EP1621811A1 - Betriebsverfahren für eine Feuerungsanlage - Google Patents

Betriebsverfahren für eine Feuerungsanlage Download PDF

Info

Publication number
EP1621811A1
EP1621811A1 EP05106361A EP05106361A EP1621811A1 EP 1621811 A1 EP1621811 A1 EP 1621811A1 EP 05106361 A EP05106361 A EP 05106361A EP 05106361 A EP05106361 A EP 05106361A EP 1621811 A1 EP1621811 A1 EP 1621811A1
Authority
EP
European Patent Office
Prior art keywords
burner
burners
fuel supply
pressure pulsations
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05106361A
Other languages
English (en)
French (fr)
Other versions
EP1621811B1 (de
Inventor
Mauricio Garay
Gianfranco Guidati
Douglas Anthony Pennell
Frank Reiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35159989&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1621811(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1621811A1 publication Critical patent/EP1621811A1/de
Application granted granted Critical
Publication of EP1621811B1 publication Critical patent/EP1621811B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06042Annular arrangement of burners in a furnace, e.g. in a gas turbine, operated in alternate lean-rich mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/16Systems for controlling combustion using noise-sensitive detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the present invention relates to a method for operating a furnace with multi-burner system for hot gas production, in particular gas turbine, preferably a power plant.
  • a furnace e.g. a gas turbine
  • a combustion chamber with a plurality of burners.
  • a fuel supply system is provided on a regular basis, with the help of which the burners are supplied with fuel.
  • boundary conditions are, for example, the ambient temperature, the relative humidity, the current air mass flow, in particular the degree of contamination of a combustion chamber upstream of the compressor depends on the switching position ("on” or “off") of a fuel and / or Heilvor139inutter, the composition of the currently used fuel and so on. Particularly complex is the control of the fuel supply system, if the considered boundary conditions vary. For example, the ambient temperature and / or the fuel composition will usually change over a gas turbine operating day. Since the individual boundary conditions have different effects on the stability of the combustion process, it is not always possible to find a setting for the fuel supply, which enables stable operation of the individual burners close to the lean extinction limit.
  • the invention deals with the problem of providing for an operating method of the type mentioned in an improved embodiment, which in particular simplifies safe operation of the combustion chamber near the lean extinction limit or only possible.
  • a hitherto required safety distance to the lean extinction limit should be reduced.
  • the invention is based on the general idea of controlling the fuel supply to the burners of the combustion chamber as a function of pressure pulsations occurring in the combustion chamber.
  • the invention uses the knowledge that the pressure pulsations increase as the combustion process approaches the lean extinction limit.
  • the intensity or amplitude of the pressure pulsations at certain characteristic frequencies correlates with the distance between the combustion process and the associated lean extinction limit, essentially independently of the combustion process and / or the lean extinction limit Boundary conditions, such as ambient temperature, fuel composition and humidity. This means that a change in the boundary conditions, which leads, for example, to an increase in the distance of the currently running combustion process to the lean extinction limit, is accompanied by a decrease in the pressure pulsations that occur.
  • the pressure pulsations can be detected in a conventional manner, which allows a comparison between a measured actual value and a predetermined or adjustable setpoint value and, depending on this setpoint-actual comparison of the pressure pulsations, enables a corresponding adaptation of the fuel supply.
  • a closed control loop is provided for supplying the burner with fuel.
  • the operation of the gas turbine or the fuel supply of the burner is extremely simplified by the operating method according to the invention, since by taking into account the intensity or amplitude of the pressure pulsations already mentioned above several boundary conditions, which determine the distance between the combustion process and the lean extinction limit in the Be taken into account automatically, without them to be explicitly monitored and / or integrated into the scheme. It is obvious that by the operating method of the invention, the effort to operate the gas turbine significantly reduced. Furthermore, the combustion chamber can be operated safely and yet very close to the lean extinction limit by a corresponding selection of setpoint values for the pressure pulsations.
  • the fuel supply to at least one burner of the combustion chamber can be enriched by a predetermined value.
  • the maximum value of the pressure pulsations can be determined empirically, for example, and defines the smallest distance to the lean extinction limit, at which still a stable operation of the combustion chamber can be ensured.
  • the fuel supply to at least one burner may be reduced to a predetermined value.
  • a maximum distance between the combustion reaction and the lean extinction limit is defined for the operation of the combustion chamber, which should not be exceeded. This measure ensures that the lowest possible distance to the lean extinction limit is always maintained, which leads to low pollutant emissions.
  • a pulsation window is defined for the operation of the combustion chamber, in which the burners of the combustion chamber are operated and which ensures a sufficient, but very small distance from the lean extinction limit and at the same time compliance with low limit values for the pollutant emissions ,
  • a combustion chamber 1 of a firing system is equipped with a plurality of burners 2, whereby a multi-burner system is formed.
  • the burners 2 are arranged on an inlet side of, for example, an annular combustion chamber 3 of the combustion chamber 1.
  • a gas turbine in particular a power plant, designed firing system is located upstream of the combustion chamber 1 usually a compressor not shown here, while downstream of the combustion chamber 1, the actual, not shown here turbine is arranged.
  • the burners 2 are divided into two groups, namely a main group and a subgroup.
  • the burners 2 of the main group are symbolized here by full circles and are referred to below as the main burner 4.
  • the burners 2 of the subgroup are symbolized by empty circles and are also referred to below as secondary burners 5.
  • the main burners 4 are operated fatter than the auxiliary burners 5. Accordingly, the main burners 4 regularly have a greater distance to the lean extinction limit of the combustion reaction than the auxiliary burners 5. Due to the given exponential relationship between NO x and combustion temperature produce the main burner 4 significantly more NO x than the auxiliary burner 5.
  • the main burners 4 have a significantly greater influence on the combustion reaction in the combustion chamber 3 than the auxiliary burners 5.
  • An equal number of burners in both groups could therefore, for example, by a different dimensioning of the main burner. 4 and the auxiliary burner 5 are achieved with respect to different mass flow rates.
  • a fuel supply system 6 For supplying the burner 2 with fuel, a fuel supply system 6 is provided which supplies the burners 2 with a total fuel flow 7 via a corresponding overall line. This total fuel flow is thereby split by the fuel supply system 6 into a main fuel stream 8 assigned to the main burners of the main group and a secondary fuel stream 9 assigned to the auxiliary burners 5 of the subgroup. Corresponding distribution devices are not shown here.
  • the individual burners 2 are supplied with fuel from the fuel supply system 6 via corresponding individual lines with individual fuel streams 10. It can also be between here the main burners 4 associated Hauptbrennstoffeinzelströmen 11 and the secondary burners associated Maubrennscherinzelströmen 12 are distinguished.
  • a control device 13 is provided, which is coupled to the actuation of the fuel supply system 6 with this and which is also connected to at least one pulsation sensor 14 for measuring pressure pulsations in the combustion chamber 1 and in the combustion chamber 3. Furthermore, the control device 13 is connected to at least one emission sensor 15, with the aid of pollutant emissions in the exhaust gases of the combustion chamber 1 or downstream of the turbine can be detected.
  • the gas turbine is operated such that the fuel supply to the burners 2 is controlled at least for the maintenance of a stationary or quasi-stationary operation of the gas turbine as a function of pressure pulsations occurring in the combustion chamber 1.
  • FIG. 1 whose abscissa represents the mass ratio of fuel to oxidizer, which is generally designated ⁇ .
  • the mass ratio of fuel to oxidizer
  • the diagram of FIG. 1 includes a solid line a pulsation curve P ( ⁇ ) and a dashed line an emission curve E ( ⁇ ) , each depending on the fuel / oxidizer mass ratio ⁇ .
