EP1606494B1 - Kühlbares schichtsystem - Google Patents

Kühlbares schichtsystem Download PDF

Info

Publication number
EP1606494B1
EP1606494B1 EP04717097A EP04717097A EP1606494B1 EP 1606494 B1 EP1606494 B1 EP 1606494B1 EP 04717097 A EP04717097 A EP 04717097A EP 04717097 A EP04717097 A EP 04717097A EP 1606494 B1 EP1606494 B1 EP 1606494B1
Authority
EP
European Patent Office
Prior art keywords
layer system
cooling
coating
cooling channels
coolable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04717097A
Other languages
English (en)
French (fr)
Other versions
EP1606494A1 (de
Inventor
Heinz-Jürgen GROSS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04717097A priority Critical patent/EP1606494B1/de
Publication of EP1606494A1 publication Critical patent/EP1606494A1/de
Application granted granted Critical
Publication of EP1606494B1 publication Critical patent/EP1606494B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to a coolable layer system according to the preamble of claim 1.
  • EP 1 007 271 B1 shows a gas turbine blade which has a full cooling, but which does not have cooling channels below the outer wall. The elevations serve to support the outer wall and do not form cooling channels.
  • US 2002/0141872 A1 discloses a coolable layer system according to the preamble of claim 1.
  • FIG. 1 shows a coolable layer system 1.
  • the layer system 1 has a substrate 4.
  • the substrate 4 is, for example, a ceramic or a metal, in particular a superalloy (nickel- or cobalt-based) for gas turbine components (turbine blade, B-rennhuntausposition, ..).
  • At least one coating 7 is applied to the substrate 4.
  • a ceramic coating for example a thermal barrier coating 9 (FIG. 6), may be applied to the coating 7.
  • At least one cooling channel 10 is formed here, for example, within the coating 7, ie, the cooling channel 10 is formed by removing the material of the coating 7 or by applying the coating 7, leaving a corresponding cavity.
  • the cooling channel 10 is formed by removing the material of the coating 7 or by applying the coating 7, leaving a corresponding cavity.
  • most of the peripheral surface of the cooling passage 10 is formed by the coating 7.
  • the surface 22 remains mostly unprocessed.
  • a supply of a cooling medium takes place via a coolant supply 13, which is formed at least in the substrate 4 and leads into at least one cooling channel 10.
  • the cooling channels 10 are thus arranged in the immediate vicinity of an outer surface which can come into contact with a hot gas 8.
  • the coating 7, which is exposed to higher temperatures than the substrate 4 can be cooled better.
  • FIG. 2 shows a further exemplary embodiment of a coolable layer system 1.
  • the cooling channels 10 are not arranged by channels within the coating 7, but for example.
  • the coating 7 forms part of the inner surface of the cooling channel 10 and closes it to the outside.
  • cooling channels 10 are arranged both in the substrate 4 and in the coating 7.
  • FIG. 6 shows cooling channels 10 between two coatings 7, 9.
  • the cooling channel 10 may also be formed by a recess 23 (indicated by dashed lines) in the coating 7.
  • the cooling channels 10 according to FIGS. 1, 6 are produced, for example, as follows. On the surface 22 of the substrate 4 and the surface of the coating 7 webs are placed with a filler, which correspond in cross-section to the cooling channels 10 to be produced. The substrate 4 or the coating 7 is then coated with the coating 7 or the coating 9 (plasma spraying, Physical Vapor Deposition (PVP), Chemical Vapor Deposition (CVD), ). Subsequently, the webs are removed with the filler.
  • the material for the webs consists for example of graphite, which can be burned out or leached after coating with the coating 7, 9. Other materials for the filler are possible.
  • corresponding depressions 23 are introduced into the surface 22 of the substrate.
  • the recesses 23 are, for example, filled with a filling material which prevents material of the coating 7 from penetrating into the cooling channels 10 during the coating of the substrate 4. After the application of the coating 7 or the application of an outer wall, the filling material is removed again, so that the cooling channels 10 are formed.
