EP1616092A1 - Method for adjusting the duration of fuel injection through an injection valve - Google Patents

Method for adjusting the duration of fuel injection through an injection valve

Info

Publication number
EP1616092A1
EP1616092A1 EP04725950A EP04725950A EP1616092A1 EP 1616092 A1 EP1616092 A1 EP 1616092A1 EP 04725950 A EP04725950 A EP 04725950A EP 04725950 A EP04725950 A EP 04725950A EP 1616092 A1 EP1616092 A1 EP 1616092A1
Authority
EP
European Patent Office
Prior art keywords
fuel
temperature
pressure
injection valve
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04725950A
Other languages
German (de)
French (fr)
Other versions
EP1616092B1 (en
Inventor
Jürgen FRITSCH
Treerapot Kongtoranin
Diego Valero-Bertrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1616092A1 publication Critical patent/EP1616092A1/en
Application granted granted Critical
Publication of EP1616092B1 publication Critical patent/EP1616092B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • F02D2200/0608Estimation of fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions

Definitions

  • the invention relates to a method for setting an injection period of fuel by an injection valve and an injection system with an injection valve.
  • the fuel is injected from a fuel pressure accumulator into the combustion chambers of the internal combustion engine through injection valves.
  • the fuel temperature of the injected fuel i. H. the temperature of the fuel in the injector should be known as accurately as possible.
  • the temperature of the fuel in the fuel pressure accumulator is usually used approximately for this purpose.
  • the physical properties of the fuel depend on the fuel temperature, e.g. B. the density, the viscosity, the elasticity, the speed of sound in the fuel, etc., from.
  • the physical properties of the fuel determine the course of the entire injection process and the design of the entire injection system. Knowledge of the fuel temperature thus serves to adapt the parameters relevant to the injection process in order to achieve optimal injection and combustion.
  • a method for setting an injection time period when injecting fuel through an injection valve is provided as a function of the temperature of the injected fuel.
  • fuel is injected from the injection valve into a combustion chamber and part of the fuel not injected is released as a leakage flow due to the control movement of the injection valve.
  • Fuel with a first, high pressure is made available to the injection valve.
  • a first temperature of the fuel in the leakage flow and the pressure of the fuel in the fuel pressure accumulator are measured.
  • a second temperature of the fuel to be injected in the injection valve is determined according to a function with the first temperature of the fuel in the leakage flow and the first pressure.
  • the injection period of the injection valve is set depending on the second temperature.
  • the advantage of the method according to the invention is that the temperature does not have to be measured in the fuel pressure accumulator or in the injection valve, but only the temperature of the fuel in the leakage flow is measured. This is easier since a temperature measuring unit for measuring the fuel temperature in the fuel pressure accumulator or in the injection valve can be avoided, and instead the temperature measuring unit is only used in the leakage flow. Since the fuel in the leakage flow is essentially not under pressure, it is easier to provide a temperature measuring unit there that has a longer service life due to the lower pressure load.
  • the pressure difference and the temperature of the fuel in the leakage flow can be used to infer the temperature of the fuel in the fuel pressure accumulator. It is assumed that the temperature of the injected fuel approximately corresponds to the temperature in the fuel pressure accumulator. The temperature of the fuel in the leakage flow is significantly higher than the temperature of the fuel in the fuel pressure accumulator, since in the case of liquids such as fuel, the temperature is increased by lowering the pressure.
  • the temperature difference between the fuel pressure accumulator and the leakage flow is also influenced by the flow rates of the fuel flow into the injection valve, the injection quantity and the backflow.
  • the flow rates depend on the number of injection processes, the speed of the internal combustion engine and component properties and tolerances.
  • the temperature difference between the fuel in the fuel pressure accumulator and the fuel in the leakage flow is influenced by the heat radiation and cooling effects.
  • the second temperature is determined as a function of at least one of the following further parameters: rotational speed of the internal combustion engine in which the injection valve is located, amount of fuel injected, number of injections, coolant temperature of the internal combustion engine, ambient temperature and Heat radiation balance of the internal combustion engine.
  • the determination of the second temperature can generally also be a time-dependent excess Take gait behavior into account.
  • Characteristic maps offer the possibility of quickly obtaining the second temperature in order to quickly determine the resulting injection period.
  • calculating the second associated temperature value using a mathematical function by specifying the first pressure of the first temperature would be time-consuming and could lead to an increase in the control cycle time.
  • the temperature of the fuel in the fuel pressure accumulator corresponds to the temperature of the injected fuel.
  • the temperature of the fuel in the injection valve can be influenced by a wide range of parameters. In this way, the fuel that is not injected is expanded in the injection valve, so that this fuel heats up and the temperature of the components in the injection valve increases. As a result, the fuel to be injected can have a higher temperature than the fuel in the fuel pressure accumulator. For this reason, the capacitance of the piezo actuator is measured and a third temperature of the piezo actuator is determined from the capacitance and the first pressure. The third temperature is then taken into account when determining the second temperature of the fuel to be injected.
  • an injection system with an injection valve which has a piezo actuator, is provided.
  • Fuel is made available to the injection valve from a fuel pressure accumulator with one pressure.
  • the injection system has a control unit in order to set the injection period of the injection valve so that the injected fuel quantity is determined.
  • the injector delivers the uninjected fuel to a leakage line.
  • the control unit is pressure-sensitive with a temperature measuring unit for measuring the temperature of the fuel in the leakage line and with a pressure measuring unit for measuring the pressure in the fuel rather connected.
