischen NH3-Abspaltung des NH3-Precursors (3) innerhalb des Behälters (2) angeschlossen ist.
Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der in dem Behälter (2) bevorratete NH3-Precursor ein Ammoniumcarbamatpressling (3) ist.
EP04728227A 2003-05-26 2004-04-19 VORRRICHTUNG ZUM BEFREIEN EINER EIN AUS EINER ERSTEN PHASE IN EINE ZWEITE PHASE GEBRACHTES EDUKTIONSMITTEL F HRENDEN ZUF&Uuml ;HRLEITUNG VON IN DIE ERSTE PHASE ZUR CKGEBILDETEM REDUKTION SMITTEL Withdrawn EP1626797A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20308348U DE20308348U1 (de) 2003-02-18 2003-05-26 Vorrichtung zum Zuführen von Ammoniak an einen in den Abgasstrang einer Brennkraftmaschine eingeschalteten Reduktionskatalysator
PCT/IB2004/050469 WO2004103529A1 (de) 2003-05-26 2004-04-19 Vorrrichtung zum befreien einer ein aus einer ersten phase in eine zweite phase gebrachtes eduktionsmittel führenden zuführleitung von in die erste phase zurückgebildetem reduktionsmittel

Publications (1)

Publication Number Publication Date
EP1626797A1 true EP1626797A1 (de) 2006-02-22

Family

ID=33462031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04728227A Withdrawn EP1626797A1 (de) 2003-05-26 2004-04-19 VORRRICHTUNG ZUM BEFREIEN EINER EIN AUS EINER ERSTEN PHASE IN EINE ZWEITE PHASE GEBRACHTES EDUKTIONSMITTEL F HRENDEN ZUF&Uuml ;HRLEITUNG VON IN DIE ERSTE PHASE ZUR CKGEBILDETEM REDUKTION SMITTEL

Country Status (6)

Country Link
US (1) US20060048503A1 (de)
EP (1) EP1626797A1 (de)
JP (1) JP2007501357A (de)
KR (1) KR20060004985A (de)
BR (1) BRPI0409743A (de)
WO (1) WO2004103529A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20308348U1 (de) * 2003-02-18 2004-07-01 Hjs Fahrzeugtechnik Gmbh & Co. Vorrichtung zum Zuführen von Ammoniak an einen in den Abgasstrang einer Brennkraftmaschine eingeschalteten Reduktionskatalysator
DE102004050763B4 (de) * 2004-10-16 2016-10-27 Robert Bosch Gmbh Anordnung zur dynamischen Bereitstellung von Ammoniak zur NOx- Minderung
DE102006047018A1 (de) * 2006-10-02 2008-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zum Bereitstellen eines Reduktionsmittelvorläufers
DE102006046901A1 (de) * 2006-10-04 2008-04-10 Robert Bosch Gmbh Tank zur Bevorratung eines Reduktionsmittels
US8424777B2 (en) * 2008-02-19 2013-04-23 Caterpillar Inc. Reducing agent heating system
US8206656B2 (en) * 2008-07-30 2012-06-26 Ford Global Technologies, Llc Freezable-liquid dispenser for motor vehicles
EP2341224B1 (de) * 2009-12-24 2017-06-14 DBK David + Baader GmbH Schmelztank, Heizmodul und Tanksystem
DE102011010644A1 (de) 2011-02-09 2012-08-09 Emitec France S.A.S Fördereinheit für ein Reduktionsmittel
EP2687695B1 (de) * 2011-03-18 2018-01-03 Hino Motors Ltd. Harnstofflösungsreformer und abgasreiniger
JP5843991B1 (ja) 2015-04-28 2016-01-13 三菱重工業株式会社 金属ナトリウム封入エンジンバルブの製造方法及びその装置
US9915185B2 (en) 2016-02-17 2018-03-13 Caterpillar Inc. Injector mounting assembly
IT201800002868A1 (it) 2018-02-20 2019-08-20 Errecinque S R L Serbatoio per una soluzione di urea di un veicolo

