EP1622802B2 - Detection of derailment by determining the rate of fall - Google Patents

Detection of derailment by determining the rate of fall Download PDF

Info

Publication number
EP1622802B2
EP1622802B2 EP04733271A EP04733271A EP1622802B2 EP 1622802 B2 EP1622802 B2 EP 1622802B2 EP 04733271 A EP04733271 A EP 04733271A EP 04733271 A EP04733271 A EP 04733271A EP 1622802 B2 EP1622802 B2 EP 1622802B2
Authority
EP
European Patent Office
Prior art keywords
acceleration
bsi
wheel
rad
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04733271A
Other languages
German (de)
French (fr)
Other versions
EP1622802B8 (en
EP1622802A1 (en
EP1622802B1 (en
Inventor
Gerhard Lueger
Christian Kitzmüller
Gérard Salzgeber
Michael Schmeja
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG Oesterreich
Original Assignee
Siemens Transportation Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33437384&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1622802(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Transportation Systems GmbH and Co KG filed Critical Siemens Transportation Systems GmbH and Co KG
Publication of EP1622802A1 publication Critical patent/EP1622802A1/en
Application granted granted Critical
Publication of EP1622802B1 publication Critical patent/EP1622802B1/en
Publication of EP1622802B2 publication Critical patent/EP1622802B2/en
Publication of EP1622802B8 publication Critical patent/EP1622802B8/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F9/00Rail vehicles characterised by means for preventing derailing, e.g. by use of guide wheels
    • B61F9/005Rail vehicles characterised by means for preventing derailing, e.g. by use of guide wheels by use of non-mechanical means, e.g. acoustic or electromagnetic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K13/00Other auxiliaries or accessories for railways

Definitions

  • the invention relates to a method for detecting a derailment condition of a wheelset of a rail vehicle, wherein the acceleration of the wheelset is measured normal to a rail plane with an acceleration sensor.
  • a wheel or wheelset of a rail vehicle may be subjected to quasi-static accelerations caused by a terrain profile, but also to accelerations caused by derailments. Of interest for derailment detection, however, are only the accelerations caused by movements of the wheelset normal to the rail plane. In the following, acceleration acting on the wheelsets normal to the rail plane are referred to as acceleration. In this sense, the vertical velocities resulting from these accelerations are referred to as falling speeds in this document.
  • Such acceleration can be caused in the case of a derailment by the gravitational acceleration and by a relaxing primary spring, the end point of this "dropping motion" of the wheel or wheelset is usually determined by a solid lane.
  • the known document describes a method for detecting a derailment of a track-bound vehicle.
  • an acceleration of a component of the track-bound vehicle that is directly or indirectly in contact with the traffic lane is determined vertically and / or transversely to a direction of travel.
  • the acceleration signal is integrated twice over time and compared this dual-integrated acceleration signal with an upper and / or lower limit, which is a derailment when exceeding or falling below the limit.
  • a similar procedure is also through the EP 1 104 734 A1 known.
  • a disadvantage of these known embodiments is especially that is given by the double integration a very poor signal-to-noise ratio.
  • a simple integration can reduce the signal-to-noise ratio by 20 dB per decade of the signal to be integrated.
  • Dual integration reduces signal-to-noise ratio by as much as 40 dB per decade.
  • a low-frequency interference signal is amplified by a factor of 10 (20 dB) more than the actual useful signal - the acceleration due to gravity. Due to the double integration high demands are placed on the transmitter, which can lead to high production costs. Furthermore, delays in the detection of derailed conditions can occur with the known method or system due to the required, elaborate evaluation electronics.
  • This object is achieved by a method of the type mentioned in the present invention that determines a fall speed of the wheel in the direction of the rail plane from a generated by the acceleration sensor acceleration signal by simple integration over a time window of predeterminable size and checked on the basis of the determined fall rate, whether a degassed Condition exists.
  • the value of the falling speed is compared with a limiting falling speed, wherein when the limiting falling speed is exceeded, a derailed condition is detected.
  • the acceleration signal is generated in the area of an axlebox.
  • a high-pass filtering is used to eliminate the noise components.
  • the group delay of the individual frequency components of the acceleration signal to be integrated during the filtering is kept constant.
  • the integration of the acceleration signal is carried out in successive time windows, wherein the end point of a time window forms the starting point of a subsequent time window.
  • the integration of the acceleration signal can also be carried out in successive time windows, where successive time windows overlap each other in sections.
  • the acceleration sensor is arranged in the region of an axle bearing of a wheel of the rail vehicle.
  • a filter for eliminating low-frequency noise components contained in the acceleration signal can be provided before the integration, wherein the filter is favorably a high-pass filter.
  • the filter leaves phase relationships of frequency components of the acceleration signal substantially unaffected.
  • the evaluation unit is set up to perform the integration of the acceleration signal in successive time windows, the end point of a time window forming the starting point of a subsequent time window.
  • the evaluation unit can also be set up to carry out the integration of the acceleration signal in successive time windows, wherein successive time windows overlap each other in sections.
  • an acceleration sensor is arranged in the region of each wheel of the rail vehicle.
  • a device For the implementation of the method according to the invention for detecting a derailed state of a rail vehicle in the region of a bogie DRE of the rail vehicle, an acceleration signal is generated.
  • a device has an acceleration sensor BSE, which can be arranged on an axle bearing AXL of a wheel RAD or wheelset of the rail vehicle.
  • an acceleration sensor BSE is arranged in the region of each wheel RAD, for example on each axle bearing AXL.
  • An essential element of the present invention is the recognition that particularly reliable and representative measurement results can be achieved if the direction of action of the acceleration sensors BSE is substantially normal to the direction of travel, ie. H. runs normal to a rail plane ⁇ .
  • the direction of travel of the rail vehicle is shown with an arrow FAR, wherein the direction of action of the acceleration sensors BSE runs normal to the plane of the drawing.
  • this document refers to the direction in which the sensor can preferably absorb acceleration forces and deliver signals.
  • the acceleration sensors BSE can be designed, for example, as piezoelectric sensors, in which a piezoelectric crystal is arranged between two parallel capacitor plates in a known manner. If this type of sensor is used, the fact that the two capacitor plates run essentially normal to the direction of travel of the rail vehicle makes it possible to match the direction of action of the acceleration sensors with the direction of travel. Of course, other known acceleration sensors based on other mechanisms may also be used. Such sensors are known in the art in large numbers and should therefore not be further explained at this point.
  • the acceleration signal BSI generated by the acceleration sensor BSE is determined according to Fig. 2 transmitted to an evaluation ASW, wherein the transmission of the acceleration signal BSI from the acceleration sensors BSE to the evaluation ASW via electrical lines, fiber optic cable or wirelessly, for example via radio or Blue Tooth can be done.
  • the evaluation unit may be a suitably programmed micro- or signal processor, but in a preferred embodiment of the invention for reasons of greater security of a purely hardware-technical realization of the evaluation ASW given preference.
  • the falling speed FAG of the wheel RAD or wheel set in the direction of the rail plane s is determined in the evaluation unit ASW by means of a simple integration INT over a time window of predeterminable magnitude.
  • the integration of the acceleration signal BSI can each take place in successive time windows or time intervals, wherein the end point of a time window can form the starting point of a subsequent time window.
  • successive time windows partially overlap each other. In principle, there may also be a time interval between two consecutive time windows.
  • the integration of the acceleration signal BSI can be digital or analog. Circuits and methods for the numerical or analog integration of a signal over a predefinable time range are known to the skilled person in large numbers and should therefore not be explained in detail here.
  • the current fall speed FAG of the wheel RAD in the considered time window or the wheelset is compared with a limit case speed GFG, which is detected when exceeding this limit case speed on a derailed condition. Since the fall rate determined in the considered time window assumes values in a derailment which can never be achieved in a normal state (eg during turnouts) - in normal operation the occurring height differences are too low to accelerate to high speeds - a derailment can occur very high probability. Thus, the value of the integral of the acceleration signal over the considered time window in the case of derailment assumes values that can not be reached in normal operation.
  • a derailment can thus be concluded on the basis of the value of the specific integral whose upper and lower limits are defined by the respective time window considered, the acceleration signal.
  • a derailment can also be deduced from the course of the fall speed as a function of time in the considered time interval.
  • a change in the time profile of the falling speed FAG within the integration interval may correspond to a predefinable value of a derailment.
  • the in Fig. 3 shown temporal course of the falling speed FAG is, as already mentioned above, obtained by a single integration of the acceleration signal BSI, the direction of action of the associated acceleration sensor BSE from the rail plane ⁇ from looking upwards, so that a fall movement of the rail vehicle in the direction of Rail level occurs as "negative" speed in the course.
  • the direction of action of the acceleration sensor BSE could also point in the direction of the rail plane ⁇ , which would then result in a course of the fall speed FAG mirrored at the zero line NUL.
  • the end of the fall movement of the rail vehicle is characterized by the minimum MIN of the time course.
  • the minimum MIN corresponds to derailment time of the impact of the rail vehicle on the road. This is due to the acceleration acting on the road due to the impact upward a positive value of the fall speed.
  • the evaluation unit ASW can have a filter FIL for eliminating low-frequency interference before integration, which is caused, for example, by drift phenomena and low-frequency electromagnetic interference, in order to improve the signal-to-noise ratio.
  • a filter with a fast transition from its blocking to its passband is preferably used. Filters with a fast transition from a locked to a transmitted frequency range can change the phase positions between the individual frequency components of the signal to be integrated. This can mean that the course of the falling movement can no longer be reconstructed properly by integration.
  • a filter is preferably used which does not change the phase relationships of the individual frequency components contained in the signal relative to each other.
  • This condition is fulfilled, for example, for Bessel filters or for FIR filters.
  • the filtering of the signal is carried out with a belonging to the family of Bessel filter high pass.
  • Bessel filters are preferred over FIR filters because comparable FIR filters have a longer response time.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Gyroscopes (AREA)
  • Air Bags (AREA)
  • Window Of Vehicle (AREA)