  • the control unit determines a temperature of the fuel to be injected in the injection valve according to a function from the temperature of the fuel in the leakage line and from the pressure in the fuel pressure reservoir.
  • the injection time is set by the control unit depending on the temperature of the fuel to be injected.
  • the injection system according to the invention has the advantage that no temperature sensor has to be provided in the fuel pressure accumulator and / or the injection valve, but that only a temperature measurement has to be carried out using the temperature measuring unit in the leakage line. This makes it possible to use simple temperature measuring units, since they do not have to withstand high pressure. In addition, the service life of the temperature sensor can be increased considerably since the ambient conditions in the leakage flow are significantly less stressful than the ambient conditions in the fuel pressure accumulator and / or in the injection valve.
  • FIG. 1 is a block diagram of an injection system according to the invention
  • FIG. 2 shows the function for representing the dependency between the temperature difference between the fuel in the leakage line and the fuel in the fuel pressure accumulator as a function of the pressure of the fuel in the fuel pressure accumulator.
  • FIG. 1 shows a block diagram to illustrate the injection system according to the invention.
  • Fuel is supplied from a fuel tank 1 to a high-pressure pump 2, the fuel under pressure into a fuel pressure accumulator 3 requested.
  • the fuel pressure accumulator 3 provides fuel with a high pressure to an injection valve 4.
  • By controlled opening and closing of the injection valve 4 fuel can be injected from the fuel pressure accumulator 3 into a combustion chamber (not shown).
  • the injection valve 4 is connected to a control unit 5, which specifies the injection duration and the stroke of a piezo actuator (not shown) located in the injection valve 4.
  • the control unit 5 measures the pressure in the fuel pressure accumulator 3 with the aid of a pressure sensor 6, which is connected to the control unit 5 and is arranged in the fuel pressure accumulator 3.
  • the control unit 5 measures the temperature in a leakage line 7, which leads from the injection valve 4 into the fuel tank 1, via a temperature sensor 8.
  • the leakage line 7 serves to divert the control fuel flow resulting from the switching process and any permanent leaks that may occur into the fuel tank 1 in order to be able to take up fuel for the next injection process.
  • the fuel flows in the leakage line 7 essentially without additional pressure, i. H. back into fuel tank 1 under atmospheric pressure.
  • the control unit 5 uses the pressure difference between the fuel pressure in the fuel pressure accumulator 3 and the atmospheric pressure to determine the temperature difference between the temperature of the fuel in the leakage line 7 and the fuel in the fuel pressure accumulator 3. It is initially assumed that the Temperature of the fuel in the fuel pressure accumulator 3 essentially corresponds to the temperature of the injected fuel.
  • the temperature rise between the fuel pressure accumulator 3 and the leakage line 7 comes according to a physical law Liquidity, in which a reduction in the pressure in liquids leads to a corresponding increase in temperature.
  • the control unit 5 accesses a storage unit 9 in which a look-up table is stored.
  • the look-up table makes it possible to determine, for possible pressures P in the fuel pressure accumulator, a corresponding temperature difference ⁇ T between the fuel temperature in the fuel pressure accumulator and in the leakage line 7. With the aid of the temperature difference, the temperature of the fuel in the fuel pressure accumulator 3 can be determined from the temperature of the fuel in the leakage line 7. The temperature of the fuel can be approximated as that
  • the storage unit 9 stores
  • Look-up table also takes into account the flow rates of the fuel flow in the injection valve, the injection quantity and the leakage flow in the leakage line 7 as parameters.
  • the flow rates depend on the number of injection processes, the injection quantity, the speed of the internal combustion engine and
  • the corresponding parameters mentioned above are taken into account in the look-up table in order to derive the temperature difference therefrom to determine between the fuel in the leakage line 7 and the fuel that is in the injection valve. Since the fuel temperature of the fuel to be injected in the injector is important for an exact setting of the injection time or the stroke of the piezo actuator in the injector, the factors mentioned above should be taken into account in the look-up table as far as possible. These are therefore stored in the memory unit 9 in accordance with a plurality of data records, so that the temperature difference can be determined as a function of one or more of the parameters mentioned above and as a function of the pressure in the fuel pressure accumulator 3.
  • the diagram according to FIG. 2 shows the dependency between the pressure in the fuel pressure accumulator and the temperature difference ⁇ T as a function of the parameters mentioned (represented by the arrow).
  • a further possibility of obtaining more precise information about the temperature of the fuel in the injection valve 4 consists in that the control unit 5 is used to measure the capacitance of the piezo actuator (not shown) of the injection valve 4. Since the capacity of the piezo actuator depends in a defined manner on the temperature and the force exerted on the piezo actuator, the temperature of the piezo actuator can be known with knowledge of the pressure in the fuel pressure accumulator, which exerts a force on the piezo actuator in a manner predetermined by the structure of the injection valve be determined. Since the piezo actuator is arranged in the immediate vicinity of the fuel to be injected, its temperature can also be used to approximate the determined fuel temperature to the temperature of the injected fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a method for adjusting the duration of fuel injection through an injection valve according to the temperature of the injected fuel. When in an operational mode, fuel is injected by the injection valve into a combustion chamber and non-injected fuel is discharged as a leakage flow. Fuel is supplied to the injection valve at a first high pressure. A first temperature of the fuel in the leakage flow and the pressure of the fuel in the fuel pressure store are measured. A second temperature of the fuel which is to be injected into the injection valve is determined according a function with the first temperature of the fuel in the leakage flow and the first pressure, and the duration of the fuel injection is adjusted according to the second temperature.