  • FIG. 3 shows the arrangement of cooling channels 10 according to FIGS. 1, 2 and 6 on a surface of a component 1 (layer system).
  • the layer system 1 is, for example, a turbine blade which extends along a radial direction 16.
  • At least one cooling channel 10 extends in an axial direction 19, perpendicular (90 °) to the radial direction 16.
  • the cooling channels 10 can also extend in an angle deviating from 90 ° to the radial axis 16 (FIG. 4), for example, approximately parallel to the radial direction 16 (0 °). It can also extend all the cooling channels (10) in one direction. Groups of cooling channels can also run parallel to each other.
  • FIG. 4 shows another possible arrangement of cooling channels 10 according to FIGS. 1, 2 and 6 on a surface 22 or a coating 7 of a component 1.
  • At least two cooling channels 10 intersect and communicate with each other, ie a cooling medium can flow from the cooling channel 10 into another cooling channel 10.
  • a cooling medium can flow from the cooling channel 10 into another cooling channel 10.
  • complex, meandering cooling channels are superfluous, since at least partially, in particular the entire surface to be cooled of the component 1 is detected by the cross pattern of the cooling channels 10, ie the cross pattern and the intersections of the cooling channels extends at least partially or completely above or below the surface to be cooled Surface.
  • FIG. 4 for example, eight intersections of cooling channels 10 are present.
  • the surface to be cooled may be a partial area or the entire surface of a blade of a turbine blade (component 1). If a cooling channel 10 is clogged at one point, the cooling medium can still continue to flow over the other cooling channels.
  • the cooling medium K flows into the cooling channels 10 'and 10 "via an inlet, for example. From the cooling channel 10", the cooling medium passes directly into the cooling channels 10''' and 10 ''''
  • the cooling channels 10 are arranged here, for example, in groups crosswise to each other, wherein the cooling channels 10 within a group parallel to each other.
  • intersecting cooling channels 10 can detect a surface to be cooled by connecting meandering cooling channels to intersecting cooling channels.
  • FIG. 5 shows a specially designed cooling channel 10, for example, starting from FIG. Since the cooling channel 10 is at least partially adjacent to the coating 7, not shown, or to an outer wall, the cooling channel 10 of the layer system 1 to be produced without coatings or without outer wall on the surface 22 an opening 24.
  • the angle ⁇ between the surface 22 and the inner surface of the cooling passage 10 at the opening 24 has a value different from 90 °. This means that the cooling channel 10 relative to the surface 22 undercuts 26 has.
  • thermal stresses between the coatings 7, 9 or the wall and the substrate 4 are reduced at a high thermal gradient between the outer hot coating 7, 9 or the wall and the cooling channel 10.
  • Such a cooling channel 10 with undercuts 26 may also be arranged in the coating 7 (FIG. 6).
  • a cooling channel 10 with undercuts 26 in the substrate 4 is made, for example, with a milling cutter or grinding head 25, which is formed at one end spherical, hemispherical or conical.
  • a hole is made in the substrate 4 by being moved in a drilling direction 29 nearly perpendicular to the surface 22 of the substrate 4.
  • a back and forth movement of the cutter 25 in a direction 32 perpendicular to the drilling direction 29, as indicated by the arrow whereby the undercuts 26 are generated in the substrate 4.
  • the different positions of the cutter 25 in the reciprocating motion are indicated by dashed lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Auch Schichtsysteme mit Schutzbeschichtungen für den Heissgaseinsatz müssen gekühlt werden. Jedoch ist die Kühlung vielfach nicht ausreichend, da die Kühlkanäle relativ weit von der Aussenoberfläche des Schichtsystems entfernt angeordnet sind. Ein erfindungsgemässes gekühltes Schichtsystem (1) weist Kühlkanäle (10) auf, die sich kreuzen.

