EP1616772B1 - Determination of the loading gauge of rail vehicles - Google Patents

Determination of the loading gauge of rail vehicles Download PDF

Info

Publication number
EP1616772B1
EP1616772B1 EP05450097A EP05450097A EP1616772B1 EP 1616772 B1 EP1616772 B1 EP 1616772B1 EP 05450097 A EP05450097 A EP 05450097A EP 05450097 A EP05450097 A EP 05450097A EP 1616772 B1 EP1616772 B1 EP 1616772B1
Authority
EP
European Patent Office
Prior art keywords
profile
height
lines
dimensional
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05450097A
Other languages
German (de)
French (fr)
Other versions
EP1616772A1 (en
Inventor
Josef Alois Birchbauer
Wolfgang Marius
Michael Glöckl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG Oesterreich
Original Assignee
Siemens AG Oesterreich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG Oesterreich filed Critical Siemens AG Oesterreich
Priority to AT05450097T priority Critical patent/ATE438546T1/en
Publication of EP1616772A1 publication Critical patent/EP1616772A1/en
Application granted granted Critical
Publication of EP1616772B1 publication Critical patent/EP1616772B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/02Profile gauges, e.g. loading gauges

Definitions

  • the invention relates to a method for determining a loading gauge of a rail vehicle and to a method for measuring a three-dimensional profile of a rail vehicle, on the basis of which the determination of the loading gauge is possible.
  • the clearance gauge (clearance limit profile) is the maximum permissible extent of a railway vehicle in height and width, with which it may safely move within the space laterally and in particular above the tracks and in which no external objects may protrude. This area to be kept free of adjacent buildings is called the "rule clearing room”. Conversely, no parts of the locomotive, the car or the load may leave the specified profile.
  • the clearance gauge is basically standardized but may vary between railway infrastructure operators. For all vehicles in national and international traffic, an international clearance gauge is specified.
  • the EP 1 186 856 A2 describes a device for profile measurement, in which a measuring pulse in wave or beam form is guided via reflectors along a frame and fed to a receiver. An evaluation unit detects disturbances such as the entry of an object into the wave or beam path. By this device, the exceeding of a predetermined profile can be detected. However, no precise information on the profile available can be obtained.
  • the DE 40 15 086 A1 discloses a device for measuring profiles, in particular of rail vehicles, in which a measuring portal is arranged stationary or movable on its own tracks and on the supports of Messportals ever a non-contact measuring Length measuring device is mounted vertically displaceable in the supports.
  • the determined measuring points are formed in a computer unit as a line of the rail vehicle profile, and this outline can be compared with the prescribed railroad profile.
  • a similar device is in the DE 196 46 098 A1 disclosed. These devices only detect a single cut (in horizontal or vertical direction) throughout the car profile in the form of a number of measurement points. A load-oversize between the points or cut planes, such as by a protruding beam, would therefore not be detected. The calculation of a loading gauge that captures the entire vehicle in the sense of a 3-dimensional profile is not apparent from the cited documents.
  • the solution according to the invention makes it possible to determine the loading dimension with the desired accuracy and a restriction to convex loading dimensions is not necessary.
  • the adaptation to e.g. country-specific regulations are possible without interfering with the recording technology; rather, the comparison is sufficient by software.
  • the invention also allows additional applications; For example, other information can also be derived from the three-dimensional profile, which can be used for the Verification and management of the train in question can be used.
  • load-monitoring systems should be mentioned here, which check whether the load has been moved; Likewise, a car type classification is possible due to the three-dimensional profile.
  • the loading measure is made with respect to a sequence of discrete values of the altitude coordinate
  • a sequence of values of the altitude coordinate (“altitude values”) is determined (step a), then (step b) an associated extreme one for each altitude value Profile depth value (as upper bound) determined, which is in terms of the height value within the three-dimensional profile measurement, and finally (step c) created from the profile depth values thus obtained a load gauge.
  • the three-dimensional profile measurement can be used in addition to obtaining further information associated with the rail vehicle, e.g. for detecting information attached to the rail vehicle in font and / or symbol form, e.g. reading a car number or dangerous goods number.
  • the three-dimensional profile measurement is produced in the form of a sequence of profile lines which respectively correspond to different values of the longitudinal coordinate and run at essentially fixed longitudinal coordinates.
  • step a) from the comparison of each other in the height coordinate of corresponding sections or points of the profile lines, a profile curve is generated which does not have any profile depth values which lies within the total of the profile lines with regard to the respectively associated height value.
  • a further aspect of the invention is that a method is used for measuring a three-dimensional profile of a rail vehicle, in which the profile lines are recorded one after the other by means of a non-contact measuring point and the profile lines thus obtained are assembled according to their respectively assigned longitudinal coordinate values to form a three-dimensional profile measurement.
  • laser light can be used in a favorable manner.
  • the rail vehicle is moved relative to a measuring point, which receives a profile line at a number of times in each case.
  • the measuring point is stationary and the speed of the rail vehicle moved past the measuring point is measured during the recording of the profile lines, and from the recording times of the profile lines by means of integration of the speed measurement, the respectively assigned longitudinal coordinate values are determined.
  • a sensor for measuring the light transit time can advantageously be used to measure the profile of the vehicle in the region of the profile line in the form of the distance from the sensor as a function of the altitude coordinate.
  • a train set ZG is shown in front view, side view and top view, wherein for the sake of clarity, only one carriage of the train set ZG is shown.
  • directions h, x, 1 are indicated, namely the longitudinal direction 1 along the (preferably just imaginary) track, the height h and the depth x.
  • the depth x preferably designates the distance of a profile point from the center line m; the center line m is best purchased on the track GA.
  • the directions h, x, 1, also corresponding non-Cartesian coordinates may be used, eg as in Fig. 2 indicates an elevation angle as a height coordinate (instead of a straight height) and a radial distance from an outside point as a depth coordinate (instead of a distance from the center plane).
  • Depth values that are closer to the center line m than a reference value are referred to as "inside” or "inside”, those located opposite to the center line m as "outside” or “outside”. Accordingly, of a number of points or depth values, the term "furthest" which is farthest from the center line m (in the sense of the depth coordinate x used) is designated.
  • the measuring point MS consists of one or more fixedly positioned cameras K1, K2, K3.
  • the depth information obtained from a single measuring operation in the longitudinal direction 1 (or temporally, see below) and in the height direction h is limited and must if necessary for the entire train set be assembled from continuously measured single data sets.
  • a camera K1 is realized as a light transit time line sensor.
  • the sensor measures at regular intervals a vertical profile line of the train Z1, wherein using laser light LL the transit time of the laser light reflected back to the sensor is measured and converted into a distance from the sensor location.
  • a technical realization of such a light transit time line sensor by means of a CMOS sensor is in the article of P.
  • Mengel et al., 'Fast range imaging by CMOS sensor array through multiple double short time integration (MDSI)' Proceedings of the International Conference on Image Processing 2001, Vol. 2, pp.
  • the thus measured profile line pz (right in Fig. 2 ) corresponds to the train profile with the longitudinal coordinate 1 held in place and can be represented as a function x (h, t) in which the depth information determined by means of the sensor is a function of the height coordinate h and the recording time t.
  • the speed of the train set ZG is also measured so that the profile lines x (h, t) can be assigned a speed v (t). Areas that are not reached due to the receiving geometry ("blind spots") form undercuts, which in the Fig. 2 are shown dotted.
  • a three-dimensional train panorama of the entire clothing can be assembled.
  • radiometric information recorded at the same time can be used as support, which is obtained, for example, from image acquisition of the train, optionally with additional color information.
  • the depth output of the line sensor can be considered as a function d (h, t), cf. Fig. 2 ,
  • the time t assumes discrete values which correspond in each case to the time of a recording; h sweeps an interval from a minimum to a maximum (bottom and top).
  • the function T (1) can be interpreted in particular as the time that elapses from the entry of the train into the measuring range until the horizontal pulling position 1 is reached. If necessary, in particular if profiles are to be interpolated to given values of the longitudinal coordinate 1, a rectified panorama can be generated by resampling.
  • the loading gauge is derived from the three-dimensional train panorama using the entire three-dimensional train profile over the entire length of the train set ZG.
  • Fig. 4 For example, be done by - are searched for each height of the profile lines after the outermost at this height value occurring profile depth value - starting from a sequence of eg equidistant height values.
  • a sequence of eg equidistant height values e.g equidistant height values.
  • the values of the depth coordinate x are shown for all profile lines (shown in Fig. 4a only the three profiles p1 ... p3 the Fig. 3 ) at the respectively examined height value h1 determined and selected from these the outermost value x E (h1) ( Fig. 4b ).
  • the extreme profile depth values thus obtained (which are nowhere within the totality of the profile lines), arranged as a function of the associated height values, are summarized as profile pf and thus represent the desired loading dimension of the train set ZG.
  • Fig. 5 illustrates another procedure for determining the loading measure pf 'as an extreme profile.
  • the height range to be examined is divided into suitable sections (intervals) H1, H2, ... H7.
  • those height values may be used as section boundaries at which profile lines p1... P3 intersect, whereby, of course, crossovers which lie "within” (ie there is a profile value located farther outward) need not be taken into account.
  • a profile history is determined, which represents an upper bound for the profile lines in this section.
  • a corresponding section of the profile line that is most extreme in that section may be selected, eg, p2 in section H1, p1 in H2, p2 in H3, p3 in H4, and so on, and these sections become profile profiles to an overall extremal profile pf 'composed.
  • This method is particularly suitable when the individual profiles p1... P3 are in vectored form.
  • each height value represents a separate section, and there each determines an outermost profile depth value x E as the profile function of the relevant section (ie the height value in question) becomes.
  • Fig. 6 illustrates the reconstruction of a facial profile GP using horizontal colored stripes of light projected and picked up on a human face G for this purpose.
  • a projector positioned in place of the camera K2
  • a vertical striped pattern could be projected onto the train set, which is recorded with the camera K1; the lateral offset (along the longitudinal direction l) can be interpreted as depth information x.
  • Another possibility for detecting the depth information in the form of a train panorama is the multiple detection of the train profile from different angles, as in Fig. 1 illustrated by the three cameras K1, K2, K3. Corresponding elements of the images are recognized and based on the disparity of the position takes place a 3D reconstruction. Methods of this type are used, for example, for detecting terrain structures, cf. http://www.starlabo.co.jp/en/business/linesensor-1.html.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Bestimmen eines Lademaßes eines Schienenfahrzeugs sowie ein Verfahren zum Messen eines dreidimensionalen Profils eines Schienenfahrzeugs, auf dessen Grundlage die Bestimmung des Lademaßes möglich ist.The invention relates to a method for determining a loading gauge of a rail vehicle and to a method for measuring a three-dimensional profile of a rail vehicle, on the basis of which the determination of the loading gauge is possible.