Description

Beschreibungdescription
Verfahren zum Einstellen einer Einspritzzeitdauer von Kraftstoff durch ein EinspritzventilMethod for adjusting an injection period of fuel by an injection valve
Die Erfindung betrifft ein Verfahren zum Einstellen einer Einspritzzeitdauer von Kraftstoff durch ein Einspritzventil sowie ein Einspritzsystem mit einem Einspritzventil.The invention relates to a method for setting an injection period of fuel by an injection valve and an injection system with an injection valve.
Bei Direkteinspritzsystemen wird der Kraftstoff von einem Kraftstoffdruckspeicher durch Einspritzventile in die Verbrennungsräume des Verbrennungsmotors eingespritzt. Um die Steuerung des Einspritzvorgangs zu optimieren, muss die Kraftstofftemperatur des eingespritzten Kraftstoffes, d. h. die Temperatur des Kraftstoffes in dem Einspritzventil, so genau wie möglich bekannt sein. Üblicherweise wird dazu die Temperatur des Kraftstoffes im Kraftstoffdruckspeicher näherungsweise herangezogen.In direct injection systems, the fuel is injected from a fuel pressure accumulator into the combustion chambers of the internal combustion engine through injection valves. To optimize control of the injection process, the fuel temperature of the injected fuel, i. H. the temperature of the fuel in the injector should be known as accurately as possible. The temperature of the fuel in the fuel pressure accumulator is usually used approximately for this purpose.
Von der Kraftstofftemperatur hängen die physikalischen Eigenschaften des Kraftstoffes, wie z. B. die Dichte, die Viskosität, die Elastizität, die Schallgeschwindigkeit im Kraftstoff usw., ab. Die physikalischen Eigenschaften des Kraftstoffes bestimmen den Ablauf des gesamten Einspritzvorgangs, sowie die Ausgestaltung des gesamten Einspritzsystems. Die Kenntnis der Kraftstofftemperatur dient also dazu, die für den Einspritzvorgang relevanten Parameter anzupassen, um eine optimale Einspritzung und Verbrennung zu erreichen.The physical properties of the fuel depend on the fuel temperature, e.g. B. the density, the viscosity, the elasticity, the speed of sound in the fuel, etc., from. The physical properties of the fuel determine the course of the entire injection process and the design of the entire injection system. Knowledge of the fuel temperature thus serves to adapt the parameters relevant to the injection process in order to achieve optimal injection and combustion.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur Bestimmung der Temperatur des eingespritzten Kraftstoffes zur Verfügung zu stellen. Es ist weiterhin Aufgabe der Erfindung, ein Einspritzsystem zur Verfügung zu stellen, mit dem die Temperatur des eingespritzten Kraftstoffes bestimmt werden kann . Diese Aufgabe wird durch das Verfahren nach Anspruch 1, sowie das Einspritzsystem nach Anspruch 5 gelöst.It is an object of the present invention to provide a method for determining the temperature of the injected fuel. It is a further object of the invention to provide an injection system with which the temperature of the injected fuel can be determined. This object is achieved by the method according to claim 1 and the injection system according to claim 5.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben .Further advantageous embodiments of the invention are specified in the dependent claims.
Gemäß einem ersten Aspekt der vorliegenden Erfindung ist ein Verfahren zum Einstellen einer Einspritzzeitdauer beim Einspritzen von Kraftstoff durch ein Einspritzventil abhängig von der Temperatur des eingespritzten Kraftstoffes zur Verfügung gestellt. Im Betrieb wird Kraftstoff von dem Einspritzventil in einen Verbrennungsraum eingespritzt und ein Teil des nicht eingespritzten Kraftstoffs aufgrund der Steuerbewegung des Einspritzventils als Leckagefluss abgegeben. Dem Einspritzventil wird Kraftstoff mit einem ersten, hohen Druck zur Verfügung gestellt. Eine erste Temperatur des Kraftstoffes im Leckagefluss und der Druck des Kraftstoffes im Kraftstoffdruckspeicher wird gemessen. Eine zweite Temperatur des einzuspritzenden Kraftstoffes im Einspritzventil wird gemäß einer Funktion mit der ersten Temperatur des Kraftstoffes im Leckagefluss und dem ersten Druck ermittelt. Die Einspritzzeitdauer des Einspritzventils wird abhängig von der zweiten Temperatur eingestellt.According to a first aspect of the present invention, a method for setting an injection time period when injecting fuel through an injection valve is provided as a function of the temperature of the injected fuel. In operation, fuel is injected from the injection valve into a combustion chamber and part of the fuel not injected is released as a leakage flow due to the control movement of the injection valve. Fuel with a first, high pressure is made available to the injection valve. A first temperature of the fuel in the leakage flow and the pressure of the fuel in the fuel pressure accumulator are measured. A second temperature of the fuel to be injected in the injection valve is determined according to a function with the first temperature of the fuel in the leakage flow and the first pressure. The injection period of the injection valve is set depending on the second temperature.
Der Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die Temperatur nicht im Kraftstoffdruckspeicher bzw. im Einspritzventil gemessen werden muss, sondern lediglich die Temperatur des Kraftstoffes im Leckagefluss gemessen wird. Dies ist einfacher, da eine Temperaturmesseinheit zur Messung der Kraftstofftemperatur im Kraftstoffdruckspeicher bzw. im Einspritzventil vermieden werden kann, und stattdessen die Temperaturmesseinheit lediglich im Leckagefluss eingesetzt wird. Da der Kraftstoff im Leckagefluss im Wesentlichen nicht unter Druck steht, ist es einfacher, eine Temperaturmessein- heit dort vorzusehen, die aufgrund der niedrigeren Druckbe- lastung eine längere Lebensdauer aufweist. Da bekannt ist, dass der Kraftstoff im Leckagefluss im Wesentlichen nicht un ter Druck steht, d. h. dass der Druck im Leckagefluss im Wesentlichen dem Atmosphärendruck entspricht, kann über die Druckdifferenz und die Temperatur des Kraftstoffes im Leckagefluss auf die Temperatur des Kraftstoffes im Kraftstoff- druckspeicher zurückgeschlossen werden. Dabei wird angenommen, dass die Temperatur des eingespritzten Kraftstoffes näherungsweise der Temperatur im Kraftstoffdruckspeicher entspricht . Die Temperatur des Kraftstoffes im Leckagefluss ist deutlich höher als die Temperatur des Kraftstoffes im Kraftstoffdruckspeicher, da bei Flüssigkeiten wie Kraftstoff durch eine Absenkung des Druckes eine Erhöhung der Temperatur erfolgt.The advantage of the method according to the invention is that the temperature does not have to be measured in the fuel pressure accumulator or in the injection valve, but only the temperature of the fuel in the leakage flow is measured. This is easier since a temperature measuring unit for measuring the fuel temperature in the fuel pressure accumulator or in the injection valve can be avoided, and instead the temperature measuring unit is only used in the leakage flow. Since the fuel in the leakage flow is essentially not under pressure, it is easier to provide a temperature measuring unit there that has a longer service life due to the lower pressure load. Since it is known that the fuel in the leakage flow is essentially not un ter pressure is reached, ie that the pressure in the leakage flow essentially corresponds to the atmospheric pressure, the pressure difference and the temperature of the fuel in the leakage flow can be used to infer the temperature of the fuel in the fuel pressure accumulator. It is assumed that the temperature of the injected fuel approximately corresponds to the temperature in the fuel pressure accumulator. The temperature of the fuel in the leakage flow is significantly higher than the temperature of the fuel in the fuel pressure accumulator, since in the case of liquids such as fuel, the temperature is increased by lowering the pressure.
