EP1603980A1 - Antistatisch beschichteter formkörper und verfahren zu seiner herstellung - Google Patents

Antistatisch beschichteter formkörper und verfahren zu seiner herstellung

Info

Publication number
EP1603980A1
EP1603980A1 EP04716235A EP04716235A EP1603980A1 EP 1603980 A1 EP1603980 A1 EP 1603980A1 EP 04716235 A EP04716235 A EP 04716235A EP 04716235 A EP04716235 A EP 04716235A EP 1603980 A1 EP1603980 A1 EP 1603980A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
optionally
ito
particles
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04716235A
Other languages
English (en)
French (fr)
Inventor
Thomas Hasskerl
Stipan Katusic
Patrick Becker
Rolf Neeb
Ghirmay Seyoum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Publication of EP1603980A1 publication Critical patent/EP1603980A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • the invention relates to a method for producing electrically conductive plastic moldings, the electrically conductive plastic moldings and their uses.
  • EP 0 514 557 B1 describes a coating solution for forming a transparent, conductive coating consisting of powdery conductive particles e.g. B. based on metal oxide z. B. tin oxide in a matrix of a thermally curable silica polymer coating system.
  • Coated substrates e.g. B. ceramic surfaces, layers of paint with thicknesses in the range of z. B. 500 to 7000 A (angstroms, 10 ⁇ 10 m). It is emphasized as advantageous to use products in which the conductive particles are predominantly present as individual particles, largely or completely free of aggregates.
  • Silica polymer coating systems are largely unsuitable for coating many plastic substrates because they have to be cured at very high temperatures, and as a rule are very brittle and poorly adhering.
  • EP-A 0 911 859 describes transparent, electrically conductive structures composed of a transparent substrate, a transparent, electrically conductive coating and a further transparent coating. Silver grains coated with gold or platinum and having a size of 1 to 100 nm are used as electrically conductive particles in a binder matrix. In comparative examples are under among other things, particles of indium tin- ⁇ x ⁇ d (1TO) are used in the thermally hardenable - siloxane lacquer system.
  • DE 101 29 374 describes a process for the production of molded articles made of plastic with an electrically conductive coating, in that one molded article is coated on one side with a paint system consisting of a) a binder, b) optionally a solvent, c) optionally other additives commonly used in paint systems, and d ) 10 to 300 parts by weight (based on component a)) of an electrically conductive metal oxide powder with an average particle size of 5 to 130 nm, coated in a manner known per se, and the shaped body treated or stored in this way before the coating layer cured that the metal oxide powder particles in the half of the lacquer layer facing the boundary layer to the air accumulate so that at least 65% of the particles are in this half of the lacquer layer and then the lacquer layer is then cured or allowed to harden ,
  • the object was to provide a method for producing molded articles made of plastic with an electrically conductive coating, in which good conductivities are achieved even with comparatively reduced amounts of metal oxide powders.
  • Electrically conductive metal oxide powder such as. B. indium tin oxide (ITO) can be used in powder form in coating systems that can be used to produce electrically conductive coatings on all types of moldings.
  • ITO indium tin oxide
  • a commercial disadvantage is the high price of the electrically conductive metal oxide powder, so that such coatings can only be offered for very high-priced products.
  • the high price z. B. of indium tin oxide (ITO) powder results among other things from the complex Manufacturing process according to the SöFGel principle, which comprises a large number of laborious work steps.
  • the step of storing the already coated plastic molded bodies should be avoided, since the plastic molded body is mechanically very sensitive in this state.
  • ways should be found to replace the rather expensive ITO with cheaper products without significantly impairing the functionality of the coating, such as the electrical conductivity or the scratch resistance.
  • Another task was to develop a coating system in which the highest possible proportion of electrically conductive metal oxide powder and nanoparticles can be incorporated without increasing the viscosity in such a way that the coating system can no longer be processed.
  • a binder or a mixture of binders b) optionally a solvent or a solvent mixture and c) optionally further additives used in coating systems and d) optionally a thickener or a thickener mixture e) 5 to 500 parts by mass (based on component a) ) an electrically conductive metal oxide powder with a medium Primary particle size from T to 80 nm and a degree of aggregation of 0.01 to 99%, the degree of aggregation meaning that the percentage is given to which the primary particles consist of at least 2 primary particles.
  • the degree of agglomeration is determined optically by means of a transmission electron microscope on the finished paint.
  • the invention further relates to moldings which can be produced by the process according to the invention and have an electrically conductive coating and their uses.
  • the binder can be either a physically drying or thermally or chemically curable or organic or mixed organic / inorganic binder or binder mixture that is curable by means of high-energy radiation.
  • An organic binder consists of organic monomers, oligomers and / or polymers. Examples are: poly (meth) acrylates, vinyl (co) polymers,
  • Epoxy resins polyurethanes or alkyd resins, crosslinking and non-crosslinking
  • Reactive diluents are understood to mean low-viscosity monomers that can be polymerized into the lacquer, cross-linking reactive diluents have two or more polymerizable groups in the molecule.
  • Reactive diluents would be, for example, butyl acrylate or hydroxyethyl methacrylate, a crosslinking reactive diluent is, for example, hexanediol di (meth) acrylate.
  • a mixed organic / inorganic binder can ⁇ .
  • B. be: polysiloxanes
  • Suitable monomers are, for example, gamma-methacryloxypropyltrimethoxysilane (Silquest A174 NT), hexanediol diacrylate, trimethylolpropane triacrylate, Serpol QMA 189 (Servo Delden BV, NL), dipropylene glycol diacrylate, pentaerythritol tritetraacrylate, Bisomer PPA6E, polypropylene glycol monoacrylate, Sartomer 335, di-trimethylolpropane tetraacrylate, Sartomer CD 9038, ethoxylated bisphenol diacrylate, Sartomer CD 406, cyclohexanedimethanol diacrylate, Sartomer SR 335, lauryl acrylate, Sartomeryd SR 285, Tartrahylate SR 285, Tlacrylate SR 285, Tlacrylate SR 285, Tlacrylate SR 285, Tlacrylate SR 335, Tlacrylate
  • Solvents which may be present in the coating system can be alcohols, ether alcohols or ester alcohols. These can also be mixed with one another or, if appropriate, with further solvents such as aliphatic or aromatic hydrocarbons or esters.
  • Preferred solvents are alcohols, ether alcohols or their mixtures, mixtures of alcohols with other solvents, such as e.g. Butyl acetate, diacetone alcohol and toluene.
  • Common additives c) which may be present in the coating system may e.g. B. flow aids, wetting agents, dispersing additives, antioxidants, reactive thinners, defoamers, sterically hindered amine light stabilizers (HALS), or UV absorbers.
  • HALS sterically hindered amine light stabilizers
  • the products Byk 045, Byk 335, Efka 83, Tego 440, Silan GF16 (Wacker) are particularly preferred among the surface-active agents.
  • Preferred UV absorbers are: Norbloc 7966, Bis-DHB-A (Riedel de Haen), CGL 104 (Ciba), 3- (2-benzotriazolyl) -2-hydroxy-5-tert-octyl-benzyl methacrylamide, UVA 635- L from BASF, Uvinul N35, Tinuvine 1130, 329 and 384.
  • Tinuvine 770, 440, 144, 123, 765, 292, 268 are preferably used as sterically hindered amine light stabilizers.
  • suitable polymers such as for example the product PLEX ® 8770 F, manufactured and marketed by Rohm GmbH & Co. KG used.
  • the product PLEX ® 8770 F is a high molecular weight PMMA with the composition of approx. 75 mass% methyl methacrylate and approx. 25 mass% butyl acrylate.
  • the viscosity number J is approximately 11. (determined in chloroform at 20 degrees Celsius).
  • the product is prepared by bead polymerization, and 2,2'-azobis (isobutyronitrile) is used as the initiator. The methods of bead polymerization are known to the person skilled in the art.
  • Suitable thickeners are: oligomeric epoxy acrylates such as Ebecryl 605, Ebecryl 608, urethane acrylates such as Ebecryl 210, Ebecryl 264, Ebecryl 284, Ebecryl 5129, Ebecryl 1290; Silicone acrylates such as Ebecryl 350 or Ebecryl 360; Polyester acrylates such as Ebecryl 440, epoxy acrylates such as Jägalux 3300, polyester acrylates such as Jägalux 1300; Polyethylene glycol diacrylates such as EM227 from IGM Resin BV, Waalwijk, NL. The products with the name Ebecryl are available from UCB, Kerpen.
  • a suitable physically drying lacquer contains e.g. B. 30 wt .-% polymer, e.g. B. polymethyl methacrylate (co) polymer and 70 wt .-% solvent, e.g. B. methoxypropanol and butyl acetate. After application in a thin layer, the paint hardens automatically due to the evaporation of the solvent.
  • a suitable thermally curable lacquer can e.g. B. be a polysiloxane varnish obtained by partial hydrolysis and condensation of alkylalkoxysilanes can be. The curing takes place after the evaporation of any solvents used by heating for several hours to z. B. 60 to 120 ° C.
  • a suitable chemically curable paint system can e.g. B. consist of a mixture of polyisocyanates and polyols. After the reactive components have been brought together, the coating system hardens automatically within a period of a few minutes to hours.
  • a suitable radiation-curable lacquer system consists, for. B. from a mixture of optionally polyunsaturated radically polymerizable vinyl unsaturated compounds, for. B. (meth) acrylate compounds.
  • the curing takes place after exposure to high-energy radiation, e.g. B. UV radiation or electron beams, optionally after adding a polymerization initiator that can be activated by the radiation.
  • high-energy radiation e.g. B. UV radiation or electron beams
  • Examples are scratch-resistant lacquers as described in DE-A 195 071 74.
  • Components a), b), and c) can represent a coating system based on poly (meth) acrylates, polysiloxanes, polyurethanes, epoxy resins or free-radically polymerizable, optionally polyfunctional, vinyl monomers.
  • a paint system is particularly preferred which contains a binder which, when cured, has a functional polar group content of at least 5, preferably 10 to 25 mol%, based on the binder.
  • a suitable coating composition can consist of
  • H 2 C C (R) -C (O) -O- [CH 2 ] m -OH (II)
  • dd 0.1-10% by weight, based on the sum of components aa) to ee), of a UV polymerization initiator and
  • UV-curable coatings optionally further customary additives for UV-curable coatings, such as UV absorbers and / or additives for flow and rheology
  • ff 0-300% by weight, based on the sum of components aa) to ee), of a solvent which can be easily removed by evaporation and / or 0-30% by weight, based on the sum of components aa) to ee) , a monofunctional reactive diluent.
  • the coating system described is the subject of DE-A 100 02 059 by Röhm GmbH & Co. KG from January 18, 2000.
  • a recipe with a thickener has the following composition:
  • H 2 C C (R) -C (O) -O- [CH 2 ] m -OH (II)
  • cc) 0-5% by weight, based on the sum of components aa) to ff), of an alkane polyol poly (meth) acrylate as crosslinking agent
  • dd 0.1-10% by weight, based on the sum of components aa) to ff), of a UV polymerization initiator and
  • UV-curable coatings such as UV absorbers and / or additives for flow and rheology ff) 0-300% by weight, based on the sum of components aa) to ff), of a solvent which can be easily removed by evaporation and / or 0-30% by weight, based on the sum of components a) to e) , a monofunctional reactive diluent.
  • gg 0.5 -50% by weight, based on the sum of components aa) to ff), of a thickener or a thickener mixture.
  • Such paint systems can absorb water due to their comparatively increased content of functional polar groups and are z.
  • the water absorption which practically always takes place from the environment, leads to a further improvement in the electrical conductivity of the coating.
  • Suitable electrically conductive metal oxide powders e) have a primary particle size in the range from 1 to 80 nm. In the undispersed state, the metal oxide powders e) can also be present as aggregates and agglomerates of primary particles and aggregates, and a particle size of the agglomerates of up to Have 2000 or up to 1000 nm. The aggregates have a size of up to 500 nm, preferably up to 200 nm.
  • the average particle size of the metal oxide powder primary particles can be determined with the aid of the transmission electron microscope and is generally in the range from 5 to 50, preferably from 10 to 40, for the primary particles and particularly preferably from 15 to 35 nm. Further suitable determination methods for the mean particle size are the Brunauer-Emmett-Teller adsorption method (BET) or the X-ray diffractometry (XRD).
  • BET Brunauer-Emmett-Teller adsorption method
  • XRD X-ray diffractometry
  • the primary particles can exist as aggregates or as agglomerates. Aggregates are secondary particles that are permanently joined together by sinter bridges. Aggregates cannot be separated by dispersion processes.
  • Suitable metal oxide powders are e.g. B. antimony tin oxide or indium tin oxide powder (ITO), which have a particularly good electrical conductivity. Doped variants of the metal oxide powders mentioned are also suitable.
  • Corresponding products are obtained in high purity by the sol-gel process and are commercially available from various manufacturers. The mean primary particle sizes are in the range from 5 to 50 nm. The products contain a certain proportion of aggregates and agglomerates composed of individual particles. Agglomerates are secondary particles held together by Van der Waals forces that can be separated by dispersion processes.
  • An indium tin oxide powder is particularly preferably used which has a proportion of aggregated particles with a particle size of 50 to 200 nm of 10 to 80, preferably 20 to 60% by volume.
  • the volume percentage can be determined with the aid of a particle analyzer (e.g. Laser Particle Analyzer from Coulter or BI-90 Particle Sizer from Brookhaven) by using dynamic light scattering to determine a volume-averaged or an intensity-averaged diameter becomes.
  • a suitable indium tin oxide powder can be obtained using the Aerosil manufacturing process by converting the corresponding metal chloride compounds into the metal oxides in a hot flame.
  • the agglomerated particles can partially again aggregate into a few individual particles and into individual particles (primary particles).
  • the proportion of the aggregated particles with a particle size of 50 to 200 nm should preferably not fall below 5%, preferably not below 10%.
  • a proportion of chain-like, agglomerated particles of 25 to 90% in the coating system is favorable.
  • the chain-like aggregates can also be branched or can be present as three-dimensional structures of lined up particles
  • Electron microscopy shows that the aggregates form bridges with one another.
  • ITO indium tin oxide
  • the cited patent application describes a process for the preparation of the indium tin oxides, wherein a solution of an indium salt is mixed with a solution of a tin salt, optionally a solution of a salt is added to at least one doping component, this solution mixture is atomized, the atomized solution mixture is pyrolyzed and the product obtained separates from the exhaust gases.
  • Inorganic compounds such as chlorides, nitrates and organometallic precursors such as acetates and alcoholates can be used as salts.
  • the solution can optionally contain water, water-soluble organic solvents such as alcohols, for example ethanol, propanol and / or acetone.
  • the solution can be atomized using an ultrasonic nebulizer, ultrasonic atomizer, two-substance nozzle or three-substance nozzle.
  • the aerosol obtained can be mixed with the carrier gas and / or N2 / O2 air which is supplied to the flame.
  • the aerosol can be sprayed directly into the flame.
  • Water-immiscible organic solvents such as ethers, can also be used.
  • the separation can be done with a filter or cyclone.
  • the pyrolysis can be carried out in a flame produced by burning hydrogen / air and oxygen.
  • hydrogen methane, butane and propane can also be used.
  • the pyrolysis can continue to be carried out using an externally heated furnace.
  • a fluidized bed reactor, a rotary tube or a pulsation reactor can also be used.
  • the indium tin oxide according to the invention can be doped, for example, with the following substances in the form of the oxides and / or the elemental metals: aluminum, yttrium, magnesium, tungsten, silicon, vanadium, gold, manganese, cobalt, iron, copper, silver, Palladium, ruthenium, nickel, rhodium, cadmium, Platinum, antimony, osmium, cerium, iridium, zirconium, titanium, calcium, potassium, magnesium, sodium, tantalum or zinc, it being possible to use the corresponding salts as the starting material. Doping with potassium, platinum or gold can be particularly preferred.
  • ITO indium tin oxide
  • paints with a content of 0.1 to 50% by mass (inert) nanoparticles and 30 to 70% by mass ITO each based on dry film result in readily curable lacquers.
  • a composition of approximately 20-40% by mass of ITO and 20-40% by mass of inert nanoparticles is preferred.
  • the paints are mechanically stable and adhere well to the plastic substrate.
  • paints with a content of inert inorganic particles, such as SiO 2 nanoparticles have good adhesion and undiminished good electrical conductivity.
  • the SiO 2 nanoparticles are manufactured in a manner known per se and marketed by Clariant GmbH under the Highlink OG brand. Products from Hanse-Chemie, Geesthacht with the trade name Nanocryl are also suitable.
  • inert nanoparticles are understood to mean the following substances and classes of substances: organosols and silica sols which essentially consist of SiO 2 or Al 2 O 3 or combinations thereof.
  • organosols and silica sols which essentially consist of SiO 2 or Al 2 O 3 or combinations thereof.
  • Other oxidic nanoparticles such as zirconium oxide, titanium dioxide and iron oxide are also suitable.
  • Finely divided, destructurized pyrogenic silicas can also be used. These differ from classic pyrogenic silicas in that they only make a comparatively small contribution to the thickening of the paint.
  • functional nanoparticles in the lacquer that contribute to electrical conductivity to the same or a lesser extent than indium tin oxide. Suitable are e.g. Antimony tin oxide or zinc oxide.
  • functional nanoparticles are understood to mean those particles which improve or maintain the conductivity of the overall composite by participating in the conduction of the electrical current.
  • the procedure was as before, but in a different way, nanoparticles with a particle size of 9 nm were used. The same result was obtained.
  • a lacquer with the same ITO concentration but without nanoparticles was produced.
  • acrylate was used instead of the inert nanoparticles. A surface resistance of 10 exp 9 ohms is found.
  • Suitable moldable moldings consist of plastic, preferably of a thermoplastic or thermally deformable plastic.
  • thermoplastics are e.g. B. acrylonitrile butadiene styrene (ABS), polyethylene terephthalates, polybutylene terephthalates, polyamides, polyimides, polystyrenes, polymethacrylates, polycarbonates, impact modified polymethyl methacrylate or other mixtures (blends) of two or more thermoplastics.
  • ABS acrylonitrile butadiene styrene
  • Polyethylene terephthalates polybutylene terephthalates
  • polyamides polyimides
  • polystyrenes polymethacrylates
  • polycarbonates impact modified polymethyl methacrylate or other mixtures (blends) of two or more thermoplastics.
  • Polyolefins polyethylenes or polypropylenes or cycloolefin copolymers, for example copolymers of ethylene and norbornene
  • suitable pretreatment for example corona treatment, flames, plasma spraying or etching.
  • a molded body made of extruded or cast polymethacrylate plastic is particularly preferred as the coatable substrate because of the high transparency of this type of plastic.
  • Polymethyl methacrylate consists of at least 80, preferably 85 to 100% by weight of methyl methacrylate units.
  • further free-radically polymerizable comonomers such as C to C 8 alkyl (meth) acrylates can be present.
  • Suitable comonomers are e.g. B. esters of methacrylic acid (e.g. ethyl methacrylate, butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate), esters of acrylic acid (e.g.
  • methyl acrylate ethyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate) or styrene and styrene derivatives, such as ⁇ -methylstyrene or p- methylstyrene.
  • Cast polymethyl methacrylate is very high molecular weight and can therefore no longer be processed thermoplastically. However, it is thermally deformable (thermoelastic).
  • the moldings to be coated can have any shape. However, flat shaped bodies are preferred, since they can be coated particularly easily and effectively on one or both sides.
  • Flat shaped bodies are e.g. B. solid panels or hollow panels such as multi-wall sheets or double web sheets or multi-wall sheets. Are suitable for. B. also corrugated sheets.
  • the moldings to be coated can have a matt, smooth or structured surface. Paint, manufacturing process and recipe:
  • Suitable paints are e.g. called in DE 101 29 374.
  • radiation-curable lacquers are used. Radiation-curable paints have the advantage over physically drying, chemically curing or thermally curing systems that they can change from liquid to solid within seconds, form a chemical-resistant, scratch-resistant coating if they are cross-linked and can be handled in a comparatively small space. Due to the short time between the application of the coating and the hardening of the lacquer, undesired sedimentation of the specifically heavy metal oxide particles in the lacquer can be largely prevented if the viscosity of the lacquer is set sufficiently high.
  • the paint without ITO addition must be low-viscosity (parameter) to disperse the ITO and the nanoparticles e), so that the filler amount of 40 - 50%, possibly up to 70% ITO can be introduced into the paint and still a sufficient amount Processability, dispersibility and applicability is given. This can be done, for example, by selecting suitable low-viscosity reactive diluents or by adding solvents, such as alcohols. At the same time, the addition of suitable thickeners must effectively prevent ITO particles from settling in the paint. This can be done, for example, by adding suitable polymers.