Für die Sicherheit des Betriebs auf einer Eisenbahnstrecke oder anderen Strecke für Schienenfahrzeuge ist die durchgängige Kompatibilität des Lichtraumprofils mit dem Lademaß der verkehrenden Zugsgarnituren eine unabdingbare Voraussetzung. Das Lichtraumprofil (Lichtraumbegrenzungsprofil) ist die größte zulässige Ausdehnung eines Eisenbahnfahrzeugs in Höhe und Breite, mit der es sich sicher innerhalb des Raumes seitlich und insbesondere oberhalb der Gleise bewegen darf und in den keine äußeren Objekte hineinragen dürfen. Dieser von angrenzender Bebauung freizuhaltende Raum wird als Regellichtraum bezeichnet. Umgekehrt dürfen keine Teile des Triebfahrzeugs, der Wagen oder des Ladegutes das vorgegebene Profil verlassen. Das Lichtraumprofil ist grundsätzlich standardisiert, kann jedoch zwischen Betreibern der Eisenbahninfrastruktur variieren. Für alle Fahrzeuge im nationalen und grenzüberschreitenden Verkehr ist ein internationales Lichtraumprofil festgelegt.For the safety of operation on a railway line or other track for rail vehicles, the consistent compatibility of the clearance gauge with the loading gauge of the train sets is an essential requirement. The clearance gauge (clearance limit profile) is the maximum permissible extent of a railway vehicle in height and width, with which it may safely move within the space laterally and in particular above the tracks and in which no external objects may protrude. This area to be kept free of adjacent buildings is called the "rule clearing room". Conversely, no parts of the locomotive, the car or the load may leave the specified profile. The clearance gauge is basically standardized but may vary between railway infrastructure operators. For all vehicles in national and international traffic, an international clearance gauge is specified.

Das Lademaß (= englisch: 'loading gauge') ist eine Begrenzungslinie, die beschreibt, bis zu welchen äußeren Maßen in Höhe und Breite ein Fahrzeug, wie z.B. ein Güterwagen, bei Mittelstellung des Fahrzeugs im geraden Gleis sich tatsächlich erstreckt (wirkliches Lademaß). Abhängig von der Fahrtroute eines Zuges sind hinsichtlich des Lichtraumprofils für die zugehörigen Wagen Lademaß-Überschreitungen nach bestehenden Vorschriften oder Betriebsordnungen möglich. Bei Überschreitung des erlaubten Lademaßes kann es zur Beschädigung von Ladung, Wagen und Infrastruktur kommen.The loading gauge (= English: 'loading gauge') is a boundary line that describes to what external dimensions in height and width a vehicle, such as. a freight car, in the middle position of the vehicle in the straight track actually extends (real load gauge). Depending on the route of a train loading tolerances are possible according to existing regulations or operating regulations with regard to the clearance gauge for the associated car. Exceeding the permitted load gauge may damage the cargo, wagon and infrastructure.