Darüber hinaus ist die Temperaturdifferenz zwischen Kraftstoffdruckspeicher und Leckagefluss auch durch die Flussraten des Kraftstoffflusses in das Einspritzventil, die Einspritzmenge und den Rückfluss beeinflusst. Die Flussraten hängen von der Anzahl der Einspritzvorgänge, der Drehzahl der Verbrennungsmaschine und von Bauteileigenschaften und Toleranzen ab. Zusätzlich wird die Temperaturdifferenz zwischen dem Kraftstoff in dem Kraftstoffdruckspeicher und dem Kraftstoff im Leckagefluss durch die Wärmeabstrahlung und Kühleffekte beeinflusst. Aus diesem Grunde ist vorzugsweise vorzu- sehen, dass die zweite Temperatur abhängig von mindestens einem der nachfolgenden weiteren Parameter ermittelt wird: Drehzahl des Verbrennungsmotors, in dem das Einspritzventil befindet, Menge des eingespritzten Kraftstoffes, Anzahl der Einspritzungen, Kühlmittel emperatur des Verbrennungsmotors, Umgebungstemperatur und Wärmeabstrahlungsbilanz des Verbrennungsmotors .In addition, the temperature difference between the fuel pressure accumulator and the leakage flow is also influenced by the flow rates of the fuel flow into the injection valve, the injection quantity and the backflow. The flow rates depend on the number of injection processes, the speed of the internal combustion engine and component properties and tolerances. In addition, the temperature difference between the fuel in the fuel pressure accumulator and the fuel in the leakage flow is influenced by the heat radiation and cooling effects. For this reason, it should preferably be provided that the second temperature is determined as a function of at least one of the following further parameters: rotational speed of the internal combustion engine in which the injection valve is located, amount of fuel injected, number of injections, coolant temperature of the internal combustion engine, ambient temperature and Heat radiation balance of the internal combustion engine.
Vorzugsweise wird das Ermitteln der zweiten Temperatur durch Auslesen eines Temperaturwertes aus einem Kennfeld zumindest gemäß dem ersten Druck und gemäß der ersten Temperatur desThe second temperature is preferably determined by reading a temperature value from a characteristic diagram at least according to the first pressure and according to the first temperature of the
Kraftstoffes durchgeführt. Die Bestimmung der zweiten Temperatur kann im allgemeinen auch ein von Zeit abhängiges Über gangsverhalten berücksichtigen. Kennfelder bieten die Möglichkeit, die zweite Temperatur auf schnelle Weise zu erhalten, um daraus die resultierende Einspritzzeitdauer schnell zu ermitteln. Eine Berechnung des zweiten zugehörigen Tempe- raturwertes anhand einer mathematischen Funktion durch Vorgabe des ersten Druckes der ersten Temperatur wäre dagegen zeitaufwändig und könnte zu einer Erhöhung der Regelzyklus- zeit führen.Fuel carried out. The determination of the second temperature can generally also be a time-dependent excess Take gait behavior into account. Characteristic maps offer the possibility of quickly obtaining the second temperature in order to quickly determine the resulting injection period. On the other hand, calculating the second associated temperature value using a mathematical function by specifying the first pressure of the first temperature would be time-consuming and could lead to an increase in the control cycle time.
Es wird näherungsweise angenommen, dass die Temperatur des Kraftstoffes im Kraftstoffdruckspeicher der Temperatur des eingespritzten Kraftstoffes entspricht. Im Einspritzventil kann die Temperatur des Kraftstoffes jedoch durch vielfältige Parameter beeinflusst sein. So wird der nicht eingespritzte Kraftstoff noch im Einspritzventil entspannt, so dass sich dieser Kraftstoff erwärmt und die Temperatur der Bauelemente im Einspritzventil erhöht. Dadurch kann der einzuspritzende Kraftstoff eine höhere Temperatur aufweisen, als der Kraftstoff im Kraftstoffdruckspeicher. Aus diesem Grunde wird die Kapazität des Piezoaktors gemessen und eine dritte Temperatur des Piezoaktors aus der Kapazität und dem ersten Druck ermittelt . Die dritte Temperatur wird dann bei der Ermittlung der zweiten Temperatur des einzuspritzenden Kraftstoffes berücksichtigt.It is approximately assumed that the temperature of the fuel in the fuel pressure accumulator corresponds to the temperature of the injected fuel. However, the temperature of the fuel in the injection valve can be influenced by a wide range of parameters. In this way, the fuel that is not injected is expanded in the injection valve, so that this fuel heats up and the temperature of the components in the injection valve increases. As a result, the fuel to be injected can have a higher temperature than the fuel in the fuel pressure accumulator. For this reason, the capacitance of the piezo actuator is measured and a third temperature of the piezo actuator is determined from the capacitance and the first pressure. The third temperature is then taken into account when determining the second temperature of the fuel to be injected.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist ein Einspritzsystem mit einem Einspritzventil, das einen Pie- zoaktor aufweist, vorgesehen. Dem Einspritzventil wird Kraftstoff von einem Kraftstoffdruckspeicher mit einem Druck zur Verfügung gestellt. Das Einspritzsystem weist eine Steuereinheit auf, um die Einspritzzeitdauer des Einspritzventils einzustellen, so dass die eingespritzte Kraftstoffmenge bestimmt ist. Das Einspritzventil gibt den nicht eingespritzten Kraftstoff an eine Leckageleitung ab. Die Steuereinheit ist mit einer Temperaturmesseinheit zur Messung der Temperatur des Kraftstoffes in der Leckageleitung und mit einer Druckmesseinheit zur Messung des Druckes in dem Kraftstof druckspei eher verbunden. Die Steuereinheit ermittelt eine Temperatur des einzuspritzenden Kraftstoffes im Einspritzventil gemäß einer Funktion aus der Temperatur des Kraftstoffes in der Leckageleitung und aus dem Druck in dem Kraftstoffdruckspei- eher. Die Einspritzzeit wird durch die Steuereinheit abhängig von der Temperatur des einzuspritzenden Kraftstoffes eingestellt.According to a further aspect of the present invention, an injection system with an injection valve, which has a piezo actuator, is provided. Fuel is made available to the injection valve from a fuel pressure accumulator with one pressure. The injection system has a control unit in order to set the injection period of the injection valve so that the injected fuel quantity is determined. The injector delivers the uninjected fuel to a leakage line. The control unit is pressure-sensitive with a temperature measuring unit for measuring the temperature of the fuel in the leakage line and with a pressure measuring unit for measuring the pressure in the fuel rather connected. The control unit determines a temperature of the fuel to be injected in the injection valve according to a function from the temperature of the fuel in the leakage line and from the pressure in the fuel pressure reservoir. The injection time is set by the control unit depending on the temperature of the fuel to be injected.