  • Suitable polymers are polymethacrylates, for example PLEX 8770 F, or polymethacrylates with functional groups; further suitable polymers or oligomers are already described in the chapter "The coating system from a), b) and c)" called.
  • Suitable polymers are characterized by a certain polarity which enables them to interact with the other constituents of the lacquer and with the polar surface of the ITO. Completely non-polar poly- or oligomers or poly- and oligomers with a small number of polar groups are unsuitable for thickening because they cannot interact with the other paint components and are incompatible with the paint.
  • Sufficiently polar oligomers or polymers contain polar groups selected from the group alcohol, ether, polyether, ester, polyester, epoxy, silanol, silyl ether, silicon compounds with substituted aliphatic or aromatic radicals, ketone, urea, urethane, halogen, phosphate, phosphite, Sulfate, sulfonate, sulfite, sulfide, amine, polyamine, amide, imide, carboxylic acid, sulfur, nitrogen and oxygen heterocycles, phenyl and substituted aromatic groups, multinuclear aromatics including those with heteroatoms in the ring.
  • polar groups selected from the group alcohol, ether, polyether, ester, polyester, epoxy, silanol, silyl ether, silicon compounds with substituted aliphatic or aromatic radicals, ketone, urea, urethane, halogen, phosphate, phosphite, Sulfate, sulfon
  • Very polar oligomers or polymers are also unsuitable because their effect on the properties of the finished lacquer is unfavorable.
  • the unsuitable strongly polar groups include polyacids or salts of multiple acids. Unsuitable groups are often characterized by increased water solubility or swellability.
  • the concentration of the suitable polar groups must be chosen so that the swellability of the lacquer does not exceed a certain level. The suitable polar groups are therefore used in a concentration which ensures that the lacquer is not water-soluble and essentially not swellable. This is ensured if the molar proportion of the polar groups is between 0.4 and 100 milliequivalents per 100 g of the above-mentioned polymer.
  • Hydroxyl, carboxyl, sulfonyl-carboxamide, nitrile and silanol groups can be mentioned as polar groups.
  • the polar groups differ in their effectiveness. This increases in the order of nitrile ⁇ hydroxyl ⁇ primary carboxamide ⁇ carboxyl ⁇ sulfonyl ⁇ silanol. The stronger the polarizing effect, the lower the required content in the polymer.
  • Systems that cannot migrate are particularly suitable thickeners. Such systems can be fixed, for example, by connecting them to the paint. This can be done by physical or chemical connection to the paint, for example by polymerizing. Very particularly preferred are oligomeric or polymeric, copolymerizable acrylates or oligomeric / polymeric materials which, for example, crosslink via sulfur bridges, for example PLEX 8770 F from Röhm GmbH & Co. KG.
  • the viscosity of a paint without ITO was determined using a Brookfield LVT viscometer (adapter A). A viscosity of 4.5 mPa.s. is found. The same lacquer was filled with the same proportion by weight of ITO, based on the binder, and was also measured in the Brookfield LVT viscometer (spindle 2) at different speeds of rotation. There is a clear structural viscosity:
  • the composition of the varnish was: 24.5 parts ITO 24.5 parts acrylate mixture 50 parts isopropanol 0.5 parts dispersing additive 0.5 parts photoinitiator
  • a mixture of about 40% by mass of pentaerythritol tritetraacrylate and about 60% of hexanediol diacrylate is used as the acrylate mixture.
  • Silane GF 16 from Wacker Chemie is used as a dispersing additive.
  • Irgacure 184 is used as the photo initiator.
  • a recipe from e.g. 60 parts of hexanediol diacrylate, 40 parts of pentaerythritol tritetraacrylate can only be filled with about 30 - 40 parts of ITO. Above this amount of filler, the paint is so viscous that it can no longer be processed. Because of the intrinsic viscosity of the lacquer, it is advantageous to shear the lacquer during application. This ensures even wetting and a good flow. Suitable application techniques are e.g. Roller application and spray application. The flooding or pouring of the lacquer is unsuitable.
  • the paint can be adjusted by selecting suitable monomers so that it is thoroughly cured in the presence of air (atmospheric oxygen). Examples are a reaction product of the reaction of propanetriol triacrylate with hydrogen sulfide (PLEX6696 from Röhm GmbH & Co. KG). The paints harden faster under nitrogen atmosphere or with a smaller amount Photoinitiator, but curing in air is possible if, for example, a suitable photoinitiator such as Irgacure 907 is used.
  • Suitable products are monodisperse nanoparticles, e.g. in the form of organosols from Clariant under the name Highlink OG.
  • pyrogenic silicas which are sold by Degussa under the name Aerosil. Finely divided, destructurized pyrogenic silicas are particularly preferably used, since these have only a slight influence on the viscosity of paints.
  • Destructured silicas include products that have been produced using the Degussa Aerosil process as aggregates of primary particles with a size of a few nanometers to a few hundred nanometers and that are largely or completely reduced to a level below the particle size by appropriate selection of the production parameters or by post-treatment with regard to the particle size a hundred nanometers have been brought. Products that meet this property profile are described in EP 0808880 B1 from Degussa AG.
  • paints with a content of 10 to 40% (inert) nanoparticles and 20 to 50% ITO each based on dry film result in curable paints.
  • the paints are mechanically stable and adhere well to the plastic substrate.
  • paints with a content of inert inorganic particles such as SiO2 nanoparticles or other nanoparticles on an oxide basis, have good adhesion and undiminished good electrical conductivity. It is assumed that the filler particles effectively force the indium tin oxide particles into structures similar to printed conductors, which improves the effectiveness of the electrical line by concentrating the conductive particles. This allows the ITO concentration to be reduced with the same conductivity.
  • the organosols marketed by Clariant under the name Highlink OG contain mono- or difunctional monomers, which can optionally carry further functional groups. Organosols in organic solvents, such as alcohols, are also suitable. Suitable monomers are, for example, hexanediol diacrylate and hydroxyethyl methacrylate. The monomers should contain the smallest possible amount of polymerization inhibitor. Suitable stabilizers are Tempol from Degussa or phenothiazine. In general, the monomers contain only stabilizer concentrations of ⁇ 500 ppm, in a preferred embodiment ⁇ 200 ppm and particularly preferably ⁇ 100 ppm.
  • the stabilizer concentration in the ready-to-coat UV lacquer should be below 200 ppm, preferably below 100 ppm and very particularly preferably below 50 ppm, based on reactive components.
  • the selected stabilizer concentration depends on the type and reactivity of the selected polymerizable components. Particularly reactive components such as some polyfunctional acrylates or acrylic acid require higher amounts of stabilizer, less reactive components such as monofunctional methacrylates require lower amounts of stabilizer.
  • hydroquinone monomethyl ether can also be used as a stabilizer, the first two also being effective in the absence of oxygen and being used only in a very small amount of 10 to 100 ppm, while the latter compound only works in the presence of oxygen and in amounts of 50 up to 500 ppm is used.
  • the paint can be made scratch-resistant, chemical-resistant or flexible and formable.
  • the crosslinker content is adapted in a suitable manner for this. For example, with a high content of hydroxyethyl methacrylate, the adhesion to difficult substrates, such as cast high-molecular PMMA, and at the same time the formability can be improved. With a higher content of hexanediol diacrylate, the chemical resistance and the scratch resistance are increased.
  • oligomeric or polymeric components which can either be chosen to be reactive with a content of double bonds or else to be non-reactive.
  • the use of higher molecular weight building blocks reduces the crosslink density and the shrinkage of the lacquer during curing, which generally leads to better adhesion.
  • Suitable polymeric components are poly (meth) acrylates, which can be composed, for example, of methacrylates and acrylates and functional monomers. Polymers with functional groups can be used to make an additional contribution to improving adhesion.
  • An example of a suitable polymethacrylate is PLEX 8770 F from Röhm GmbH & Co.KG with a viscosity number J [ml / g] (in CHCI3 at 20 ° C.): 11 ⁇ 1 as a measure of the molecular weight.
  • the oligomeric or polymeric additives can be added in different amounts.
  • Higher molecular weight polymers are added in correspondingly smaller amounts and lower molecular weight products in higher amounts, so that the overall viscosity of the lacquer allows processing.
  • the polymeric additives also act as thickeners and are also used to keep the nanoparticles in suspension and to prevent unwanted sedimentation of the particles after coating.
  • the ITO concentration on the surface is not significantly lower than in bulk or at the phase boundary with the substrate.
  • Another important aspect of this measure is the improvement of substrate adhesion by adding the thickener.
  • One explanation for this which, however, is not intended to restrict the invention to a specific theory, is the reduction in the ITO concentration at the phase boundary with the substrate caused by the thickener, which at the same time advantageously keeps the binder concentration at the phase boundary sufficiently high since the binder becomes one contributes to good substrate adhesion.
  • the substrate adhesion is reduced by reducing the contact area between the substrate and the binder, especially if these accumulate there by sedimentation to the phase boundary of the lacquer-substrate.
  • aggregates should be less than lambda quarters of visible light, ie not greater than 100 nm. If the mixture is sheared too strongly or too long, aggregates that contribute significantly to the conductivity are broken up and the percolation network can no longer build up properly.
  • Information on the influence of shear on the percolation network can be found, for example, in: "Hans J. Mair, Siegmar Roth (ed.), Elektro technicallyde Kunststoffe, Hanser Verlag, 1986 and in” Ishihara Functional Materials ", Technical News, T-200 Electroconductive Materials, Ishihara;
  • An essential point of the invention is therefore to adjust the shear in such a way that aggregates are preserved in the percolation network and coarser agglomerates that are larger than lambda quarters are broken up.
  • the antistatic effect can develop optimally if the percolation network is built up from conductive particles that are in contact like a string of pearls and touch. This optimizes the cost-benefit ratio of the comparatively expensive ITO. At the same time, the transparency improves and the haze of the coating is reduced, since the content of scattering particles can be minimized.
  • the percolation limit depends on the morphology of the particles. Assuming spherical primary particles, the percolation limit is reached at around 40 percent by weight ITO. If needle-shaped ITO particles are used, the particles are sufficiently touched even at a lower concentration. However, needle-shaped particles have the disadvantage of an unfavorable effect on the transparency and the haze.
  • the transparency of the overall system does not suffer from the addition of the inert nanoparticles and other favorable properties of the system are brought about, such as Hardenability under atmospheric oxygen without loss of properties, greater hardness, better formability, good substrate adhesion.
  • the method of coating must be chosen so that the paint can be applied in a thin, uniform thickness. Suitable methods are e.g. Wire doctor blades, dipping, brushing, rolling and spraying. According to methods known to the person skilled in the art, the viscosity of the lacquer must be adjusted so that a layer thickness in the wet film after evaporation of the solvent that has been added is 2-15 ⁇ m. Thinner layers are no longer scratch-resistant and can show a matt effect when metal oxide particles protrude from the paint matrix. Thicker layers are associated with loss of transmission, bring no gain in electrical conductivity and are not useful for reasons of cost. However, for reasons of the abrasion of paint surfaces due to constant mechanical stress, it can be useful to set thicker layers. In this case, layer thicknesses of up to 100 ⁇ m can also be set. The viscosity of the lacquer for the production of the thick layers may have to be increased.
  • the type and concentration of the photoinitiator must also be adjusted. Possibly. combinations of photoinitiators are necessary in order to obtain sufficient surfaces and deep curing of the paint.
  • the combination of conventional photoinitiators e.g. Irgacure 1173 or Irgacure 184 from Ciba
  • photoinitiators that absorb in the longer-wave range e.g. Lucirin TPO or Lucirin TPO-L from BASF
  • Lucirin TPO e.g. Lucirin TPO or Lucirin TPO-L from BASF
  • the required initiator concentrations are between 0.5%, up to 8%, preferably from 1.0 to 5% and very particularly preferably between 1.5 and 3% photoinitiator.
  • a photoinitiator amount of 0.5-2% based on acrylate is sufficient, while when hardening in air, amounts between 2 and 8%, preferably 4-6%, are required.
  • the coating can also be cured with other high-energy rays.
  • a suitable method is irradiation with electron beams.
  • the advantage of this process compared to UV rays is the good through-hardening of thick layers and the possibility of being able to harden faster in the presence of atmospheric oxygen and also without photoinitiators.
  • the radiation energy must be set so that if the layer is sufficiently hardened, there is no damage to the substrate or yellowing.
  • An essential aspect of the invention is the low-shrinkage hardening of the lacquer.
  • UV-curable paints shrink during radiation curing, which can adversely affect the paint surface and the adhesion to the substrate can be lost.
  • the shrinkage of the lacquer can be reduced to a minimum.
  • Inert fillers that do not participate in the polymerization such as metal oxides, for example indium tin oxide, silicon dioxide, or Non-reactive polymeric components reduce the overall shrinkage of a composition, while monovalent monomers and oligomers shrink moderately and polyvalent monomers make the greatest contribution to shrinkage.
  • a low-shrink formula can e.g. can be obtained in that the proportion of polyvalent components does not exceed a certain level.
  • the relationship between molecular weight, number of functional groups and shrinkage must be taken into account. Polyvalent components with a low molecular weight naturally have the highest shrinkage while monovalent components with a higher molecular weight make the lowest contribution to shrinkage.
  • low-shrink formulations are compositions from:
  • solvent e.g. Ethanol or isopropanol
  • the SiO2 nanoparticles can be used, for example, in the form of an organosol of inorganic nanoparticles in hydroxyethyl methacrylate, which is sold by Clariant under the name Highlink OG.
  • the Coatings with the recipe mentioned are mechanically stable, but not scratch-resistant.
  • the scratch resistance of such coatings can be increased by replacing part of the organosol with di- or polyfunctional acrylates.
  • the following composition is an example of a scratch-resistant, low-shrink formulation:
  • solvent e.g. Ethanol or isopropanol
  • the prerequisite for good curing is the use of an organosol with a particularly low stabilizer content.
  • an organosol with 100 ppm Tempol® stabilizer or phenothiazine stabilizer was used in the examples mentioned.
  • a stabilizer-free organosol of SiO2 nanoparticles in organic materials can alternatively be used Solvents, such as alcohols, can be used to introduce the nanoparticles into the coating matrix.
  • the shrinkage can also be influenced by selecting suitable curing conditions.
  • a slow hardening with comparatively low radiation energy is favorable, whereas a higher shrinkage is observed with fast hardening and large radiation energy.
  • Another feature of the invention is the good scratch resistance of the antistatic paints. If you choose the curing conditions described, scratch-resistant antistatic paints with low shrinkage and good adhesion can be produced.
  • Lacquers according to the invention with a content of 33 to 50% ITO achieve scratch resistance of delta haze ⁇ 2% under these conditions after testing on the Taber Abraser with friction wheels CS 10F and 5.4 N weight support at 100 revolutions.
  • the paints according to the invention have good resistance to chemicals, e.g. inorganic acids and bases with a short exposure time, numerous organic solvents such as esters, ketones, alcohols, aromatic solvents. Plastic moldings coated with the paints according to the invention can e.g. can be cleaned with these solvents if necessary.
  • a particular advantage of using low-stabilizer formulations is the possibility of being able to cure in an air atmosphere and thereby reducing the costs for inerting (apparatus expenditure and ongoing costs for inert gas consumption). Another advantage is that a comparatively small amount of photoinitiator can be used for thorough curing.
  • the formulations mentioned in the examples, and formulations in which no SiO2 nanoparticles have been used and mono- or polyfunctional monomers or mixtures thereof have been used instead of the organosols, can each be used with 2% photoinitiator, such as Irgacure 184, Irgacure 1173, Harden Irgacure 907 or mixtures thereof to form scratch-resistant and weather-resistant formulations.
  • Example 3 Example 3:
  • solvent e.g. Ethanol or isopropanol
  • the formulations mentioned above can be mixed with UV protection agents to increase the weather resistance. It is important to ensure that the UV protection agent does not hinder radiation curing.
  • curing is carried out using electron beams. This prevents unfavorable interactions between UV absorbers and UV light from occurring.
  • a UV lamp is used as the radiation source, then, for example, a long-wave UV light can be used in combination with a photoinitiator which absorbs in the long-wave region of the spectrum or in the visible region of the spectrum.
  • the UV absorber must not be in the absorption area of the photoinitiator Absorb completely so that a sufficient amount of high-energy light can reach the paint.
  • UV absorber that offers a sufficiently large window in the absorption area for the transmission of UV rays to excite the photoinitiator.
  • Suitable UV absorbers are Norbloc 7966, Tinuvin 1130.
  • the molded plastic body can be used as glazing or glazing element, for housings, for equipping clean rooms in the medical, biological or microelectronic field, for machine covers, for incubators, for displays, for screens and screen covers, for rear projection screens, for medical equipment and for electrical appliances as a shield become.
  • antistatic coatings can also be used on non-transparent substrates. Examples are: antistatic plastic floors, generally the lamination of antistatic, scratch-resistant films on substrates such as wood, paper decorations. Another Application is the coating of decorative papers with curing under electron beams.
  • Hoechst box ID no. 22926, 250 ml content, DD-PE, natural 0/0021, Hoechst AG
  • Pasteur pipettes 3.5 ml, 150 ml long, order no. 1-6151
  • the powder sample (approx. 10-100 g) is shaken by hand in the storage jar
  • the powder is weighed in on the precision balance (readability 0.01 g). 1 g of powder (+/- 0.02 g) is filled into the PE can and made up to 100 g (+/- 0.02 g) with demineralized water.
  • the test method describes the determination of the particle size distribution by means of photon correlation spectroscopy (PCS, "dynamic light scattering").
  • PCS photon correlation spectroscopy
  • the method is particularly suitable for measuring particles and their aggregates in the submicrometer range (10 nm to 3 ⁇ m).
  • the used HORIBA LB-500 uses a backscattering optics, in which the ratio between single and multiple scattering is almost constant and can therefore be neglected. For this reason, dispersions with higher concentrations can also be measured without incorrect measurements occurring.
  • the following parameters must be known for the exact determination of the particle size distribution: • Temperature of the dispersion: A constant temperature is important to prevent convection movement within the cuvette, which would overlap the free movement of the particles.
  • the HORIBA LB-500 measures the temperature in the cuvette and takes the measured temperature into account in the evaluation.
  • Viscosity of the dispersion medium not critical for dilute systems, as the viscosities e.g. at 25 ° C the pure solvents are well known. Concentrations that are too high are problematic if the viscosity of the dispersion exceeds that of the liquid phase (usually water), since then the movement of the particles is restricted. For this reason, the measurements are usually carried out at a solids concentration of approx. 1%.
  • Refractive index of particles and dispersion medium This information is listed for the majority of solids and solvents in the software from HORIBA.
  • the dispersion must be stable to sedimentation. Sedimentation in the cuvette not only creates additional movement of the particles, it also changes the scattered light intensity during the measurement. It also depletes the dispersion from larger particles that collect at the bottom of the cuvette.
  • the measuring device is controlled by a computer program, which also evaluates the measurement signal and allows the measurement results to be saved and printed out.
  • the sample dispersed with dissolver and ultrasound is transferred into the 1.5 ml disposable acrylic glass cuvette using a Pasteur pipette.
  • the measurement is started using the software ("Measurement" button).
  • the "Measurement display” window opens, in which the current particle distribution is displayed every 3 seconds. Pressing the measurement button again in the measurement display window starts the actual measurement.
  • the particle distribution with various measurement results e.g. d50, d10, d90, standard deviation
  • the particle distribution with various measurement results e.g. d50, d10, d90, standard deviation
  • the particle distribution with various measurement results is displayed after 30-60 s.
  • strongly fluctuating d50 values e.g. 150 nm +/- 20%; this can occur with very wide distributions
  • approx. 6 - 8 measurements are carried out, otherwise 3 - 4 are sufficient.