  • the diagram according to FIG. 1 also contains a maximum value for pressure pulsations P max , which defines a limit value for maximum permissible pressure pulsations P, and a minimum value for pressure pulsations P min , which defines a limit value for minimum permissible pressure pulsations P.
  • a maximum value for pollutant emissions E max is also entered here, which defines a maximum permissible limit value for the pollutant emissions.
  • the diagram plots a lean extinction limit ⁇ L of the fuel / oxidizer ratio ⁇ , which represents such a lean fuel / oxidizer ratio ⁇ that the extinguishment of the combustion reaction must be expected.
  • a minimum value for pollutant emissions E min is entered.
  • the gas turbine or its combustion chamber 1 can now be operated very close to the lean extinguishing limit ⁇ L , ie at very low pollutant emissions E and yet comparatively safe, ie stable.
  • the intensity or the amplitude of the pressure pulsations occurring in the combustion chamber 1 is determined via the at least one pulsation sensor 14 and compared with at least one, in particular empirically determined, pulsation setpoint P soll .
  • the pressure pulsations P thus form the reference variable of the closed loop constructed here.
  • the fuel supply of the burner 2 is then adapted. Since the Oxidatorzuschreib, so from the compressor (not shown) coming airflow is generally constant, the change in the fuel supply to the fuel / oxidizer ratio ⁇ affects. On the basis of the dependence of the pressure pulsations P on the fuel / oxidizer ratio ⁇ explained with reference to FIG. 1, the change in the fuel supply also leads to a corresponding change in the pressure pulsations P. Here the control circuit closes.
  • the control of the fuel supply is performed so that adjusts a proportional control with respect to the pulsation setpoint P soll .
  • the control should be performed in the manner of a PI controller.
  • the pulsation setpoint P soll is expediently selected so that it is as close as possible to the pulsation maximum value P max .
  • the operating method according to the invention operates so that upon reaching the maximum value of the pressure pulsations P max or when exceeding the setpoint P soll of the pressure pulsation P, the fuel supply to one or more burners 2 is enriched, in particular by a predetermined value.
  • the current operating point then moves from the desired pulsation value P soll or from the point of intersection between the pressure pulsation curve P ( ⁇ ) and the pulsation axial value P max along the pulsation curve P ( ⁇ ) to the left, ie towards enrichment. Since the pressure pulsations P in the pulsation maximum value P max have a predetermined minimum distance to the lean extinction limit ⁇ L , enrichment of the fuel supply enriches the distance to the lean extinction limit ⁇ L (to the left).
  • the operating method can be designed such that when the minimum pulsation value P min is reached or when the pulsation setpoint P soll falls , the fuel supply to at least one of the burners 2 is reduced, in particular by a predetermined value.
  • This has the consequence that the current operating state then migrates from the pulsation setpoint P setpoint or from the intersection between the minimum pulsation value P min and the pulsation curve P ( ⁇ ) to the right, ie in the direction of leaning along the pulsation curve P ( ⁇ ) .
  • the Pulsationsminimalwerts P min while a maximum distance to the lean extinction limit ⁇ L is defined, which should not be exceeded to ensure low pollutant emissions E.
  • the Pulsationsminimalwert P min is suitably chosen so that in this area is about the emission maximum value E max .
  • an operating window F is thus defined for the operation of the combustion chamber 1 as a function of the pressure pulsations P.
  • the combustion chamber 1 can be operated safely, that is to say stably, wherein always the smallest possible, but sufficient, distance from the lean extinction limit ⁇ L can be ensured.
  • the pollutant emissions E always move between the maximum value of the pollutant emissions E max and the minimum value of the pollutant emissions E min .
  • monitoring of the pollutant emissions E can additionally be carried out for monitoring the pressure pulsations P.
  • the fuel supply to at least one of the burners 2 can then also be regulated as a function of the pollutant emissions E. It is intended in particular to a scheme in which the fuel supply is at least one burner 2 emaciated when the pollutant emissions E reach the emission maximum value E max . As a result of the emaciation, the operating state moves from the point of intersection between emission maximum value E max and emission curve E ( ⁇ ) to the right, that is to say in the direction of leaning along the course of emission E ( ⁇ ) .
  • the monitoring of the lower limit of the operating window F can be carried out optionally with reference to the emission maximum value E max or the minimum pulsation value P min .
  • the absolute value of the pulsation minimum value P min is comparatively small, measurement errors can occur, so that the monitoring of the pollutant emissions E under certain boundary conditions can lead to more accurate results.
  • the combination of the two control methods can also cover the case that the relationship between the pollutant emissions E and the pressure pulsations P changes during the course of the operation of the gas turbine.
  • the total fuel flow 7 can in principle be increased or decreased accordingly.
  • the fuel supply of all burners 2 is substantially evenly emaciated or enriched.
  • the power of the gas turbine changes, which is not desirable in every case. Rather, a gas turbine should be operated regularly with constant load. Therefore, an embodiment is preferred in which, in order to reduce the pressure pulsations, the fuel supply to the main burners 4 is enriched, while the fuel supply to the auxiliary burners 5 is emaciated. The enrichment of the main burner 4 and the emaciation of the auxiliary burner 5 is carried out so that the total fuel flow 7 remains constant.
  • At least one of the auxiliary burners 5 can also be switched off and the main burners 4 can at the same time be enriched so far that the total fuel flow 7 remains constant. This measure also leads to a reduction of the pressure pulsations.
  • the above-described alternatively or cumulatively applicable measures for reducing the pressure pulsations P can be used within the scope of the operating method according to the invention be used to increase the distance to the lean erase limit ⁇ L again on reaching the Pulsationsmaximalwerts P max .
  • the fuel supply to the main burners 4 is emaciated, while the fuel supply to the secondary burners 5 is enriched, with leaning and enrichment are coordinated so that the total fuel flow 7 remains constant.
  • at least one of the auxiliary burners 5 is switched off when the minimum pulsation value P min or upon reaching the maximum emission value E max, at least one of the auxiliary burners 5 can additionally or alternatively be connected to the measure described above, while at the same time the fuel supply to the main burners 4 is reduced is that in turn the total fuel flow 7 remains constant.
  • the fuel individual streams 10 can be supplied to the individual burners 2 via individual lines. It is also possible for the Hauptbrennscherinzelströme 11 and 12 for the Maubrunscherinszelströme separate common supply lines, in particular ring lines to provide, from which individual supply lines to the main burners 4 and Vietnamese Maubrennern 5 branch off.
  • the individual burners 2 that is to say the main burners 4 and the auxiliary burners 5, are assigned to the same burner stage. It is also possible to assign the main burner 4 and the secondary burner 5 different burner stages.
  • the main group of burners 2 then forms a main stage, while the subgroup of burners 2 forms a secondary stage.
  • the main stage may be a premix stage of a premix burner
  • the secondary stage is a pilot stage, which may be formed, for example, in the form of a lance in the premix burner.
  • FIG. 3 shows by way of example a premix burner whose premix stage forms the main burner 4 and whose pilot stage forms the auxiliary burner 5.
  • the combustion chamber 1 usually has several such Vormischbrenner, whereby a multi-burner system is present.
  • the auxiliary burner 5 of the pilot stage generates a pilot flame 16, which essentially serves to stabilize the flame front.
  • the main burner 4 produces the premix stage of a premix flame 17. While the premix flame 17 usually leads to relatively low pollutant emissions E and generates comparatively high pressure pulsations P, the pilot flame 16 causes higher pollutant emissions E with simultaneously lower pressure pulsations P.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Feuerungsanlage mit Mehr-Brenner-System zur Heißgaserzeugung, insbesondere eine Gasturbine einer Kraftwerksanlage, umfassend eine Brennkammer (1) mit wenigstens einem Brenner (2).
Um die Brennkammer (1) nahe an der mageren Löschgrenze stabil zu betreiben, wird die Brennstoffzufuhr zu wenigstens einem Brenner (2) für einen stationären Betrieb der Gasturbine in Abhängigkeit von in der Brennkammer (1) auftretenden Druckpulsationen geregelt.

