EP1603973A1 - Uv-härtender schmelzklebstoff - Google Patents

Uv-härtender schmelzklebstoff

Info

Publication number
EP1603973A1
EP1603973A1 EP04715885A EP04715885A EP1603973A1 EP 1603973 A1 EP1603973 A1 EP 1603973A1 EP 04715885 A EP04715885 A EP 04715885A EP 04715885 A EP04715885 A EP 04715885A EP 1603973 A1 EP1603973 A1 EP 1603973A1
Authority
EP
European Patent Office
Prior art keywords
composition
polyacrylate
oligomeric compound
composition according
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04715885A
Other languages
English (en)
French (fr)
Inventor
Christelle Matijasic
Pia Frei
Andreas Dobmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebnother AG Sempach Station
Collano AG
Original Assignee
Ebnother AG Sempach Station
Collano AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebnother AG Sempach Station, Collano AG filed Critical Ebnother AG Sempach Station
Priority to EP04715885A priority Critical patent/EP1603973A1/de
Publication of EP1603973A1 publication Critical patent/EP1603973A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/20Macromolecular compounds having nitrogen in the main chain according to C08L75/00 - C08L79/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/2419Fold at edge
    • Y10T428/24207Fold at edge with strand[s] or strand-portion[s] between layers [e.g., upholstery trim, etc.]