Abstract

Es wird ein Verfahren zur Herstellung von Formkörpern aus Kunststoffen beschrieben, indem man einen Formkörper ein- oder mehrseitig mit einem Lacksystem beschichtet, das Lacksystem besteht aus einem Bindemittel oder einer Bindemittelmischung, optional einem Lösungsmittel oder Lösungsmittelgemisch, optional weiteren, in Lacksystemen gebräuchlichen Additiven und optional einem Verdicker, wobei polymere Verdicker mit einem Gehalt von 0 bis 20 % und oligomere Verdicker mit einem Gehalt von 0 bis 40 %, jeweils bezogen auf Trockenfilm, eingesetzt werden können (Komponenten a, c, d, e), 5-500 Masse-Teilen, bezogen auf a) eines elektrisch leitfähigen Metall-Oxid­-Pulvers mit einer mittleren Primärteilchengrösse von 5 bis 50 nm und einem Aggregationsgrad von prozentual 0,01 bis 99%, 5-500 Masse-Teile, bezogen auf a) an inerten Nanopartikeln in an sich bekannter Weise beschichtet und den Lack aushärtet.

Description

Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Herstellung von elektrisch leitfähig ausgerüsteten Kunststoffformkörpern, die elektrisch leitfähig ausgerüsteten Kunststoffformkörper und ihre Verwendungen.
Stand der Technik
EP 0 514 557 B1 beschreibt eine Beschichtungslösung zur Bildung einer durchsichtigen, leitfähigen Beschichtung, bestehend aus pulverförmigen leitfähigen Partikeln z. B. auf Metalloxid-Basis z. B. Zinn-Oxid in einer Matrix aus einem thermisch härtbaren Silicapolymer-Lacksystem. Beschichtete Substrate z. B. Keramikoberflächen, können Lackschichten mit Dicken im Bereich von z. B. 500 bis 7000 A (Angström, 10 ~10 m), aufweisen. Es wird als vorteilhaft hervorgehoben, Produkte zu verwenden, in denen die leitfähigen Partikel vorwiegend als Einzelpartikel, weitgehend oder völlig frei von Aggregaten vorliegen. Silicapolymer- Lacksysteme sind zur Beschichtung von vielen Kunststoff-Substraten weitgehend ungeeignet, da sie bei sehr hohen Temperaturen gehärtet werden müssen, in der Regel sehr spröd und schlecht haftend sind.
EP-A 0 911 859 beschreibt transparente, elektrisch-leitfähige Strukturen aus einem transparenten Substrat, einer transparenten, elektrisch-leitfähigen Beschichtung und einer weiteren transparenten Beschichtung. Als elektrisch-leitfähige Partikel werden mit Gold oder Platin beschichtete Silberkörnchen mit einer Größe von 1 bis 100 nm in einer Bindemittelmatrix verwendet. In Vergleichsbeispielen werden unter anderem auch Partikel aus IndiuπvZinn-όxϊd (1TO) im thermisch hartbaren - Siloxanlacksystem eingesetzt.
DE 101 29 374 beschreibt ein Verfahren zur Herstellung von Formkörpern aus Kunststoff mit elektrisch leitfähiger Beschichtung, indem man einen Formkörper einseitig mit einem Lacksystem, bestehend aus a) einem Bindemittel, b) gegebenenfalls einem Lösungsmittel, c) gegebenenfalls weiteren in Lacksystemen gebräuchlichen Additiven und d) 10 bis 300 Gew.-Teilen (bezogen auf die Komponente a)) eines elektrisch leitfähigen Metall-Oxid Pulvers mit einer mittleren Teilchengröße von 5 bis 130 nm in an sich bekannter Weise beschichtet und den Formkörper vor der Aushärtung der Lackschicht so behandelt oder lagert, dass sich die Metall-Oxid Pulver-Teilchen in der Hälfte der Lackschicht, die der Grenzschicht zur Luft zugewandt ist, so anreichern, dass sich mindestens 65 % der Teilchen in dieser Hälfte der Lackschicht befinden und man danach die Lackschicht anschließend aushärtet oder aushärten lässt.
Aufgabe
Es bestand die Aufgabe, ein Verfahren zur Herstellung von Formkörpern aus Kunststoff mit elektrisch leitfähiger Beschichtung bereitzustellen, bei dem bereits mit vergleichsweise reduzierten Mengen an Metalloxidpulvern gute Leitfähigkeiten erreicht werden. Elektrisch-leitfähige Metall-Oxid Pulver, wie z. B. Indium-Zinn- Oxid (ITO), können in Pulverform in Lacksystemen verwendet werden, die zur Herstellung elektrisch-leitfähiger Beschichtungen auf Formkörpern aller Art eingesetzt werden können. Ein kommerzieller Nachteil besteht im hohen Preis der elektrisch leitfähigen Metall-Oxid Pulver, so dass derartige Beschichtungen nur bei sehr hochpreisigen Produkten angeboten werden können. Der hohe Preis z. B. von Indium-Zinn-Oxid (ITO)-Pulvem, resultiert unter anderem aus dem aufwendigen Herstellungsverfahren nach dem SöFGel-Prinzip, das sehr viele autwendige Arbeitsschritte umfasst. Ferner sollte der aus DE 101 29 374 notwendige Schritt der Lagerung der bereits beschichteten Kunststoffformkörper vermieden werden, da der Kunststoffformkörper in diesem Zustand mechanisch sehr empfindlich ist. Weiter sollten Wege gefunden werden, das recht teure ITO durch preiswertere Produkte zu ersetzen, ohne die Funktionalität der Beschichtung, wie beispielsweise die elektrische Leitfähigkeit oder die Kratzfestigkeit, wesentlich zu beeinträchtigen. Ferner bestand die Aufgabe, ein Lacksystem zu entwickeln, in dem ein möglichst hoher Anteil an elektrisch leitfähigen Metall-Oxid-Pulver und an Nanopartikeln einarbeitbar ist, ohne die Viskosität so zu erhöhen, dass das Lacksystem nicht mehr verarbeitbar ist.
Lösung
Die Aufgabe wird gelöst durch ein
Verfahren zur Herstellung von Formkörpern aus Kunststoff mit elektrisch-leitfähiger Beschichtung, indem man einen Formkörper einseitig mit einem Lacksystem, bestehend aus
a) einem Bindemittel oder einem Bindemittelgemisch b) gegebenenfalls einem Lösungsmittel oder einem Lösungsmittelgemisch und c) gegebenenfalls weiteren, in Lacksystemen gebräuchlichen, Additiven und d) optional einem Verdicker oder einem Verdickergemisch e) 5 bis 500 Masse-Teilen (bezogen auf die Komponente a)) eines elektrisch leitfähigen Metall-Oxid Pulvers mit einer mittleren Primärteilchengr ße von Tbis 80 nm und einem Aggregationsgrad von 0,01 bis 99 %, wobei der Aggregationsgrad bedeutet, dass der Prozentsatz angegeben wird, zu dem die Primärpartikel aus mindestens 2 Primärteilchen bestehen.
Die Bestimmung des Agglomerationsgrads erfolgt optisch durch ein Transmissionselektronenmikroskop am fertigen Lack. Die Begriffe "Teilchen", Primärteilchen oder Einzelteilchen", "Aggregat" und "Agglomerat" werden wie in DIN 53 206 (August 1972) definiert, verwendet.
f) und 5 bis 500 Masse-Teilen (bezogen auf die Komponente a)) eines Nanopulvers mit einer mittleren Primärteilchengröße von 2 bis 100 nm
in an sich bekannter Weise beschichtet und die Lackschicht anschließend aushärtet oder aushärten lässt.
Die Erfindung betrifft weiterhin nach dem erfindungsgemäßen Verfahren herstellbare Formkörper mit elektrisch leitfähiger Beschichtung und deren Verwendungen.
Ausführung der Erfindung
Das Bindemittel oder das Bindemittelgemisch a)
Das Bindemittel kann entweder ein physikalisch trocknendes oder thermisch oder chemisch härtbares oder mittels energiereicher Strahlen härtbares, organisches oder gemischt organisch/anorganisches Bindemittel oder Bindemittelgemisch sein.
Ein organisches Bindemittel besteht aus organischen Monomeren, Oligomeren und/oder Polymeren. Beispiele sind: Poly(meth)acrylate, vinylische (Co)polymere,
Epoxidharze, Polyurethane oder Alkydharze, vernetzende und nicht vernetzende
Reaktivverdünner.
Unter Reaktivverdünner versteht man niedrigviskose Monomere, die in den Lack einpolymerisiert werden können, vernetzende Reaktivverdünner weisen zwei oder mehrere polymerisationsfähige Gruppen im Molekül auf.
Reaktivverdünner wären beispielsweise Butylacrylat oder Hydroxyethylmethacrylat, ein vernetzender Reaktivverdünner ist beispielsweise Hexandioldi(meth)acrylat.
Ein gemischt organisch/anorganisches Bindemittel kann ∑. B. sein: Polysiloxane,
Silan-Cokondensate, Silikone oder Blockcopolymere der vorstehenden
Verbindungen mit organischen Polymeren.
Weitere Beispiele sind Hybridpolymere, die als Mischung ihrer monomeren und oligomeren Komponenten eingesetzt werden. Dies können Kombinationen von
(Meth)-acrylaten mit Epoxiden oder Isocyanaten und jeweils zugehörigen Härtern sein.
Geeignete Monomere sind z.B. gamma-Methacryloxypropyltrimethoxysilan (Silquest A174 NT), Hexandioldiacrylat, Trimethylolpropantriacrylat, Serpol QMA 189 (Servo Delden BV, NL), Dipropylenglykoldiacrylat, Pentaerythrittritetraacrylat, Bisomer PPA6E, Polypropylenglykolmonoacrylat, Sartomer 335, Di- trimethylolpropantetraacrylat, Sartomer CD 9038, ethoxyliertes Bisphenol diacrylat, Sartomer CD 406, Cyclohexandimethanoldiacrylat, Sartomer SR 335, Laurylacrylat, Sartomer SR 285, Tetrahydrofurfurylacrylat, Sartomer SR 339, 2- Phenoxyethylacrylat.
Das Lösungsmittel b)
Im Lacksystem gegebenenfalls enthaltene Lösungsmittel können Alkohole, Etheralkohole oder Esteralkohole sein. Diese können auch untereinander oder gegebenenfalls mit weiteren Lösungsmitteln wie aliphatischen oder aromatischen Kohlenwasserstoffen oder Estern gemischt werden.
Bevorzugte Lösungsmittel sind Alkohole, Etheralkohole oder deren Mischungen, Mischungen von Alkoholen mit weiteren Lösemitteln, wie z.B. Butylacetat, Diacetonalkohol und Toluol.
Die Additive c)
Im Lacksystem gegebenenfalls enthaltene gebräuchliche Additive c) können z. B. Verlaufshilfsmittel, Benetzungsmittel, Dispergieradditive, Antioxidantien, Reaktivverdünner, Entschäumer, sterisch gehinderte Amin-Lichtstabilisatoren (HALS), oder UV-Absorber sein. Unter den oberflächenaktiven Mitteln sind besonders bevorzugt die Produkte Byk 045, Byk 335, Efka 83, Tego 440, Silan GF16 (Wacker). Bevorzugte UV-Absorber sind: Norbloc 7966, Bis-DHB-A (Riedel de Haen), CGL 104 (Ciba), 3-(2-Benzotriazolyl)-2-hydroxy-5-tert.-octyl- benzylmethacrylamid, UVA 635-L von BASF, Uvinul N35, die Tinuvine 1130, 329 und 384. Als sterisch gehinderte Aminlichtstabilisatoren werden bevorzugt die Tinuvine 770, 440, 144, 123, 765, 292, 268 eingesetzt. Der Verdicker oder das Verdickergemisch d)
Als Verdicker oder das Verdickergemisch können geeignete Polymere, wie beispielsweise das Produkt PLEX® 8770 F, hergestellt und vertrieben von der Röhm GmbH & Co. KG, verwendet werden. Das Produkt PLEX® 8770 F ist ein hochmolekulares PMMA mit der Zusammensetzung von ca. 75 Masse-% Methacrylsäuremethylester und ca. 25 Masse-% Butylacrylat. Die Viskositätszahl J beträgt ca. 11. (bestimmt in Chloroform bei 20 Grad Celsius) Das Produkt wird durch Perlpolymerisation hergestellt, als Initiator wird 2,2'-Azobis-(isobutyronitril) verwendet. Die Methoden der Perlpolymerisation sind dem Fachmann bekannt.
Weitere geeignete Verdicker sind: oligomere Epoxyacrylate wie Ebecryl 605, Ebecryl 608, Urethanacrylate wie Ebecryl 210, Ebecryl 264, Ebecryl 284, Ebecryl 5129, Ebecryl 1290; Siliconacrylate wie Ebecryl 350 oder Ebecryl 360; Polyesteracrylate wie Ebecryl 440, Epoxyacrylate wie Jägalux 3300, Polyesteracrylate wie Jägalux 1300; Polyethylenglykoldiacrylate wie EM227 von IGM Resin BV, Waalwijk, NL. Die Produkte mit dem Namen Ebecryl sind von Fa. UCB, Kerpen erhältlich.
Das Lacksvstem aus a), b), c) und d)
Ein geeigneter physikalisch trocknender Lack enthält z. B. 30 Gew.-% Polymer, z. B. Polymethylmethacrylat-(Co)polymer und 70 Gew.-% Lösungsmittel, z. B. Methoxypropanol und Butylacetat. Nach Auftrag in dünner Schicht härtet der Lack durch die Verdunstung des Lösungsmittels selbständig aus.
Ein geeigneter thermisch härtbarer Lack kann z. B. ein Polysiloxanlack sein, der durch partielle Hydrolyse und Kondensation von Alkylalkoxysilanen erhalten werden kann. Die Aushärtung erfolgt nach dem Verdunsten gegebenenfalls verwendeter Lösungsmittel durch mehrstündiges Erhitzen auf z. B. 60 bis 120 °C.
Ein geeignetes chemisch härtbares Lacksystem kann z. B. aus einem Gemisch von Polyisocyanaten und Polyolen bestehen. Nach dem Zusammenbringen der reaktiven Komponenten härtet das Lacksystem selbständig innerhalb eines Zeitraums von wenigen Minuten bis Stunden aus.
Ein geeignetes mittels Strahlen härtbares Lacksystem besteht z. B. aus einem Gemisch von gegebenenfalls mehrfach ungesättigten radikalisch polymerisierbarer vinylisch ungesättigter Verbindungen, z. B. (Meth)acrylatverbindungen. Die Härtung erfolgt nach Einwirkung energiereicher Strahlung, z. B. UV-Strahlung oder Elektronenstrahlen, gegebenenfalls nach Zusatz eines durch die Strahlung aktivierbaren Polymerisationsinitiators. Beispiele sind Kratzfestlacke, wie sie in der DE-A 195 071 74 beschrieben sind.
Die Bestandteile a), b), und c) können dabei ein Lacksystem auf Basis von Poly(meth)acrylaten, Polysiloxanen, Polyurethanen, Epoxidharzen oder radikalisch polymerisierbaren, gegebenenfalls mehrfunktionellen, vinylischen Monomeren darstellen.
Besonders bevorzugt ist ein Lacksystem, welches ein Bindemittel enthält, das im ausgehärteten Zustand einen Gehalt an funktionellen polaren Gruppen von mindestens 5, bevorzugt 10 bis 25 mol-% bezogen auf das Bindemittel aufweist. Eine geeignete Beschichtungszusammensetzung kann bestehen aus