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Feuerungsanlage mit Mehr-Brenner-System zur Heißgaserzeugung, insbesondere Gasturbine, vorzugsweise einer Kraftwerksanlage.
  • Stand der Technik
  • Eine Feuerungsanlage, z.B. eine Gasturbine, weist üblicherweise eine Brennkammer mit mehreren Brennern auf. Des weiteren ist regelmäßig eine Brennstoffversorgungsanlage vorgesehen, mit deren Hilfe die Brenner mit Brennstoff versorgt werden.
  • Im Hinblick auf immer strenger werdende Vorschriften über einzuhaltende Grenzwerte für Schadstoffemissionen wird versucht, die Brenner möglichst mager zu betreiben, das heißt, mit einem deutlichen Überschuss an Oxidator, in der Regel Luft. Durch den Magerbetrieb kann vor allem die Entstehung besonders schädlicher NOx-Emissionen erheblich reduziert werden. Durch eine magere Verbrennung wird die Verbrennungsreaktion gleichzeitig an ihre magere Löschgrenze angenähert. Für minimale Schadstoffemissionen wird daher versucht, die Gasturbine bzw. ihre Brennkammer möglichst nahe an der mageren Löschgrenze zu betreiben. Bei einem herkömmlichen Betriebsverfahren muss dazu die Brennstoffversorgung in Abhängigkeit verschiedener Randbedingungen eingestellt werden. Üblicherweise berücksichtigte Randbedingungen sind zum Beispiel die Umgebungstemperatur, die relative Luftfeuchtigkeit, der aktuelle Luftmassenstrom, der insbesondere vom Verschmutzungsgrad eines der Brennkammer vorgeschalteten Verdichters abhängt, die Schaltstellung ("ein" oder "aus") einer Brennstoff- und/oder Luftvorwärmeinrichtung, die Zusammensetzung des aktuell verwendeten Brennstoffs und so weiter. Besonders aufwendig wird die Steuerung der Brennstoffversorgunganlage, wenn die berücksichtigten Randbedingungen variieren. Beispielsweise wird sich die Umgebungstemperatur und/oder die Brennstoffzusammensetzung im Verlauf eines Betriebstags der Gasturbine in der Regel verändern. Da sich die einzelnen Randbedingungen unterschiedlich auf die Stabilität des Verbrennungsvorgangs auswirken, gelingt es nicht immer, für die Brennstoffzuführung eine Einstellung zu finden, die einen stabilen Betrieb der einzelnen Brenner nahe an der mageren Löschgrenze ermöglicht. Um dennoch einen ordnungsgemäßen Betrieb der Gasturbine gewährleisten zu können, was insbesondere bei einer Kraftwerksanlage zur Erzeugung von Strom oberste Priorität hat, wird regelmäßig in Kauf genommen, dass die Brennkammer bezüglich der mageren Löschgrenze mit einem Sicherheitsabstand betrieben wird, wobei dann die daraus zwangsläufig resultierenden größeren Schadstoffemissionen ebenfalls in Kauf genommen werden müssen.
  • Darstellung der Erfindung
  • Hier setzt die vorliegende Erfindung an. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für ein Betriebsverfahren der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die insbesondere einen sicheren Betrieb der Brennkammer nahe der mageren Löschgrenze vereinfacht bzw. erst ermöglicht. Vorzugsweise soll ein bislang erforderlicher Sicherheitsabstand zur mageren Löschgrenze verringert werden.
  • Erfindungsgemäß wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, die Brennstoffzufuhr zu den Brennern der Brennkammer in Abhängigkeit von in der Brennkammer auftretenden Druckpulsationen zu regeln. Das bedeutet, dass die in der Brennkammer auftretenden Druckpulsationen als Führungsgröße für die Regelung der Brennstoffzufuhr zu den Brennern dienen. Die Erfindung nutzt dabei die Erkenntnis, dass die Druckpulsationen bei einer Annäherung des Verbrennungsprozesses an die magere Löschgrenze zunehmen. Von besonderer Bedeutung ist hierbei jedoch die überraschende Erkenntnis, dass die Intensität oder Amplitude der Druckpulsationen bei gewissen charakteristischen Frequenzen mit dem Abstand zwischen dem Verbrennungsprozess und der zugehörigen mageren Löschgrenze korreliert, und zwar im wesentlichen unabhängig von den den Verbrennungsprozess und/oder die magere Löschgrenze beeinflussenden Randbedingungen, wie zum Beispiel Umgebungstemperatur, Brennstoffzusammensetzung und Luftfeuchtigkeit. Das bedeutet, dass eine Änderung der Randbedingungen, die zum Beispiel zu einer Vergrößerung des Abstands des momentan ablaufenden Verbrennungsprozesses zur mageren Löschgrenze führt, mit einer Abnahme der auftretenden Druckpulsationen einhergeht.
  • Die Druckpulsationen können auf herkömmliche Weise erfasst werden, was einen Vergleich zwischen einem gemessenen Istwert und einem vorbestimmten oder einstellbaren Sollwert ermöglicht und in Abhängigkeit dieses Soll-Ist-Vergleichs der Druckpulsationen eine entsprechende Adaption der Brennstoffversorgung ermöglicht. Durch diese Rückkopplung über die Druckpulsationen wird für die Brennstoffversorgung der Brenner ein geschlossener Regelkreis bereitgestellt. Der Betrieb der Gasturbine bzw. die Brennstoffversorgung der Brenner wird durch das erfindungsgemäße Betriebsverfahren extrem vereinfacht, da durch die Berücksichtigung der Intensität oder Amplitude der Druckpulsationen die weiter oben bereits mehrfach genannten Randbedingungen, welche den Abstand zwischen dem Verbrennungsprozess und der mageren Löschgrenze bestimmen, in der Regelung automatisch mit berücksichtigt werden, ohne dass sie dazu explizit überwacht und/oder in die Regelung integriert werden müssen. Es liegt auf der Hand, dass sich durch das erfindungsgemäße Betriebsverfahren der Aufwand zum Betreiben der Gasturbine deutlich reduziert. Des weiteren kann die Brennkammer durch eine entsprechende Auswahl von Sollwerten für die Druckpulsationen sicher und dennoch sehr nahe an der mageren Löschgrenze betrieben werden.
  • Von besonderem Vorteil ist beim erfindungsgemäßen Betriebsverfahren auch die Tatsache, dass eine moderne Brennkammer ohnehin regelmäßig mit einer Sensorik zur Überwachung der Druckpulsationen ausgestattet ist, so dass zum erfindungsgemäßen Betreiben der Gasturbine auf diese Sensorik zugegriffen werden kann und dementsprechend keine zusätzlichen Kosten für die Instrumentalisierung bzw. Realisierung des erfindungsgemäßen Betriebsverfahrens entstehen.
  • Gemäß einer besonders vorteilhaften Ausführungsform kann bei Erreichen eines vorbestimmten oder einstellbaren Maximalwerts für die Druckpulsationen die Brennstoffzufuhr zu wenigstens einem Brenner der Brennkammer um einen vorbestimmten Wert angefettet werden. Der Maximalwert der Druckpulsationen kann beispielsweise empirisch ermittelt werden und definiert den kleinsten Abstand zur mageren Löschgrenze, bei dem noch ein stabiler Betrieb der Brennkammer gewährleistet werden kann. Die Vorgabe eines bestimmten Werts, um welchen die Brennstoffzufuhr zum jeweiligen Brenner ggf. angefettet werden soll, ermöglicht dabei ein rasches Ansprechen der Regelung und somit die Einhaltung eines möglichst kleinen Abstands zwischen Pulsations-Istwert und Pulsations-Sollwert.
  • Bei einer anderen Ausführungsform kann bei Erreichen eines vorbestimmten oder einstellbaren Minimalwerts für die Druckpulsationen die Brennstoffzufuhr zu wenigstens einem Brenner um einen vorbestimmten Wert abgemagert werden. Bei dieser Ausführungsform wird für den Betrieb der Brennkammer ein maximaler Abstand zwischen der Verbrennungsreaktion und der mageren Löschgrenze definiert, der nicht überschritten werden soll. Durch diese Maßnahme wird gewährleistet, dass stets ein möglichst niedriger Abstand zur mageren Löschgrenze aufrechterhalten wird, was zu niedrigen Schadstoffemissionen führt.
  • Mit dem Maximalwert und dem Minimalwert für die Druckpulsationen wird für den Betrieb der Brennkammer ein Pulsationsfenster definiert, in dem die Brenner der Brennkammer betrieben werden und das einen hinreichenden, jedoch sehr kleinen Abstand von der mageren Löschgrenze und gleichzeitig die Einhaltung niedriger Grenzwerte für die Schadstoffemissionen gewährleistet.
  • Weitere wichtige Merkmale und Vorteile des erfindungsgemäßen Betriebsverfahrens ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Kurze Beschreibung der Zeichnungen
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen, jeweils schematisch,
  • Fig. 1
    ein Diagramm, in dem die Verläufe von Druckpulsationen und Schadstoffemissionen über einem Brennstoff/Oxidator-Verhältnis aufgetragen sind,
    Fig. 2
    eine schaltplanartige Prinzipdarstellung einer Brennkammer,
    Fig. 3
    eine Darstellung wie in Fig. 2, jedoch bei einer anderen Ausführungsform.
    Wege zur Ausführung der Erfindung