Abstract

A method and a device for the recognition of a derailment state of a wheel (RAD) of a rail vehicle. The acceleration of the wheel (RAD) is measured perpendicularly to a rail plane (ε) with at least one acceleration sensor (SEN), whereby from an acceleration signal (BSI) generated by the acceleration sensor (SEN) by means of simple integration (INT) over a time window of predeterminable magnitude, one determines a fall speed (FAG) of the wheel (RAD) in the direction of the rail plane (ε), and whereby on the basis of the determined fall speed (FAG), one examines whether a derailed state exists.

Description

Die Erfindung betrifft ein Verfahren zur Erkennung eines Entgleisungszustandes eines Radsatzes eines Schienenfahrzeuges, wobei die Beschleunigung des Radsatzes normal zu einer Schienenebene mit einem Beschleunigungssensor gemessen wird.The invention relates to a method for detecting a derailment condition of a wheelset of a rail vehicle, wherein the acceleration of the wheelset is measured normal to a rail plane with an acceleration sensor.

Ein Rad bzw. Radsatz eines Schienenfahrzeuges kann beispielsweise quasistatischen, durch ein Geländeprofil hervorgerufenen Beschleunigungen aber auch durch Entgleisungen hervorgerufenen Beschleunigungen unterworfen sein. Von Interesse für eine Entgleisungsdetektion sind jedoch nur die Beschleunigungen, die durch Bewegungen des Radsatzes normal zur Schienenebene hervorgerufen sind. Im Folgenden werden normal zur Schienenebene auf die Radsätze wirkende Beschleunigungen als Fallbeschleunigungen bezeichnet. In diesem Sinne werden auch die aus diesen Beschleunigungen resultierenden vertikalen Geschwindigkeiten in diesem Dokument als Fallgeschwindigkeiten bezeichnet.A wheel or wheelset of a rail vehicle, for example, may be subjected to quasi-static accelerations caused by a terrain profile, but also to accelerations caused by derailments. Of interest for derailment detection, however, are only the accelerations caused by movements of the wheelset normal to the rail plane. In the following, acceleration acting on the wheelsets normal to the rail plane are referred to as acceleration. In this sense, the vertical velocities resulting from these accelerations are referred to as falling speeds in this document.

Derartige Fallbeschleunigungen können im Fall einer Entgleisung durch die Erdbeschleunigung und durch eine sich entspannende Primärfeder hervorgerufen werden, wobei der Endpunkt dieser "Fallbewegung" des Rades bzw. Radsatzes üblicherweise durch eine feste Fahrbahn bestimmt ist.Such acceleration can be caused in the case of a derailment by the gravitational acceleration and by a relaxing primary spring, the end point of this "dropping motion" of the wheel or wheelset is usually determined by a solid lane.

Sensoren, die den Gleichanteil der Beschleunigung messen können, sind für den Einsatz bei Schienenfahrzeugen nicht robust genug. Robuste Sensoren können jedoch den Gleichanteil nicht messen, sie besitzen eine untere Grenzfrequenz. Langsame Änderungen der Beschleunigung können somit nicht erfasst werden. Weiters weisen die Messsignale üblicherweise einen Offset auf, der Drifterscheinungen unterworfen ist. Bei der Verwendung von robusten Beschleunigungssensoren, sind es nicht die quasistatischen Anteile der Beschleunigung des Radsatzes, sondern in erster Linie Drifterscheinungen und niederfrequente elektromagnetische Einkopplungen, die den Amplitudenverlauf der erzeugten Beschleunigungssignale ergeben.Sensors that can measure the DC component of the acceleration are not robust enough for use with rail vehicles. However, robust sensors can not measure the DC component, they have a lower cutoff frequency. Slow changes in the acceleration can thus not be detected. Furthermore, the measuring signals usually have an offset which is subject to drift phenomena. When using robust acceleration sensors, it is not the quasi-static components of the acceleration of the wheelset, but primarily drift phenomena and low-frequency electromagnetic couplings which result in the amplitude characteristic of the generated acceleration signals.