aa) 70 - 95 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ee), eines Gemisches aus Polyalkylenoxid-di(meth)acrylaten der Formel (I)
H2C=C(R)-C(O)-O-[CH2-CH2-O]n-C(O)-C(R)=CH2 (I)
mit n = 5 - 30 und R = H oder CH3 wobei
aal ) 50 - 90 Gew.-% des Gemisches der Polyalkylenoxid-di(meth)acrylate der Formel (I) von Polyalkylenoxid-diolen mit einem mittleren Molekulargewicht (Mw) von 300 - 700 und
aa2) 50 - 10 Gew.-% des Gemisches der Polyalkylenoxid-di(rneth)acrylate der Formel (I) von Polyalkylenoxid-diolen mit einem mittleren Molekulargewicht (Mw) von 900 - 1300 gebildet werden
bb) 1 - 15 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ee), eines Hydroxyalkyl(meth)acrylats der Formel
H2C=C(R)-C(O)-O-[CH2]m-OH (II)
mit m = 2 - 6 und R = H oder CH3 cc) 0 - 5 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ee), eines Alkanpolyol-poly(meth)acrylats als Vernetzer
dd) 0,1 - 10 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ee), eines UV-Polymerisationsinitiators sowie
ee) gegebenenfalls weiteren üblichen Additiven für UV-härtbare Beschichtungen, wie UV-Absorbern und/oder Additiven für Verlauf und Rheologie
ff) 0 - 300 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ee), eines leicht durch Verdunstung entfernbaren Lösungsmittels und/oder 0 - 30 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ee), eines monofunktionellen Reaktivverdünners.
Das beschriebene Lacksystem ist Gegenstand der DE-A 100 02 059 der Röhm GmbH & Co. KG vom 18.01.2000.
Eine Rezeptur mit Verdicker hat beispielsweise die folgende Zusammensetzung:
aa) 70 - 95 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ff), eines Gemisches aus Polyalkylenoxid-di(meth)acrylaten der Formel (I)
H2C=C(R)-C(O)-O-[CH2-CH2-O]n-C(O)-C(R)=CH2 (I)
mit n = 5 - 30 und R = H oder CH3
wobei aal) 50 - 90 Gew.-% des Gemisches der Polyalkylenoxid-di(meth)acrylate der Formel (I) von Polyalkylenoxid-diolen mit einem mittleren Molekulargewicht (Mw) von 300 - 700 und
aa2) 50 - 10 Gew.-% des Gemisches der Polyalkylenoxid-di(meth)acrylate der Formel (I) von Polyalkylenoxid-diolen mit einem mittleren Molekulargewicht (Mw) von 900 - 1300 gebildet werden
bb) 1 - 15 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ff), eines Hydroxyalkyl(meth)acrylats der Formel
H2C=C(R)-C(O)-O-[CH2]m-OH (II)
mit m = 2 - 6 und R = H oder CH3
cc) 0 - 5 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ff), eines Alkanpolyolpoly(meth)acrylats als Vernetzer
dd) 0,1 - 10 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ff), eines UV-Polymerisationsinitiators sowie
ee) gegebenenfalls weiteren üblichen Additiven für UV-härtbare Beschichtungen, wie UV-Absorbern und/oder Additiven für Verlauf und Rheologie ff) 0 - 300 Gew.-%, bezogen auf die Summe der Komponenten aa) bis ff), eines leicht durch Verdunstung entfernbaren Lösungsmittels und/oder 0 - 30 Gew.- %, bezogen auf die Summe der Komponenten a) bis e), eines monofunktionellen Reaktivverdünners.
gg) 0,5 -50 % Gew.-%, bezogen auf die Summe der Komponenten aa) bis ff), eines Verdickers oder eines Verdickergemischs.
Derartige Lacksysteme können durch ihren vergleichsweise erhöhten Gehalt an funktioneilen polaren Gruppen Wasser aufnehmen und werden z. B. als Beschichtungen für Motorradhelmvisiere eingesetzt, um ein Beschlagen der Visierscheibe von innen zu verhindern. In Kombination mit dem elektrisch- leitfähigen Metall-Oxid Pulver führt die Wasseraufnahme, die praktisch immer aus der Umgebung stattfindet, zu einer nochmals verbesserten elektrischen Leitfähigkeit der Beschichtung.
Das elektrisch leitfähige Metalloxid-Pulver e)
Geeignete elektrisch leitfähige Metall-Oxid Pulver e) haben eine Primärteilchengröße im Bereich von 1 - 80 nm. Die Metall-Oxid Pulver e) können im undispergierten Zustand auch als Aggregate und Agglomerate von Primärteilchen und Aggregaten vorliegen und hierbei eine Teilchengröße der Agglomerate von bis zu 2000 oder bis zu 1000 nm aufweisen. Die Aggregate haben eine Größe von bis zu 500 nm, bevorzugt bis zu 200 nm.
Die mittlere Teilchengröße der Metall-Oxid Pulver-Primärteilchen kann mit Hilfe des Transmissions-Elektronenmikroskops ermittelt werden und liegt bei den Primärteilchen im allgemeinen im Bereich von 5 bis 50, bevorzugt von 10 bis 40 und besonders bevorzugt von 15 bis 35 nm. Weitere geeignete Bestimmungsmethoden für die mittlere Teilchengröße sind die Brunauer-Emmett- Teller-Adsorptionsmethode (BET) oder die Röntgen-Diffraktometrie (XRD). Die Primärteilchen können als Aggregate oder als Agglomerate vorliegen. Unter Aggregaten versteht man Sekundärteilchen, die über Sinterbrücken dauerhaft zusammengefügt sind. Durch Dispergierprozesse sind Aggregate nicht trennbar.
Geeignete Metall-Oxid Pulver sind z. B. Antimon-Zinn-Oxid- oder Indium-Zinn- Oxid-Pulver (ITO), die eine besonders gute elektrische Leitfähigkeit aufweisen. Geeignet sind auch dotierte Varianten der genannten Metall-Oxid-Pulver. Entsprechende Produkte werden nach dem Sol-Gel-Verfahren in hoher Reinheit erhallen und sind von verschiedenen Herstellern kommerziell erhältlich. Die mittleren Primärteilchengrößen liegen im Bereich von 5 bis 50 nm. Die Produkte enthalten einen bestimmten Anteil von aus Einzelteilchen zusammengesetzten Aggregaten und Agglomeraten. Unter Agglomeraten versteht man durch Van-der- Waals-Kräfte zusammengehaltene Sekundärteilchen, die durch Dispergierprozesse trennbar sind.
Besonders bevorzugt wird ein Indium-Zinn-Oxid Pulver verwendet, welches einen Anteil von aggregierten Partikeln mit einer Teilchengröße von 50 bis 200 nm von 10 bis 80, bevorzugt 20 bis 60 Vol.-% aufweist. Der Vol-%-Anteil kann mit Hilfe eines Partikel-Analysatorgerätes (z. B. Laser Particle Analyzer der Fa. Coulter oder BI-90 Particle Sizer der Fa. Brookhaven) bestimmt werden, indem mittels dynamischer Lichtstreuung ein volumengemittelter oder ein intensitätsgemittelter Durchmesser bestimmt wird.
Ein geeignetes Indium-Zinn-Oxid Pulver kann mittels des Aerosil- Herstellungsverfahrens erhalten werden, indem man die entsprechenden Metallchlorid-Verbindungen in einer heißen Flamme in die Metall-Oxide überführt. Bei der Einarbeitung des Indium-Zinn-Oxid Pulvers in das Lacksystem können die agglomerierten Partikel teilweise wieder in Aggregate von wenigen Einzelteilchen und in Einzelteilchen (Primärteilchen) aufgehen. Der Anteil der aggregierten Partikel mit einer Teilchengröße von 50 bis 200 nm soll bevorzugt nicht unter 5, bevorzugt nicht unter 10 % fallen. Günstig ist ein Anteil von kettenförmig aufgereihten agglomerierten Partikeln von 25 bis 90 % im Lacksystem. Dabei können die kettenförmigen Aggregate auch verzweigt sein oder als dreidimensionale Gebilde von aufgereihten Partikeln vorliegen
Elektronenmikroskopisch ist sichtbar, dass die Aggregate untereinander Brücken bilden.
Herstellung von Indium-Zinn-Oxid (ITO) Pulver nach dem Aerosilverfahren
Die Herstellung von Indium-Zinn-Oxid Pulver nach dem Aerosilverfahren ist Gegenstand der Patentanmeldung EP 127 0511 der Degussa AG (Standort Hanau-Wolfgang, Deutschand).
Die genannte Patentanmeldung beschreibt ein Verfahren zur Herstellung der Indium-Zinn-Oxide, wobei man eine Lösung eines Indiumsalzes mit einer Lösung eines Zinnsalzes vermischt, gegebenenfalls eine Lösung eines Salzes mindestens einer Dotierungskomponente hinzufügt, dieses Lösungsgemisch zerstäubt, das zerstäubte Lösungsgemisch pyrolysiert und das erhaltene Produkt von den Abgasen abtrennt.
Als Salze können anorganische Verbindungen wie z.B. Chloride, Nitrate und metallorganische Precursoren wie z.B. Acetate, Alkoholate eingesetzt werden. Die Lösung kann gegebenenfalls Wasser, wasserlösliche, organische Lösungsmittel wie Alkohole zum Beispiel Ethanol, Propanol und/oder Aceton enthalten.
Die Zerstäubung der Lösung kann mittels Ultraschallvernebler, Ultraschallzerstäuber, Zweistoffdüse oder Dreistoffdüse erfolgen. Bei der Verwendung des Ultraschallverneblers oder Ultraschallzerstäubers kann das erhaltene Aerosol mit dem Trägergas und/oder N2/O2 Luft das der Flamme zugeführt wird, vermischt werden.
Bei der Verwendung der Zweistoff- oder Dreistoffdüse kann das Aerosol direkt in die Flamme eingesprüht werden.
Auch mit Wasser nichtmischbare organische Lösungsmittel, wie beispielsweise Ether, können eingesetzt werden.
Die Abtrennung kann mittels Filter oder Zyklon erfolgen.
Die Pyrolyse kann in einer Flamme, erzeugt durch Verbrennen von Wasserstoff/Luft und Sauerstoff, erfolgen. Anstelle von Wasserstoff kann auch Methan, Butan und Propan eingesetzt werden.
Die Pyrolyse kann weiterhin mitteis eines von außen beheizten Ofen erfolgen. Ebenso kann ein Fließbett-Reaktor, ein Drehrohr oder ein Pulsationsreaktor verwendet werden.
Das erfindungsgemäße Indium-Zinn-Oxid kann beispielsweise mit den folgenden Stoffen in Form der Oxide und/oder der elementaren Metalle dotiert sein: Aluminium, Yttrium, Magnesium, Wolfram, Silizium, Vanadium, Gold, Mangan, Kobalt, Eisen, Kupfer, Silber, Palladium, Ruthenium, Nickel, Rhodium, Cadmium, Platin, Antimon, Osmium, Cer, Iridium, Zirkon, Titan, Calcium, Kalium, Magnesium, Natrium, Tantal, oder Zink, wobei als Ausgangsstoff die entsprechenden Salze eingesetzt werden können. Besonders bevorzugt kann eine Dotierung mit Kalium, Platin oder Gold sein.
Das erhaltene Indium-Zinn-Oxid (ITO) kann z. B. die folgenden physikalisch chemischen Parameter besitzen:
Das Nanopulver e)
Es wurde gefunden, dass Lacke mit einem Gehalt von 0,1 bis 50 Masse-% (inerten) Nanopartikeln und 30 bis 70 Masse-% ITO jeweils bezogen auf Trockenfilm (das ist die Zusammensetzung des Lacks ohne die Lösemittel) (Komponenten a), c), d), e) und f) gut aushärtbare Lacke ergeben. Bevorzugt ist eine Zusammensetzung von ca. 20 - 40 Masse-% ITO und 20 - 40 Masse-% inerte Nanopartikel. Die Lacke sind mechanisch stabil und haften gut auf dem Kunststoffsubstrat. Überraschenderweise haben Lacke mit einem Gehalt an inerten anorganischen Teilchen, wie z.B. SiO2-Nanopartikel, eine gute Haftung und eine unvermindert gute elektrische Leitfähigkeit.
Die SiO2-Nanopartikel werden in an sich bekannter Weise hergestellt und unter der Marke Highlink OG von der Clariant GmbH in den Handel gebracht. Ebenfalls geeignet sind Produkte der Firma Hanse-Chemie, Geesthacht mit dem Handelsnamen Nanocryl.
Unter inerten Nanopartikeln versteht man neben den bereits erwähnten Highlink OG folgenden Stoffe und Stoffklassen: Organosole und Kieselsole, die im wesentlichen aus SiO2 oder AI2O3 oder Kombinationen davon bestehen. Ebenfalls geeignet sind weitere oxidische Nanopartikel wie Zirkonoxid, Titandioxid, Eisenoxid. Es können auch feinteilige destrukturierte pyrogene Kieselsäuren eingesetzt werden. Diese unterscheiden sich von den klassischen pyrogenen Kieselsäuren dadurch, dass sie nur noch in vergleichsweise geringem Umfang zur Verdickung des Lacks beitragen.
Weiter kann man auch funktioneile Nanopartikel in den Lack einarbeiten, die zur elektrischen Leitfähigkeit in gleichem oder schwächerem Umfang als Indiumzinnoxid beitragen. Geeignet sind z.B. Antimonzinnoxid oder Zinkoxid. Unter funktioneilen Nanopartikeln versteht man im Sinne der Erfindung solche Partikel, die die Leitfähigkeit des Gesamtkomposits verbessern oder aufrecht erhalten, indem sie sich an der Leitung des elektrischen Stroms beteiligen.
Ein hier nicht gemeinter indirekter Beitrag kann auch dadurch erfolgen, dass die inerten Nanopartikel durch ihre Anwesenheit die funktioneilen Nanopartikel in leiterbahnähnliche Strukturen verdrängen, wodurch die Leitfähigkeit sogar verbessert wird. Ein Beispiel dafür ist ein Lack aus je : 3g Indiumzinnoxid
3 g SiO2-Nanopartikeln (13 nm, Highlink OG 502-31) (inerte Nanopartikel)
3 g Acrylatgemisch (Zusammensetzung siehe hinten.)
7 g Isopropanol
0,08 g Silan GF 16 (Wacker) und 2 % Photoinitiator bezogen auf Acrylat Dieser Lack ergibt nach UV-Härtung eine antistatische Schicht mit einem Oberflächenwiderstand < 10 exp 6 Ohm.
In einem weiteren Beispiel wurde wie zuvor verfahren, abweichend wurden jedoch Nanopartikel mit 9 nm Teilchengröße eingesetzt. Man erhielt das gleiche Resultat. Zum Vergleich wurde ein Lack mit gleicher ITO-Konzentration, jedoch ohne Nanopartikel hergestellt. Anstelle der inerten Nanopartikel wurde Acrylat eingesetzt. Man findet einen Oberflächenwiderstand von 10 exp 9 Ohm.
Die beschichtbaren Formkörper
Geeignete beschichtbare Formkörper bestehen aus Kunststoff, bevorzugt aus einem thermoplastischen oder thermisch verformbaren Kunststoff.