  • Entsprechend Fig. 2 ist eine Brennkammer 1 einer im übrigen nicht dargestellten Feuerungsanlage mit mehreren Brennern 2 ausgestattet, wodurch ein Mehr-Brenner-System ausgebildet wird. Die Brenner 2 sind dabei an einer Eintrittsseite eines beispielsweise ringförmigen Brennraums 3 der Brennkammer 1 angeordnet. Bei einer als Gasturbine, insbesondere einer Kraftwerksanlage, ausgestalteten Feuerungsanlage befindet sich stromauf der Brennkammer 1 üblicherweise ein hier nicht gezeigter Verdichter, während stromab der Brennkammer 1 die eigentliche, hier nicht gezeigte Turbine angeordnet ist.
  • Die Brenner 2 sind in zwei Gruppen unterteilt, nämlich in eine Hauptgruppe und eine Nebengruppe. Die Brenner 2 der Hauptgruppe sind hier durch Vollkreise symbolisiert und werden im folgenden auch als Hauptbrenner 4 bezeichnet. Im Unterschied dazu sind die Brenner 2 der Nebengruppe durch Leerkreise symbolisiert und werden im folgenden auch als Nebenbrenner 5 bezeichnet. Üblicherweise werden die Hauptbrenner 4 fetter als die Nebenbrenner 5 betrieben. Dementsprechend weisen die Hauptbrenner 4 regelmäßig einen größeren Abstand zur Magerlöschgrenze der Verbrennungsreaktion auf als die Nebenbrenner 5. Aufgrund des gegebenen exponentiellen Zusammenhangs zwischen NOx und Feuerungstemperatur produzieren die Hauptbrenner 4 deutliche mehr NOx als die Nebenbrenner 5. Im Unterschied zur hier gewählten Darstellung ist die Anzahl der Hauptbrenner 4 üblicherweise größer als die Anzahl der Nebenbrenner 5. Jedenfalls haben die Hauptbrenner 4 einen erheblich größeren Einfluss auf die Verbrennungsreaktion im Brennraum 3 als die Nebenbrenner 5. Eine gleiche Brenneranzahl in beiden Gruppen könnte daher grundsätzlich z.B. durch eine unterschiedliche Dimensionierung der Hauptbrenner 4 und der Nebenbrenner 5 hinsichtlich unterschiedlicher Massendurchsätze erzielt werden.
  • Für die Versorgung der Brenner 2 mit Brennstoff ist eine Brennstoffversorgungsanlage 6 vorgesehen, die über eine entsprechende Gesamtleitung den Brennern 2 einen Brennstoffgesamtstrom 7 zuführt. Dieser Brennstoffgesamtstrom wird dabei von der Brennstoffversorgungsanlage 6 in einen den Hauptbrennern der Hauptgruppe zugeordneten Brennstoffhauptstrom 8 und einen den Nebenbrennern 5 der Nebengruppe zugeordneten Brennstoffnebenstrom 9 aufgeteilt. Entsprechende Verteilereinrichtungen sind hier nicht dargestellt. Die einzelnen Brenner 2 werden von der Brennstoffversorgungsanlage 6 über entsprechende Einzelleitungen mit Brennstoffeinzelströmen 10 mit Brennstoff versorgt. Dabei kann auch hier zwischen den Hauptbrennern 4 zugeordneten Hauptbrennstoffeinzelströmen 11 und den Nebenbrennern zugeordneten Nebenbrennstoffeinzelströmen 12 unterschieden werden.
  • Des weiteren ist eine Steuereinrichtung 13 vorgesehen, die zur Betätigung der Brennstoffversorgungsanlage 6 mit dieser gekoppelt ist und die außerdem mit wenigstens einem Pulsationssensor 14 zur Messung von Druckpulsationen in der Brennkammer 1 bzw. im Brennraum 3 verbunden ist. Des weiteren ist die Steuereinrichtung 13 mit wenigstens einem Emissionssensor 15 verbunden, mit dessen Hilfe Schadstoffemissionen in den Abgasen der Brennkammer 1 oder stromab der Turbine erfasst werden können.
  • Erfindungsgemäß wird die Gasturbine so betrieben, dass die Brennstoffzufuhr zu den Brennern 2 zumindest für die Aufrechterhaltung eines stationären oder quasi stationären Betriebs der Gasturbine in Abhängigkeit von Druckpulsationen geregelt wird, die in der Brennkammer 1 auftreten.
  • Zum besseren Verständnis des erfindungsgemäßen Regelungskonzepts wird noch auf Fig. 1 verwiesen, deren Abszisse das Massenverhältnis von Brennstoff zu Oxidator wiedergibt, das allgemein mit λ bezeichnet wird. Auf der Ordinate sind zum einen Intensität bzw. die Amplituden der Druckpulsationen P und zum anderen die Massenanteile der Schadstoffemissionen E im Abgas der Brennkammer 1 aufgetragen. Das Diagramm gemäß Fig. 1 enthält mit durchgezogener Linie einen Pulsationsverlauf P(λ) sowie mit unterbrochener Linie einen Emissionsverlauf E(λ), jeweils in Abhängigkeit des Brennstoff/Oxidator-Massenverhältnisses λ. Hierbei ist zu erkennen, dass der Pulsationsverlauf P(λ) von links nach rechts, also mit zunehmender Abmagerung des Brennstoff/Oxidator-Verhältnisses λ ansteigt, während im Unterschied dazu der Emissionsverlauf E(λ) mit zunehmender Abmagerung, also von links nach rechts abnimmt.
  • Das Diagramm gemäß Fig. 1 enthält außerdem einen Maximalwert für Druckpulsationen Pmax, welcher einen Grenzwert für maximal noch zulässige Druckpulsationen P definiert, sowie einen Minimalwert für Druckpulsationen Pmin, der einen Grenzwert für minimal zulässige Druckpulsationen P definiert. Des weiteren ist hier noch ein Maximalwert für Schadstoffemissionen Emax eingetragen, der einen für die Schadstoffemissionen maximal zulässigen Grenzwert definiert. Schließlich ist in das Diagramm noch eine magere Löschgrenze λL des Brennstoff/Oxidator-Verhältnisses λ eingetragen, die ein so mageres Brennstoff/Oxidator-Verhältnis λ repräsentiert, dass dabei mit dem Erlöschen der Verbrennungsreaktion gerechnet werden muss. Schließlich ist noch ein Minimalwert für Schadstoffemissionen Emin eingetragen.
  • Mit Hilfe des erfindungsgemäßen Betriebsverfahrens kann nun die Gasturbine bzw. deren Brennkammer 1 sehr nahe an der mageren Löschgrenze λL, also bei sehr niedrigen Schadstoffemissionen E und dennoch vergleichsweise sicher, also stabil betrieben werden. Durch den Einsatz einer schnell reagierenden Regelung wird der Betrieb der Gasturbine nahe der mageren Löschgrenze deutlich sicherer als im Vergleich zu einer herkömmlichen Steuerung. Hierzu wird über den wenigstens einen Pulsationssensor 14 die Intensität bzw. die Amplitude der in der Brennkammer 1 auftretenden Druckpulsationen ermittelt und mit zumindest einem, insbesondere empirisch bestimmten, Pulsationssollwert Psoll verglichen. Die Druckpulsationen P bilden somit die Führungsgröße des hier aufgebauten geschlossenen Regelkreises. In Abhängigkeit der Regelabweichung wird dann die Brennstoffzufuhr der Brenner 2 adaptiert. Da die Oxidatorzufuhr, also die vom Verdichter (nicht gezeigt) kommende Luftströmung im allgemeinen konstant bleibt, wirkt sich die Änderung der Brennstoffzufuhr auf das Brennstoff/Oxidator-Verhältnis λ aus. Aufgrund der mit Bezug auf Fig. 1 erläuterten Abhängigkeit der Druckpulsationen P vom Brennstoff/Oxidator-Verhältnis λ führt die Änderung der Brennstoffzufuhr auch zu einer entsprechenden Änderung der Druckpulsationen P. Hier schließt sich der Regelkreis.
  • Bevorzugt wird die Regelung der Brennstoffzufuhr so durchgeführt, dass sich bezüglich des Pulsationssollwertes Psoll eine proportionale Regelung einstellt. Vorzugsweise soll die Regelung nach Art eines PI-Reglers durchgeführt werden. Zweckmäßig wird der Pulsationssollwert Psoll so gewählt, dass er sich möglichst nahe am Pulsationsmaximalwert Pmax befindet.
  • Gemäß einer bevorzugten Ausführungsform arbeitet das erfindungsgemäße Betriebsverfahren so, dass bei Erreichen des Maximalwerts der Druckpulsationen Pmax oder beim Übersteigen des Sollwerts Psoll der Druckpulsation P die Brennstoffzufuhr zu einem oder mehreren Brennern 2 angefettet wird, insbesondere um einen vorbestimmten Wert. Das bedeutet, dass der aktuelle Betriebspunkt dann vom Pulsationssollwert Psoll bzw. vom Schnittpunkt zwischen dem Druckpulsationsverlauf P(λ) und dem Pulsationsmaxialwert Pmax entlang des Pulsationsverlaufs P(λ) nach links, also in Richtung Anfettung wandert. Da die Druckpulsationen P im Pulsationsmaximalwert Pmax einen vorbestimmten minimalen Abstand zur mageren Löschgrenze λL aufweisen, wird durch die Anfettung der Brennstoffzufuhr der Abstand zur mageren Löschgrenze λL (nach links) vergrößert.
  • Des weiteren kann das Betriebsverfahren so ausgestaltet sein, dass es bei Erreichen des Pulsationsminimalwerts Pmin oder beim Absinken unter den Pulsationssollwert Psoll die Brennstoffzufuhr zu wenigstens einem der Brenner 2 abmagert, insbesondere um einen vorbestimmten Wert. Dies hat zur Folge, dass der aktuelle Betriebszustand dann vom Pulsationssollwert Psoll bzw. vom Schnittpunkt zwischen Pulsationsminimalwert Pmin und Pulsationsverlauf P(λ) nach rechts, also in Richtung Abmagerung entlang des Pulsationsverlaufs P(λ) wandert. Mit Hilfe des Pulsationsminimalwerts Pmin wird dabei ein maximaler Abstand zur mageren Löschgrenze λL definiert, der zur Gewährleistung niedriger Schadstoffemissionen E nicht überschritten werden soll. Wie aus Fig. 1 hervorgeht, ist der Pulsationsminimalwert Pmin zweckmäßig so gewählt, dass in diesem Bereich etwa auch der Emissionsmaximalwert Emax liegt.