Description

  • Die Erfindung betrifft ein kühlbares Schichtsystem gemäß Oberbegriff des Anspruchs 1.
  • Aus der US-PS 5,080,557 ist ein Schichtsystem bekannt, bei dem unterhalb einer Wand eine poröse Struktur angeordnet ist, durch die ein Kühlmedium strömt. Dieser Schichtaufbau ist relativ dick und schlecht zu kühlen.
  • Die US-PS 5,820,337, die US-PS 5,640,767 sowie die US-PS 5,392,515 zeigen aus einem Substrat gebildete Turbinenschaufeln, bei denen unterhalb einer äußeren Wand, die dasselbe Material wie das Substrat aufweist, Kühlkanäle angeordnet sind. Die Kühlung der äußersten Beschichtung auf der äußeren Wand ist vielfach nicht ausreichend.
  • Die EP 1 007 271 B1 zeigt eine prallgekühlte Gasturbinenschaufel, die allerdings keine Kühlkanäle unterhalb der äußeren Wand aufweist. Die Erhebungen dienen zur Stützung der äußeren Wand und bilden keine Kühlkanäle.
  • Die US 2002/0141872 A1 offenbart ein kühlbares Schichtsystem gemäss dem Oberbegriff des Anspruchs 1.
  • Es ist daher Aufgabe der Erfindung, die Kühlung eines Schichtsystems zu verbessern.
  • Die Aufgabe wird gelöst durch ein kühlbares Schichtsystem gemäss Anspruch 1.
  • In den Unteransprüchen sind weitere vorteilhafte Maßnahmen zur Verbesserung des gekühlten Schichtsystems aufgelistet.
  • Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Weise miteinander kombiniert werden.
  • Ausführungsbeispiele der Erfindung sind im folgenden erläutert.
  • Es zeigen
  • FIG 1
    ein erstes Ausführungsbeispiel des kühlbaren Schichtsystems,
    FIG 2
    ein weiteres Ausführungsbeispiel eines kühlbaren Schichtsystems, und
    die FIG 3, 4, 6
    weitere Modifikationen des kühlbaren Schichtsystems, und
    FIG 5
    einen speziell ausgebildeten Kühlkanal.
  • Figur 1 zeigt ein kühlbares Schichtsystem 1.
    Das Schichtsystem 1 weist ein Substrat 4 auf. Das Substrat 4 ist beispielsweise eine Keramik oder ein Metall, insbesondere eine Superlegierung (nickel- oder kobaltbasiert) für Gasturbinenbauteile (Turbinenschaufel, B-rennkammerauskleidung,..). Auf dem Substrat 4 ist zumindest eine Beschichtung 7 aufgebracht. Die Beschichtung 7 kann eine metallische MCrAlY-Beschichtung sein, wie sie bei Gasturbinenschaufeln verwendet wird (M= Cr oder Fe oder Ni; Y= Yttrium oder Seltenes Erdelement).
    Darüber hinaus kann auf der Beschichtung 7 noch eine keramische Beschichtung, beispielsweise eine Wärmedämmschicht 9 (Fig. 6), aufgebracht sein.
  • Ausgehend von der Oberfläche 22 des Substrats 4 ist hier ) zumindest ein Kühlkanal 10 bspw. innerhalb der Beschichtung 7 ausgebildet, d.h. der Kühlkanal 10 entsteht durch Entfernen von Material der Beschichtung 7 oder durch Auftragen der Beschichtung 7 unter Aussparung eines entsprechenden Hohlraums.
    Somit wird der größte Teil der Umfangsfläche des Kühlkanals 10 durch die Beschichtung 7 gebildet. Die Oberfläche 22 bleibt meistens unbearbeitet.
  • Eine Zufuhr von einem Kühlmedium erfolgt über eine Kühlmittelzufuhr 13, die zumindest im Substrat 4 ausgebildet ist und in zumindest einen Kühlkanal 10 führt.