Die Prüfung der Wagen auf unzulässige Überschreitung erfolgt derzeit vorwiegend durch visuelle Kontrolle durch Eisenbahnpersonal. In der Vergangenheit wurden auch mechanische Schablonen verwendet. Aufgrund von Personalreduktionen und zur Verbesserung der Sicherung des Eisenbahnbetriebs durch eine vom Menschen unabhängige und somit objektive und standardisierbare Messung ist eine automatisierte Prüfung erforderlich.The examination of the car for impermissible exceeding currently takes place mainly by visual inspection by railway personnel. In the past, mechanical templates were also used. Due to staff reductions and to improve the safety of the railway operation by a human-independent and thus objective and standardizable measurement an automated test is required.

Die EP 1 186 856 A2 beschreibt eine Vorrichtung zur Profilmessung, bei der ein Messimpuls in Wellen- oder Strahlenform über Reflektoren entlang eines Rahmens geleitet und einem Empfänger zugeführt wird. Eine Auswerteeinheit erfasst Störungen wie den Eintritt eines Gegenstandes in den Wellen- bzw. Strahlenverlauf. Durch diese Vorrichtung kann die Überschreitung eines vorgegebenen Profils erkannt werden. Allerdings können keine genauen Informationen über das vorliegende Profil gewonnen werden. Die DE 40 15 086 A1 offenbart eine Einrichtung zum Messen von Profilen, insbesondere von Schienenfahrzeugen, bei welchem ein Messportal ortsfest oder auf eigenen Gleisen verfahrbar angeordnet ist und an den Stützen des Messportals je ein berührungslos messendes Längenmessgerät in den Stützen vertikal verschieblich angebracht ist. Die ermittelten Messpunkte werden in einer Rechnereinheit als Linienzug des Schienenfahrzeugprofils gebildet, und dieser Umriss kann mit dem vorgeschriebenen Eisenbahnprofil verglichen werden. Eine ähnliche Einrichtung ist in der DE 196 46 098 A1 offenbart. Diese Einrichtungen erfassen lediglich einen einzelnen Schnitt (in horizontaler oder vertikaler Richtung) durch das gesamte Wagenprofil in Form einer Anzahl von Messpunkten. Eine Lademaßüberschreitung zwischen den Punkten oder Schnittebenen, etwa durch einen herausragenden Balken, würde daher nicht entdeckt werden. Die Berechnung eines Lademaßes, das das gesamte Fahrzeug im Sinne eines 3-dimensionalen Profils erfasst, geht aus den genannten Druckschriften nicht hervor.The EP 1 186 856 A2 describes a device for profile measurement, in which a measuring pulse in wave or beam form is guided via reflectors along a frame and fed to a receiver. An evaluation unit detects disturbances such as the entry of an object into the wave or beam path. By this device, the exceeding of a predetermined profile can be detected. However, no precise information on the profile available can be obtained. The DE 40 15 086 A1 discloses a device for measuring profiles, in particular of rail vehicles, in which a measuring portal is arranged stationary or movable on its own tracks and on the supports of Messportals ever a non-contact measuring Length measuring device is mounted vertically displaceable in the supports. The determined measuring points are formed in a computer unit as a line of the rail vehicle profile, and this outline can be compared with the prescribed railroad profile. A similar device is in the DE 196 46 098 A1 disclosed. These devices only detect a single cut (in horizontal or vertical direction) throughout the car profile in the form of a number of measurement points. A load-oversize between the points or cut planes, such as by a protruding beam, would therefore not be detected. The calculation of a loading gauge that captures the entire vehicle in the sense of a 3-dimensional profile is not apparent from the cited documents.

Es ist Aufgabe der vorliegenden Erfindung, die genannten Nachteile des Stands der Technik zu überwinden und einen verbesserten Weg zur objektivierbaren Gewinnung des Lademaßes zur Verfügung zu stellen.It is an object of the present invention to overcome the said disadvantages of the prior art and to provide an improved way for objectively obtaining the loading gauge.

Die Aufgabe wird von einem Verfahren der eingangs genannten Art gelöst, bei welchem erfindungsgemäß eine dreidimensionale Profilmessung des Fahrzeugs, die einen Profiltiefenwert als Funktion einer Höhen- und einer Längskoordinate beschreibt, aufgenommen wird und unter Verwendung der dreidimensionalen Profilmessung

  1. a) eine Aufteilung der Höhenkoordinate in Abschnitte festgelegt wird,
  2. b) zu jedem Abschnitt eine zugeordnete Profilfunktion bestimmt wird, die nirgends in dem betreffenden Abschnitt einen Profiltiefenwert aufweist, der hinsichtlich des jeweils zugeordneten Höhenwerts innerhalb der dreidimensionalen Profilmessung liegt, (Bildung einer oberen Schranke) und
  3. c) aus den so gewonnenen Profilfunktionen ein Lademaß in Form eines Profils erstellt wird, das einen funktionalen Zusammenhang zwischen der Höhenkoordinate und einem äußersten Profiltiefenwert beschreibt.
The object is achieved by a method of the aforementioned type, in which according to the invention a three-dimensional profile measurement of the vehicle, which describes a profile depth value as a function of a height and a longitudinal coordinate, is recorded and using the three-dimensional profile measurement
  1. a) a division of the height coordinate into sections is determined
  2. b) determining, for each section, an associated profile function which does not have a profile depth value in the respective section which lies within the three-dimensional profile measurement with regard to the respectively associated height value (formation of an upper barrier) and
  3. c) a load gauge in the form of a profile is created from the profile functions obtained in this way, which describes a functional relationship between the height coordinate and an outermost profile depth value.

Zur Begriffsbestimmung der Tiefen-, Höhen- und Längskoordinate sowie der Begriffe "innerhalb" und "außen" bzw. "äußerster" siehe weiter unten, Beschreibung zu Fig. 1 und 2.For the definition of the depth, height and longitudinal coordinates as well as the terms "inside" and "outside" or "outermost" see below, description to Fig. 1 and 2 ,

Die erfindungsgemäße Lösung ermöglicht die Bestimmung des Lademaßes mit gewünschter Genauigkeit und eine Beschränkung auf konvexe Lademaße ist nicht erforderlich. Die Anpassung an z.B. länderspezifische Regelungen ist ohne Eingriff in die Aufnahmetechnik möglich; vielmehr reicht der Vergleich per Software aus.The solution according to the invention makes it possible to determine the loading dimension with the desired accuracy and a restriction to convex loading dimensions is not necessary. The adaptation to e.g. country-specific regulations are possible without interfering with the recording technology; rather, the comparison is sufficient by software.

Die Erfindung ermöglicht darüber hinaus zusätzliche Anwendungen; beispielsweise kann aus dem dreidimensionalen Profil auch andere Information abgeleitet werden, die für die Überprüfung und Verwaltung des betreffenden Zugs verwendet werden kann. Hier sind insbesondere Ladegut-Überwachungssysteme zu nennen, die kontrollieren, ob Ladegut verschoben ist; ebenso ist eine Wagentypklassifizierung aufgrund des dreidimensionalen Profils möglich.The invention also allows additional applications; For example, other information can also be derived from the three-dimensional profile, which can be used for the Verification and management of the train in question can be used. In particular, load-monitoring systems should be mentioned here, which check whether the load has been moved; Likewise, a car type classification is possible due to the three-dimensional profile.