  • Mit Hilfe des Pulsationsmaximalwerts Pmax und des Pulsationsminimalwerts Pmin wird somit ein Betriebsfenster F für den Betrieb der Brennkammer 1 in Abhängigkeit der Druckpulsationen P definiert. In diesem Betriebsfenster F kann die Brennkammer 1 sicher, also stabil betrieben werden, wobei stets ein möglichst kleiner, jedoch hinreichender Abstand von der mageren Löschgrenze λL gewährleistet werden kann. Des weiteren wird auch erreicht, dass sich die Schadstoffemissionen E stets zwischen dem Maximalwert der Schadstoffemissionen Emax und dem Minimalwert der Schadstoffemissionen Emin bewegen.
  • Optional kann zur Überwachung der Druckpulsationen P zusätzlich eine Überwachung der Schadstoffemissionen E durchgeführt werden. Die Brennstoffzuführung zu wenigstens einem der Brenner 2 kann dann außerdem in Abhängigkeit der Schadstoffemissionen E geregelt werden. Gedacht ist dabei vor allem an eine Regelung, bei welcher die Brennstoffzuführung bei wenigstens einem Brenner 2 dann abgemagert wird, wenn die Schadstoffemissionen E den Emissionsmaximalwert Emax erreichen. Durch die Abmagerung wandert der Betriebszustand vom Schnittpunkt zwischen Emissionsmaximalwert Emax und Emissionsverlauf E(λ) nach rechts, also in Richtung Abmagerung entlang des Emissionsverlaufs E(λ).
  • Da der Emissionsmaximalwert Emax und der Pulsationsminimalwert Pmin zweckmäßig demselben Brennstoff/Oxidator-Verhältnis λ zugeordnet sind, kann die Überwachung der unteren Grenze des Betriebsfensters F wahlweise anhand des Emissionsmaximalwerts Emax oder des Pulsationsminimalwerts Pmin erfolgen. Da jedoch der Absolutwert des Pulsationsminimalwerts Pmin vergleichsweise klein ist, kann es zu Messfehlern kommen, so dass hier die Überwachung der Schadstoffemissionen E bei bestimmten Randbedingungen zu genaueren Ergebnissen führen kann. Bevorzugt wird jedoch eine kumulative Anwendung der beiden Führungsgrößen, wobei die Brennstoffzuführung immer dann abgemagert wird, wenn zumindest eine der beiden Führungsgrößen ihren jeweiligen Grenzwert, also entweder den Emissionsmaximalwert Emax oder den Pulsationsminimalwert Pmin erreicht.
  • Durch die Kombination der beiden Regelverfahren kann auch der Fall abgedeckt werden, dass sich der Zusammenhang zwischen den Schadstoffemissionen E und den Druckpulsationen P im Verlauf des Betriebs der Gasturbine verändert.
  • Zum Anfetten und zum Abmagern der Brennstoffzuführung der Brenner 2 kann grundsätzlich der Brennstoffgesamtstrom 7 entsprechend erhöht oder erniedrigt werden. Insbesondere wird dabei die Brennstoffversorgung aller Brenner 2 im wesentlichen gleichmäßig abgemagert bzw. angefettet. Durch die Änderung des Brennstoffgesamtstroms 7 ändert sich jedoch die Leistung der Gasturbine, was nicht in jedem Fall erwünscht ist. Vielmehr soll eine Gasturbine regelmäßig mit konstanter Last betrieben werden. Bevorzugt wird daher eine Ausführungsform, bei welcher zum Reduzieren der Druckpulsationen die Brennstoffzufuhr zu den Hauptbrennern 4 angefettet wird, während die Brennstoffzufuhr zu den Nebenbrennern 5 abgemagert wird. Die Anfettung der Hauptbrenner 4 und die Abmagerung der Nebenbrenner 5 wird dabei so durchgeführt, dass der Brennstoffgesamtstrom 7 konstant bleibt. Erreicht wird dies durch eine entsprechende andere Aufteilung des Brennstoffgesamtstroms 7 auf den Brennstoffhauptstrom 8 und den Brennstoffnebenstrom 9. Da der Verbrennungsprozess im Brennraum 3 durch die Hauptbrenner 4 dominiert und somit im wesentlichen durch diese definiert ist und sich daher die Nebenbrenner 5 z.B. aufgrund ihrer kleineren Anzahl und/oder aufgrund ihrer kleineren Dimensionierung weniger stark auf den Verbrennungsprozess auswirken als die Hauptbrenner 4, überwiegen die Auswirkungen der Anfettung der Hauptbrenner 4, so dass die Druckpulsationen abnehmen.
  • Zusätzlich oder alternativ können - je nach Grad der Anfettung - auch wenigstens einer der Nebenbrenner 5 ausgeschaltet und die Hauptbrenner 4 gleichzeitig so weit angefettet werden, dass der Brennstoffgesamtstrom 7 konstant bleibt. Auch diese Maßnahme führt zu einer Absenkung der Druckpulsationen. Die vorbeschriebenen alternativ oder kumulativ anwendbaren Maßnahmen zur Absenkung der Druckpulsationen P können im Rahmen des erfindungsgemäßen Betriebsverfahrens dazu genutzt werden, bei Erreichen des Pulsationsmaximalwerts Pmax den Abstand zur mageren Löschgrenze λL wieder zu vergrößern.
  • Zum Anheben der Druckpulsationen P bzw. zum Absenken der Schadstoffemissionen E kann dann auf entsprechende Weise vorgegangen werden. Beispielsweise wird hierzu die Brennstoffzufuhr zu den Hauptbrennern 4 abgemagert, während die Brennstoffzufuhr zu den Nebenbrennern 5 angefettet wird, wobei Abmagerung und Anfettung so aufeinander abgestimmt sind, dass der Brennstoffgesamtstrom 7 konstant bleibt. Sofern bei Erreichen des Pulsationsminimalwerts Pmin bzw. bei Erreichen des Emissionsmaximalwerts Emax zumindest einer der Nebenbrenner 5 ausgeschaltet ist, kann zusätzlich oder alternativ zur vorstehend beschriebenen Maßnahme zumindest einer der Nebenbrenner 5 zugeschaltet werden, während gleichzeitig die Brennstoffzufuhr zu den Hauptbrennern 4 so weit abgemagert wird, dass wiederum der Brennstoffgesamtstrom 7 konstant bleibt.
  • Die Brennstoffeinzelströme 10 können dabei über einzelne Leitungen den einzelnen Brennern 2 zugeführt werden. Ebenso ist es möglich, für die Hauptbrennstoffeinzelströme 11 und für die Nebenbrennstoffeinzelströme 12 separate gemeinsame Zuführungsleitungen, insbesondere Ringleitungen, vorzusehen, von denen einzelne Versorgungsleitungen zu den Hauptbrennern 4 bzw. zu den Nebenbrennern 5 abzweigen.
  • Bei der in Fig. 2 gezeigten Ausführungsform sind die einzelnen Brenner 2, also die Hauptbrenner 4 und die Nebenbrenner 5 derselben Brennerstufe zugeordnet. Ebenso ist es möglich, die Hauptbrenner 4 und die Nebenbrenner 5 unterschiedlichen Brennerstufen zuzuordnen. Die Hauptgruppe der Brenner 2 bildet dann eine Hauptstufe, während die Nebengruppe der Brenner 2 eine Nebenstufe bildet. Beispielsweise kann die Hauptstufe eine Vormischstufe eines Vormischbrenners sein, während die Nebenstufe eine Pilotstufe ist, die z.B. in Form einer Lanze im Vormischbrenner ausgebildet sein kann. Dementsprechend zeigt Fig. 3 beispielhaft einen Vormischbrenner, dessen Vormischstufe den Hauptbrenner 4 bildet und dessen Pilotstufe den Nebenbrenner 5 bildet. Die Brennkammer 1 weist üblicherweise mehrere derartige Vormischbrenner auf, wodurch auch ein Mehr-Brenner-System vorliegt. Der Nebenbrenner 5 der Pilotstufe erzeugt eine Pilotflamme 16, die im wesentlichen zur Stabilisierung der Flammenfront dient. Im Unterschied dazu erzeugt der Hauptbrenner 4 der Vormischstufe einer Vormischflamme 17. Während die Vormischflamme 17 in der Regel zu relativ niedrigen Schadstoffemissionen E führt und dafür vergleichsweise hohe Druckpulsationen P erzeugt, verursacht die Pilotflamme 16 höhere Schadstoffemissionen E bei gleichzeitig niedrigeren Druckpulsationen P.
  • Das zuvor beschriebene Regelungskonzept kann nun ohne weiteres auf das hier gezeigte mehrstufige Brennerprinzip angewendet werden, um auch hier die Brennkammer 1 möglichst nahe an der mageren Löschgrenze λL sicher betreiben zu können.
  • Bezugszeichenliste
  • 1
    Brennkammer
    2
    Brenner
    3
    Brennraum
    4
    Hauptbrenner
    5
    Nebenbrenner
    6
    Brennstoffversorgungsanlage
    7
    Brennstoffgesamtstrom
    8
    Brennstoffhauptstrom
    9
    Brennstoffnebenstrom
    10
    Brennstoffeinzelstrom
    11
    Hauptbrennstoffeinzelstrom
    12
    Nebenbrennstoffeinzelstrom
    13
    Steuereinrichtung
    14
    Pulsationssensor
    15
    Emissionssensor
    16
    Pilotflamme
    17
    Vormischflamme
    P
    Druckpulsation
    P(λ)
    Pulsationsverlauf
    Pmax
    Maximalwert für die Druckpulsationen
    Pmin
    Minimalwert für die Druckpulsationen
    E
    Schadstoffemission
    E(λ)
    Emissionsverlauf
    Emax
    Maximalwert für die Schadstoffemissionen
    Emin
    Minimalwert für die Schadstoffemissionen
    λ
    Brennstoff/Oxidator-Verhältnis
    λL
    magere Löschgrenze
    F
    Betriebsfenster