Aus der DE 199 53 677 C1 ist ein Verfahren der oben genannten Art bekannt geworden. Das bekannte Dokument beschreibt ein Verfahren zur Erkennung einer Entgleisung eines spurgebundenen Fahrzeuges. Hierzu wird eine Beschleunigung eines mit der Fahrspur direkt oder indirekt in Kontakt stehenden Bauelements des spurgebundenen Fahrzeugs vertikal und/oder quer zu einer Fahrtrichtung ermittelt. Das Beschleunigungssignal wird zweifach über die Zeit integriert und dieses zweifach integrierte Beschleunigungssignal mit einem oberen und/oder unteren Grenzwert verglichen, wobei bei Über- oder Unterschreiten des Grenzwertes eine Entgleisung vorliegt. Ein ähnliches Verfahren ist auch durch die EP 1 104 734 A1 bekannt.From the DE 199 53 677 C1 a method of the above type has become known. The known document describes a method for detecting a derailment of a track-bound vehicle. For this purpose, an acceleration of a component of the track-bound vehicle that is directly or indirectly in contact with the traffic lane is determined vertically and / or transversely to a direction of travel. The acceleration signal is integrated twice over time and compared this dual-integrated acceleration signal with an upper and / or lower limit, which is a derailment when exceeding or falling below the limit. A similar procedure is also through the EP 1 104 734 A1 known.

Nachteilig an diesen bekannten Ausführungsformen ist vor allem, dass durch die zweifache Integration ein sehr schlechter Signal-Rauschabstand gegeben ist. So kann eine einfache Integration den Signal-Rauschabstand um 20 dB pro Dekade des zu integrierenden Signals verringern. Durch eine zweifache Integration verringert sich der Signal-Rauschabstand schon um 40 dB pro Dekade. Somit wird bei einer zweifachen Integration ein niederfrequentes Störsignal um einen Faktor 10 (20 dB) mehr verstärkt, als das eigentliche Nutzsignal - die Fallbeschleunigung. Durch die zweifache Integration werden hohe Anforderungen an die Auswerteelektronik gestellt, wodurch es zu hohen Herstellungskosten kommen kann. Weiters kann es mit dem bekannten Verfahren bzw. System aufgrund der erforderlichen, aufwendigen Auswerteelektronik zu Verzögerungen bei der Erkennung von entgleisten Zuständen kommen.A disadvantage of these known embodiments is especially that is given by the double integration a very poor signal-to-noise ratio. Thus, a simple integration can reduce the signal-to-noise ratio by 20 dB per decade of the signal to be integrated. Dual integration reduces signal-to-noise ratio by as much as 40 dB per decade. Thus, with a two-fold integration, a low-frequency interference signal is amplified by a factor of 10 (20 dB) more than the actual useful signal - the acceleration due to gravity. Due to the double integration high demands are placed on the transmitter, which can lead to high production costs. Furthermore, delays in the detection of derailed conditions can occur with the known method or system due to the required, elaborate evaluation electronics.

Es ist daher eine Aufgabe der Erfindung, einen Weg zu schaffen, der es ermöglicht, einfach, kostengünstig sowie schnell und mit hoher Zuverlässigkeit eine Entgleisung eines Radsatzes zu erkennen.It is therefore an object of the invention to provide a way that makes it possible to easily, inexpensively and quickly and with high reliability detect a derailment of a wheelset.

Diese Aufgabe wird mit einem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass aus einem von dem Beschleunigungssensor erzeugten Beschleunigungssignal durch einfache Integration über ein Zeitfenster vorgebbarer Größe eine Fallgeschwindigkeit des Rades in Richtung der Schienenebene ermittelt und anhand der ermittelten Fallgeschwindigkeit überprüft wird, ob ein entgleister Zustand vorliegt.This object is achieved by a method of the type mentioned in the present invention that determines a fall speed of the wheel in the direction of the rail plane from a generated by the acceleration sensor acceleration signal by simple integration over a time window of predeterminable size and checked on the basis of the determined fall rate, whether a degassed Condition exists.

Es ist ein Verdienst der Erfindung, durch die Bestimmung der momentanen Fallsgeschwindigkeit mittels einfacher Integration des Beschleunigungssignals die Erkennung eines entgleisten Zustands wesentlich zu vereinfachen. Da sich durch die einfache Integration ein wesentlich besseres Signal-Rauschverhältnis als bei Mehrfachintegration ergibt, werden auch geringere Anforderungen an die Auswerteelektronik gestellt. Somit wird ein einfacher und kostengünstiger Aufbau der Auswerteelektronik ermöglicht.Weiters erlaubt die erfindungsgemäße Lösung eine einfache, ausschließlich hardwaremäßige Realisierung, wodurch sich die Zuverlässigkeit der Entgleisungsdetektion weiter erhöhen lässt.It is a merit of the invention to significantly simplify the detection of a derailed condition by the determination of the instantaneous fall velocity by means of simple integration of the acceleration signal. Since the simple integration results in a significantly better signal-to-noise ratio than in the case of multiple integration, lower demands are placed on the evaluation electronics. Thus, a simple and cost-effective design of the evaluation possible. Furthermore, the solution of the invention allows a simple, hardware-only implementation, whereby the reliability of the derailment detection can be further increased.

In einer ersten Variante der Erfindung wird der Wert der Fallgeschwindigkeit mit einer Grenzfallgeschwindigkeit verglichen wird, wobei bei Überschreiten der Grenzfallgeschwindigkeit auf einen entgleisten Zustand erkannt wird.In a first variant of the invention, the value of the falling speed is compared with a limiting falling speed, wherein when the limiting falling speed is exceeded, a derailed condition is detected.

Gemäß einer zweiten Variante der Erfindung wird aus dem zeitlichen Verlauf der Fallgeschwindigkeit auf einen entgleisten Zustand geschlossen.According to a second variant of the invention, it is concluded from the time course of the falling speed to a derailed state.

In einer bevorzugten Ausführungsform der Erfindung wird das Beschleunigungssignal im Bereich eines Achslagers erzeugt.In a preferred embodiment of the invention the acceleration signal is generated in the area of an axlebox.

Um die Signalauswertung zu verbessern und die Robustheit des Verfahrens gegen Störeinflüsse zu erhöhen, werden niederfrequente in dem Beschleunigungssignal enthaltene Störanteile vor der Integration eliminiert.In order to improve the signal evaluation and to increase the robustness of the method against interference, low-frequency noise components contained in the acceleration signal are eliminated prior to integration.

Günstigerweise wird zur Eliminierung der Störanteile eine Hochpassfilterung verwendet.Conveniently, a high-pass filtering is used to eliminate the noise components.

Um den Verlauf der Fallbewegung durch Integration richtig wiedergeben zu können, wird die Gruppenlaufzeit der einzelnen Frequenzanteile des zu integrierenden Beschleunigungssignals bei der Filterung konstant gehalten.In order to be able to reproduce the course of the falling movement by integration correctly, the group delay of the individual frequency components of the acceleration signal to be integrated during the filtering is kept constant.