Für den bevorzugten Fall, dass das Lademaß in Bezug auf eine Folge von diskreten Werten der Höhenkoordinate erstellt wird, wird (Schritt a) eine Abfolge von Werten der Höhenkoordinate ("Höhenwerte") festgelegt, sodann (Schritt b) zu jedem Höhenwert ein zugeordneter äußerster Profiltiefenwert (als obere Schranke) bestimmt, der hinsichtlich des Höhenwerts innerhalb der dreidimensionalen Profilmessung liegt, und schließlich (Schritt c) aus den so gewonnenen Profiltiefenwerte ein Lademaß erstellt.For the preferred case that the loading measure is made with respect to a sequence of discrete values of the altitude coordinate, a sequence of values of the altitude coordinate ("altitude values") is determined (step a), then (step b) an associated extreme one for each altitude value Profile depth value (as upper bound) determined, which is in terms of the height value within the three-dimensional profile measurement, and finally (step c) created from the profile depth values thus obtained a load gauge.

Wie bereits erwähnt, kann die dreidimensionale Profilmessung zusätzlich zur Gewinnung weiterer Information verwendet werden, die dem Schienenfahrzeug zugeordnet ist, wie z.B. zur Erfassung von an dem Schienenfahrzeug angebrachter Information in Schrift- und/oder Symbolform, z.B. das Lesen einer Wagennummer oder von Gefahrengut-Kennzeichen.As already mentioned, the three-dimensional profile measurement can be used in addition to obtaining further information associated with the rail vehicle, e.g. for detecting information attached to the rail vehicle in font and / or symbol form, e.g. reading a car number or dangerous goods number.

In einer zweckmäßigen Ausführungsform der Erfindung wird die dreidimensionale Profilmessung in Form einer Abfolge von Profillinien, die jeweils verschiedenen Werten der Längskoordinate entsprechen und bei im Wesentlichen festgehaltener Längskoordinate verlaufen, erstellt. In diesem Fall wird sodann gemäß Schritt a) aus dem Vergleich einander in der Höhenkoordinate entsprechender Abschnitte bzw. Punkte der Profillinien eine Profilkurve erzeugt, die nirgends Profiltiefenwerte aufweist, die hinsichtlich des jeweils zugeordneten Höhenwerts innerhalb der Gesamtheit der Profillinien liegt.In an expedient embodiment of the invention, the three-dimensional profile measurement is produced in the form of a sequence of profile lines which respectively correspond to different values of the longitudinal coordinate and run at essentially fixed longitudinal coordinates. In this case, according to step a), from the comparison of each other in the height coordinate of corresponding sections or points of the profile lines, a profile curve is generated which does not have any profile depth values which lies within the total of the profile lines with regard to the respectively associated height value.

Ein weiterer Aspekt der Erfindung besteht darin, dass zum Messen eines dreidimensionalen Profils eines Schienenfahrzeugs ein Verfahren eingesetzt wird, bei welchem die Profillinien zeitlich nacheinander mittels einer kontaktfreien Messstelle aufgenommen werden und die so gewonnenen Profillinien gemäß ihren jeweils zugeordneten Längskoordinatenwerten zu einer dreidimensionalen Profilmessung zusammengefügt werden. Zur Messung der Profillinien kann günstiger Weise Laserlicht verwendet werden.A further aspect of the invention is that a method is used for measuring a three-dimensional profile of a rail vehicle, in which the profile lines are recorded one after the other by means of a non-contact measuring point and the profile lines thus obtained are assembled according to their respectively assigned longitudinal coordinate values to form a three-dimensional profile measurement. For measuring the profile lines laser light can be used in a favorable manner.

Zur Gewinnung der dreidimensionalen Profilmessung ist es außerdem günstig, wenn das Schienenfahrzeug relativ zu einer Messstelle bewegt wird, die an einer Anzahl von Zeitpunkten jeweils eine Profillinie aufnimmt. Insbesondere vereinfacht es den Aufbau der Messanlage, wenn die Messstelle ortfest ist und während der Aufnahme der Profillinien die Geschwindigkeit des and der Messstelle vorbeibewegten Schienenfahrzeugs gemessen wird, und aus den Aufnahmezeitpunkten der Profillinien mittels Integration der Geschwindigkeitsmessung die jeweils zugeordneten Längskoordinatenwerte bestimmt werden.To obtain the three-dimensional profile measurement, it is also advantageous if the rail vehicle is moved relative to a measuring point, which receives a profile line at a number of times in each case. In particular, it simplifies the construction of the measuring system if the measuring point is stationary and the speed of the rail vehicle moved past the measuring point is measured during the recording of the profile lines, and from the recording times of the profile lines by means of integration of the speed measurement, the respectively assigned longitudinal coordinate values are determined.

Seitens der Messstelle kann vorteilhafter Weise ein Sensor zur Messung der Lichtlaufzeit verwendet werden, um das Profil des Fahrzeugs im Bereich der Profillinie in Form des Abstands von dem Sensor als Funktion der Höhenkoordinate zu messen.On the part of the measuring point, a sensor for measuring the light transit time can advantageously be used to measure the profile of the vehicle in the region of the profile line in the form of the distance from the sensor as a function of the altitude coordinate.

Die oben beschriebenen Verfahren und ihre Weiterbildungen können in günstiger Weise in Form von Software realisiert sein, insbesondere als Computerprogrammprodukt mit Programmcode-Mitteln, um das erfindungsgemäße Verfahren oder eine seiner Weiterbildungen durchzuführen, wenn das Programm auf einem Computer ausgeführt wird. Ebenso ist die Realisierung auf einem computerlesbaren Datenträger vorteilhaft, auf dem ein Computerprogramm mit Programmcode-Mitteln gespeichert ist, um das erfindungsgemäße Verfahren oder eine seiner Weiterbildungen durchzuführen, wenn das Programm auf einem Computer ausgeführt wird.The above-described methods and their developments can be implemented in a favorable manner in the form of software, in particular as a computer program product with program code means, in order to carry out the method according to the invention or one of its developments when the program is executed on a computer. Likewise, the implementation on a computer-readable data carrier is advantageous on which a computer program is stored with program code means to perform the method according to the invention or one of its further developments when the program is executed on a computer.