Geeignete thermoplastische Kunststoffe sind z. B. Acrylnitril-Butadien-Styrol (ABS), Polyethylenterephthalate, Polybutylenterephthalate, Polyamide, Polyimide, Polystyrole, Polymethacrylate, Polycarbonate, schlagzäh modifiziertes Polymethylmethacrylat oder sonstige Mischungen (Blends) aus zwei oder mehreren thermoplastischen Kunststoffen. Polyolefine (Polyethylene oder Polypropylene oder Cycloolefincopolymere, beispielsweise Copolymere aus Ethylen und Norbornen) sind nach geeigneter Vorbehandlung, wie beispielsweise Corona-Behandlung, Flammen, Plasmaspritzen oder Ätzen ebenfalls beschichtbar. Bevorzugt sind die transparenten Kunststoffe. Besonders bevorzugt als beschichtbares Substrat ist ein Formkörper aus extrudiertem oder gegossenem Polymethacrylat-Kunststoff wegen der hohen Transparenz dieses Kunststoff-Typs. Polymethylmethacrylat besteht aus mindestens 80, bevorzugt 85 bis 100 Gew.-% Methylmethacrylat-Einheiten, Gegebenenfalls können weitere radikalisch polymerisierbare Comonomere wie C bis C8-Alkyl(meth)acrylate enthalten sein. Geeignete Comonomere sind z. B. Ester der Methacrylsäure (z. B. Ethylmethacrylat, Butylmethacrylat, Hexylmethacrylat, Cyclohexylmethacrylat), Ester der Acrylsäure (z. B. Methylacrylat, Ethylacrylat, Butylacrylat, Hexylacrylat, Cyclohexylacrylat) oder Styrol und Styrolderivate, wie beispielsweise α- Methylstyrol oder p-Methylstyrol.
Gegossenes Polymethylmethacrylat ist sehr hochmolekular und deshalb nicht mehr thermoplastisch verarbeitbar. Es ist jedoch thermisch verformbar (thermoelastisch).
Die zu beschichtenden Formkörper können eine beliebige Form aufweisen. Bevorzugt sind jedoch flächige Formkörper, da sich diese besonders einfach und effektiv einseitig oder beidseitig beschichten lassen. Flächige Formkörper sind z. B. massive Platten oder Hohlkammerplatten wie Stegplatten bzw. Stegdoppelplatten oder Stegmehrfachplatten. Geeignet sind z. B. auch Wellplatten.
Die zu beschichtenden Formkörper können eine matte, glatte oder strukturierte Oberfläche aufweisen. Lack, Herstellverfahren und Rezeptur:
Lackbasis:
Geeignete Lacke werden z.B. in DE 101 29 374 genannt. In einer besonders bevorzugten Ausführungsform werden strahlenhärtbare Lacke eingesetzt. Strahlenhärtbare Lacke haben gegenüber physikalisch trocknenden, chemisch härtenden oder thermisch härtenden Systemen den Vorteil, innerhalb von Sekunden vom flüssigen in den festen Zustand zu übergehen, bei entsprechender Vernetzung einen chemikalienbeständigen, kratzfesten Überzug zu bilden und auf vergleichsweise kleinem Raum gehandhabt zu werden. Durch die kurze Zeit zwischen Beschichtungsauftragung und Lackhärtung kann eine unerwünschte Sedimentation der spezifisch schweren Metalloxidteilchen im Lack weitestgehend verhindert werden, wenn die Viskosität des Lacks ausreichend hoch eingestellt wird.
UV-härtbarer Lack
Der Lack ohne ITO-Zusatz muss zur Dispergierung des ITOs und der Nanopartikel e) niederviskos sein (Parameter), damit die Füllstoffmenge von 40 - 50 %, ggf. auch bis zu 70 % ITO in den Lack eingebracht werden kann und immer noch eine ausreichende Verarbeitbarkeit, Dispergierbarkeit und Applizierbarkeit gegeben ist. Dies kann z.B. durch Auswahl geeigneter niederviskoser Reaktivverdünner oder durch Zusatz von Lösemitteln, wie z.B. Alkoholen geschehen. Gleichzeitig muss durch Zusatz geeigneter Verdicker ein Absetzen der ITO-Partikel im Lack wirksam verhindert werden. Dies kann z.B. durch Zusatz geeigneter Polymere geschehen. Ein Beispiel für geeignete Polymere sind Polymethacrylate, z.B. PLEX 8770 F, oder Polymethacrylate mit funktioneilen Gruppen; weitere geeignete Polymere oder Oligomere werden bereits im Kapitel „Das Lacksystem aus a), b) und c)" genannt. Geeignete Polymere zeichnen sich durch eine gewisse Polarität aus wodurch sie mit den anderen Bestandteilen des Lacks und mit der polaren Oberfläche des ITO wechselwirken können. Vollständig unpolare Poly- oder Oligomere oder Poly- und Oligomere mit einer geringen Anzahl von polaren Gruppen sind ungeeignet zur Verdickung, da sie nicht mit den anderen Lackbestandteilen wechselwirken können und mit dem Lack unverträglich sind. Ausreichend polare Oligo- oder Polymere enthalten polare Gruppen, ausgewählt aus der Gruppe Alkohol, Ether, Polyether, Ester, Polyester, Epoxid, Silanol, Silylether, Siliziumverbindungen mit substituierten aliphatischen oder aromatischen Resten, Keton, Harnstoff, Urethan, Halogen, Phosphat, Phosphit, Sulfat, Sulfonat, Sulfit, Sulfid, Amin, Polyamin, Amid, Imid, Carbonsäure, Schwefel-, Stickstoff- und Sauerstoffheterocyclen, Phenyl und substituierte aromatische Gruppen, mehrkernige Aromaten inklusive solcher mit Heteroatomen im Ring. Sehr polare Oligo- oder Polymere sind ebenfalls ungeeignet, da ihre Wirkung auf die Eigenschaften des fertigen Lacks ungünstig ist. Zu den ungeeigneten stark polaren Gruppen zählen Polysäuren oder Salze von Mehrfachsäuren. Ungeeignete Gruppen zeichnen sich oft durch eine erhöhte Wasserlöslichkeit oder -quellbarkeit aus. Die Konzentration der geeigneten polaren Gruppen muss so gewählt werden, dass die Quellbarkeit des Lacks ein gewisses Maß nicht überschreitet. Die geeigneten polaren Gruppen werden daher in einer Konzentration eingesetzt, die gewährleistet, dass der Lack nicht wasserlöslich und im wesentlichen nicht quellbar ist. Dies ist gewährleistet, wenn der molare Anteil der polaren Gruppen zwischen 0,4 und 100 Milliäquivalent pro 100 g des oben genannten Polymeren beträgt. Als polare Gruppen sind Hydroxyl-, Carboxyl-, Sulfonyl-Carbonsäureamid-, Nitril- und Silanol-Gruppen zu nennen. Die polaren Gruppen unterscheiden sich in ihrer Wirksamkeit. Diese nimmt in der Reihenfolge Nitril < Hydroxyl < primäres Carbonsäureamid < Carboxyl < Sulfonyl < Silanol zu. Je stärker die polarisierende Wirkung ist, umso geringer ist der erforderliche Gehalt in dem Polymer. Besonders geeignete Verdicker sind Systeme, die nicht migrieren können. Solche Systeme können z.B. durch Anbindung an den Lack fixiert werden. Dies kann durch physikalische oder chemische Anbindung an den Lack, z.B. durch Einpolymerisieren geschehen. Ganz besonders bevorzugt sind oligo- oder polymere, einpolymerisierbare Acrylate oder Oligo-/Polmere, die z.B. über Schwefelbrücken nachvernetzen, z.B. PLEX 8770 F von Röhm GmbH & Co. KG.
Zur Illustration der Wirkung des ITOs auf die Viskosität des Lacks wurde die Viskosität eines Lacks ohne ITO mittels Brookfield-Viskosimeter LVT (Adapter A) bestimmt. Man findet eine Viskosität von 4,5 mPa.s. Der gleiche Lack wurde mit dem, bezogen auf Bindemittel, gleichen Gewichtsanteil ITO gefüllt und ebenfalls im Brookfield-Viskosimeter LVT (Spindel 2) bei verschiedenen Umdrehungsgeschwindigkeiten gemessen. Man findet eine deutliche Strukturviskosität:
Die Zusammensetzung des Lacks betrug: 24,5 Teile ITO 24,5 Teile Acrylatgemisch 50 Teile Isopropanol 0,5 Teile Dispergieradditiv 0,5 Teile Photoinitiator Der Lack ohne ITO hatte entsprechend eine Zusammensetzung von: 32,45 Teilen Acrylatgemisch 0,66 Teilen Dispergieradditiv 0,66 Teilen Photoinitiator 66,22 Teilen Isopropanol
Als Acrylatgemisch wird eine Mischung aus ca. 40 Masse-% Pentaerythrittritetraacrylat und ca. 60 % Hexandioldiacrylat eingesetzt. Als Dispergieradditiv wird Silan GF 16 der Wacker Chemie eingesetzt. Als Fotoinitiator wird Irgacure 184 verwendet.
Ist die Viskosität des Lacks zu hoch, weil z.B. kein Lösemittel zugesetzt wurde, so gelingt es nicht, eine ausreichende Menge ITO einzudispergieren. Eine Rezeptur aus z.B. 60 Teilen Hexandioldiacrylat, 40 Teilen Pentaerythrittritetraacrylat kann nur mit etwa 30 - 40 Teilen ITO gefüllt werden. Oberhalb dieser Füllstoffmenge ist der Lack so viskos, dass er nicht mehr verarbeitet werden kann. Wegen der Strukturviskosität des Lacks ist es vorteilhaft, den Lack bei der Applikation zu scheren. Dadurch wird eine gleichmäßige Benetzung und ein guter Verlauf erzielt. Geeignete Auftragstechniken sind z.B. Walzenauftrag und Spritzauftrag. Ungeeignet ist das Fluten oder Gießen des Lacks.
Besondere Ausführungsformen:
Der Lack kann durch Auswahl geeigneter Monomere so eingestellt werden, dass eine gute Durchhärtung in Gegenwart von Luft (Luftsauerstoff) gewährleistet ist. Beispiele sind ein Reaktionsprodukt der Umsetzung von Propantrioltriacrylat mit Schwefelwasserstoff (PLEX6696 von Röhm GmbH & Co. KG) Die Lacke härten unter Stickstoffatmosphäre zwar schneller oder mit einer geringeren Menge Photoinitiator, aber die Härtung unter Luft ist möglich wenn z.B. ein geeigneter Photoinitiatior wie Irgacure 907 verwendet wird.
Dies kann z.B. auch dadurch erreicht werden, dass SiO2-Nanopartikel in die Lackmatrix eingearbeitet werden. Geeignete Produkte sind monodisperse Nanopartikel, die z.B. in Form von Organosolen von Fa. Clariant unter dem Namen Highlink OG vertrieben werden. Ebenfalls geeignet sind pyrogene Kieselsäuren, die von Fa. Degussa unter dem Namen Aerosil vertrieben werden. Besonders bevorzugt werden feinteilige destrukturierte pyrogene Kieselsäuren verwendet, da diese die Viskosität von Lacken nur wenig beeinflussen. Zu destrukturierten Kieselsäuren zählen Produkte, die nach dem Aerosilverfahren der Degussa als Aggregate von einige Nanometer bis einige hundert Nanometer große Primärteilchen hergestellt worden sind und durch geeignete Wahl der Herstellungsparameter oder durch Nachbehandlung bezüglich der Teilchengröße ihrer Sekundär- und Tertiärstrukturen weitgehend oder vollständig auf ein Niveau unter hundert Nanometern gebracht worden sind. Produkte, die diesem Eigenschaftsbild genügen, werden in EP 0808880 B1 von Degussa AG beschrieben.
Es wurde gefunden, dass Lacke mit einem Gehalt von 10 bis 40 % (inerten) Nanopartikeln und 20 bis 50 % ITO jeweils bezogen auf Trockenfilm (das ist die Zusammensetzung des Lacks ohne die Lösemittel) gut aushärtbare Lacke ergeben. Die Lacke sind mechanisch stabil und haften gut auf dem Kunststoffsubstrat.
Überraschenderweise haben Lacke mit einem Gehalt an inerten anorganischen Teilchen, wie z.B. SiO2-Nanopartikel oder weitere Nanopartikel auf oxidischer Basis eine gute Haftung und eine unvermindert gute elektrische Leitfähigkeit. Es wird davon ausgegangen, dass die Füllstoffpartikel die Indiumzinnoxidpartikel quasi in leiterbahnähnliche Strukturen zwingen wodurch die Effektivität der elektrischen Leitung durch Aufkonzentrieren der leitfähigen Partikel verbessert wird. Dadurch kann die ITO-Konzentration bei gleicher Leitfähigkeit reduziert werden.
Die unter dem Namen Highlink OG von Clariant vertriebenen Organosole enthalten mono- oder difunktionelle Monomere, die ggf. weitere funktionelle Gruppen tragen können. Ebenfalls geeignet sind Organosole in organischen Lösemitteln, wie z.B. Alkoholen. Gut geeignete Monomere sind z.B. Hexandioldiacrylat und Hydroxyethylmethacrylat. Die Monomere sollten möglichst geringe Mengen Polymerisationsinhibitor enthalten. Geeignete Stabilisatoren sind Tempol von Fa. Degussa oder Phenothiazin. Im allgemeinen enthalten die Monomere nur Stabilisatorkonzentrationen von < 500 ppm, in einer bevorzugten Ausführungsform < 200 ppm und besonders bevorzugt <100 ppm. Die Stabilisatorkon∑entration im beschichtungsfertigen UV-Lack sollte unter 200 ppm liegen, bevorzugt unter 100 ppm und ganz besonders bevorzugt unter 50 ppm bezogen auf reaktive Komponenten. Die gewählte Stabilisatorkon∑entration hängt von der Art und Reaktivität der gewählten polymerisationsfähigen Komponenten ab. Besonders reaktive Komponenten wie z.B. manche polyfunktionelle Acrylate oder Acrylsäure benötigen höhere Stabilisatormengen, weniger reaktive Komponenten wie z.B. monofunktionelle Methacrylate benötigen geringere Stabilisatormengen. Als Stabilisator kommt neben Tempol und Phenothiazin auch z.B. Hydrochinonmonomethylether infrage, wobei die ersten beiden auch in Abwesenheit von Sauerstoff wirksam sind und nur in sehr geringer Menge von 10 bis 100 ppm gebraucht werden während letztere Verbindung nur in Gegenwart von Sauerstoff wirkt und in Mengen von 50 bis 500 ppm Verwendung findet. Durch die Wahl der Zusammensetzung kann der Lack kratzfest, chemikalienbeständig oder flexibel und umformbar eingestellt werden. Der Vernetzergehalt wird hierzu in geeigneter Weise angepasst. Beispielsweise kann mit einem hohen Gehalt an Hydroxyethylmethacrylat die Haftung auf schwierigen Untergründen, wie z.B. gegossenes hochmolekulares PMMA und zugleich die Umformbarkeit verbessert werden. Mit einem höheren Gehalt an Hexandioldiacrylat wird die Chemikalienbeständigkeit und die Kratzfestigkeit erhöht.