Vorteilhafterweise wird die Integration des Beschleunigungssignals jeweils in aufeinanderfolgenden Zeitfenstern durchgeführt, wobei der Endpunkt eines Zeitfensters den Anfangspunkt eines darauffolgenden Zeitfensters bildet.Advantageously, the integration of the acceleration signal is carried out in successive time windows, wherein the end point of a time window forms the starting point of a subsequent time window.

Die Integration des Beschleunigungssignals kann jedoch auch jeweils in aufeinanderfolgenden Zeitfenstern durchgeführt werden, wobei aufeinanderfolgende Zeitfenster einander abschnittsweise überlappen.However, the integration of the acceleration signal can also be carried out in successive time windows, where successive time windows overlap each other in sections.

In einer vorteilhaften Ausführungsform der Erfindung ist der Beschleunigungssensor im Bereich eines Achslagers eines Rades des Schienenfahrzeuges angeordnet.In an advantageous embodiment of the invention, the acceleration sensor is arranged in the region of an axle bearing of a wheel of the rail vehicle.

Weiters kann ein Filter zur Eliminierung niederfrequenter, in dem Beschleunigungssignal enthaltener Störanteile vor der Integration vorgesehen sein, wobei der Filter günstiger weise ein Hochpassfilter ist.Furthermore, a filter for eliminating low-frequency noise components contained in the acceleration signal can be provided before the integration, wherein the filter is favorably a high-pass filter.

Darüber hinaus lässt der Filter Phasenbeziehungen von Frequenzanteilen des Beschleunigungssignals im wesentlichen unbeeinflusst.Moreover, the filter leaves phase relationships of frequency components of the acceleration signal substantially unaffected.

Weitere Vorteile lassen sich dadurch erzielen, dass die Auswerteeinheit dazu eingerichtet ist, die Integration des Beschleunigungssignals jeweils in aufeinanderfolgenden Zeitfenstern durchzuführen, wobei der Endpunkt eines Zeitfensters den Anfangspunkt eines darauffolgenden Zeitfensters bildet.Further advantages can be achieved in that the evaluation unit is set up to perform the integration of the acceleration signal in successive time windows, the end point of a time window forming the starting point of a subsequent time window.

In einer anderen Variante der Erfindung kann die Auswerteeinheit auch dazu eingerichtet sein, die Integration des Beschleunigungssignals jeweils in aufeinanderfolgenden Zeitfenstern durchzuführen, wobei aufeinanderfolgende Zeitfenster einander abschnittsweise überlappen.In another variant of the invention, the evaluation unit can also be set up to carry out the integration of the acceleration signal in successive time windows, wherein successive time windows overlap each other in sections.

Vorteilhafterweise ist im Bereich jedes Rades des Schienenfahrzeuges ein Beschleunigungssensor angeordnet.Advantageously, an acceleration sensor is arranged in the region of each wheel of the rail vehicle.

Die Erfindung samt weiterer Vorteile wird im Folgenden anhand einiger nicht einschränkender Ausführungsbeispiele näher erläutert, welche in der Zeichnung dargestellt sind. In dieser zeigen schematisch:

  • Fig.1 ein Schienenfahrzeug mit einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens;
  • Fig. 2 ein Blockdiagramm einer erfindungsgemäßen Vorrichtung und
  • Fig. 3 einen zeitlichen Verlauf einer Fallgeschwindigkeit des Schienenfahrzeuges in einem Zeitfenster bei einer Entgleisung.
The invention together with further advantages will be explained below with reference to some non-limiting embodiments, which are illustrated in the drawing. In this show schematically:
  • Fig.1 a rail vehicle with a device for carrying out the method according to the invention;
  • Fig. 2 a block diagram of a device according to the invention and
  • Fig. 3 a time course of a fall speed of the rail vehicle in a time window at a derailment.

Gemäß Fig. 1 wird zur Durchführung des erfindungsgemäßen Verfahrens zur Erkennung eines entgleisten Zustandes eines Schienenfahrzeuges im Bereich eines Drehgestells DRE des Schienenfahrzeuges ein Beschleunigungssignal erzeugt. Hierzu weist eine erfindungsgemäße Vorrichtung einen Beschleunigungssensor BSE auf, der an einem Achslager AXL eines Rades RAD bzw. Radsatzes des Schienenfahrzeuges angeordnet sein kann. Günstigerweise ist im Bereich jedes Rades RAD, beispielsweise an jedem Achslager AXL, ein Beschleunigungssensor BSE angeordnet.According to Fig. 1 For the implementation of the method according to the invention for detecting a derailed state of a rail vehicle in the region of a bogie DRE of the rail vehicle, an acceleration signal is generated. For this purpose, a device according to the invention has an acceleration sensor BSE, which can be arranged on an axle bearing AXL of a wheel RAD or wheelset of the rail vehicle. Conveniently, an acceleration sensor BSE is arranged in the region of each wheel RAD, for example on each axle bearing AXL.

Ein wesentliches Element der vorliegenden Erfindung ist die Erkenntnis, dass besonders zuverlässige und repräsentative Messergebnisse erzielt werden können, wenn die Wirkungsrichtung der Beschleunigungssensoren BSE im wesentlichen normal zur Fahrtrichtung, d. h. normal zu einer Schienenebene ε verläuft. In der Zeichnung ist die Fahrtrichtung des Schienenfahrzeuges mit einem Pfeil FAR dargestellt, wobei die Wirkungsrichtung der Beschleunigungssensoren BSE normal auf die Zeichenebene verläuft. Unter Wirkungsrichtung eines Beschleunigungssensors BSE wird in diesem Dokument, die Richtung verstanden, in welcher der Sensor Beschleunigungskräfte bevorzugt aufnehmen und Signale liefern kann.An essential element of the present invention is the recognition that particularly reliable and representative measurement results can be achieved if the direction of action of the acceleration sensors BSE is substantially normal to the direction of travel, ie. H. runs normal to a rail plane ε. In the drawing, the direction of travel of the rail vehicle is shown with an arrow FAR, wherein the direction of action of the acceleration sensors BSE runs normal to the plane of the drawing. In the direction of action of an acceleration sensor BSE, this document refers to the direction in which the sensor can preferably absorb acceleration forces and deliver signals.

Die Beschleunigungssensoren BSE können beispielsweise als piezoelektrische Sensoren ausgebildet sein, bei welchen in bekannter Weise ein piezoelektrischer Kristall zwischen zwei parallel zueinander verlaufenden Kondensatorplatten angeordnet ist. Findet diese Art von Sensoren Verwendung so kann man dadurch, dass die beiden Kondensatorplatten im wesentlichen normal zur Fahrtrichtung des Schienenfahrzeuges verlaufen, eine Übereinstimmung der Wirkungsrichtung der Beschleunigungssensoren mit der Fahrtrichtung erreichen. Selbstverständlich können auch andere bekannte Beschleunigungssensoren, die auf anderen Mechanismen beruhen, verwendet werden. Derartige Sensoren sind dem Fachmann in großer Zahl bekannt und sollen daher an dieser Stelle nicht weiter erläutert werden.The acceleration sensors BSE can be designed, for example, as piezoelectric sensors, in which a piezoelectric crystal is arranged between two parallel capacitor plates in a known manner. If this type of sensor is used, the fact that the two capacitor plates run essentially normal to the direction of travel of the rail vehicle makes it possible to match the direction of action of the acceleration sensors with the direction of travel. Of course, other known acceleration sensors based on other mechanisms may also be used. Such sensors are known in the art in large numbers and should therefore not be further explained at this point.