Die Erfindung wird im Folgenden anhand eines nicht einschränkenden Ausführungsbeispiels anhand der beigefügten Zeichnungen näher erläutert. Die Zeichnungen zeigen

Fig.1
eine Zugsgarnitur mit einer Messstelle für die Ermittlung des Lademaßes,
Fig. 2
die Generierung eines Zugpanoramas mittels eines Lichtlaufzeit-Zeilensensors,
Fig. 3
drei Profilzeilen eines Zugpanoramas,
Fig. 4
die Gewinnung des Lademaßes (Fig. 4b) aus der Gesamtheit (Fig. 4a) der Profilzeilen der Fig. 3,
Fig. 5
ein alternatives Ermittlungsverfahren des Lademaßes, sowie
Fig. 6
ein Beispiel einer mit strukturiertem Licht vermessenen Oberfläche.
The invention is explained in more detail below with reference to a non-limiting embodiment with reference to the accompanying drawings. The drawings show
Fig.1
a train set with a measuring point for the determination of the loading gauge,
Fig. 2
the generation of a train panorama by means of a light transit time line sensor,
Fig. 3
three profile lines of a train panorama,
Fig. 4
the acquisition of the loading measure ( Fig. 4b ) from the whole ( Fig. 4a ) of the profile lines of Fig. 3 .
Fig. 5
an alternative method of calculating the loading gauge, as well
Fig. 6
an example of a structured light measured surface.

Die Erfindung geht von der Aufnahme einer dreidimensionalen Messung des Zugsprofils "(Zugpanorama") über die gesamte Länge der zu prüfenden Zugsgarnitur aus. In Fig. 1 ist beispielhaft eine Zugsgarnitur ZG in Vorderansicht, Seitenansicht und Aufsicht dargestellt, wobei der Übersichtlichkeit halber lediglich ein Wagen der Zugsgarnitur ZG gezeigt ist. Außerdem sind Richtungen h, x, 1 angedeutet, nämlich die Längsrichtung 1 entlang des (vorzugsweise gerade gedachten) Gleises, die Höhe h und die Tiefe x.The invention is based on the inclusion of a three-dimensional measurement of the tension profile "(Zugpanorama") over the entire length of the train set to be tested. In Fig. 1 By way of example, a train set ZG is shown in front view, side view and top view, wherein for the sake of clarity, only one carriage of the train set ZG is shown. In addition, directions h, x, 1 are indicated, namely the longitudinal direction 1 along the (preferably just imaginary) track, the height h and the depth x.

Die Tiefe x bezeichnet vorzugsweise den Abstand eines Profilpunkts von der Mittellinie m; die Mittellinie m wird am günstigsten auf die Gleisanlage GA bezogen. Gegebenenfalls können anstelle der Richtungen h, x, 1 auch diesen entsprechende nicht-cartesische Koordinaten verwendet werden, z.B. wie in Fig. 2 angedeutet ein Höhenwinkel als Höhenkoordinate (anstelle einer geraden Höhe) und ein radialer Abstand von einem äußeren Punkt als Tiefenkoordinate (anstelle eines Abstandes von der Mittelebene). Tiefenwerte, die gegenüber einem Bezugswert näher bei der Mittellinie m liegen, werden als "innen" oder "innerhalb" bezeichnet, solche, die dem gegenüber von der Mittellinie m entfernt liegen, als "außen" oder "außerhalb". Entsprechend wird von einer Anzahl von Punkten bzw. Tiefenwerten derjenige als "äußerster" bezeichnet, der am weitesten von der Mittellinie m (im Sinne der verwendeten Tiefenkoordinate x) entfernt liegt.The depth x preferably designates the distance of a profile point from the center line m; the center line m is best purchased on the track GA. Possibly For example, instead of the directions h, x, 1, also corresponding non-Cartesian coordinates may be used, eg as in Fig. 2 indicates an elevation angle as a height coordinate (instead of a straight height) and a radial distance from an outside point as a depth coordinate (instead of a distance from the center plane). Depth values that are closer to the center line m than a reference value are referred to as "inside" or "inside", those located opposite to the center line m as "outside" or "outside". Accordingly, of a number of points or depth values, the term "furthest" which is farthest from the center line m (in the sense of the depth coordinate x used) is designated.

Zum Erzeugen des Zugpanoramas fährt die Zugsgarnitur ZG an einer Messstelle MS vorbei; die Geschwindigkeit wird zugleich schritthaltend gemessen, und die aufgenommenen 3D-Daten zu einem Zugpanorama der gesamten Garnitur zusammengesetzt. Die Messstelle MS besteht aus einer oder mehreren ortsfest positionierten Kameras K1, K2, K3.To generate the Zugpanoramas the Zugsgarnitur ZG moves past a measuring point MS; At the same time, the speed is measured in real time, and the recorded 3D data is assembled into a train panorama of the entire clothing. The measuring point MS consists of one or more fixedly positioned cameras K1, K2, K3.

Je nach dem gewählten Verfahren zur Erfassung der Tiefeninformation, d.h. der Tiefenkoordinate x in Abhängigkeit von der Höhe x und der Längskoordinate 1, ist die aus einem einzelnen Messvorgang gewonnene Tiefeninformation in der Längsrichtung 1 (bzw. zeitlich, vgl. weiter unten) sowie in der Höhenrichtung h beschränkt und muss bei Bedarf für die gesamte Zugsgarnitur aus fortlaufend gemessenen Einzel-Datensätzen zusammengefügt werden.Depending on the chosen method of acquiring the depth information, i. the depth coordinate x as a function of the height x and the longitudinal coordinate 1, the depth information obtained from a single measuring operation in the longitudinal direction 1 (or temporally, see below) and in the height direction h is limited and must if necessary for the entire train set be assembled from continuously measured single data sets.

Beispielsweise ist eine Kamera K1 als Lichtlaufzeit-Zeilensensor realisiert. Bezug nehmend auf Fig. 2 misst der Sensor in regelmäßigen Zeitabständen eine vertikal verlaufende Profilzeile des Zugs Z1, wobei unter Verwendung von Laser-Licht LL die Laufzeit des zum Sensor zurückgeworfenen Laserlichts gemessen und in einen Abstand vom Sensor-Ort umgerechnet wird. Eine technische Realisierung eines derartigen Lichtlaufzeit-Zeilensensors mittels eines CMOS-Sensors ist in dem Artikel von P. Mengel et al., 'Fast range imaging by CMOS sensor array through multiple double short time integration (MDSI)', Proceedings der International Conference on Image Processing 2001, Vol. 2, Seiten 169-172 , erhältlich unter http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=958451, beschrieben. Die so gemessene Profilzeile pz (rechts in Fig. 2) entspricht dem Zugsprofil bei festgehaltener Längskoordinate 1 und kann als Funktion x(h, t) dargestellt werden, in der die mittels des Sensors bestimmte Tiefeninformation eine Funktion der Höhenkoordinate h und der Aufnahmezeit t ist. Die Geschwindigkeit der Zugsgarnitur ZG wird ebenfalls gemessen, sodass den Profilzeilen x(h, t) eine Geschwindigkeit v(t) zugeordnet werden kann. Bereiche, die bedingt durch die Aufnahmegeometrie nicht erreicht werden, ("tote Winkel") bilden Hinterschneidungen, die im Fig. 2 punktiert dargestellt sind. Diese können, sofern erforderlich, durch den Einsatz mehrerer Sensoren, vorzugsweise in definierten verschiedenen Höhen angeordnet wie durch die weiteren Sensoren K1a, K1b in Fig. 2 angedeutet, und anschließendes Zusammenfügen der jeweils erhaltenen Messergebnisse zu einer gesamten Profilzeile weitgehend ausgeschlossen werden.For example, a camera K1 is realized as a light transit time line sensor. Referring to Fig. 2 the sensor measures at regular intervals a vertical profile line of the train Z1, wherein using laser light LL the transit time of the laser light reflected back to the sensor is measured and converted into a distance from the sensor location. A technical realization of such a light transit time line sensor by means of a CMOS sensor is in the article of P. Mengel et al., 'Fast range imaging by CMOS sensor array through multiple double short time integration (MDSI)', Proceedings of the International Conference on Image Processing 2001, Vol. 2, pp. 169-172 , available at http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=958451. The thus measured profile line pz (right in Fig. 2 ) corresponds to the train profile with the longitudinal coordinate 1 held in place and can be represented as a function x (h, t) in which the depth information determined by means of the sensor is a function of the height coordinate h and the recording time t. The speed of the train set ZG is also measured so that the profile lines x (h, t) can be assigned a speed v (t). Areas that are not reached due to the receiving geometry ("blind spots") form undercuts, which in the Fig. 2 are shown dotted. These may, if necessary, by the use of a plurality of sensors, preferably arranged in defined different heights as by the further sensors K1a, K1b in Fig. 2 indicated, and subsequent joining the results obtained in each case to an entire profile line are largely excluded.