Noch bessere Kratzfestigkeit und Chemikalienbeständigkeit wird durch noch höherfunktionelle Monomere wie, z.B. Pentaerythrittritetraacrylat erreicht. Die Zusammensetzung des Lacks wird dabei so variiert, das eine gewünschte Kombination aller geforderten Eigenschaften erhalten wird.
Eine Möglichkeit die Umformbarkeit zu erhöhen und die Haftung zu verbessern ist die Verwendung von oligomeren oder polymeren Komponenten, die entweder reaktiv mit einem Gehalt an Doppelbindungen oder aber nicht-reaktiv gewählt werden können. Durch die Verwendung höhermolekularer Bausteine wird die Vernetzungsdichte und die Schwindung des Lacks beim Aushärten herabgesetzt wodurch im allgemeinen bessere Haftung erzielt wird.
Geeignete polymere Komponenten sind Poly(meth)acrylate, die z.B. aus Methacrylaten und Acrylaten sowie funktioneilen Monomeren zusammengesetzt sein können. Polymere mit funktionellen Gruppen können verwendet werden, um einen zusätzlichen Beitrag zur Verbesserung der Haftung zu leisten. Ein Beispiel für ein geeignetes Polymethacrylat ist PLEX 8770 F von Fa. Röhm GmbH & Co.KG mit einer Viskositätszahl J [ml/g] (in CHCI3 b. 20°C): 11 ± 1 als Maß für das Molekulargewicht. Die oligo- oder polymeren Additive können je nach Molekulargewicht in unterschiedlichen Mengen zugesetzt werden. Höhermolekulare Polymere werden in entsprechend geringeren Mengen und niedermolekularere Produkte in höheren Mengen zugesetzt, so dass die Gesamtviskosität des Lacks eine Verarbeitung erlaubt. Die polymeren Additive wirken zugleich als Verdicker und werden auch dazu benutzt, um die Nanopartikel in der Schwebe zu halten und das unerwünschte Sedimentieren der Partikel nach der Beschichtung zu verhindern.
Auf diese Weise ist gewährleistet, dass die ITO-Konzentration an der Oberfläche, im speziellen in den obersten 200 nm der Schicht, nicht wesentlich geringer als im Bulk oder an der Phasengrenze zum Substrat ist. Ein weiterer wichtiger Aspekt dieser Maßnahme ist die Verbesserung der Substrathaftung durch Zusatz des Verdickers. Eine Erklärung hierfür, die jedoch nicht die Erfindung auf eine bestimmte Theorie festlegen soll, ist die durch den Verdicker bedingte Verringerung der ITO-Konzentration an der Phasengrenze zum Substrat wodurch zugleich die Bindemittelkonzentration an der Phasengrenze vorteilhaft ausreichend hoch gehalten wird, da das Bindemittel zu einer guten Substrathaftung beiträgt. Durch anorganische Füllstoffe wie z. B. ITO wird die Substrathaftung durch Verringerung der Kontaktfläche zwischen Substrat und Bindemittel dagegen verschlechtert, vor allem wenn diese sich durch Sedimentation zur Phasengrenze Lack-Substrat dort anreichern.
Herstellverfahren:
Wichtig ist, die Lackviskosität so einzustellen, dass eine gute Vermahlung/Dispergierung der ITO-Partikel gewährleistet ist. Dies kann z.B. durch Dispergieren auf der Rollenbank mit Glaskugeln als Mahlkörper geschehen (siehe DE 101 29 374) Dispergieren von ITO-Nanopartikeln kann im Lack auch durch spezielle kombinierte Rühr- und Dispergieraggregate, die mit einer Zwangsförderung verbunden sind, z.B. Unimix LM6 von Fa. Haagen und Rinau GmbH geschehen. Um mit dem kombinierten Rühr und Dispergieraggregat eine ausreichend gute Verteilung ohne Zerschlagung der ITO-Aggregate zu erreichen, müssen die Rührbedingungen so eingestellt werden, dass die Nanopartikelagglomerate in ausreichend kleine Aggregate zerteilt werden, so dass eine gute Transparenz der Beschichtung gegeben ist. Für eine ausreichende Transparenz sollen Aggregate kleiner als lambda Viertel des sichtbaren Lichts, d.h. nicht größer als 100 nm sein. Wird die Mischung zu stark oder zu lang geschert, so werden Aggregate, die erheblich zur Leitfähigkeit beitragen, zerschlagen und das Perkolationsnetzwerk kann sich nicht mehr richtig aufbauen. Hinweise über den Einfluss der Scherung auf das Perkolationsnetzwerk finden sich z.B. in: „Hans J. Mair, Siegmar Roth (Hrsg.), Elektrisch leitende Kunststoffe, Hanser Verlag, 1986 und in „Ishihara Functional Materials", Technical News, T-200 Electroconductive Materials, Firmenschrift Ishihara;
Ein wesentlicher Punkt der Erfindung ist es daher, die Scherung so einzustellen, dass Aggregate im Perkolationsnetzwerk erhalten bleiben und grobteiligere Agglomerate, die größer als lambda Viertel sind, zerschlagen werden.
Dies gelingt durch Wahl der Dispergiergeräte und Dispergierbedingungen, durch Wahl der geeigneten Viskosität der Zusammensetzung und durch ggf. Zusätze geeigneter Additive.
Geeignete Additive werden z.B. in EP 281 365 (Nippon Oil & Fats) genannt. Modell für Stromleitung:
Die antistatische Wirkung kann sich dann optimal entfalten, wenn das Perkolationsnetzwerk aus wie auf einer Perlenkette aufgereihten leitfähigen Partikeln, die sich berühren, aufgebaut wird. Das Kosten-Nutzen-Verhältnis des vergleichsweise teueren ITOs wird dadurch optimiert. Zugleich verbessert sich die Transparenz und vermindert sich der Haze der Beschichtung, da der Gehalt an streuenden Partikeln minimiert werden kann. Die Perkolationsgrenze hängt von der Morphologie der Partikel ab. Kugelförmige Primärpartikel vorausgesetzt wird die Perkolationsgrenze etwa bei 40 Gewichtsprozent ITO erreicht. Setzt man nadeiförmige ITO-Partikel ein, so findet ausreichende Berührung der Partikel bereits bei geringerer Konzentration statt. Nadeiförmige Partikel haben jedoch den Nachteil einer ungünstigen Wirkung auf die Transparenz und den Haze.
Es ist daher eine Aufgabe der Erfindung durch Verwendung von inerten Nanopartikeln die für die Ausbildung eines Perkolationsnetzwerks erforderliche Menge ITO herabzusetzen. Zugleich leidet die Transparenz des Gesamtsystems nicht unter dem Zusatz der inerten Nanopartikel und es werden weitere günstige Eigenschaften des Systems herbeigeführt, wie z.B. Härtbarkeit unter Luftsauerstoff ohne Verlust der Eigenschaften, größere Härte, bessere Umformbarkeit, gute Substrathaftung.
In den Beispielen wird gezeigt, dass durch Verwendung von Nanopartikeln bereits bei 33 % ITO eine gleich gute Leitfähigkeit wie bei 50 % ITO in Lacken ohne Nanopartikel erreicht wird. Beschichtungstechnik:
Die Methode zur Beschichtung muss so gewählt werden, dass der Lack in dünner gleichmäßiger Dicke aufgetragen werden kann. Geeignete Methoden sind z.B. Drahtrakeln, Tauchen, Streichen, Walzen und Spritzen. Nach dem Fachmann bekannten Methoden muss die Viskosität des Lacks so eingestellt werden, dass eine Schichtdicke im Nassfilm nach Verdunsten des ggf. zugesetzten Lösemittels bei 2 - 15 μm liegt. Dünnere Schichten sind nicht mehr kratzfest und können durch herausragen von Metalloxid-Partikeln aus der Lackmatrix einen Matteffekt zeigen. Dickere Schichten sind mit Verlust der Transmission verbunden, bringen keinen Gewinn an elektrischer Leitfähigkeit und sind aus Kostengründen nicht sinnvoll. Es kann jedoch aus Gründen der Abrasion von Lackoberflächen durch ständige mechanische Belastung sinnvoll sein, dickere Schichten einzustellen. In diesem Fall können auch Schichtdicken bis zu 100 μm eingestellt werden. Dabei muss ggf. die Viskosität des Lacks für die Herstellung der dicken Schichten erhöht werden.
Aushärtung:
Um ausreichende Durchhärtung zu erreichen, ist auch die Art und Konzentration des Photoinitiators anzupassen. Ggf. sind Kombinationen von Photoinitiatoren notwendig, um ausreichende Oberflächen und Tiefenhärtung des Lacks zu erhalten. Insbesondere bei hohen Füllgraden mit Metalloxidpartikeln ist die Kombination von konventionellen Photoinitiatoren (z.B. Irgacure 1173 oder Irgacure 184 von Ciba) mit Photoinitiatoren, die im längerwelligen Bereich absorbieren, (z.B. Lucirin TPO oder Lucirin TPO-L von BASF) sinnvoll, um ausreichende Tiefenhärtung zu erhalten.. Bei transparenten Substraten ist es ggf. sinnvoll das beschichtete Substrat von der Ober- und Unterseite durch Bestrahlung mit versetzten UV-Strahlen zu härten. Erforderliche Initiatorkonzentrationen liegen zwischen 0,5 %, bis zu 8 %, bevorzugt von 1 ,0 bis 5 % und ganz besonders bevorzugt zwischen 1 ,5 und 3 % Photoinitiator. Hierbei ist bei Härtung unter Inertgas eine Photoinitiatormenge von 0,5 - 2 % bezogen auf Acrylat ausreichend, während bei Härtung unter Luft Mengen zwischen 2 und 8 %, bevorzugt 4 - 6 % erforderlich sind. Vorteilhaft ist eine möglichst geringe Initiatorkonzentration einzusetzen, um möglichst wenig Zerfallsprodukte im Lack zu haben, da diese die Langzeitwitterungsstabilität negativ beeinflussen. Auch aus wirtschaftlichen Gründen ist der Einsatz einer möglichst geringen Initiatormenge sinnvoll.
Alternativ zur Härtung mit UV-Strahlen ist auch eine Härtung der Beschichtung mit anderen energiereichen Strahlen möglich. Eine geeignete Methode ist die Bestrahlung mit Elektronenstrahlen. Vorteil dieses Verfahrens gegenüber UV- Strahlen ist die gute Durchhärtung dicker Schichten und die Möglichkeit schneller, in Gegenwart von atmosphärischem Sauerstoff und auch ohne Photoinitiatoren härten zu können. Die Strahlungsenergie muss so eingestellt werden, dass bei ausreichender Härtung der Schicht keine Schädigung des Substrats oder Vergilbung eintritt..
Schrumpf arme Rezepturen:
Ein wesentlicher Aspekt der Erfindung ist die schrumpfarme Härtung des Lacks. Naturgemäß schrumpfen UV-härtbare Lacke bei der Strahlenhärtung wodurch die Lackoberfläche ungünstig beeinflusst werden kann und die Haftung zum Substrat verloren gehen kann. Durch geschickte Auswahl des Verhältnisses von mono-, di- und polyfunktionellen Monomeren bzw. Oligomeren, anorganischen und polymeren Füllstoffen und Additiven kann die Schwindung des Lacks auf ein Mindestmaß herabgesetzt werden. Inerte Füllstoffe, die sich nicht an der Polymerisation beteiligen, wie z.B. Metalloxide, beispielsweise indiumzinnoxid, Siliziumdioxid, oder nichtreaktive polymere Bestandteile setzen den Gesamtschrumpf einer Zusammensetzung herab, während monovalente Monomere und Oligomere moderat schrumpfen und polyvalente Monomere den größten Beitrag zum Schrumpf liefern.
Eine schrumpfarme Rezeptur kann z.B. dadurch erhalten werden, dass der Anteil der polyvalenten Komponenten ein gewisses Niveau nicht überschreitet. Bei dieser Betrachtung muss der Zusammenhang zwischen Molekulargewicht, Anzahl der funktionellen Gruppen und Schwindung beachtet werden. Polyvalente Komponenten mit niedrigem Molekulargewicht haben naturgemäß den höchsten Schrumpf während monovalente Komponenten mit höherem Molekulargewicht den geringsten Beitrag zur Schwindung liefern.
Beispiele für schrumpfarme Rezepturen sind Zusammensetzungen aus:
Beispiel 1 :
100 Teilen Lösemittel, z.B. Ethanol oder Isopropanol
35 Teilen Hydroxyethylmethacrylat
15 Teilen SiO2-Nanopartikeln 1)
50 Teilen Indiumzinnoxid-Nanopartikeln
2 Teilen Photoinitiator und ggf. weiteren Additiven
Man erhält gut haftende Beschichtungen mit einer gewissen Flexibilität. So lassen sich z.B. damit beschichtete PMMA-Folien bis zu einem gewissen Grad verformen oder einbiegen. Die SiO2-Nanopartikel lassen sich z.B. in Form eines Organosols von anorganischen Nanopartikeln in Hydroxyethylmethacrylat, das von der Firma Clariant unter dem Namen Highlink OG vertrieben wird, einsetzen. Die Beschichtungen mit der genannten Rezeptur sind mechanisch stabil, jedoch nicht kratzfest. Die Kratzfestigkeit derartiger Beschichtungen lässt sich durch Ersatz eines Teils des Organosols durch di- oder polyfunktionelle Acrylate erhöhen. Ein Beispiel für eine kratzfeste schrumpfarme Rezeptur ist folgende Zusammensetzung:
Beispiel 2:
100 Teile Lösemittel, z.B. Ethanol oder Isopropanol
17,5 Teilen Hydroxyethylmethacrylat
7,5 Teilen SiO2-Nanopartikeln 1)
25 Teilen Hexandioldiacrylat
50 Teilen Indiumzinnoxid-Nanopartikeln
2 Teilen Photoinitiator und ggf. weiteren Additiven
1 ) als Organosol Highlink OG 100-31 mit 100 ppm Stabilisator (Hersteller Clariant)
Voraussetzung für eine gute Härtung ist die Verwendung eines Organosols mit einem besonders niedrigen Gehalt an Stabilisator. So wurde bei den genannten Beispielen jeweils ein Organosol mit 100 ppm Stabilisator Tempol® bzw. Stabilisator Phenothiazin eingesetzt. Gegenüber dem Lack mit handelsüblichem hochstabilisierten Organosol (500 ppm Phenothiazin) erhält man eine gute Haftung (Gitterschnitt GT = 0) und eine gute Härtung unter Inertgas (Stickstoff) sowie unter Luftatmosphäre.
Um den Gehalt an Stabilisator im Lack möglichst gering zu halten, kann alternativ auch ein stabilisatorfreies Organosol von SiO2-Nanopartikeln in organischen Lösemitteln, z.B. Alkoholen zum Einbringen der Nanopartikel in die Lackmatrix eingesetzt werden.