Claims (12)

  1. Verfahren zum Betreiben einer Feuerungsanlage mit Mehr-Brenner-System zur Heißgaserzeugung, insbesondere Gasturbine, vorzugsweise einer Kraftwerksanlage,
    - wobei die Feuerungsanlage eine Brennkammer (1) mit mehreren Brennern (2) aufweist,
    - bei dem die Brennstoffzufuhr zu wenigstens einem Brenner (2) für einen stationären Betrieb der Feuerungsanlage in Abhängigkeit von in der Brennkammer (1) auftretenden Druckpulsationen (P) geregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Regelung der Brennstoffzufuhr bezüglich eines einstellbaren oder vorbestimmten Sollwerts (Psoll) der Druckpulsationen (P) proportional erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei Erreichen eines vorbestimmten oder einstellbaren Maximalwerts (Pmax) für die Druckpulsationen (P) oder beim Überschreiten des Sollwerts (Psoll) der Druckpulsationen (P) die Brennstoffzufuhr zu wenigstens einem Brenner (2) angefettet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass bei Erreichen eines vorbestimmten oder einstellbaren Minimalwerts (Pmin) für die Druckpulsationen (P) oder beim Unterschreiten des Sollwerts (Psoll) der Druckpulsationen (P) die Brennstoffzufuhr zu wenigstens einem Brenner (2) abgemagert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Brennstoffzufuhr zu wenigsten einem Brenner (2) außerdem in Abhängigkeit von in den Abgasen der Brennkammer (2) auftretenden Schadstoffemissionen (E) geregelt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass bei Erreichen eines vorbestimmten oder einstellbaren Maximalwerts (Emax) für die Schadstoffemissionen (E) die Brennstoffzufuhr zu wenigstens einem Brenner (2) um einen vorbestimmten Wert abgemagert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
    - dass die Brennkammer (1) mehrere Brenner (2) aufweist, denen eine Brennstoffversorgungsanlage (6) jeweils einen Brennstoffeinzelstrom (10) zuführt, wobei alle Brennstoffeinzelströme (10) zusammen einen Brennstoffgesamtstrom (7) bilden,
    - dass die Brenner (2) in eine Hauptgruppe mit mehreren Hauptbrennern (4) und eine Nebengruppe mit mehreren Nebenbrennern (5) unterteilt sind.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass bei Erreichen des Maximalwerts (Pmax) für die Druckpulsationen (P) die Brennstoffzufuhr zu den Hauptbrennern (4) angefettet und die Brennstoffzufuhr zu den Nebenbrennern (5) so abgemagert wird, dass der Brennstoffgesamtstrom (7) konstant bleibt.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass bei Erreichen des Maximalwerts (Pmax) für die Druckpulsationen (P) zumindest einer der Nebenbrenner (5) ausgeschaltet und die Brennstoffzufuhr zu den Hauptbrennern (4) so weit angefettet wird, dass der Brennstoffgesamtstrom (7) konstant bleibt.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass bei Erreichen des Minimalwerts (Pmin) für die Druckpulsationen (P) und/oder bei Erreichen des Maximalwerts (Emax) für die Schadstoffemissionen (E) die Brennstoffzufuhr zu den Hauptbrennern (4) abgemagert und die Brennstoffzufuhr zu den Nebenbrennern (5) so angefettet wird, dass der Brennstoffgesamtstrom (7) konstant bleibt.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass bei Erreichen des Minimalwerts (Pmin) für die Druckpulsationen (P) und/oder bei Erreichen des Maximalwerts (Emax) für die Schadstoffemissionen (E) zumindest einer der Nebenbrenner (5) zugeschaltet und die Brennstoffzufuhr zu den Hauptbrennern (4) so weit abgemagert wird, dass der Brennstoffgesamtstrom (7) konstant bleibt.
  12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet,
    - dass die Hauptbrenner (4) und die Nebenbrenner (5) derselben Brennerstufe zugeordnet sind, oder
    - dass die Hauptbrenner (4) und die Nebenbrenner (5) verschiedener Brennstoffstufen, z.B. einer Vormischstufe und einer Pilotstufe, zugeordnet sind.
EP05106361A 2004-07-29 2005-07-12 Betriebsverfahren für eine Feuerungsanlage Active EP1621811B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004036911A DE102004036911A1 (de) 2004-07-29 2004-07-29 Betriebsverfahren für eine Feuerungsanlage