    Die Kühlkanäle 10 sind somit in der unmittelbaren Nähe einer äußeren Oberfläche, die mit einem Heißgas 8 in Kontakt treten kann, angeordnet. So kann die Beschichtung 7, die höheren Temperaturen ausgesetzt ist als das Substrat 4, besser gekühlt werden.
  • Die Figur 2 zeigt ein weiteres Ausführungsbeispiel eines kühlbaren Schichtsystems 1.
    Hier sind die Kühlkanäle 10 nicht durch Kanäle innerhalb der Beschichtung 7, sondern bspw. durch Vertiefungen 23 im Substrat 4 angeordnet.
    Die Beschichtung 7 bildet einen Teil der Innenfläche des Kühlkanals 10 und schließt diesen nach außen hin ab.
  • Ebenso ist es möglich, dass die Kühlkanäle 10 sowohl im Substrat 4 als auch in der Beschichtung 7 angeordnet sind.
  • Figur 6 zeigt Kühlkanäle 10 zwischen zwei Beschichtungen 7, 9.
    Der Kühlkanal 10 kann auch durch eine Vertiefung 23 (gestrichelt angedeutet) in der Beschichtung 7 ausgebildet sein.
  • Die Kühlkanäle 10 gemäss Figuren 1, 6 werden beispielsweise wie folgt hergestellt.
    Auf der Oberfläche 22 des Substrats 4 bzw. der Oberfläche der Beschichtung 7 werden Bahnen mit einem Füllmaterial gelegt, die im Querschnitt den herzustellenden Kühlkanälen 10 entsprechen.
    Das Substrat 4 bzw. die Beschichtung 7 wird dann mit der Beschichtung 7 bzw. der Beschichtung 9 beschichtet (Plasmaspritzen, Physical Vapour Deposition (PVP), Chemical Vapour Deposition (CVD),...).
    Anschließend werden die Bahnen mit dem Füllmaterial entfernt. Das Material für die Bahnen besteht beispielsweise aus Graphit, das nach der Beschichtung mit der Beschichtung 7, 9 ausgebrannt oder ausgelaugt werden kann.
    Andere Materialien für das Füllmaterial sind möglich.
  • Für die Herstellung der Kühlkanäle 10 gemäss Figur 2 werden in die Oberfläche 22 des Substrats entsprechende Vertiefungen 23 eingebracht. Die Vertiefungen 23 werden bspw. mit einem Füllmaterial aufgefüllt, das verhindert, dass Material der Beschichtung 7 bei der Beschichtung des Substrats 4 in die Kühlkanäle 10 eindringt.
    Nach der Aufbringung der Beschichtung 7 oder der Aufbringung einer äußeren Wand wird das Füllmaterial wieder entfernt, so dass die Kühlkanäle 10 entstehen.
  • Figur 3 zeigt die Anordnung von Kühlkanälen 10 gemäss Figuren 1, 2 und 6 auf einer Oberfläche eines Bauteils 1 (Schichtsystem).
    Das Schichtsystem 1 ist beispielsweise eine Turbinenschaufel, die sich entlang einer radialen Richtung 16 erstreckt. Zumindest ein Kühlkanal 10 erstreckt sich in einer axialen Richtung 19, senkrecht (90°) zur radialen Richtung 16.
  • Die Kühlkanäle 10 können auch in einem von 90° abweichenden Winkel zur radialen Achse 16 verlaufen (FIG 4), bspw. etwa parallel zur radialen Richtung 16 (0°).
    Es können sich auch alle Kühlkanäle (10) in einer Richtung erstrecken. Gruppen von Kühlkanälen können auch parallel zueinander verlaufen.
  • Figur 4 zeigt eine weitere Anordnungsmöglichkeit von Kühlkanälen 10 gemäss Figuren 1, 2 und 6 auf einer Oberfläche 22 oder einer Beschichtung 7 eines Bauteils 1.