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399034B1 (en) * 1997-05-14 2002-06-04 Hjs Fahrzeugtechnik Gmbh & Co. Process for reducing nitrogen oxides on SCR catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004103529A1 *

Also Published As

Publication number Publication date
KR20060004985A (ko) 2006-01-16
WO2004103529A1 (de) 2004-12-02
US20060048503A1 (en) 2006-03-09
BRPI0409743A (pt) 2006-05-09
JP2007501357A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
EP0981403B1 (de) Verfahren und vorrichtung zur reduktion von stickoxiden an einem scr-katalysator
EP1643094B1 (de) Abgasanlage für eine Brennkraftmaschine und zugehöriges Betriebsverfahren
EP1594595B1 (de) Vorrichtung zum zuführen von ammoniak an einen in den abgasstrang einer brennkraftmaschine eingeschalteten reduktionskatalysator
DE19827678B4 (de) Abgasreinigungssystem zum Entsticken von Abgasen von Verbrennungsaggregaten
EP1626797A1 (de) VORRRICHTUNG ZUM BEFREIEN EINER EIN AUS EINER ERSTEN PHASE IN EINE ZWEITE PHASE GEBRACHTES EDUKTIONSMITTEL F HRENDEN ZUF&Uuml ;HRLEITUNG VON IN DIE ERSTE PHASE ZUR CKGEBILDETEM REDUKTION SMITTEL
EP1333908A1 (de) Abgasreinigungsanlage und verfahren zur abgasreinigung
DE102014223491A1 (de) Abgasbehandlungsvorrichtung und Verfahren zur Abgasbehandlung
WO2007022926A1 (de) Vorrichtung, reaktor und verfahren zur reduktion von stickoxyden im abgasstrom von verbrennungskraftmaschinen
AT502131A2 (de) Energieerzeugungseinheit mit zumindest einer hochtemperaturbrennstoffzelle
EP1529155A1 (de) Brennkraftmaschine mit reduktionsmittelerzeugungseinheit und betriebsverfahren hierfür
DE10135643A1 (de) Vorrichtung zur Versorgung einer Brennkraftmaschine mit Kraftstoff
EP0887306B1 (de) Vorrichtung zur Erzeugung eines wasserstoffreichen und kohlenmonoxidarmen Gases
DE10141843A1 (de) Wasserstoffversorgungsvorrichtung
DE29708591U1 (de) Vorrichtung zum Zuführen von Ammoniak in den Abgasstrom eines Verbrennungsmotors
DE102005017719A1 (de) Reformeranordnung
DE102004028651B4 (de) Brennkraftmaschine
DE102006043104A1 (de) Abgasreinigungsanlage für ein Kraftfahrzeug
DE102022000400A1 (de) Vorrichtung zur Abgasnachbehandlung mit Massenstromregelung
DE102007003114A1 (de) Energiebereitstellungssystem
WO2007054572A1 (de) Verfahren und vorrichtung zur temperaturführung in einer abgasnachbehandlungsanlage
EP3365276B1 (de) Verminderung der nox-abgaskonzentration bei der herstellung von salpetersaüre beim ab-und/oder anfahren der herstellungsvorrichtung
EP1038569A2 (de) Konverter für eine Vorrichtung zum Zuführen von Ammoniak in den Abgasstrom eines Verbrennungsmotors sowie Verfahren zum Befüllen eines solchen Konverters
DE102004049289B4 (de) Abgasnachbehandlungssystem und Abgasnachbehandlungsverfahren für einen Verbrennungsmotor
DE102007034314B4 (de) Baugruppe sowie Verfahren zur Einbringung eines Reduktionsmittels in eine Abgasleitung
DE69017708T2 (de) Ununterbrochen arbeitende chemische wärmepumpenanlage zur erzeugung von wärme oder kälte.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071101