Publications (2)

Publication Number Publication Date
EP1621811A1 true EP1621811A1 (de) 2006-02-01
EP1621811B1 EP1621811B1 (de) 2007-09-12

Family

ID=35159989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05106361A Active EP1621811B1 (de) 2004-07-29 2005-07-12 Betriebsverfahren für eine Feuerungsanlage

Country Status (4)

Country Link
US (1) US7513117B2 (de)
EP (1) EP1621811B1 (de)
AT (1) ATE373206T1 (de)
DE (2) DE102004036911A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840464A1 (de) * 2006-03-30 2007-10-03 ALSTOM Technology Ltd Brennkammer
US8434311B2 (en) 2006-11-01 2013-05-07 Alstom Technology Ltd. System for controlling a combustion process for a gas turbine

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568349B2 (en) * 2005-09-30 2009-08-04 General Electric Company Method for controlling combustion device dynamics
US20090061369A1 (en) * 2007-08-28 2009-03-05 Gas Technology Institute Multi-response time burner system for controlling combustion driven pulsation
US8631656B2 (en) * 2008-03-31 2014-01-21 General Electric Company Gas turbine engine combustor circumferential acoustic reduction using flame temperature nonuniformities
US8636500B2 (en) * 2008-09-26 2014-01-28 Air Products And Chemicals, Inc. Transient operation of oxy/fuel combustion system
EP2248999A1 (de) * 2008-12-24 2010-11-10 Alstom Technology Ltd Kraftwerk mit CO2-Abscheidung
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
CH703218A1 (de) 2010-05-26 2011-11-30 Alstom Technology Ltd Verfahren zum Betreiben eines Gas-und-Dampf-Kombikraftwerk mit Rauchgasrezirkulation sowie Kraftwerk.
DE102011102720B4 (de) 2010-05-26 2021-10-28 Ansaldo Energia Switzerland AG Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung
US9017064B2 (en) * 2010-06-08 2015-04-28 Siemens Energy, Inc. Utilizing a diluent to lower combustion instabilities in a gas turbine engine
DE102011117603A1 (de) 2010-11-17 2012-05-24 Alstom Technology Ltd. Brennkammer und Verfahren zum Dämpfen von Pulsationen
CH705179A1 (de) * 2011-06-20 2012-12-31 Alstom Technology Ltd Verfahren zum Betrieb einer Verbrennungsvorrichtung sowie Verbrennungsvorrichtung zur Durchführung des Verfahrens.
US9920696B2 (en) 2011-08-09 2018-03-20 Ansaldo Energia Ip Uk Limited Method for operating a gas turbine and gas turbine unit useful for carrying out the method
US9631560B2 (en) * 2011-11-22 2017-04-25 United Technologies Corporation Fuel-air mixture distribution for gas turbine engine combustors
WO2013126279A1 (en) * 2012-02-22 2013-08-29 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
KR20170001104A (ko) * 2015-06-25 2017-01-04 두산중공업 주식회사 진동제어를 통한 제어방법
US10920676B2 (en) * 2016-11-17 2021-02-16 General Electric Company Low partial load emission control for gas turbine system
US10436123B2 (en) * 2017-03-08 2019-10-08 General Electric Company Methods and apparatus for closed-loop control of a gas turbine
US11181274B2 (en) * 2017-08-21 2021-11-23 General Electric Company Combustion system and method for attenuation of combustion dynamics in a gas turbine engine
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636093A1 (de) * 1996-09-05 1998-03-12 Siemens Ag Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme
DE10104151A1 (de) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Verfahren zur Herstellung einer Brenneranlage
EP1286031A1 (de) * 2001-08-23 2003-02-26 Mitsubishi Heavy Industries, Ltd. Steuerungsvorrichtung einer Gasturbine
EP1327824A1 (de) * 2001-12-24 2003-07-16 ABB Schweiz AG Bestimmung und Regelung des Betriebszustandes einer Gasturbinenbrennkammer bei Annäherung an die Löschgrenze
WO2005093326A2 (de) * 2004-03-29 2005-10-06 Alstom Technology Ltd Gasturbinen-brennkammer und zugehöriges betriebsverfahren