Das von dem Beschleunigungssensor BSE erzeugte Beschleunigungssignal BSI wird gemäß Fig. 2 an eine Auswerteeinheit ASW übermittelt, wobei die Übertragung des Beschleunigungssignals BSI von den Beschleunigungssensoren BSE an die Auswerteeinheit ASW über elektrische Leitungen, Glasfaserkabel oder drahtlos, beispielsweise über Funk oder Blue Tooth erfolgen kann. Die Auswerteeinheit kann ein entsprechend programmierter Mikro- bzw. Signalprozessor sein, jedoch wird in einer bevorzugten Ausführungsform der Erfindung aus Gründen einer höheren Sicherheit einer rein hardwaretechnischen Realisierung der Auswerteeinheit ASW der Vorzug gegeben.The acceleration signal BSI generated by the acceleration sensor BSE is determined according to Fig. 2 transmitted to an evaluation ASW, wherein the transmission of the acceleration signal BSI from the acceleration sensors BSE to the evaluation ASW via electrical lines, fiber optic cable or wirelessly, for example via radio or Blue Tooth can be done. The evaluation unit may be a suitably programmed micro- or signal processor, but in a preferred embodiment of the invention for reasons of greater security of a purely hardware-technical realization of the evaluation ASW given preference.

Aus dem Beschleunigungssignal wird in der Auswerteinheit ASW mittels einfacher Integration INT über ein Zeitfenster vorgebbarer Größe die Fallgeschwindigkeit FAG des Rades RAD bzw. Radsatzes in Richtung der Schienenebene s ermittelt. Hierbei kann die Integration des Beschleunigungssignals BSI jeweils in aufeinanderfolgenden Zeitfenstern bzw. Zeitintervallen erfolgen, wobei der Endpunkt eines Zeitfensters den Anfangspunkt eines darauffolgenden Zeitfensters bilden kann. Weiters ist es auch möglich, dass aufeinanderfolgende Zeitfenster einander teilweise überlappen. Prinzipiell kann zwischen zwei aufeinanderfolgenden Zeitfenstern auch ein zeitlicher Abstand bestehen.From the acceleration signal, the falling speed FAG of the wheel RAD or wheel set in the direction of the rail plane s is determined in the evaluation unit ASW by means of a simple integration INT over a time window of predeterminable magnitude. In this case, the integration of the acceleration signal BSI can each take place in successive time windows or time intervals, wherein the end point of a time window can form the starting point of a subsequent time window. Furthermore, it is also possible that successive time windows partially overlap each other. In principle, there may also be a time interval between two consecutive time windows.

Die Integration des Beschleunigungssignals BSI kann digital oder analog erfolgen. Schaltungen und Verfahren zur numerischen bzw. analogen Integration eines Signals über einen vorgebbaren Zeitbereich sind dem Fachmann in großer Zahl bekannt und sollen daher an dieser Stelle nicht näher erläutert werden.The integration of the acceleration signal BSI can be digital or analog. Circuits and methods for the numerical or analog integration of a signal over a predefinable time range are known to the skilled person in large numbers and should therefore not be explained in detail here.

Nach Berechnung der aktuellen Fallgeschwindigkeit FAG des Rades RAD in dem betrachteten Zeitfenster bzw. des Radsatzes wird diese mit einer Grenzfallgeschwindigkeit GFG verglichen, wobei bei Überschreiten dieser Grenzfallgeschwindigkeit, auf einen entgleisten Zustand erkannt wird. Da die in dem betrachteten Zeitfenster ermittelte Fallgeschwindigkeit im Fall einer Entgleisung Werte annimmt, die in einem Normalzustand (z. B. bei Weichenüberfahrten) nie erreicht werden können - im Normalbetrieb sind die auftretenden Höhendifferenzen zur Beschleunigung auf hohe Geschwindigkeiten zu gering - kann eine Entgleisung mit sehr hoher Wahrscheinlichkeit festgestellt werden. Somit nimmt der Wert des Integrals des Beschleunigungssignals über das betrachtete Zeitfenster im Fall einer Entgleisung Werte an, die im Normalbetrieb nicht erreicht werden können.After calculating the current fall speed FAG of the wheel RAD in the considered time window or the wheelset, this is compared with a limit case speed GFG, which is detected when exceeding this limit case speed on a derailed condition. Since the fall rate determined in the considered time window assumes values in a derailment which can never be achieved in a normal state (eg during turnouts) - in normal operation the occurring height differences are too low to accelerate to high speeds - a derailment can occur very high probability. Thus, the value of the integral of the acceleration signal over the considered time window in the case of derailment assumes values that can not be reached in normal operation.

Zum einen kann somit anhand des Wertes des bestimmten Integrals, dessen obere und untere Grenze durch das jeweils betrachtete Zeitfenster festgelegt sind, des Beschleunigungssignals auf eine Entgleisung geschlossen werden. Zum anderen kann aber auch aus dem Verlauf der Fallgeschwindigkeit als Funktion der Zeit in dem betrachteten Zeitintervall auf eine Entgleisung geschlossen werden.On the one hand, a derailment can thus be concluded on the basis of the value of the specific integral whose upper and lower limits are defined by the respective time window considered, the acceleration signal. On the other hand, however, a derailment can also be deduced from the course of the fall speed as a function of time in the considered time interval.

Gemäß Fig. 3 kann eine Änderung in dem zeitlichen Verlauf der Fallgeschwindigkeit FAG innerhalb des Integrationsintervalls, welches in der hier gezeigten Darstellung bei ca. einer Sekunde liegt, um einen vorgebbaren Wert einer Entgleisung entsprechen. Der in Fig. 3 dargestellte zeitliche Verlauf der Fallgeschwindigkeit FAG, ist, wie bereits oben erwähnt, durch einmalige Integration des Beschleunigungssignals BSI gewonnen, wobei die Wirkungsrichtung des zugehörigen Beschleunigungssensors BSE von der Schienenebene ε aus betrachtet nach "oben" gerichtet ist, sodass eine Fallbewegung des Schienenfahrzeuges in Richtung der Schienenebene als "negative" Geschwindigkeit in dem Verlauf auftritt. Natürlich könnte die Wirkrichtung des Beschleunigungssensors BSE auch in Richtung der Schienenebene ε zeigen, wobei sich dann ein an der Nulllinie NUL gespiegelter Verlauf der Fallgeschwindigkeit FAG ergeben würde.According to Fig. 3 For example, a change in the time profile of the falling speed FAG within the integration interval, which in the illustration shown here is approximately one second, may correspond to a predefinable value of a derailment. The in Fig. 3 shown temporal course of the falling speed FAG, is, as already mentioned above, obtained by a single integration of the acceleration signal BSI, the direction of action of the associated acceleration sensor BSE from the rail plane ε from looking upwards, so that a fall movement of the rail vehicle in the direction of Rail level occurs as "negative" speed in the course. Of course, the direction of action of the acceleration sensor BSE could also point in the direction of the rail plane ε, which would then result in a course of the fall speed FAG mirrored at the zero line NUL.