  • Zumindest zwei Kühlkanäle 10 kreuzen sich und stehen miteinander in Verbindung, d.h. ein Kühlmedium kann aus den Kühlkanal 10 in einen anderen Kühlkanal 10 strömen. Dadurch sind aufwendige, mäanderförmige Kühlkanäle überflüssig, da durch das Kreuzmuster der Kühlkanäle 10 zumindest teilweise, insbesondere die gesamte zu kühlende Oberfläche des Bauteils 1 erfasst wird, d.h. das Kreuzmuster und die Kreuzungen der Kühlkanäle erstreckt sich zumindest teilweise oder ganz über oder unterhalb der zu kühlenden Oberfläche.
    In Figur 4 sind bspw. acht Kreuzungen von Kühlkanälen 10 vorhanden.
    Die zu kühlende Oberfläche kann ein Teilbereich oder die gesamte Oberfläche eines Schaufelblatts einer Turbinenschaufel (Bauteil 1) sein.
    Wenn ein Kühlkanal 10 an einer Stelle verstopft ist, kann das Kühlmedium trotzdem über die anderen Kühlkanäle weiterfliessen.
    Das Kühlmedium K strömt über ein Einlass bspw. in die Kühlkanäle 10' und 10" ein. Aus dem Kühlkanal 10" gelangt das Kühlmedium unmittelbar in den Kühlkanal 10 ''' und 10'''', usw..
  • Die Kühlkanäle 10 sind hier beispielsweise in Gruppen kreuzweise zueinander angeordnet, wobei die Kühlkanäle 10 innerhalb einer Gruppe parallel zueinander verlaufen.
  • Andere Anordnungen von sich kreuzenden Kühlkanälen 10 sind denkbar.
    Auch können sich kreuzende Kühlkanäle 10 und mäanderförmige Kühlkanäle 10 eine zu kühlende Oberfläche erfassen, indem sich mäanderförmige Kühlkanäle an sich kreuzende Kühlkanäle anschliessen.
  • Figur 5 zeigt ein speziell ausgebildeten Kühlkanal 10, bspw. ausgehend von FIG 1.
    Da der Kühlkanal 10 zumindest teilweise an die nicht dargestellte Beschichtung 7 oder an eine äußere Wand angrenzt, weist der Kühlkanal 10 des herzustellenden Schichtsystems 1 ohne Beschichtungen oder ohne äußere Wand an der Oberfläche 22 eine Öffnung 24 auf.
    Der Winkel α zwischen der Oberfläche 22 und der Innenoberfläche des Kühlkanals 10 an der Öffnung 24 weist einen von 90° verschiedenen Wert auf. Dies bedeutet, dass der Kühlkanal 10 gegenüber der Oberfläche 22 Hinterschneidungen 26 aufweist.
    Dadurch werden bei einem hohen thermischen Gradient zwischen äußerer heißer Beschichtung 7,9 oder der Wand und Kühlkanal 10 thermische Spannungen zwischen den Beschichtungen 7, 9 oder der Wand und dem Substrat 4 reduziert.
    Ein solcher Kühlkanal 10 mit Hinterschneidungen 26 kann auch in der Beschichtung 7 angeordnet sein (FIG 6).
  • Ein Kühlkanal 10 mit Hinterschneidungen 26 in dem Substrat 4 wird beispielsweise mit einem Fräser oder Schleifkopf 25 hergestellt, der an einem Ende kugel-, halbkugel- oder kegelförmig ausgebildet ist, hergestellt.
    Zuerst wird mit dem Fräser 25 oder einem anderen zylindrischen Bohrer ein Loch in dem Substrat 4 erzeugt, indem er in einer Bohrrichtung 29 nahezu senkrecht zur Oberfläche 22 des Substrats 4 bewegt wird. Dann erfolgt ein durch Hin- und Herbewegen des Fräsers 25 in einer Richtung 32 senkrecht zur Bohrrichtung 29, wie durch den Pfeil angedeutet, wodurch die Hinterschneidungen 26 im Substrat 4 erzeugt werden.
    Die verschiedenen Stellungen des Fräsers 25 bei der Hin- und Herbewegung sind gestrichelt angedeutet.