Mithilfe der so aufgenommen 3D-Daten kann ein dreidimensionales Zugpanorama der gesamten Garnitur zusammengesetzt werden. Sofern vorhanden, kann hierbei zeitgleich aufgenommene radiometrische Information unterstützend verwendet werden, die beispielsweise aus einer Bildaufnahme des Zuges, gegebenenfalls mit zusätzlicher Farbinformation, gewonnen wird.Using the 3D data thus acquired, a three-dimensional train panorama of the entire clothing can be assembled. If available, radiometric information recorded at the same time can be used as support, which is obtained, for example, from image acquisition of the train, optionally with additional color information.

Wie bereits erwähnt kann der Tiefenoutput des Zeilensensors als Funktion d(h, t) betrachtet werden, vgl. Fig. 2. Die Zeit t nimmt hierbei diskrete Werte an, die jeweils dem Zeitpunkt einer Aufnahme entsprechen; h überstreicht ein Intervall von einem Mindest- zu einem Höchstwert (unterster und oberster Punkt). Aus dieser Funktion kann über Transformation mit der gleichzeitig gemessenen Geschwindigkeit v(t) und der daraus durch Integration gewonnenen Lagefunktion 1(t) ein rein räumliches Tiefenprofil x(h, l) = d(h, T(l)) gewonnen werden, wobei T(l) die Umkehrfunktion der Lagefunktion 1(t) ist. Die Funktion T(l) kann insbesondere als jene Zeit gedeutet werden, die vom Eintreten des Zuges in den Messbereich bis zum Erreichen der horizontalen Zugposition 1 verstreicht. Bei Bedarf, insbesondere wenn Profile zu vorgegebenen Werten der Längskoordinate 1 interpoliert werden sollen, kann durch Resampling ein rektifiziertes Panorama erzeugt werden.As already mentioned, the depth output of the line sensor can be considered as a function d (h, t), cf. Fig. 2 , The time t assumes discrete values which correspond in each case to the time of a recording; h sweeps an interval from a minimum to a maximum (bottom and top). From this function, a purely spatial depth profile x (h, l) = d (h, T (l)) can be obtained by transformation with the simultaneously measured velocity v (t) and the position function 1 (t) obtained therefrom by integration T (l) is the inverse function of the position function 1 (t). The function T (1) can be interpreted in particular as the time that elapses from the entry of the train into the measuring range until the horizontal pulling position 1 is reached. If necessary, in particular if profiles are to be interpolated to given values of the longitudinal coordinate 1, a rectified panorama can be generated by resampling.

Fig. 3 zeigt beispielhaft drei so erstellte Zeilenprofile p1, p2, p3, die jeweils einem Tiefenprofil bei festgehaltenem Längskoordinatenwert 1= l1, l2, l3 entsprechen, nämlich p1 einem Profil x(h, 11) usf. Fig. 3 shows by way of example three line profiles p1, p2, p3 thus created, each of which corresponds to a depth profile when the longitudinal coordinate value 1 = l1, l2, l3 is retained, namely p1 to a profile x (h, 11) and so on.

Das Lademaß wird aus dem dreidimensionalen Zugpanorama unter Verwendung des gesamten dreidimensionalen Zugsprofils über die Gesamtlänge der Zugsgarnitur ZG abgeleitet.The loading gauge is derived from the three-dimensional train panorama using the entire three-dimensional train profile over the entire length of the train set ZG.

Dies kann, bezugnehmend auf Fig. 4, beispielsweise dadurch geschehen, dass - ausgehend von einer Folge von z.B. äquidistanten Höhenwerten - für jede Höhe die Profilzeilen nach dem äußersten bei diesem Höhenwert vorkommenden Profiltiefenwert durchsucht werden. In den beiden Zeichnungen der Fig. 4 ist der Übersichtlichkeit halber nur ein Höhenwert h1 dieser Folge gezeigt; die Vorgangsweise ist für die gesamte zugrunde gelegte Höhenwert-Folge gleichartig. Die Werte der Tiefenkoordinate x werden für alle Profilzeilen (gezeigt sind in Fig. 4a nur die drei Profile p1...p3 der Fig. 3) an dem jeweils untersuchten Höhenwert h1 bestimmt und aus diesen der äußerste Wert xE(h1) ausgewählt (Fig. 4b). Die so erhaltenen äußersten Profiltiefenwerte (die somit nirgends innerhalb der Gesamtheit der Profilzeilen liegen), angeordnet in Abhängigkeit von den zugeordneten Höhenwerten, werden als Profil pf zusammengefasst und stellen somit das gewünschte Lademaß der Zugsgarnitur ZG dar.This can, referring to Fig. 4 For example, be done by - are searched for each height of the profile lines after the outermost at this height value occurring profile depth value - starting from a sequence of eg equidistant height values. In the two drawings of Fig. 4 For the sake of clarity, only one height value h1 of this sequence is shown; the procedure is similar for the entire underlying altitude value sequence. The values of the depth coordinate x are shown for all profile lines (shown in Fig. 4a only the three profiles p1 ... p3 the Fig. 3 ) at the respectively examined height value h1 determined and selected from these the outermost value x E (h1) ( Fig. 4b ). The extreme profile depth values thus obtained (which are nowhere within the totality of the profile lines), arranged as a function of the associated height values, are summarized as profile pf and thus represent the desired loading dimension of the train set ZG.