Das Ende der Fallbewegung des Schienenfahrzeuges ist durch das Minimum MIN des zeitlichen Verlaufes charakterisiert. Das Minimum MIN entspricht bei Entgleisung zeitlich dem Auftreffen des Schienenfahrzeuges auf der Fahrbahn. Hierauf erfolgt aufgrund der infolge des Aufschlags auf der Fahrbahn nach oben wirkenden Beschleunigung ein positiver Wert der Fallgeschwindigkeit.The end of the fall movement of the rail vehicle is characterized by the minimum MIN of the time course. The minimum MIN corresponds to derailment time of the impact of the rail vehicle on the road. This is due to the acceleration acting on the road due to the impact upward a positive value of the fall speed.

Weiters kann die Auswerteeinheit ASW einen Filter FIL zur Eliminierung niederfrequenter Störungen vor der Integration aufweisen, die beispielsweise von Drifterscheinungen und niederfrequenten elektromagnetischen Einstreuungen verursacht sind, um das Signal-Rauschverhältnis zu verbessern. Um eine scharfe Trennung von Nutz- und Störsignal zu erzielen, wird bevorzugterweise ein Filter mit einem schnellen Übergang von seinem Sperrzu seinem Durchlassbereich verwendet. Filter mit einem schnellen Übergang von einem gesperrten zu einem durchgelassenen Frequenzbereich können die Phasenlagen zwischen den einzelnen Frequenzanteilen des zu integrierenden Signals verändern. Dies kann zur Folge haben, dass der Verlauf der Fallbewegung durch Integration nicht mehr richtig rekonstruiert werden kann.Furthermore, the evaluation unit ASW can have a filter FIL for eliminating low-frequency interference before integration, which is caused, for example, by drift phenomena and low-frequency electromagnetic interference, in order to improve the signal-to-noise ratio. In order to achieve a sharp separation of useful and interfering signal, a filter with a fast transition from its blocking to its passband is preferably used. Filters with a fast transition from a locked to a transmitted frequency range can change the phase positions between the individual frequency components of the signal to be integrated. This can mean that the course of the falling movement can no longer be reconstructed properly by integration.

Aus diesem Grund wird bevorzugterweise ein Filter verwendet, der die Phasenbeziehungen der einzelnen in dem Signal enthaltenen Frequenzanteile zueinander nicht verändert. Diese Bedingung ist beispielsweise für Besselfilter bzw. für FIR-Filter erfüllt. Bevorzugterweise erfolgt die Filterung des Signals mit einem zur Familie der Besselfilter gehörigen Hochpass. Für sicherheitskritische Anwendungen wird Besselfiltern gegenüber FIR-Filtern der Vorzug gegeben, da vergleichbare FIR-Filter eine höhere Reaktionszeit aufweisen.For this reason, a filter is preferably used which does not change the phase relationships of the individual frequency components contained in the signal relative to each other. This condition is fulfilled, for example, for Bessel filters or for FIR filters. Preferably, the filtering of the signal is carried out with a belonging to the family of Bessel filter high pass. For safety-critical applications, Bessel filters are preferred over FIR filters because comparable FIR filters have a longer response time.

Zusammenfassend lässt sich sagen, dass es ein großer Vorteil des erfindungsgemäßen Verfahrens ist, dass es sich sehr leicht, auch hardwaretechnisch, realisieren lässt und für sicherheitskritische Anwendungen sehr gut geeignet ist.In summary, it is a great advantage of the method according to the invention is that it can be implemented very easily, including hardware, and is very well suited for safety-critical applications.

Claims (10)

  1. Method for determining a derailment state of a wheel (RAD) of a rail vehicle, wherein the acceleration of the wheel (RAD) normal to a rail plane (ε) is measured with at least one acceleration sensor (SEN), characterised in that a fall speed (FAG) of the wheel (RAD) in the direction of the rail plane (ε) is determined from an acceleration signal (BSI) generated by the acceleration sensor (SEN) by simple integration (INT) over a time window of predeterminable size and a check is made on the basis of the determined fall speed (FAG) as to whether a derailed state is present.
  2. Method according to claim 1, characterised in that the fall speed determined is compared to a threshold fall speed (GFG), wherein a derailed state is detected if the threshold fall speed (GFG) is exceeded.
  3. Method according to claim 1, characterised in that a derailed state is deduced from the timing of the fall speed (FAG).
  4. Method according to one of claims 1 to 3, characterised in that the acceleration signal (BSI) is generated in the area of an axle bearing (ALA) of a wheel (RAD) of the rail vehicle.
  5. Method according to one of claims 1 to 4, characterised in that low-frequency noise components contained in the acceleration signal (BSI) are eliminated before the integration (INT) by means of filtering (FIL).
  6. Method according to one of claims 1 to 5, characterised in that highpass filtering is used to eliminate the noise components.
  7. Method according to one of claims 1 to 6, characterised in that phase relationships to one another of frequency components of the acceleration signals (BSI) to be integrated are retained during the filtering (FIL).
  8. Method according to one of claims 1 to 7, characterised in that the integration (INT) of the acceleration signal (BSI) is carried out in each case in consecutive time windows, wherein the end point of a time window forms the start point of a following time window.
  9. Method according to one of claims 1 to 8, characterised in that the integration of the acceleration signal (BSI) is carried out in consecutive time windows in each case, wherein parts of consecutive time windows overlap.
  10. Method according to one of claims 1 to 9, characterised in that an acceleration signal (BSI) is generated in the area of each wheel (RAD) of the rail vehicle.
EP04733271A 2003-05-15 2004-05-17 Detection of derailment by determining the rate of fall Expired - Lifetime EP1622802B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0074603A AT413974B (en) 2003-05-15 2003-05-15 DISCHARGE DETECTION BY FALL SPEED DETERMINATION
PCT/AT2004/000173 WO2004101343A1 (en) 2003-05-15 2004-05-17 Detection of derailment by determining the rate of fall

Publications (4)

Publication Number Publication Date
EP1622802A1 EP1622802A1 (en) 2006-02-08
EP1622802B1 EP1622802B1 (en) 2006-10-18
EP1622802B2 true EP1622802B2 (en) 2012-05-30
EP1622802B8 EP1622802B8 (en) 2012-08-15

Family

ID=33437384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04733271A Expired - Lifetime EP1622802B8 (en) 2003-05-15 2004-05-17 Detection of derailment by determining the rate of fall

Country Status (13)