Das erfindungsgemäße Einspritzsystem hat den Vorteil, dass kein Temperatursensor in dem Kraftstoffdruckspeicher und/oder dem Einspritzventil vorgesehen sein muss, sondern dass lediglich eine Temperaturmessung mit Hilfe der Temperaturmesseinheit in der Leckageleitung vorgenommen werden muss. Dies ermöglicht es, einfach aufgebaute Temperaturmesseinheiten zu verwenden, da diese nicht einem hohen Druck Stand halten müssen. Zudem kann die Lebensdauer des Temperatursensors erheblich erhöht werden, da die Umgebungsbedingungen im Leckagefluss deutlich weniger belastend sind, als die Umgebungsbedingungen im Kraftstoffdruckspeicher und/oder im Einspritz- ventil.The injection system according to the invention has the advantage that no temperature sensor has to be provided in the fuel pressure accumulator and / or the injection valve, but that only a temperature measurement has to be carried out using the temperature measuring unit in the leakage line. This makes it possible to use simple temperature measuring units, since they do not have to withstand high pressure. In addition, the service life of the temperature sensor can be increased considerably since the ambient conditions in the leakage flow are significantly less stressful than the ambient conditions in the fuel pressure accumulator and / or in the injection valve.
Eine bevorzugte Ausführungsform der Erfindung wird im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:A preferred embodiment of the invention is explained in more detail below with reference to the accompanying drawings. Show it:
Figur 1 ein Blockschaltbild eines erfindungsgemäßen Einspritzsystems; und Figur 2 die Funktion zur Darstellung der Abhängigkeit zwischen der Temperaturdifferenz zwischen dem Kraft- stoff in der Leckageleitung und dem Kraftstoff in dem Kraftstoffdruckspeicher abhängig von dem Druck des Kraftstoffes in dem Kraftstoffdruckspeicher .Figure 1 is a block diagram of an injection system according to the invention; and FIG. 2 shows the function for representing the dependency between the temperature difference between the fuel in the leakage line and the fuel in the fuel pressure accumulator as a function of the pressure of the fuel in the fuel pressure accumulator.
In Fig. 1 ist ein Blockschaltbild zur Veranschaulichung des erfindungsgemäßen Einspritzsystems dargestellt. Kraftstoff wird aus einem Kraftstoffbehälter 1 einer Hochdruckpumpe 2 zugeführt, die Kraftstoff unter Druck in einen Kraftstoff druckspeicher 3 befordert. Der Kraftstoffdruckspeicher 3 stellt Kraftstoff mit einem hohen Druck einem Einspritzventil 4 zur Verf gung. Durch ein gesteuertes Offnen und Schließen des Einspritzventil 4 kann so Kraftstoff aus dem Kraftstoff- druckspeicher 3 in einen Verbrennungsraum (nicht gezeigt) eingespritzt werden.1 shows a block diagram to illustrate the injection system according to the invention. Fuel is supplied from a fuel tank 1 to a high-pressure pump 2, the fuel under pressure into a fuel pressure accumulator 3 requested. The fuel pressure accumulator 3 provides fuel with a high pressure to an injection valve 4. By controlled opening and closing of the injection valve 4, fuel can be injected from the fuel pressure accumulator 3 into a combustion chamber (not shown).
Das Einspritzventil 4 ist dazu mit einer Steuereinheit 5 verbunden, die die Einspritzzeitdauer und den Hub eines in dem Einspritzventil 4 befindlichen Piezoaktors (nicht gezeigt) vorgibt. Die Steuereinheit 5 misst den Druck in dem Kraftstoffdruckspeicher 3 mit Hilfe eines mit der Steuereinheit 5 verbundenen Drucksensors 6, der in dem Kraftstoffdruckspeicher 3 angeordnet ist. Ebenso wird von der Steuereinheit 5 die Temperatur in einer Leckageleitung 7, die von dem Einspritzventil 4 in den Kraftstoffbehälter 1 fuhrt, über einen Temperatursensor 8 gemessen.For this purpose, the injection valve 4 is connected to a control unit 5, which specifies the injection duration and the stroke of a piezo actuator (not shown) located in the injection valve 4. The control unit 5 measures the pressure in the fuel pressure accumulator 3 with the aid of a pressure sensor 6, which is connected to the control unit 5 and is arranged in the fuel pressure accumulator 3. Likewise, the control unit 5 measures the temperature in a leakage line 7, which leads from the injection valve 4 into the fuel tank 1, via a temperature sensor 8.
Die Leckageleitung 7 dient dazu, den durch den Schaltvorgang entstandenen Steuerkraftstofffluss und eventuell auftretende Dauerleckagen wieder in den Kraftstoffbehälter 1 abzuleiten, um Kraftstoff für den nächsten Einspritzvorgang aufnehmen zu können. In der Leckageleitung 7 fließt der Kraftstoff im Wesentlichen ohne zusatzliche Druckeinwirkung, d. h. unter At- mospharendruck in den Kraftstoffbehälter 1 zurück.The leakage line 7 serves to divert the control fuel flow resulting from the switching process and any permanent leaks that may occur into the fuel tank 1 in order to be able to take up fuel for the next injection process. The fuel flows in the leakage line 7 essentially without additional pressure, i. H. back into fuel tank 1 under atmospheric pressure.
Die Steuereinheit 5 ermittelt aus der Druckdifferenz zwischen dem Kraftstoffdruck im Kraftstoffdruckspeicher 3 und dem At- mospharendruck, die Temperaturdifferenz zwischen der Tempera- tur des Kraftstoffes in der Leckageleitung 7 und des Kraftstoffes im Kraftstoffdruckspeicher 3. Dabei wird zunächst na- herungsweise davon ausgegangen, dass die Temperatur des Kraftstoffes im Kraftstoffdruckspeicher 3 im Wesentlichen der Temperatur des eingespritzten Kraftstoffes entspricht.The control unit 5 uses the pressure difference between the fuel pressure in the fuel pressure accumulator 3 and the atmospheric pressure to determine the temperature difference between the temperature of the fuel in the leakage line 7 and the fuel in the fuel pressure accumulator 3. It is initially assumed that the Temperature of the fuel in the fuel pressure accumulator 3 essentially corresponds to the temperature of the injected fuel.