Einfluss der Aushärtebedingungen auf die Schwindung:
Die Schwindung lässt sich außer über die Rezeptur auch durch Wahl geeigneter Aushärtebedingungen beeinflussen. Günstig ist eine langsame Härtung mit vergleichsweise geringer Bestrahlungsenergie, während bei schneller Härtung und großer Bestrahlungsenergie ein höherer Schrumpf beobachtet wird.
Günstige Härtungsbedingungen hat man bei Verwendung eines Strahlers F450 der Firma Fusion mit 120 Watt/cm und fokussiertem Strahl bei einer Vorschubgeschwindigkeit von 1 - 3 m/min und einem Gehalt von 2 % Photoinitiator unter Stickstoffatmosphäre.
Kratzfestigkeit der Lacke:
Ein weiteres Merkmal der Erfindung ist die gute Kratzfestigkeit der antistatischen Lacke. Wählt man die beschriebenen Härtungsbedingungen, so lassen sich kratzfeste antistatische Lacke mit geringer Schwindung und guter Haftung herstellen.
Erfindungsgemäße Lacke mit einem Gehalt von 33 bis 50 % ITO erreichen unter diesen Bedingungen Kratzfestigkeiten von Delta Haze < 2 % nach Prüfung auf dem Taber Abraser mit Reibrädern CS 10F und 5,4 N Gewichtsauflage bei 100 Umdrehungen. Chemikalienbeständigkeit der Lacke
Die erfindungsgemäßen Lacke haben eine gute Beständigkeit gegenüber Chemikalien, z.B. anorganischen Säuren und Laugen bei kurzer Einwirkdauer, zahlreichen organischen Lösemitteln, wie Estern, Ketonen, Alkoholen, aromatischen Lösemitteln. Mit den erfindungsgemäßen Lacken beschichtete Kunststoffformkörper können z.B. mit diesen Lösemitteln bei Bedarf gereinigt werden.
Witterungsbeständigkeit und Rezeptur:
Ein besonderer Vorteil der Verwendung stabilisatorarmer Formulierungen ist die Möglichkeit unter Luftatmosphäre aushärten zu können und dadurch Kosten für Inertisierung (apparativer Aufwand und laufende Kosten für Inertgasverbrauch) zu reduzieren. Ein weiterer Vorteil ist mit vergleichsweise kleinen Mengen Photoinitiator bereits eine gute Durchhärtung zu erreichen. Die in den Beispielen genannten Formulierungen sowie Formulierungen, bei denen keine SiO2- Nanopartikel eingesetzt worden sind und anstelle der Organosole mono- oder polyfunktionelle Monomere bzw. Mischungen derselben verwendet wurden, lassen sich mit jeweils 2 % Photoinitiator, wie z.B. Irgacure 184, Irgacure 1173, Irgacure 907 oder Mischungen derselben zu kratzfesten und witterungsbeständigen Formulierungen härten. Beispiel 3:
100 Teile Lösemittel, z.B. Ethanol oder Isopropanol
40 Teile Pentaerythrittritetraacrylat
60 Teile Hexandioldiacrylat
50 Teilen Indiumzinnoxid-Nanopartikeln
5 Teile SiO2-Nanopartikel
2 Teilen Photoinitiator und ggf. weiteren Additiven
Beispiel 4:
Wie Beispiel 3, jedoch:
5 Teile PLEX 8770 (Verdicker) 20 Teile Pentaerythrittritetraacrylat 75 Teile Hexandioldiacrylat
Die zuvor genannten Formulierungen können zur Erhöhung der Witterungsbeständigkeit noch mit UV-Schutzmitteln versetzt werden. Dabei ist darauf zu achten, dass das UV-Schutzmittel die Strahlenhärtung nicht behindert.
In einer bevorzugten Ausführungsform der Erfindung wird mit Elektronenstrahlen gehärtet. Dadurch wird vermieden, dass ungünstige Wechselwirkungen zwischen UV-Absorber und UV-Licht auftreten.
Wird eine UV-Lampe als Strahlenquelle eingesetzt, so kann z.B. ein langwelliges UV-Licht in Kombination mit einem Photoinitiator, der im langwelligen Bereich des Spektrums oder im sichtbaren Bereich des Spektrums absorbiert eingesetzt werden. Der UV-Absorber darf im Absorptionsbereich des Photoinitiators nicht vollständig absorbieren, damit eine für die Strahlenhärtung ausreichende Menge an energiereichem Licht in den Lack gelangt.
Soll mit konventionellen UV-Lampen, z.B. System Fusion oder IST Strahlentechnik gearbeitet werden, so kann ein UV-Absorber verwendet werden, der ein ausreichend großes Fenster im Absorptionsbereich für die Transmission von UV- Strahlen zur Anregung des Photoinitiators bietet. Geeignete UV-Absorber sind Norbloc 7966, Tinuvin 1130.
Durch die Kombination der erwähnten Maßnahmen, insbesondere durch die Verwendung von geringen Mengen Photoinitiator ist es möglich wetterechte langlebige Beschichtungen herzustellen. Die geringe Menge Photoinitiator bedingt einen geringen Gehalt an Spaltprodukten wodurch kaum Angriffsstellen für die Migration derselben gegeben sind. Die genannten Lacke überstehen daher den künstlichen Bewitterungsschnelltest (Xenotest nach DIN Nr.) über 5000 Stunden ohne ihre Haftung, Kratzfestigkeit und gute Transmission zu verlieren.
Der Kunststoffformkörpers kann als Verglasung oder Verglasungselement, für Einhausungen, für die Ausstattung von Reinräumen im medizinischen, biologischen oder mikroelektronischen Bereich, für Maschinenabdeckungen, für Inkubatoren, für Displays, für Bildschirme und Bildschirmabdeckungen, für Rückprojektionsschirme, für medizinische Apparaturen und für Elektrogeräte als Abschirmung verwendet werden.
Weitere Anwendungen
Außer für transparente Anwendungen können antistatische Beschichtungen auch auf nichttransparenten Substraten eingesetzt werden. Beispiele sind: antistatisch ausgerüstete Kunststofffußböden, allgemein die Laminierung antistatischer, kratzfester Folien auf Substrate wie z.B. Holz, Papierdekore. Eine weitere Anwendung ist die Beschichtung von Dekorpapieren mit Aushärtung unter Elektronenstrahlen.
Teilchengrößenbestimmung mittels PCS (nach Ultraschall)
1. Reagenzien destilliertes oder vollentsalztes Wasser, pH > 5.5
2. Geräte
Labordissolver LR 34 mit Drehzahlmesser, Fa. Pendraulik, 31832 Springe 1 Dispergierscheibe, Durchmesser 40 mm
Ultraschall-Prozessor UP 400 S, Fa. Dr. Hielscher, 70184 Stuttgart Sonotrode H7 aus Titan, 7 mm Durchmesser
Partikelgrößenanalysator HORIBA LB-500, Fa. Retsch Technology,
42781 Haan mit Acryl-Einwegküvetten 1 ,5 ml
Dose Hoechst, Ident-Nr. 22926, 250 ml Inhalt, DD-PE, natur 0/0021 , Hoechst AG
Abt. EK-Verpackung V, Brüningstr. 64, 65929 Frankfurt-Hoechst Deckel für Dose, 250 ml, Ident-Nr. 22918
Pasteur-Pipetten, 3,5 ml, 150 ml lang, Best.-Nr. 1-6151
Präzisionswaage (Ablesbarkeit 0,01 g) 3. Herstellen einer 1 %igen Dispersion
Die Pulver-Probe (ca. 10-100 g) wird im Vorratsgefäß durch Schütteln mit der Hand
(30 sec) homogenisiert. Zur Entlüftung lässt man die Probe mindestens 10 Min. stehen.
Die Einwaage des Pulvers erfolgt auf der Präzisionswaage (Ablesbarkeit 0,01 g). Es werden 1 g Pulver (+/- 0,02 g) in die PE-Dose gefüllt und mit VE- Wasser auf 100 g (+/- 0,02 g) aufgefüllt.
Dispergieren der Probe
Die Probe wird mit dem Labordissolver fünf Minuten bei 2000 U/min im abgedecktem Polybecher vordispergiert, anschließend wird vier Minuten mit Ultraschall bei einer Amplitude von 80 % und Cycle = 1 dispergiert.
4. Ermittlung der Teilchenverteilung
Theorie: Die Prüfmethode beschreibt die Bestimmung der Teilchengrößenverteilung mittels Photonenkorellationsspektroskopie (PCS, "dynamische Lichtstreuung"). Die Methode ist besonders geeignet, Teilchen und deren Aggregate im Submikrometer-Bereich zu messen (10 nm bis 3 μm). Das verwendete Gerät HORIBA LB-500 verwendet eine rückstreuende Optik, bei der das Verhältnis zwischen Einfach- und Mehrfachstreuung fast konstant ist und sich somit vernachlässigen lässt. Aus diesem Grund können auch Dispersionen mit höheren Konzentrationen vermessen werden, ohne dass Fehlmessungen auftreten. Zur genauen Bestimmung der Teilchengrößenverteilung müssen folgende Parameter bekannt sein: • Temperatur der Dispersion: Eine konstante Temperatur ist wichtig, um Konvektionsbewegung innerhalb der Küvette auszuschließen, welche die freie Bewegung der Partikel überlagern würde. Das HORIBA LB-500 misst die Temperatur in der Küvette und berücksichtigt die gemessene Temperatur bei der Auswertung.
• Viskosität des Dispersionsmediums: Bei verdünnten Systemen unkritisch, da die Viskositäten z.B. bei 25°C der reinen Lösungsmittel gut bekannt sind. Zu hohe Konzentrationen sind dann problematisch, wenn die Viskosität der Dispersion die der flüssigen Phase (meist Wasser) übersteigt, da dann die Bewegung der Teilchen eingeschränkt wird. Aus diesem Grund werden die Messungen meist bei ca. 1 % Feststoffkonzentration durchgeführt.
• Brechungsindex von Teilchen und Dispersionsmedium: Diese Angaben sind für einen Großteil von Feststoffen und Lösungsmitteln in der Software von HORIBA aufgelistet.
• Die Dispersion muss sedimentationsstabil sein. Sedimentation in der Küvette erzeugt nicht nur zusätzliche Bewegung der Teilchen, sondern durch sie verändert sich die Streulichtintensität während der Messung. Außerdem verarmt die Dispersion damit an größeren Teilchen, die sich am Boden der Küvette ansammeln.
Messung: Das Messgerät wird über ein Computerprogramm gesteuert, welches auch die Auswertung des Messsignals durchführt und das Abspeichern und Ausdrucken der Messergebnisse erlaubt.
Vor jeder Messung/Messreihe müssen innerhalb der Software folgende Einstellungen vorgenommen werden:
• Eingabe der Brechungsindices von Partikel und Medium • Eingabe der Viskosität des Dispersionsmediums
• Bezeichnung und Kommentare zur Probe
Die mit Dissolver und Ultraschall dispergierte Probe wird mittels Pasteur- Pipette in die 1 ,5 ml Acrylglas-Einwegküvette überführt. Nachdem diese in die Messkammer des PCS-Gerätes gesteckt und der Temperaturfühler von oben in die Dispersion eingeführt wurde, startet man die Messung mit Hilfe der Software (Button „Messung"). Nach einer Wartezeit von 20 s öffnet sich das Fenster „Messanzeige", in der alle 3 Sekunden die aktuelle Teilchenverteilung angezeigt wird. Ein nochmaliges Drücken des Messbuttons im Fenster Messanzeige startet die eigentliche Messung. Je nach Voreinstellung wird die Teilchenverteilung mit diversen Messergebnissen (z.B. d50, d10, d90, Standardabweichung) nach 30-60 s angezeigt. Bei stark schwankenden d50-Werten (z.B. 150 nm +/- 20 %; dies kann bei sehr breiten Verteilungen auftreten), werden ca. 6 - 8 Messungen durchgeführt, ansonsten genügen 3 - 4.
5. Angabe des d50-Wertes
Es wird der Mittelwert (ohne Dezimalstellen) aller gemessenen d50- Werte, ausschließlich eines offensichtlichen Ausreißers in nm angegeben.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Formkörpern aus Kunststoffen, indem man einen Formkörper ein- oder mehrseitig mit einem Lacksystem beschichtet, das Lacksystem besteht aus:
a) einem Bindemittel oder einer Bindemittelmischung
b) optional einem Lösungsmittel oder Lösungsmittelgemisch
c) optional weiteren, in Lacksystemen gebräuchlichen Additiven und
d) optional einem Verdicker, wobei polymere Verdicker mit einem Gehalt von 0 bis 20 % und oligomere Verdicker mit einem Gehalt von
0 bis 40 %, jeweils bezogen auf Trockenfilm, eingesetzt werden können (Komponenten a, c, d, e).
e) 5 - 500 Masse-Teilen, bezogen auf a) eines elektrisch leitfähigen Metall-Oxid-Pulvers mit einer mittleren Primärteilchengröße von
1 bis 80 nm und einem Aggregationsgrad von prozentual 0,01 bis 99%
f) 5 - 500 Masse-Teile, bezogen auf a) an inerten Nanopartikeln.
in an sich bekannter Weise beschichtet und den Lack aushärtet.
Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass der Lack (a) - c)) eine Viskosität von 5 bis 500 mPa.s aufweist (gemessen am Brookfield-Viskosimeter LVT).
Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Lacksystem (Komponente a) - e) nach Anspruch 1 ) eine Viskosität von 150 bis 5000 mPa.s aufweist.
4. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass als inerte Nanopartikel SiO2-Nanopartikel verwendet werden.
5. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass als elektrisch leitfähige Partikel eine Mischung aus ITO und/oder Antimonzinnoxid ATO und /oder dotiertem ITO verwendet wird.
6. Kunststoffformkörper, erhältlich nach einem Verfahren der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass der Kunststoffformkörper aus PMMA, PC, PET, PET-G, PE, PVC, ABS oder PP besteht.
7. Verwendung des Kunststoffformkörpers nach Anspruch 6 als Verglasung, für Einhausungen, für die Ausstattung von Reinräumen, für Maschinenabdeckungen, für Inkubatoren, für Displays, für Bildschirme und Bildschirmabdeckungen, für Rückprojektionsschirme, für medizinische Apparaturen und für Elektrogeräte.
EP04716235A 2003-03-14 2004-03-02 Antistatisch beschichteter formkörper und verfahren zu seiner herstellung Withdrawn EP1603980A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10311639 2003-03-14
DE2003111639 DE10311639A1 (de) 2003-03-14 2003-03-14 Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung
PCT/EP2004/002063 WO2004081122A1 (de) 2003-03-14 2004-03-02 Antistatisch beschichteter formkörper und verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
EP1603980A1 true EP1603980A1 (de) 2005-12-14