Country Link
US (1) US7937192B2 (en)
EP (1) EP1622802B8 (en)
KR (1) KR101126575B1 (en)
CN (1) CN100453374C (en)
AT (2) AT413974B (en)
AU (1) AU2004238391B2 (en)
CA (1) CA2524448C (en)
DE (1) DE502004001814D1 (en)
ES (1) ES2274454T5 (en)
NO (1) NO334274B1 (en)
PT (1) PT1622802E (en)
RU (1) RU2301167C2 (en)
WO (1) WO2004101343A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044575A1 (en) * 2007-09-19 2009-04-16 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method for adapting at least one parameter in a controlled or regulated system of a vehicle
KR100946232B1 (en) * 2008-06-13 2010-03-09 한국철도기술연구원 Apparatus and method for measuring derailment coefficient using vertical displacement and steady-state lateral acceleration
CN102387952B (en) * 2009-03-12 2014-09-17 西门子有限公司 Method and device for monitoring the presence of a rail
CN102470877B (en) 2009-07-28 2015-02-25 西门子有限公司 Method and device for detecting the derailment of a guided vehicle
BG1413U1 (en) * 2010-06-14 2011-02-28 "ФАЕ-София" ООД A device for registration derailed wheel sets
CN102914364B (en) * 2012-10-19 2014-02-12 西南交通大学 Dynamic identifying method for instant contact loss of wheel rail under impact effect of wheel rail
US9168937B2 (en) 2012-10-24 2015-10-27 Progress Rail Services Corporation Multi-function dragger
US9090270B2 (en) 2012-10-24 2015-07-28 Progress Rail Services Corporation Speed sensitive dragging equipment detector
US8818585B2 (en) 2012-10-24 2014-08-26 Progress Rail Services Corp Flat wheel detector with multiple sensors
US9090271B2 (en) 2012-10-24 2015-07-28 Progress Rail Services Corporation System and method for characterizing dragging equipment
US9139209B2 (en) * 2013-03-14 2015-09-22 Wabtec Holding Corp. Derailment detector
CN206187034U (en) 2013-12-10 2017-05-24 奥地利西门子公司 A equipment for discerning derail or barrier touches rail vehicle
FR3014400B1 (en) * 2013-12-11 2016-02-05 Alstom Transport Sa LAND VEHICLE GUIDE COMPRISING A DEVICE FOR MANAGING A DERAILMENT OF THE VEHICLE, AND METHOD FOR MANAGING THE DERAILMENT THEREOF
JP6435203B2 (en) * 2015-01-22 2018-12-05 株式会社総合車両製作所 Derailment detection device and derailment detection method
JP6454251B2 (en) * 2015-10-06 2019-01-16 公益財団法人鉄道総合技術研究所 Derailment state detection device and derailment state detection method
DE102015119392A1 (en) * 2015-11-11 2017-05-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Method and device for comparison-controlled derailment detection
WO2017127806A1 (en) * 2016-01-22 2017-07-27 International Electronic Machines Corp. Railway vehicle operations monitoring
AT521877B1 (en) 2018-10-31 2023-12-15 Siemens Mobility Austria Gmbh Method and device for detecting a derailment condition of a rail vehicle
AT522867B1 (en) 2019-08-05 2022-08-15 Pj Monitoring Gmbh Device for detecting a wheelset derailment that can be displayed for information purposes
CN112606870A (en) * 2020-12-16 2021-04-06 云南昆钢电子信息科技有限公司 Rail-bound transportation mine compartment derailment detection device
AT526456A1 (en) 2022-08-23 2024-03-15 Siemens Mobility Austria Gmbh Method and device for detecting a derailment condition of a rail vehicle
AT526526B1 (en) 2022-11-30 2024-04-15 Siemens Mobility Austria Gmbh Device and method for derailment detection for rail vehicles and rail vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953677C1 (en) 1999-11-09 2001-06-21 Deutsche Bahn Ag Rail vehicle derailment detection method, uses detection of acceleration of rail vehicle component in vertical or transverse direction relative to rail track

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
OA04676A (en) * 1973-11-28 1980-07-31 Mines De Fer De Mauritanie Sa Device intended to cause, in the event of a derailment of a wagon of a railway convoy, the emergency braking of said convoy.
US3929308A (en) * 1974-08-07 1975-12-30 Us Navy Local derailment sensor and brake actuator system
US4783028A (en) * 1987-10-05 1988-11-08 Olson Phillip W Devices for applying freight train air brakes on derailment
JPH0636594B2 (en) * 1988-07-29 1994-05-11 三菱電機株式会社 TV phone
DE69321382T2 (en) * 1992-02-17 1999-06-02 Hitachi Ltd A sensor for the detection of differential acceleration.
JP3095588B2 (en) 1993-09-07 2000-10-03 株式会社東芝 Vehicle derailment detection device
ES2122876B1 (en) * 1995-06-29 1999-08-01 Talgo Patentes INSTALLATION AND MEASURING PROCEDURE OF ROLLING PARAMETERS BY ARTIFICIAL VISION IN WHEELS OF RAILWAY VEHICLES.
US5742235A (en) * 1995-07-21 1998-04-21 Miche ; John Andrew Vertical, unidirectional seismic switch
JP3458872B2 (en) * 1995-07-27 2003-10-20 東急車輛製造株式会社 Railway vehicle derailment detection method and apparatus
US5752678A (en) * 1997-01-08 1998-05-19 Bachmann Industries, Inc. Model railroad track assembly with actuator located within hollow track bed
US6023966A (en) * 1997-02-20 2000-02-15 Westinghouse Air Brake Company Safe brake cutout detection for train
ATE285352T1 (en) * 1998-08-10 2005-01-15 Tokyu Car Corp METHOD AND DEVICE FOR DETECTING RAILWAY CAR DERAILINGS
ATA18499A (en) * 1999-02-10 2000-04-15 Plasser Bahnbaumasch Franz METHOD FOR CORRECTING THE POSITION OF A TRACK
US7164975B2 (en) * 1999-06-15 2007-01-16 Andian Technologies Ltd. Geometric track and track/vehicle analyzers and methods for controlling railroad systems
US6681160B2 (en) * 1999-06-15 2004-01-20 Andian Technologies Ltd. Geometric track and track/vehicle analyzers and methods for controlling railroad systems
US6347265B1 (en) * 1999-06-15 2002-02-12 Andian Technologies Ltd. Railroad track geometry defect detector
IT1320415B1 (en) * 2000-06-09 2003-11-26 Skf Ind Spa METHOD AND EQUIPMENT TO DETECT AND REPORT DETAILING CONDITIONS IN A RAILWAY VEHICLE.
JP3499827B2 (en) * 2001-01-15 2004-02-23 東日本旅客鉄道株式会社 Derailment detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953677C1 (en) 1999-11-09 2001-06-21 Deutsche Bahn Ag Rail vehicle derailment detection method, uses detection of acceleration of rail vehicle component in vertical or transverse direction relative to rail track