Der Temperaturanstieg zwischen Kraftstoffdruckspeicher 3 und Leckageleitung 7 kommt gemäß einer physikalischen Gesetzma ßigkeit zustande, bei der eine Verringerung des Druckes bei Flüssigkeiten zu einer entsprechenden Zunahme der Temperatur fuhrt. Um aus den gemessenen Großen - Druck im Kraftstoffdruckspeicher und Temperatur in der Leckagenleitung 7 - ent- sprechende Temperatur des Kraftstoffes im Einspritzventil 4 zu ermitteln, greift die Steuereinheit 5 auf eine Speichereinheit 9 zu, in der eine Look-up-Tabelle abgelegt ist. Die Look-up-Tabelle ermöglicht es, für möglichen Drucke P im Kraftstoffdruckspeicher, eine entsprechende Temperaturdiffe- renz ΔT zwischen der Kraftstofftemperatur im Kraftstoffdruckspeicher und in der Leckageleitung 7 zu ermitteln. Mit Hilfe der Temperaturdifferenz kann aus der Temperatur des Kraftstoffes in der Leckageleitung 7 die Temperatur des Kraftstoffes im Kraftstoffdruckspeicher 3 ermittelt werden. Die Temperatur des Kraftstoffes kann naherungsweise als dieThe temperature rise between the fuel pressure accumulator 3 and the leakage line 7 comes according to a physical law Liquidity, in which a reduction in the pressure in liquids leads to a corresponding increase in temperature. In order to determine the corresponding temperature of the fuel in the injection valve 4 from the measured variables - pressure in the fuel pressure accumulator and temperature in the leakage line 7 - the control unit 5 accesses a storage unit 9 in which a look-up table is stored. The look-up table makes it possible to determine, for possible pressures P in the fuel pressure accumulator, a corresponding temperature difference ΔT between the fuel temperature in the fuel pressure accumulator and in the leakage line 7. With the aid of the temperature difference, the temperature of the fuel in the fuel pressure accumulator 3 can be determined from the temperature of the fuel in the leakage line 7. The temperature of the fuel can be approximated as that
Temperatur des eingespritzten Kraftstoffes angenommen werden.Temperature of the injected fuel are assumed.
Um die Temperatur des eingespritzten Kraftstoffes genauer zu bestimmen, werden in der Speichereinheit 9 gespeichertenIn order to determine the temperature of the injected fuel more precisely, the storage unit 9 stores
Look-up-Tabelle weiterhin die Flussraten des Kraftstoffflus- ses im Einspritzventil, die Einspritzmenge und der Leckagefluss in der Leckageleitung 7 als Parameter berücksichtigt. Die Flussraten hangen von der Anzahl der Einspritzvorgange, der Einspritzmenge, der Drehzahl des Verbrennungsmotors undLook-up table also takes into account the flow rates of the fuel flow in the injection valve, the injection quantity and the leakage flow in the leakage line 7 as parameters. The flow rates depend on the number of injection processes, the injection quantity, the speed of the internal combustion engine and
Bauelementeigenschaften und Toleranzen ab. Diese Faktoren beeinflussen die Temperatur des eingespritzten Kraftstof es, so dass im Wesentlichen die Temperatur im Einspritzventil 4 etwas hoher ist als die Temperatur des Kraftstoffes im Kraft- stoffdruckspeicher 3. Darüber hinaus spielen die Umgebungstemperatur, die Motortemperatur und andere externe Faktoren, die die Wärmeabstrahlungsbilanz beeinflussen, eine nicht zu vernachlässigende Rolle.Component properties and tolerances. These factors influence the temperature of the injected fuel, so that the temperature in the injection valve 4 is essentially somewhat higher than the temperature of the fuel in the fuel pressure accumulator 3. In addition, the ambient temperature, the engine temperature and other external factors play a role in influencing the heat radiation balance , a role not to be neglected.
Daher kann in der Speichereinheit 9 vorgesehen sein, dass in der Look-up-Tabelle die entsprechenden, oben genannten Parameter berücksichtigt sind, um daraus die Temperaturdifferenz zwischen dem Kraftstoff in der Leckageleitung 7 und dem Kraftstoff, der sich im Einspritzventil befindet, zu ermitteln. Da für eine genau Einstellung der Einspritzzeit bzw. des Hubes des Piezoaktores im Einspritzventil, die Kraft- Stofftemperatur des sich im Einspritzventil befindlichen einzuspritzenden Kraftstoffes wichtig ist, sollten die oben benannten Faktoren soweit möglich in der Look-up-Tabelle berücksichtigt werden. Diese werden daher gemäß mehrerer Datensätze in der Speichereinheit 9 abgespeichert, so dass die Temperaturdifferenz abhängig von einem oder mehrerer der oben genannten Parameter und abhängig von dem Druck in dem Kraftstoffdruckspeicher 3 ermittelt werden kann.It can therefore be provided in the memory unit 9 that the corresponding parameters mentioned above are taken into account in the look-up table in order to derive the temperature difference therefrom to determine between the fuel in the leakage line 7 and the fuel that is in the injection valve. Since the fuel temperature of the fuel to be injected in the injector is important for an exact setting of the injection time or the stroke of the piezo actuator in the injector, the factors mentioned above should be taken into account in the look-up table as far as possible. These are therefore stored in the memory unit 9 in accordance with a plurality of data records, so that the temperature difference can be determined as a function of one or more of the parameters mentioned above and as a function of the pressure in the fuel pressure accumulator 3.
In dem Diagramm nach Fig. 2 ist die Abhängigkeit zwischen dem Druck in dem Kraftstoffdruckspeicher über der Temperaturdifferenz ΔT abhängig von den genannten Parametern (durch den Pfeil dargestellt) dargestellt.The diagram according to FIG. 2 shows the dependency between the pressure in the fuel pressure accumulator and the temperature difference ΔT as a function of the parameters mentioned (represented by the arrow).
Eine weitere Möglichkeit, genauere Angaben zur Temperatur des Kraftstoffes im Einspritzventil 4 zu erhalten, besteht darin, dass mit Hilfe der Steuereinheit 5 eine Kapazitätsmessung der Kapazität des Piezoaktors (nicht gezeigt) des Einspritzventils 4 vorgenommen wird. Da die Kapazität des Piezoaktors in definierter Weise von der Temperatur und der auf den Piezoak- tor ausgeübten Kraft abhängt, kann mit Kenntnis des Druckes im Kraftstoffdruckspeicher, der in durch den Aufbau des Einspritzventils vorgegebene Weise eine Kraft auf den Piezoaktor ausübt, die Temperatur des Piezoaktors ermittelt werden. Da der Piezoaktor in unmittelbarer Nähe zum einspritzenden Kraftstoff angeordnet ist, ist über dessen Temperatur ebenfalls eine Annäherung der ermittelten Kraftstofftemperatur an die Temperatur des eingespritzten Kraftstoffes möglich.A further possibility of obtaining more precise information about the temperature of the fuel in the injection valve 4 consists in that the control unit 5 is used to measure the capacitance of the piezo actuator (not shown) of the injection valve 4. Since the capacity of the piezo actuator depends in a defined manner on the temperature and the force exerted on the piezo actuator, the temperature of the piezo actuator can be known with knowledge of the pressure in the fuel pressure accumulator, which exerts a force on the piezo actuator in a manner predetermined by the structure of the injection valve be determined. Since the piezo actuator is arranged in the immediate vicinity of the fuel to be injected, its temperature can also be used to approximate the determined fuel temperature to the temperature of the injected fuel.
Generell ist es möglich, durch das Ermitteln der Temperatur des Kraftstoffes in der Leckageleitung 7, Rückschlüsse auf die Temperatur des Kraftstoffes in verschiedenen Teilen des Einspritzsystems festzustellen. In general, it is possible to determine the temperature of the fuel in various parts of the injection system by determining the temperature of the fuel in the leakage line 7.