Fig. 5 illustriert eine andere Vorgangsweise zur Bestimmung des Lademaßes pf' als extremales Profil. Der zu untersuchende Höhenbereich wird in geeignete Abschnitte (Intervalle) H1, H2, ... H7 zerlegt. Als Abschnittsgrenzen können z.B. jene Höhenwerte verwendet werden, bei denen sich Profilzeilen p1...p3 überkreuzen, wobei natürlich Überkreuzungen, die "innerhalb" liegen (d.h. es gibt einen Profilwert der weiter außen liegt), nicht berücksichtigt werden müssen. Für jeden Abschnitt wird ein Profilverlauf bestimmt, der eine obere Schranke für die Profilzeilen in diesem Abschnitt darstellt. Beispielsweise kann ein entsprechender Abschnitt der Profilzeile ausgewählt werden, die in dem betreffenden Abschnitt am Äußersten liegt, z.B. p2 in Abschnitt H1, p1 in H2, p2 in H3, p3 in H4, usf. und diese Abschnitte werden als Profilfunktionen zu einem gesamten extremalen Profil pf' zusammengesetzt. Dieses Verfahren eignet sich insbesondere dann, wenn die einzelnen Profile p1...p3 in vektorisierter Form vorliegen. Fig. 5 illustrates another procedure for determining the loading measure pf 'as an extreme profile. The height range to be examined is divided into suitable sections (intervals) H1, H2, ... H7. For example, those height values may be used as section boundaries at which profile lines p1... P3 intersect, whereby, of course, crossovers which lie "within" (ie there is a profile value located farther outward) need not be taken into account. For each section, a profile history is determined, which represents an upper bound for the profile lines in this section. For example, a corresponding section of the profile line that is most extreme in that section may be selected, eg, p2 in section H1, p1 in H2, p2 in H3, p3 in H4, and so on, and these sections become profile profiles to an overall extremal profile pf 'composed. This method is particularly suitable when the individual profiles p1... P3 are in vectored form.

Das anhand Fig. 4 erläuterte Verfahren, bei dem das extremale Profil punktweise bestimmt wird, kann als Spezialfall des letzteren Verfahrens aufgefasst werden, nämlich indem jeder Höhenwert einen eigenen Abschnitt darstellt, und dort jeweils ein äußerster Profiltiefenwert xE als Profilfunktion des betreffenden Abschnitts (also des betreffenden Höhenwerts) bestimmt wird.The basis Fig. 4 explained method in which the extremal profile is determined pointwise, can be considered a special case of the latter method, namely by each height value represents a separate section, and there each determines an outermost profile depth value x E as the profile function of the relevant section (ie the height value in question) becomes.

Anstelle von Zeilensensoren, deren Output in Form von Profilzeilen zu einem Zugpanorama zusammengesetzt wird, können auch andere Verfahren verwendet werden, um ein Zugpanorama zu gewinnen, ohne dass hiedurch die Erfindung verlassen würde. Beispielsweise kann sogenanntes strukturiertes Licht ('coded structured light') verwendet werden. Dabei wird durch Projektion eines definierten Lichtmusters und anschließender Analyse der aufgenommenen Verzerrung auf die zugrunde liegende dreidimensionale Struktur rückgeschlossen. Das Beispiel der Fig. 6 illustriert die Rekonstruktion eines Gesichtsprofils GP unter Verwendung horizontaler farbiger Lichtstreifen, die hierzu auf ein menschliches Gesicht G projiziert und aufgenommen werden. So könnte z.B. mittels eines an Stelle der Kamera K2 positionierten Projektors ein vertikales Streifenmuster auf die Zugsgarnitur projiziert werden, das mit der Kamera K1 aufgenommen wird; die seitliche Versetzung (entlang der Längsrichtung l) kann als Tiefeninformation x interpretiert werden. Für weitere Informationen wird auf http://w4.siemens.de/ct/de/technologies/ps/hiscore.html sowie http://eia.udg.es/~jpages/coded_light/ und die dort genannte Literatur verwiesen.Instead of line sensors whose output is assembled in the form of profile lines into a train panorama, other methods can be used to obtain a train panorama, without thereby departing from the invention. For example, so-called structured light (coded structured light) can be used. It is inferred by projection of a defined light pattern and subsequent analysis of the recorded distortion on the underlying three-dimensional structure. The example of Fig. 6 illustrates the reconstruction of a facial profile GP using horizontal colored stripes of light projected and picked up on a human face G for this purpose. For example, by means of a projector positioned in place of the camera K2, a vertical striped pattern could be projected onto the train set, which is recorded with the camera K1; the lateral offset (along the longitudinal direction l) can be interpreted as depth information x. For more information, see http://w4.siemens.de/ct/en/technologies/ps/hiscore.html and http://eia.udg.es/~jpages/coded_light/ and the literature mentioned there.

Eine andere Möglichkeit zur Erfassung der Tiefeninformation in Form eines Zugpanoramas ist die mehrfache Erfassung des Zugprofils aus unterschiedlichen Blickwinkeln, wie in Fig. 1 anhand der drei Kameras K1,K2,K3 illustriert. Einander entsprechende Elemente der Bilder werden erkannt und anhand der Disparität der Position erfolgt eine 3D-Rekonstruktion. Verfahren dieser Art werden beispielsweise zum Erfassen von Geländestrukturen verwendet,vgl.http://www.starlabo.co.jp/en/business/linesensor-1.html.Another possibility for detecting the depth information in the form of a train panorama is the multiple detection of the train profile from different angles, as in Fig. 1 illustrated by the three cameras K1, K2, K3. Corresponding elements of the images are recognized and based on the disparity of the position takes place a 3D reconstruction. Methods of this type are used, for example, for detecting terrain structures, cf. http://www.starlabo.co.jp/en/business/linesensor-1.html.

Claims (10)