Also Published As

Publication number Publication date
KR101126575B1 (en) 2012-03-20
AU2004238391B2 (en) 2010-05-13
WO2004101343A1 (en) 2004-11-25
RU2005139126A (en) 2006-05-10
CN1787941A (en) 2006-06-14
US20060122745A1 (en) 2006-06-08
AU2004238391A1 (en) 2004-11-25
EP1622802B8 (en) 2012-08-15
NO20054846D0 (en) 2005-10-20
ATE342832T1 (en) 2006-11-15
CA2524448C (en) 2010-01-19
NO334274B1 (en) 2014-01-27
ES2274454T5 (en) 2012-07-12
AT413974B (en) 2006-07-15
ATA7462003A (en) 2005-11-15
CN100453374C (en) 2009-01-21
US7937192B2 (en) 2011-05-03
PT1622802E (en) 2007-01-31
DE502004001814D1 (en) 2006-11-30
KR20060006834A (en) 2006-01-19
NO20054846L (en) 2006-01-09
EP1622802A1 (en) 2006-02-08
EP1622802B1 (en) 2006-10-18
CA2524448A1 (en) 2004-11-25
ES2274454T3 (en) 2007-05-16
RU2301167C2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
EP1622802B2 (en) Detection of derailment by determining the rate of fall
EP1154919B1 (en) Sensor system with monitoring device, notably for an esp system for vehicles
EP3172577B1 (en) Method and device for determining the absolute speed of a rail vehicle
DE112009005342T5 (en) CLASSIFICATION OF THE SURFACE
AT413372B (en) METHOD FOR THE GENERAL DISPENSING DETECTION
EP3329286B1 (en) Method for detecting a defect in an acceleration sensor and measuring system
WO2015135753A1 (en) Device and method for identifying obstacles for rail vehicles
AT521877B1 (en) Method and device for detecting a derailment condition of a rail vehicle
DE102008007775A1 (en) Method and device for determining the change in the footprint of a tire
EP3374246B1 (en) Method and device for comparison-controlled detection of derailing
DE102014226612A1 (en) Method for determining the speed of a rail vehicle
DE102015002517A1 (en) Diagnostic device for determining an ovality of rail vehicle wheels according to a force impulse evaluation method
DE19537257A1 (en) Determining physical profile of road surface during movement of motor vehicle on road
EP1422119A1 (en) Inductive derailment sensor
EP3158344B1 (en) Derailing recognition method and device
DE10354944B4 (en) Method and arrangement for determining a driving speed
AT502732B1 (en) METHOD OF DETERMINING THE TRUCK AXLE DIAMETER OF LONG-TERM 2 PARALLEL RAILS MOVING WHEELS OF RAIL VEHICLES
DE102017208239B4 (en) Method for determining a shape property of a single obstacle on a road that a motor vehicle has driven over, as well as a control device and motor vehicle
EP3558788A2 (en) Method and control unit for detection of derailment on the basis of wheel speed signals
DE19747689B4 (en) Method for correcting a vehicle reference speed
EP1197739B1 (en) Method and apparatus for detecting a yaw damper failure on a railway vehicle
DE102004012168B4 (en) Method for calibrating a measuring arrangement for determining the diameter of the wheels of rail vehicles, in particular freight cars, and a gravity drainage system using the method
DE102006006388A1 (en) Correction method for data offset of inertial sensor in motor vehicle, involves determining correction in electronic evaluation unit after collection of pre-determined number of measured values or after driving distance by motor vehicle
DE102017208186A1 (en) Method for testing a longitudinal acceleration signal for plausibility
EP4331942A1 (en) Method and device for detecting a derailment state of a railway vehicle

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUEGER, GERHARD

Inventor name: KITZMUELLER, CHRISTIAN

Inventor name: SCHMEJA, MICHAEL

Inventor name: SALZGEBER, GERARD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004001814

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070102

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20061115

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E001135

Country of ref document: HU

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2274454

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: DEUTSCHE BAHN AG

Effective date: 20070718

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEUTSCHE BAHN AG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20120530

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS AG OESTERREICH

Free format text: SIEMENS TRANSPORTATION SYSTEMS GMBH & CO. KG#LEBERSTRASSE 34#1110 WIEN (AT) -TRANSFER TO- SIEMENS AG OESTERREICH#SIEMENSSTRASSE 92#1210 WIEN (AT)

Ref country code: CH

Ref legal event code: PCOW

Free format text: SIEMENS AG OESTERREICH;SIEMENSSTRASSE 90;1210 WIEN (AT)

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2274454

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20120712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004001814

Country of ref document: DE

Effective date: 20120530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001814

Country of ref document: DE

Owner name: SIEMENS AG OESTERREICH, AT

Free format text: FORMER OWNER: SIEMENS TRANSPORTATION SYSTEMS GMBH & CO. KG, WIEN, AT

Effective date: 20120709

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120809 AND 20120815

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 342832

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS AKTIENGESELLSCHAFT OESTERREICH, AT

Effective date: 20120813

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS AKTIENGESELLSCHAFT OSTERREICH, AT

Effective date: 20120925

REG Reference to a national code

Ref country code: HU

Ref legal event code: GB9C

Owner name: SIEMENS AKTIENGESELLSCHAFT OESTERREICH, AT

Free format text: FORMER OWNER(S): SIEMENS TRANSPORTATION SYSTEMS GMBH & CO KG, AT

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): DR. JAKAB JUDIT, SBGK SZABADALMI UEGYVIVOEI IRODA, HU

Representative=s name: SBGK SZABADALMI UEGYVIVOEI IRODA, HU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150803

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160516

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20160503

Year of fee payment: 13

Ref country code: BE

Payment date: 20160519

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20160715

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001814

Country of ref document: DE

Representative=s name: DEFFNER, ROLF, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001814

Country of ref document: DE

Owner name: SIEMENS MOBILITY GMBH, AT

Free format text: FORMER OWNER: SIEMENS AG OESTERREICH, WIEN, AT

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001814

Country of ref document: DE

Owner name: SIEMENS MOBILITY AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SIEMENS AG OESTERREICH, WIEN, AT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190704 AND 20190710

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 342832

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS MOBILITY GMBH, AT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001814

Country of ref document: DE

Representative=s name: DEFFNER, ROLF, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004001814

Country of ref document: DE

Owner name: SIEMENS MOBILITY AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SIEMENS MOBILITY GMBH, WIEN, AT

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS MOBILITY AUSTRIA GMBH; AT

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: SIEMENS TRANSPORTATION SYSTEMS GMBH & CO. KG

Effective date: 20200324

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS MOBILITY AUSTRIA GMBH

Effective date: 20200414

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 342832

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS MOBILITY AUSTRIA GMBH, AT

Effective date: 20211108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230511

Year of fee payment: 20

Ref country code: IT

Payment date: 20230523

Year of fee payment: 20

Ref country code: FR

Payment date: 20230515

Year of fee payment: 20

Ref country code: DE

Payment date: 20220620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230508

Year of fee payment: 20

Ref country code: AT

Payment date: 20230417

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230605

Year of fee payment: 20

Ref country code: ES

Payment date: 20230823

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004001814

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20240516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240524

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240516