Claims

Patentansprüche claims
1. Verfahren zum Einstellen einer Einspritzzeitdauer von Kraftstoff durch ein Einspritzventil (4) abhängig von der1. Method for setting an injection period of fuel through an injection valve (4) depending on the
Temperatur des eingespritzten Kraftstoffes, wobei im Betrieb Kraftstoff von dem Einspritzventil (4) in einen Verbrennungsraum eingespritzt wird und nicht eingespritzter Kraftstoff als Leckagefluss abgegeben wird, wobei dem Einspritzventil (4) Kraftstoff mit einem ersten, hohen Druck zur Verfügung gestellt wird, wobei eine erste Temperatur des Kraftstoffes im Leckagefluss und der Druck des Kraftstoffes im Kraftstoffdruckspeicher (3) gemessen wird, wobei eine zweite Temperatur des einzuspritzenden Kraftstoffes im Einspritzventil (4) gemäß einer Funktion mit der ersten Temperatur des Kraftstoffes im Leckagefluss und dem ersten Druck ermittelt wird, wobei die Einspritzzeitdauer abhängig von der zweiten Tempe- ratur eingestellt wird.Temperature of the injected fuel, wherein fuel is injected from the injection valve (4) into a combustion chamber during operation and non-injected fuel is emitted as a leakage flow, the injection valve (4) being provided with fuel at a first, high pressure, a first Temperature of the fuel in the leakage flow and the pressure of the fuel in the fuel pressure accumulator (3) is measured, a second temperature of the fuel to be injected in the injection valve (4) being determined in accordance with a function of the first temperature of the fuel in the leakage flow and the first pressure, the Injection time is set depending on the second temperature.
2. Verfahren nach Anspruch 2, wobei die zweite Temperatur abhängig von mindestens einem der weiteren folgenden Faktoren ermittelt wird: - Drehzahl eines Verbrennungsmotors, in den das Einspritzventil eingesetzt ist;2. The method according to claim 2, wherein the second temperature is determined as a function of at least one of the following factors: speed of an internal combustion engine in which the injection valve is inserted;
- Menge des eingespritzten Kraftstoffes- Amount of fuel injected
- Anzahl der Einspritzungen;- number of injections;
- zeitabhängiges Übergangsverhalten der Temperatur; - Kühlwassertemperatur des Verbrennungsmotors;- time-dependent transition behavior of the temperature; - Cooling water temperature of the internal combustion engine;
- Umgebungstemperatur;- ambient temperature;
- Wärmeabstrahlungsbilanz des Verbrennungsmotors .- Heat radiation balance of the internal combustion engine.
3. Verfahren nach Anspruch 1 oder 2, wobei das Ermitteln der zweiten Temperatur durch Auslesen eines Temperaturwertes aus einem Kennfeld zumindest gemäß des ersten Druckes und ge maß der ersten Temperatur des Kraftstoffes durchgeführt wird.3. The method of claim 1 or 2, wherein the determination of the second temperature by reading a temperature value from a map at least according to the first pressure and ge measure of the first temperature of the fuel is carried out.
4. Verfahren nach Anspruch 1 bis 3, wobei die Kapazität des Piezoaktors gemessen wird, wobei eine dritte Temperatur des Piezoaktors aus der Kapazität und dem ersten Druck ermittelt wird, wobei die dritte Temperatur bei der Ermittlung der zweiten Temperatur berücksichtigt wird.4. The method according to claim 1 to 3, wherein the capacitance of the piezo actuator is measured, a third temperature of the piezo actuator being determined from the capacitance and the first pressure, the third temperature being taken into account when determining the second temperature.
5. Einspritzsystem mit einem Einspritzventil (4), das einen Piezoaktor aufweist und dem Kraftstoff von einem Kraftstoffdruckspeicher (3) mit einem Druck zur Verfügung gestellt ist, mit einer Steuereinheit (5) , um die Einspritzzeitdauer des Einspritzventils (4) einzustellen, so dass die eingespritzte Kraftstoffmenge bestimmt ist, wobei das Einspritzventil (4) nicht eingespritzten Kraftstoff an eine Leckageleitung (7) abgibt, dadurch gekennzeichnet, dass die Steuereinheit (5) mit einer Temperaturmesseinheit (8) zur Messung der Temperatur des Kraftstoffes in der Leckageleitung (7) und mit einer Druckmesseinheit (6) zur Messung des Druckes in dem Kraftstoffdruckspeicher (3) verbunden ist, wobei die Steuereinheit (5) eine Temperatur des einzuspritzenden Kraftstoffes im Einspritzventil (4) gemäß einer Funktion mit der Temperatur des Kraftstoffes in der Leckageleitung (7) und mit dem Druck in dem Kraftstoffdruckspeicher (3) ermittelt und die Einspritzzeitdauer abhängig von der Temperatur des einzuspritzenden Kraftstoffes einstellt. 5. Injection system with an injection valve (4), which has a piezo actuator and the fuel from a fuel pressure accumulator (3) is provided with a pressure, with a control unit (5) to adjust the injection period of the injection valve (4) so that the quantity of fuel injected is determined, the injection valve (4) delivering fuel that has not been injected to a leakage line (7), characterized in that the control unit (5) with a temperature measuring unit (8) for measuring the temperature of the fuel in the leakage line (7) and is connected to a pressure measuring unit (6) for measuring the pressure in the fuel pressure accumulator (3), the control unit (5) a temperature of the fuel to be injected in the injection valve (4) according to a function with the temperature of the fuel in the leakage line (7) and determined with the pressure in the fuel pressure accumulator (3) and the injection period depending on the temperature of the fuel to be injected.
EP04725950A 2003-04-24 2004-04-06 Method for adjusting the duration of fuel injection through an injection valve Expired - Fee Related EP1616092B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10318647A DE10318647B4 (en) 2003-04-24 2003-04-24 Method and apparatus for adjusting an injection period of fuel through an injection valve
PCT/EP2004/050454 WO2004094804A1 (en) 2003-04-24 2004-04-06 Method for adjusting the duration of fuel injection through an injection valve

Publications (2)

Publication Number Publication Date
EP1616092A1 true EP1616092A1 (en) 2006-01-18
EP1616092B1 EP1616092B1 (en) 2006-08-02

Family

ID=33304917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04725950A Expired - Fee Related EP1616092B1 (en) 2003-04-24 2004-04-06 Method for adjusting the duration of fuel injection through an injection valve

Country Status (4)