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216777C (de)
DD216777B1 (de) * 1983-07-11 1989-07-26 Braunkohlenwerk Gustav Sobottk Verfahren zur traegheitslosen erfassung veraenderlicher eigenschaften des wirbelschichtbettmaterials
DE3630177A1 (de) 1986-09-04 1988-03-10 Ruhrgas Ag Verfahren zum betreiben von vormischbrennern und vorrichtung zum durchfuehren dieses verfahrens
JP2618448B2 (ja) * 1988-08-09 1997-06-11 株式会社日立製作所 ガスタービン燃焼器状態監視装置及び監視方法及び制御方法
US6059560A (en) * 1997-03-04 2000-05-09 The United States Of America As Represented By The United States Department Of Energy Periodic equivalence ratio modulation method and apparatus for controlling combustion instability
US6922612B2 (en) * 2001-01-30 2005-07-26 Mitsubishi Heavy Industries, Ltd. Combustion vibration estimating apparatus, plant and gas turbine plant
US6672071B2 (en) * 2001-09-27 2004-01-06 General Electric Company Methods for operating gas turbine engines
US6742341B2 (en) * 2002-07-16 2004-06-01 Siemens Westinghouse Power Corporation Automatic combustion control for a gas turbine
US20040224268A1 (en) * 2003-05-07 2004-11-11 Keller Jay O. Method for controlling lean combustion stability
US6973791B2 (en) * 2003-12-30 2005-12-13 General Electric Company Method and apparatus for reduction of combustor dynamic pressure during operation of gas turbine engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636093A1 (de) * 1996-09-05 1998-03-12 Siemens Ag Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme
DE10104151A1 (de) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Verfahren zur Herstellung einer Brenneranlage
EP1286031A1 (de) * 2001-08-23 2003-02-26 Mitsubishi Heavy Industries, Ltd. Steuerungsvorrichtung einer Gasturbine
EP1327824A1 (de) * 2001-12-24 2003-07-16 ABB Schweiz AG Bestimmung und Regelung des Betriebszustandes einer Gasturbinenbrennkammer bei Annäherung an die Löschgrenze
WO2005093326A2 (de) * 2004-03-29 2005-10-06 Alstom Technology Ltd Gasturbinen-brennkammer und zugehöriges betriebsverfahren

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840464A1 (de) * 2006-03-30 2007-10-03 ALSTOM Technology Ltd Brennkammer
US7901203B2 (en) 2006-03-30 2011-03-08 Alstom Technology Ltd. Combustion chamber
US8434311B2 (en) 2006-11-01 2013-05-07 Alstom Technology Ltd. System for controlling a combustion process for a gas turbine

Also Published As

Publication number Publication date
US7513117B2 (en) 2009-04-07
ATE373206T1 (de) 2007-09-15
US20060040225A1 (en) 2006-02-23
DE502005001467D1 (de) 2007-10-25
DE102004036911A1 (de) 2006-03-23
EP1621811B1 (de) 2007-09-12

Similar Documents

Publication Publication Date Title
EP1621811B1 (de) Betriebsverfahren für eine Feuerungsanlage
EP1472447B1 (de) Verfahren zum betrieb einer gasturbogruppe
DE69225912T2 (de) Steuervorrichtung für ein gasturbinentriebwerk
EP2594848B1 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
EP3023698B1 (de) Vorrichtung zur bestimmung eines stufungsverhältnisses, eine gasturbine oder ein flugzeugtriebwerk mit einer solchen vorrichtung und eine verwendung dafür
EP2005066B1 (de) Verfahren zum starten einer feuerungseinrichtung bei unbekannten rahmenbedingungen
DE69506142T2 (de) Verbesserte Verbrennungsanlage mit niedriger Schadstoffemission für Gasturbinen
DE69010080T2 (de) Brennstoffregelsystem eines Gasturbinenmotors mit verbesserter Wiederzündfähigkeit.
EP0976982A1 (de) Verfahren zum Betrieb einer Gasturbinenbrennkammer mit gasförmigem Brennstoff
DE69108525T2 (de) Kontrolverfahren für Gasturbinenbrennkammer.
DE2656840A1 (de) Verfahren und vorrichtung zur regelung der energiezufuhr zu einer heizvorrichtung
EP1840465A2 (de) Brennersystem mit gestufter Brennstoff-Eindüsung
EP3690318B1 (de) Verfahren zur regelung eines brenngas-luft-gemisches in einem heizgerät
DE112016003474T5 (de) Brennstoff-fliessgeschwindigkeit-einstellverfahren, vorrichtung zum implementieren des verfahrens und mit der vorrichtung versehene gasturbinenanlage
DE69217093T2 (de) Verbrennungsvorrichtung und Steuerverfahren
CH698404A2 (de) Lean-Blowout-Auslöschschutz durch Regelung der Düsen-Äquivalenzverhältnisse.
DE102005061486B4 (de) Verfahren zum Betreiben einer Brennkammer einer Gasturbine
WO2007113130A1 (de) Brenneranordnung, vorzugsweise in einer brennkammer für eine gasturbine
EP2071156B1 (de) Brennstoffverteilungssystem für eine Gasturbine mit mehrstufiger Brenneranordnung
EP2538139A2 (de) Verfahren zum Betrieb einer Verbrennungsvorrichtung sowie Verbrennungsvorrichtung zur Durchführung des Verfahrens
EP0969192B1 (de) Verfahren zum Abgleichen des Brennstoffverteilsystems bei Gasturbinen mit mehreren Brennern
EP1533569B1 (de) Verfahren zum Betrieb einer Feuerungseinrichtung
EP1971804B1 (de) Verfahren zum betreiben einer feuerungsanlage
DE102005011287A1 (de) Verfahren sowie eine Vorrichtung zum Betreiben wenigstens eines Brenners zur Befeuerung der Brennkammer einer Wärmekraftmaschine
EP3628845B1 (de) Verfahren zum betreiben einer gasturbinenanordnung und gasturbinenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060726

17Q First examination report despatched

Effective date: 20060828

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005001467

Country of ref document: DE

Date of ref document: 20071025

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071213

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20080612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080712

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080313

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005001467

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005001467

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005001467

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANSALDO ENERGIA IP UK LIMITED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005001467

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005001467

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20080612

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180712

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502005001467

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20200428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005001467

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005001467

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ANSALDO ENERGIA IP UK LIMITED, LONDON, GB