Family

ID=32892282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04716235A Withdrawn EP1603980A1 (de) 2003-03-14 2004-03-02 Antistatisch beschichteter formkörper und verfahren zu seiner herstellung

Country Status (9)

Country Link
US (1) US7608306B2 (de)
EP (1) EP1603980A1 (de)
JP (1) JP4308252B2 (de)
KR (1) KR101007152B1 (de)
CN (1) CN100381510C (de)
DE (1) DE10311639A1 (de)
HK (1) HK1088350A1 (de)
TW (1) TWI313280B (de)
WO (1) WO2004081122A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10352177A1 (de) * 2003-11-05 2005-06-02 Röhm GmbH & Co. KG Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung
KR100872162B1 (ko) * 2004-04-14 2008-12-08 (주)석경에이.티 도전성 금속 나노입자 및 이를 포함하는 나노금속 잉크
JP2006024535A (ja) * 2004-07-09 2006-01-26 Seiko Epson Corp 有機薄膜素子の製造方法、電気光学装置の製造方法及び電子機器の製造方法
DE102004045295A1 (de) * 2004-09-16 2006-03-23 Röhm GmbH & Co. KG Kunststoffkörper mit anorganischer Beschichtung, Verfahren zur Herstellung sowie Verwendungen
JP4649923B2 (ja) * 2004-09-22 2011-03-16 Tdk株式会社 透明導電材料及び透明導電体
JP2006124572A (ja) * 2004-10-29 2006-05-18 Dainippon Toryo Co Ltd 活性エネルギー線硬化性導電膜形成用組成物
DE102005013082A1 (de) * 2005-02-23 2006-08-24 Röhm GmbH & Co. KG Extrudierte Folie oder Platte mit elektrisch leitfähiger Beschichtung, Verfahren zu ihrer Herstellung, sowie Verwendungen
DE102005009209A1 (de) * 2005-02-25 2006-08-31 Röhm GmbH & Co. KG Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahren zu deren Herstellung
DE102007032886A1 (de) 2007-07-14 2009-01-15 Bayer Materialscience Ag Hydrophile Hardcoatbeschichtungen
DE102008004622A1 (de) 2008-01-16 2009-07-23 Bayer Materialscience Ag Silikahaltige UV-vernetzbare Hardcoatbeschichtungen mit Urethanacrylaten
ES2491615T3 (es) 2009-02-12 2014-09-08 Bayer Intellectual Property Gmbh Recubrimientos antireflexión / antiempañamiento
DE102010006755A1 (de) * 2010-02-04 2011-08-04 BASF Coatings AG, 48165 Kratzfestbeschichtete Kunststoffsubstrate, insbesondere Gehäuse von elektronischen Geräten, mit hoher Transparenz, Verfahren zu deren Herstellung und deren Verwendung
DE102010011401A1 (de) * 2010-03-15 2011-09-15 Oerlikon Textile Components Gmbh Umlenkrolle
US9122968B2 (en) 2012-04-03 2015-09-01 X-Card Holdings, Llc Information carrying card comprising a cross-linked polymer composition, and method of making the same
US9439334B2 (en) 2012-04-03 2016-09-06 X-Card Holdings, Llc Information carrying card comprising crosslinked polymer composition, and method of making the same
EP2973236B1 (de) 2013-03-15 2019-01-09 X-Card Holdings, LLC Verfahren zur herstellung einer kernschicht für eine informationskarte und in diesem verfahren hergestellte produkte
JP6686284B2 (ja) * 2015-03-26 2020-04-22 三菱ケミカル株式会社 活性エネルギー線硬化性樹脂組成物の硬化物を含む物品
CN106200243A (zh) * 2015-04-17 2016-12-07 金学正 利用容易去除的涂料的光束投影机照射用显示屏
EP3762871A4 (de) 2018-03-07 2021-11-10 X-Card Holdings, LLC Metallkarte

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500669A (en) * 1977-10-27 1985-02-19 Swedlow, Inc. Transparent, abrasion resistant coating compositions
US4442168A (en) * 1981-10-07 1984-04-10 Swedlow, Inc. Coated substrate comprising a cured transparent abrasion resistant filled organo-polysiloxane coatings containing colloidal antimony oxide and colloidal silica
KR960002743B1 (ko) 1990-11-21 1996-02-26 쇼꾸바이 가세이 고오교 가부시끼가이샤 투명한 도전성 피막형성용 도포액, 그의 제조방법, 도전성 기판, 그의 제조방법 및 투명한 도전성 기판재를 구비한 표시장치
GB2288184A (en) * 1994-03-31 1995-10-11 Catalysts & Chem Ind Co Coating composition
JPH0812332A (ja) * 1994-07-04 1996-01-16 Mitsubishi Materials Corp 導電性粉末及びその製造方法並びに導電性分散液及び導電性塗料
DE19501182C2 (de) * 1995-01-17 2000-02-03 Agomer Gmbh Copolymere zur Herstellung von Gußglas, Verfahren zur Herstellung wärmeformstabiler Gußglaskörper und Verwendung
JPH09115334A (ja) * 1995-10-23 1997-05-02 Mitsubishi Materiais Corp 透明導電膜および膜形成用組成物
US6146753A (en) * 1997-05-26 2000-11-14 Dai Nippon Printing Co., Ltd. Antistatic hard coat film
TW432397B (en) 1997-10-23 2001-05-01 Sumitomo Metal Mining Co Transparent electro-conductive structure, progess for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
DE19757542A1 (de) * 1997-12-23 1999-06-24 Bayer Ag Siebdruckpaste zur Herstellung elektrisch leitfähiger Beschichtungen
JP4542210B2 (ja) * 1998-02-24 2010-09-08 旭硝子株式会社 プラスチック成形品
JP3937113B2 (ja) * 1998-06-05 2007-06-27 日産化学工業株式会社 有機−無機複合導電性ゾル及びその製造法
DE19825371A1 (de) * 1998-06-06 1999-12-09 Bayer Ag Elektrochrome Anzeigevorrichtung mit isolierten Zuleitungen
JP4183419B2 (ja) * 1999-08-31 2008-11-19 帝人株式会社 透明導電性積層体及びこれを用いたタッチパネル
KR20030025914A (ko) * 2000-04-10 2003-03-29 세끼쑤이 케미컬 가부시기가이샤 대전방지 하드코트용 조성물, 대전방지 하드코트, 그제조방법 및 대전방지 하드코트를 갖는 적층체 필름
DE10129374A1 (de) * 2001-06-20 2003-01-02 Roehm Gmbh Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
DE10129376A1 (de) * 2001-06-20 2003-01-09 Degussa Indium-Zinn-Oxide
DE10141314A1 (de) * 2001-08-09 2003-02-27 Roehm Gmbh Kunststoffkörper mit niedriger Wärmeleitfähigkeit, hoher Lichttransmission und Absorption im nahen Infrarotbereich
JP2003119207A (ja) * 2001-10-11 2003-04-23 Jsr Corp 光硬化性組成物、その硬化物、及び積層体
DE10212458A1 (de) * 2002-03-20 2003-10-02 Roehm Gmbh Hagelbeständiges Verbund-Acrylglas und Verfahren zu seiner Herstellung
DE10224895A1 (de) * 2002-06-04 2003-12-18 Roehm Gmbh Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004081122A1 *

Also Published As

Publication number Publication date
CN100381510C (zh) 2008-04-16
TWI313280B (en) 2009-08-11
JP4308252B2 (ja) 2009-08-05
CN1751105A (zh) 2006-03-22
DE10311639A1 (de) 2004-09-23
KR101007152B1 (ko) 2011-01-12
US20060157675A1 (en) 2006-07-20
WO2004081122A8 (de) 2005-07-28
KR20050111768A (ko) 2005-11-28
US7608306B2 (en) 2009-10-27
WO2004081122A1 (de) 2004-09-23
TW200427743A (en) 2004-12-16
HK1088350A1 (en) 2006-11-03
JP2006520681A (ja) 2006-09-14

Similar Documents

Publication Publication Date Title
EP1603980A1 (de) Antistatisch beschichteter formkörper und verfahren zu seiner herstellung
EP1680462B1 (de) Verfahren zur herstellung eines antistatisch beschichteten formkörpers
EP1425322B1 (de) Formkörper aus kern-mantel-partikeln
DE10228228A1 (de) Formkörper aus Kern-Mantel-Partikeln
EP1153090B1 (de) Verfahren zur herstellung von strahlenhärtbaren beschichtungsformulierungen und verwendung dieser zur erzeugung von kratz-, abrieb- und haftfesten beschichtungen
EP1812484A1 (de) Kern-mantel-partikel
DE10227071A1 (de) Verbundmaterial enthaltend Kern-Mantel-Partikel
EP2598561A1 (de) Verfahren zur kratz- und abrasionsbeständigen beschichtung und physikalischen mattierung von kunststoffsubstraten, insbesondere polymethylmethacrylat, mit nanokompositlack
DE10204338A1 (de) Formkörper aus Kern-Mantel-Partikeln
DE10241510A1 (de) Nanokomposite, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2001092359A1 (de) Polymerchemisch mikroverkapselte pigmente
DE10129374A1 (de) Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
WO2005080475A2 (de) Verwendung von kern-mantel-partikeln zur herstellung invers-opaler strukturen
WO2005075548A2 (de) Verfahren zur herstellung von polyesterharzen mit nanoskaligen zusatzstoffen für pulverlacke
DE102004057430A1 (de) Polymere Nano-Kompositwerkstoffe durch kontrollierte Keimbildung von dendritischen Polymeren
WO2005056621A1 (de) Effektfarbmittel enthaltend kern-mantel-partikel
EP1504066B8 (de) Beschichtungen, verfahren zu ihrer herstellung und ihre verwendung
WO2005028396A2 (de) Verwendung von kern-mantel-partikeln
EP1776412A1 (de) Härtungsbeschleuniger
DE10341198A1 (de) Verwendung von Kern-Mantel-Partikeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROEHM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

17Q First examination report despatched

Effective date: 20100810

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101001