Country Link
US (1) US7082928B2 (en)
EP (1) EP1616092B1 (en)
DE (2) DE10318647B4 (en)
WO (1) WO2004094804A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006910B2 (en) * 2003-06-03 2006-02-28 Caterpillar Inc. Engine power loss compensation
DE102005053406A1 (en) * 2005-11-09 2007-05-10 Robert Bosch Gmbh Method for detecting a pressureless fuel system
JP2007285235A (en) * 2006-04-18 2007-11-01 Honda Motor Co Ltd Fuel supply device for diesel engine
US7418335B2 (en) * 2006-05-31 2008-08-26 Caterpillar Inc. Method and system for estimating injector fuel temperature
DE102006027486A1 (en) * 2006-06-14 2007-12-20 Robert Bosch Gmbh Fuel injection device for an internal combustion engine
DE102008002511B4 (en) * 2008-06-18 2018-12-20 Robert Bosch Gmbh Method and device for operating an internal combustion engine in combined direct and intake manifold injection, computer program, computer program product
DE102008031535B3 (en) * 2008-07-03 2010-01-21 Continental Automotive Gmbh Method for determining a temperature of a fuel of an injection system
DE102010037003A1 (en) * 2010-08-16 2012-02-16 Ford Global Technologies, Llc. Method for operating an internal combustion engine with gas as fuel and internal combustion engine for carrying out such a method
US8613218B2 (en) * 2010-10-19 2013-12-24 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus for leakage mechanism in internal combustion engine
JP5287839B2 (en) * 2010-12-15 2013-09-11 株式会社デンソー Fuel injection characteristic learning device
GB2487216A (en) * 2011-01-13 2012-07-18 Gm Global Tech Operations Inc Determining the flow rate of injected fuel
GB2500207A (en) * 2012-03-12 2013-09-18 Gm Global Tech Operations Inc Fuel injection method comprising correction factors for fuel rail pressure and fuel temperature
DE102015212378B4 (en) 2015-07-02 2021-08-05 Vitesco Technologies GmbH Method and device for controlling a piezo actuator of an injection valve of a fuel injection system of an internal combustion engine
SE539985C2 (en) * 2016-06-27 2018-02-20 Scania Cv Ab Determination of pressurized fuel temperature
US10859027B2 (en) * 2017-10-03 2020-12-08 Polaris Industries Inc. Method and system for controlling an engine
GB2608410B (en) * 2021-06-30 2024-07-24 Perkins Engines Co Ltd Fuel injector controller

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448977A (en) * 1993-12-17 1995-09-12 Ford Motor Company Fuel injector pulsewidth compensation for variations in injection pressure and temperature
US5474054A (en) * 1993-12-27 1995-12-12 Ford Motor Company Fuel injection control system with compensation for pressure and temperature effects on injector performance
US5579739A (en) * 1994-01-14 1996-12-03 Walbro Corporation Returnless fuel system with demand fuel pressure regulator
JP3669017B2 (en) * 1995-09-21 2005-07-06 三菱ふそうトラック・バス株式会社 Accumulated fuel injection control device
DE19543538C1 (en) * 1995-11-22 1997-05-28 Siemens Ag Fuel injection method with temp. compensation for internal combustion engine
US5865158A (en) * 1996-12-11 1999-02-02 Caterpillar Inc. Method and system for controlling fuel injector pulse width based on fuel temperature
JP3546285B2 (en) * 1997-08-04 2004-07-21 トヨタ自動車株式会社 Fuel injection control device for accumulator type engine
DE19841533C2 (en) * 1997-09-12 2003-03-27 Iav Gmbh Method and device for detecting the fuel temperature in internal combustion engines
JPH11182330A (en) * 1997-12-18 1999-07-06 Nissan Motor Co Ltd Direct injection spark ignition type internal combustion engine
US6557530B1 (en) * 2000-05-04 2003-05-06 Cummins, Inc. Fuel control system including adaptive injected fuel quantity estimation
US6494190B1 (en) * 2000-08-04 2002-12-17 Siemens Automotive Corporation Bi-fuel gasoline and low pressure gas fuel system and method of operation
JP2002317669A (en) * 2001-04-19 2002-10-31 Mitsubishi Electric Corp Fuel injection control device of internal combustion engine
JP2003090237A (en) * 2001-09-17 2003-03-28 Toyota Motor Corp Fuel supplier for internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004094804A1 *

Also Published As

Publication number Publication date
EP1616092B1 (en) 2006-08-02
DE10318647A1 (en) 2004-12-02
WO2004094804A1 (en) 2004-11-04
US20060037586A1 (en) 2006-02-23
DE502004001112D1 (en) 2006-09-14
US7082928B2 (en) 2006-08-01
DE10318647B4 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
DE69826092T2 (en) METHOD AND DEVICE FOR INJECTING FUEL INTO A MOTOR
WO2004094804A1 (en) Method for adjusting the duration of fuel injection through an injection valve
DE102011055779B4 (en) Fuel injection characteristics learning device
DE10032022B4 (en) Method for determining the drive voltage for an injection valve with a piezoelectric actuator
DE102007052096B4 (en) Method of identifying a fuel grade
DE69725355T2 (en) Fuel injection control device for a gasoline engine with a fuel injection valve for direct injection into the cylinder
DE102004059364A1 (en) Fuel injector injection delay estimating method for internal combustion engine, involves estimating injection delay based on baseline injection delay curve and measured injection delay of selected injector at identified rail pressure
DE102007052451B4 (en) Method for determining the current continuous leakage quantity of a common-rail injection system and injection system for an internal combustion engine
EP1843028B1 (en) Method for leakage testing of a fuel injector comprising a solenoid valve
DE19913477B4 (en) Method for operating a fuel supply device of an internal combustion engine, in particular a motor vehicle
DE102014100489A1 (en) Fuel injector
EP0925434B1 (en) System for operating an internal combustion engine, in particular of a motor vehicle
DE102006007365B3 (en) Method for controlling and regulating an internal combustion engine, involves setting of minimum pressurization level from maximum individual accumulator pressure in first step
WO2008101769A1 (en) Method for controlling the injection amount for an injector on an internal combustion engine
DE102005058445B3 (en) Fuel amount reporting process for internal combustion engine cylinder involves detecting setting or movement signals at least when engine is switched off
EP2080888A2 (en) Automatic fuel detection
DE102014007963A1 (en) Method for operating an internal combustion engine and engine control unit
DE10012024A1 (en) Internal combustion engine operating method involves estimating pressure in pressure reservoir from measured values for computing injection valve open period
DE10155249C1 (en) Fuel injection system has volumetric flow valve for regulating fuel pressure controlled in dependence on fuel model
DE102011004031B4 (en) An injection system and method for limiting a pressure in the injection system for an internal combustion engine
DE10018050C2 (en) Method for operating an internal combustion engine
DE19856203A1 (en) Fuel supply system operating method for internal combustion engine, especially for vehicle, involves increasing pressure in reservoir, comparing time to reach pressure with predefined time
DE10315318A1 (en) Method for operating an internal combustion engine
DE102007013772B4 (en) Method for controlling an injection system of an internal combustion engine
DE60000866T2 (en) METHOD AND DEVICE FOR PRESSURE DETECTION IN THE FUEL DISTRIBUTOR OF AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060802

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004001112

Country of ref document: DE

Date of ref document: 20060914

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060901

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070503

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090414

Year of fee payment: 6

Ref country code: IT

Payment date: 20090422

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090421

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100406

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100406

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180430

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004001112

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101