Claims (7)

  1. Kühlbares Schichtsystem (1),
    zumindest bestehend aus
    einem Substrat (4) und
    zumindest einer Beschichtung (7) auf dem Substrat (4),
    wobei Kühlkanäle (10) zur Kühlung verwendet werden,
    wobei die Kühlkanäle (10) zumindest teilweise an die Beschichtung (7) angrenzen,
    dadurch gekennzeichnet, dass
    zumindest zwei Kühlkanäle (10) sich kreuzen,
    wobei die Kühlkanäle (10', 10'', 10''', 10'''', 10''''') in Gruppen kreuzweise zueinander angeordnet sind, so dass durch die sich kreuzenden Kühlkanäle (10', 10'', 10''', 10'''', 10''''') die zu kühlende Oberfläche erfasst wird.
  2. Kühlbares Schichtsystem nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das kühlbare Schichtsystem (1) sich in einer radialen Richtung (16) erstreckt, und
    dass zumindest ein Kühlkanal (10) einen Winkel von 0° zur radialen Ausrichtung (16) aufweist.
  3. Kühlbares Schichtsystem nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    das kühlbare Schichtsystem (1) sich in einer radialen Richtung (16) erstreckt, und
    dass zumindest ein Kühlkanal (10) einen Winkel von 90° zur radialen Ausrichtung (16) aufweist.
  4. Kühlbares Schichtsystem nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet, dass
    das kühlbare Schichtsystem (1) sich in einer radialen Richtung (16) erstreckt, und
    dass zumindest ein Kühlkanal (10) einen Winkel von größer 0° bis kleiner 90° zur radialen Ausrichtung (16) aufweist.
  5. Kühlbares Schichtsystem nach Anspruch 1,
    dadurch gekennzeichnet, dass
    zumindest ein Kühlkanal (10) zumindest teilweise innerhalb der Beschichtung (7) angeordnet ist.
  6. Kühlbares Schichtsystem nach einem oder mehreren der vorherigen Ansprüche.
    dadurch gekennzeichnet, dass
    zumindest ein Kühlkanal (10) zwischen zwei Beschichtungen (7, 9) angeordnet ist.
  7. Kühlbares Schichtsystem nach Anspruch 1,
    dadurch gekennzeichnet, dass
    zumindest ein Kühlkanal (10) zumindest eine Hinterschneidung (26) aufweist.
EP04717097A 2003-03-26 2004-03-04 Kühlbares schichtsystem Expired - Lifetime EP1606494B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04717097A EP1606494B1 (de) 2003-03-26 2004-03-04 Kühlbares schichtsystem

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03006962A EP1462613A1 (de) 2003-03-26 2003-03-26 Kühlbares Schichtsystem
EP03006962 2003-03-26
PCT/EP2004/002223 WO2004085799A1 (de) 2003-03-26 2004-03-04 Kühlbares schichtsystem
EP04717097A EP1606494B1 (de) 2003-03-26 2004-03-04 Kühlbares schichtsystem

Publications (2)

Publication Number Publication Date
EP1606494A1 EP1606494A1 (de) 2005-12-21
EP1606494B1 true EP1606494B1 (de) 2007-05-02

Family

ID=32798919

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03006962A Withdrawn EP1462613A1 (de) 2003-03-26 2003-03-26 Kühlbares Schichtsystem
EP04717097A Expired - Lifetime EP1606494B1 (de) 2003-03-26 2004-03-04 Kühlbares schichtsystem

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03006962A Withdrawn EP1462613A1 (de) 2003-03-26 2003-03-26 Kühlbares Schichtsystem

Country Status (5)

Country Link
US (1) US20060222492A1 (de)
EP (2) EP1462613A1 (de)
DE (1) DE502004003687D1 (de)
ES (1) ES2285440T3 (de)
WO (1) WO2004085799A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1828544B1 (de) 2004-12-24 2011-06-22 Alstom Technology Ltd Verfahren zur herstellung eines bauteils mit eingebettetem kanal sowie bauteil
US20110150666A1 (en) * 2009-12-18 2011-06-23 Brian Thomas Hazel Turbine blade
EP2431572A1 (de) * 2010-09-21 2012-03-21 Siemens Aktiengesellschaft Thermoisolationsschicht für eine Dampfturbinenkomponente
US8387245B2 (en) 2010-11-10 2013-03-05 General Electric Company Components with re-entrant shaped cooling channels and methods of manufacture
DE102012205055B4 (de) * 2012-03-29 2020-08-06 Detlef Haje Gasturbinenbauteil für Hochtemperaturanwendungen, sowie Verfahren zum Betreiben und Herstellen eines solchen Gasturbinenbauteils
DE102013109116A1 (de) * 2012-08-27 2014-03-27 General Electric Company (N.D.Ges.D. Staates New York) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
US20160032766A1 (en) * 2013-03-14 2016-02-04 General Electric Company Components with micro cooled laser deposited material layer and methods of manufacture
US9803939B2 (en) * 2013-11-22 2017-10-31 General Electric Company Methods for the formation and shaping of cooling channels, and related articles of manufacture
US10731483B2 (en) * 2015-12-08 2020-08-04 General Electric Company Thermal management article
GB201521862D0 (en) * 2015-12-11 2016-01-27 Rolls Royce Plc Cooling arrangement
DE102016205320A1 (de) * 2016-03-31 2017-10-05 Siemens Aktiengesellschaft Turbinenschaufel mit Kühlstruktur
US10830058B2 (en) 2016-11-30 2020-11-10 Rolls-Royce Corporation Turbine engine components with cooling features