  1. A method for ascertaining a loading gage for rail vehicles (ZG), wherein, by implementation of a three dimensional scan of the vehicle's profile, which describes a profile depth value (x) as a function of a height coordinate (h) and a length coordinate (1), the following steps are carried out:
    a) division of the height coordinates into sections (H1, H2, ..., H7, h1),
    b) determination, for each section, of an allocated profile function (xE) nowhere containing in the respective section a profile depth value lying within the three dimensional profile scan in association with said allocated height value, and
    c) creation of a loading gage from the profile functions thus obtained, which loading gage is in the form of a profile (pf, pf1) characterizing a functional correlation between the height coordinates and a farmost profile depth value.
  2. The method as defined in claim 1, characterized in that, in step a), a sequence of values for said height coordinates ("height values") is ascertained, in step b), to each height value (h1) there is allocated a farmost profile depth value (xE) lying within said three dimensional profile scan in association with said height value, and, in step c), a loading gage (pf) is created from the profile depth values thus obtained.
  3. The method as defined in claim 1 or claim 2, characterized in that said three dimensional profile scan is implemented not only for the acquisition of information concerning the rail vehicle itself, but also, in particular, for the acquisition of information displayed on said rail vehicle in the form of alphanumerical characters or symbols.
  4. The method as defined in any one of claims 1 to 3, characterized in that said three dimensional profile scan is created in the form of a sequence of profile lines (pz, p1, p2, p3), of which each is associated with a different value of the length coordinate (1) and is recorded at a substantially frozen length coordinate (1), which profile lines (pz) are recorded sequentially at timed intervals by means of a contactless scanning element (MS) and the profile lines thus obtained are integrated according to the length coordinate values associated therewith to form a three dimensional profile scan, and thereafter, by comparison of height-equivalent sections, as defined in step a), or points in said profile lines, a profile curve is created which nowhere shows profile depth values lying within the totality of said profile lines associated with the respective allocated height value.
  5. The method as defined in claim 4, characterized in that said rail vehicle (ZG) is moved relatively to a scanning element (MS) which thus records a profile line (pz) at each of a number of points in time.
  6. The method as defined in claim 4 or claim 5, characterized in that said scanning element (MS) is stationary and, during recording of said profile lines, the speed of said rail vehicle is measured as it is moved past said scanning element, and the respective length coordinate values associated therewith are ascertained, by integration of said speed measurements, from the points in time at which the profile lines are recorded.
  7. The method as defined in any one of claims 4 to 6, characterized in that said scanning element comprises a sensor for measuring the time delay of a signal emitted from said scanning element, in order to scan the profile of the vehicle along the respective profile line in the form of distances from the sensor as a function of the height coordinate.
  8. The method as defined in any one of claims 4 to 7, characterized in that said scanning element (MS) implements laser light (LL) for scanning said profile lines.
  9. A computer program product featuring program code means for implementation of the method as defined in any one of claims 1 to 8 on a computer.
  10. A computer-readable data carrier on which there are stored program code means for implementation of the method as defined in any one of claims 1 to 8 on a computer.
EP05450097A 2004-06-24 2005-06-01 Determination of the loading gauge of rail vehicles Active EP1616772B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT05450097T ATE438546T1 (en) 2004-06-24 2005-06-01 DETERMINATION OF THE LOADING DIMENSIONS OF RAIL VEHICLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0108404A AT414168B (en) 2004-06-24 2004-06-24 DETERMINATION OF THE LOAD MEASURE OF RAIL VEHICLES

Publications (2)

Publication Number Publication Date
EP1616772A1 EP1616772A1 (en) 2006-01-18
EP1616772B1 true EP1616772B1 (en) 2009-08-05

Family

ID=35071113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05450097A Active EP1616772B1 (en) 2004-06-24 2005-06-01 Determination of the loading gauge of rail vehicles

Country Status (3)

Country Link
EP (1) EP1616772B1 (en)
AT (2) AT414168B (en)
DE (1) DE502005007828D1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018108343A1 (en) * 2018-04-09 2019-10-10 Washtec Holding Gmbh Method for automatic recognition of a loading area
CN113959337B (en) * 2021-10-26 2024-03-15 中煤科工智能储装技术有限公司 Bulk cargo loading real-time accumulation amount calculating method based on single-line laser radar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD286526A5 (en) * 1989-07-04 1991-01-31 Veb Schwermaschinenbau S.M. Kirow, DEVICE FOR MEASURING PROFILES, ESPECIALLY RAIL VEHICLES
DE4411448C5 (en) * 1994-03-31 2009-05-14 Sick Ag Method and device for controlling a given monitoring area
DE19646098A1 (en) * 1996-11-08 1998-05-14 Lothar Dr Lauck Arrangement for profile measurement, especially of railway vehicles
DE19717661A1 (en) * 1997-04-25 1998-10-29 Krupp Foerdertechnik Gmbh Continuous identification method of essential characteristics of rail vehicle
DE10044157C1 (en) * 2000-09-06 2002-01-24 Franz Rottner Vehicle profile measuring device evaluates interruption of sound waves or electromagnetic waves fed between emitter and receiver via reflectors attached to frame extending across vehicle path

Also Published As

Publication number Publication date
ATE438546T1 (en) 2009-08-15
AT414168B (en) 2006-09-15
ATA10842004A (en) 2005-12-15
DE502005007828D1 (en) 2009-09-17
EP1616772A1 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
DE3901185C2 (en)
DE112014006767B4 (en) Apparatus for creating a structure template measurement diagram or structure template measurement diagram data and methods therefor
EP3746346B1 (en) Rail vehicle and method for surveying a track section
EP1298454B1 (en) Method for recognising and tracking objects
EP2234081B1 (en) Method for producing a known fixed spatial relationship between a laser scanner and a digital camera for traffic monitoring
DE112017007467T5 (en) Method for providing interference reduction and a dynamic range of interest in a LIDAR system
EP2870765B1 (en) Method and apparatus for inspection of an undercarriage of a vehicle
DE102010012811B4 (en) Method for measuring speeds and associating the measured speeds with appropriate vehicles by collecting and merging object tracking data and image tracking data
EP0767357A1 (en) Measuring device for contactless object or surface analysis
EP3479058A1 (en) Method and device for measuring damage to bodywork
EP2450865A1 (en) Mobile control devices and methods for vehicles
AT500122A1 (en) METHOD FOR GEOMETRIC MEASUREMENT OF MOTOR VEHICLES
DE102018127990A1 (en) Method and processing unit for determining information relating to an object in an environment of a vehicle
DE19510560A1 (en) High speed monitor for inspecting rail profile of railway track
EP1682852A1 (en) Method and device for sensing and measuring vegetation in the surroundings of traffic routes
DE10148070A1 (en) Recognition and tracking of objects in e.g. road scene using laser scanner, detects further object characteristics which are used for segment-object-allocation
EP1616772B1 (en) Determination of the loading gauge of rail vehicles
EP2839239B1 (en) Method for determining the orientation of at least one rail of a measuring station and apparatus for carrying out the method
DE102018214210A1 (en) Visualization device and method for visualizing the interior or exterior of a vehicle
DE602005003571T2 (en) METHOD FOR DETERMINING THE QUANTITY CHARACTERISTICS OF A MOVING OBJECT AND DEVICE FOR CARRYING OUT SAID METHOD
DE102010056405A1 (en) A method of creating an image document in which a vehicle appropriate to a radar apparatus can be identified and an image document created by this method
EP1520747B1 (en) Non-contact method for measuring angles and distances
EP3082119A1 (en) Distance measurement of vehicles
AT517658B1 (en) System for recording vehicle side views
EP4222039A1 (en) Optical railway detection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060131

17Q First examination report despatched

Effective date: 20060719

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005007828

Country of ref document: DE

Date of ref document: 20090917

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091106

BERE Be: lapsed

Owner name: SIEMENS AG OSTERREICH

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005007828

Country of ref document: DE

Representative=s name: DEFFNER, ROLF, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005007828

Country of ref document: DE

Owner name: SIEMENS MOBILITY GMBH, AT

Free format text: FORMER OWNER: SIEMENS AG OESTERREICH, WIEN, AT

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005007828

Country of ref document: DE

Owner name: SIEMENS MOBILITY AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SIEMENS AG OESTERREICH, WIEN, AT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005007828

Country of ref document: DE

Representative=s name: DEFFNER, ROLF, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005007828

Country of ref document: DE

Owner name: SIEMENS MOBILITY AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SIEMENS MOBILITY GMBH, WIEN, AT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220630

Year of fee payment: 19