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641439A (en) * 1947-10-01 1953-06-09 Chrysler Corp Cooled turbine or compressor blade
BE552543A (de) * 1955-11-16
GB1175816A (en) * 1968-06-24 1969-12-23 Rolls Royce Improvements relating to the Cooling of Aerofoil Shaped Blades
US5405242A (en) * 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
US5080557A (en) * 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly
US5653110A (en) * 1991-07-22 1997-08-05 General Electric Company Film cooling of jet engine components
US5370499A (en) * 1992-02-03 1994-12-06 General Electric Company Film cooling of turbine airfoil wall using mesh cooling hole arrangement
US5820337A (en) * 1995-01-03 1998-10-13 General Electric Company Double wall turbine parts
US5640767A (en) * 1995-01-03 1997-06-24 Gen Electric Method for making a double-wall airfoil
US6214248B1 (en) * 1998-11-12 2001-04-10 General Electric Company Method of forming hollow channels within a component
US6617003B1 (en) * 2000-11-06 2003-09-09 General Electric Company Directly cooled thermal barrier coating system
US6627019B2 (en) * 2000-12-18 2003-09-30 David C. Jarmon Process for making ceramic matrix composite parts with cooling channels
US6551061B2 (en) * 2001-03-27 2003-04-22 General Electric Company Process for forming micro cooling channels inside a thermal barrier coating system without masking material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2004085799A1 (de) 2004-10-07
DE502004003687D1 (de) 2007-06-14
EP1606494A1 (de) 2005-12-21
EP1462613A1 (de) 2004-09-29
ES2285440T3 (es) 2007-11-16
US20060222492A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
DE60216177T2 (de) Kühlsystem einer beschichteten Turbinenschaufelspitze
DE102011056905A1 (de) Kühlkanalsysteme für mit Beschichtungen überzogene Hochtemperaturkomponenten und zugehörige Verfahren
EP1641959B1 (de) Schichtstruktur und verfahren zur herstellung einer schichtstruktur
EP1606494B1 (de) Kühlbares schichtsystem
EP0132667B1 (de) Thermisch hochbeanspruchte, gekühlte Turbinenschaufel
EP1866459B1 (de) Matrix und schichtsystem
EP1682342B1 (de) Hochtemperatur-schichtsystem zur wärmeableitung und verfahren zu dessen herstellung
DE102005033176A1 (de) Abschleifbare Beschichtungen für eine 7FA+E-Stufe 1 und Verfahren zum Herstellen der Beschichtungen
DE102014116796A1 (de) Bauteile mit mehrschichtigen Kühlstrukturen und Verfahren zur Herstellung derselben
DE102011055612A1 (de) Turbinenkomponenten mit Kühleinrichtungen und Verfahren zur Herstellung derselben
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
DE112020000789B4 (de) Hochtemperaturbauteil und verfahren zur herstellung des hochtemperaturbauteils
EP1942250A1 (de) Bauteil mit schräg verlaufenden Vertiefungen in der Oberfläche und Verfahren zum Betreiben einer Turbine
DE102009011913A1 (de) Wärmedämmschichtsystem
EP1475567A1 (de) Schichtstruktur und Verfahren zur Herstellung einer Schichtstruktur
EP1382707A1 (de) Schichtsystem
EP1816316A1 (de) Bauteilreparaturverfahren
DE102012108057A1 (de) Schutzbeschichtung für Titanschaufeln der letzten Stufe
WO2010078994A1 (de) Verfahren zum beschichten eines bauteils mit filmkühllöchern, und bauteil
EP3458431A1 (de) Keramische hitzeschilde mit reaktionscoating
EP2753729A1 (de) Herstellungsverfahren eines schichtsystems
DE102013109116A1 (de) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
EP2036999A1 (de) Verfahren zur Herstellung einer Wärmedämmschicht und Wärmedämmschicht
EP1892311B1 (de) Turbinenschaufel mit einem Beschichtungssystem
DE10221114C1 (de) Dichtung für Strömungsmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004003687

Country of ref document: DE

Date of ref document: 20070614

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070807

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2285440

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304