Definitions

  • the invention relates to a UV-curable composition, the use of this UV-curable composition as a hot-melt adhesive and a coating method with the composition for use in temperature-sensitive carrier materials.
  • crosslinkable hotmelt adhesives have the advantage that these materials can first be applied to a carrier as a molten film and can be modified to form high-molecular compounds by means of a crosslinking reaction.
  • This crosslinking reaction can be initiated thermally or by means of radiation, in particular radiation in the UV light range.
  • the meltability of these adhesives largely prevents the use of solvents with the known disadvantages.
  • crosslinkable hot melt adhesives are mostly based on polymers with corresponding reactive groups.
  • Polymers which can be crosslinked with UV light are, for example, from DE-A 3 844 444, DE-A 10 103 428, WO-A 01/23488, WO-A 01/23489 or WO-A 01/84544 and the documents cited in these documents known.
  • these crosslinkable hotmelt adhesives are processed at temperatures between 120 and 160 ° C., ie applied to a substrate. It has been shown that this procedure is not suitable for all substrate materials and application methods. Various materials such as PE, PP or PVC lose their stability at such high temperatures and deform or are even partially destroyed. For certain application processes, such as screen printing, there is an upper, tolerable viscosity limit. Here, too, an increase in the application temperature can reduce the melt viscosity lead to the destruction of the substrate. Attempts to lower the processing and application temperature by means of an additive lead to the disadvantage of so-called fogging, ie the escape of these additives from the exposed hot melt adhesive composition. Such evaporation of the additives, however, cannot be tolerated in various applications, for example in the automotive or aircraft industry.
  • the object of the present invention is to avoid the disadvantages of the known and, in particular, to provide a UV-crosslinkable hot-melt adhesive which can be processed at lower temperatures without serious restrictions in its properties.
  • compositions with a UV-crosslinkable polyacrylate This is achieved by a composition with a UV-crosslinkable polyacrylate, the use of this composition and a coating process which can be carried out with it in accordance with the independent claims.
  • composition according to the invention contains a meltable polyacrylate which can be crosslinked with UV light and optional additives and is characterized by at least one oligomeric compound with UV crosslinkable functional groups which are reactive with the polyacrylate.
  • the oligomeric compound therefore preferably has at least one UV-crosslinkable functional group.
  • the amount of the oligomeric compound is also advantageously selected such that essentially at least one functional group per oligomeric compound reacts with the polyacrylate.
  • the oligomeric compound further advantageously has a lower viscosity than the polyacrylate, as a result of which the oligomeric compound acts as a type of thinner.
  • the oligomeric compound has a viscosity between 0.1 and 20 Pa. s at 25 ° C (Brookfield measuring system).
  • the polyacrylate advantageously has a viscosity of 1 to 100 Pa.s at 130 ° C (measuring system Kegel / Plate, EN ISO 3219).
  • the UV-curable or cross-linkable polyacrylate is a free-radically polymerized polymer which contains at least 50% by weight of the polymer from C 2 to C 2 .
  • 8- Alkyl (meth) acrylates, 0.1 to 30% by weight of the monomers from which the polymer is composed are monomers A without carboxylic acid or carboxylic anhydride groups and with a water solubility greater than 5 g of monomers per liter of water ,
  • the polymer is obtained from ethylenically unsaturated, free-radically polymerizable compounds.
  • This polymer preferably consists of 50 to 99.85% by weight, preferably 60 to 99.4% by weight and particularly preferably 80 to 98.9% by weight, based on the polymer, of C 2 -C 8 -alkyl (meth) acrylates .
  • C 2 -C 8 -alkyl (meth) acrylates Preferred are C 2 - to Cio-alkyl (meth) acrylates, for example n-butyl acrylate, ethyl acrylate and 2-ethylhexyl acrylates.
  • mixtures of the alkyl (meth) acrylates are used.
  • the polymer may contain a photoinitator sensitive to UV light.
  • the photoinitiator can be bound to the polymer, but it can also be unbound and only mixed with the polymer.
  • Typical photoinitiators that can be added to the polymer are, for example, acetophenone, benzoin ether, benzyl dialkyl ketols or their derivatives.
  • the content of the admixed photoinitiator is preferably 0.05 to 10 parts by weight, and particularly preferably 0.1 to 2 parts by weight, per 100 parts by weight of polymer.
  • the photoinitiator brings about an accelerated onset of crosslinking of the polymer, preferably through a chemical graft reaction of the photoinitiator with a spatially adjacent polymer chain.
  • Crosslinking can take place, for example, by inserting a carbonyl group of the photoinitiator into an adjacent C-H bond to form a -C-C-O-H group.
  • the polyacrylate has functional groups which, due to their structure, have a tendency to react when irradiated with light in the UV range. These are, for example, C-C, C-O, C-N multiple bonds. The conjugated presence of these double or triple bonds is also conceivable.
  • the polymer contains 0.05 to 10% by weight, preferably 0.1 to 2% by weight and particularly preferably 0.1 to 1% by weight (based on the polymer) of ethylenically unsaturated compounds having a photoinitiator group.
  • the ethylenically unsaturated compound has at least one acrylic or methacrylic group. Acteophenone or benzophenone derivatives are suitable as photoinitiator components.
  • the photoinitiator group is preferably separated from the ethylenically unsaturated group of the compound by a spacer group. This spacer group can e.g. contain up to 100 carbon atoms. Because of the spacer group, the probability of an intramolecular crosslinking reaction is reduced and intermolecular crosslinking is preferred.
  • Suitable acetophenone or benzophenone derivatives are described, for example, in EP-A 346 734, EP-A 377 199 (1st claim), DE-A 4 037 079 (1st application claim) and DE-A 3 844 444 (1st claim) and are hereby incorporated into the disclosure of this application.
  • the preferred acetophenone and benzophenone derivatives are those of the formula
  • R 1 is an organic radical with up to 30 C atoms
  • R 2 is an H atom or a methyl group
  • R 3 is an optionally substituted phenyl group or a C 1 -C 4 alkyl group.
  • R 1 particularly preferably represents an alkylene group, in particular a C 2 to C 8 alkylene group.
  • R 3 particularly preferably represents a methyl group or a phenyl group.
  • Other monomers from which the polycrylate can be constructed are, for example, vinyl esters of carboxylic acids containing up to 20 C atoms, vinyl aromatics with up to 20 C atoms, ethylenically unsaturated nitriles, vinyl halides, vinyl ethers of alcohols containing 1 to 10 C atoms, aliphatic hydrocarbons with 2 to 8 carbon atoms and 1 or 2 double bonds or mixtures of these monomers.
  • vinyl aromatic compounds there are e.g. Vinyl toluene, ⁇ - and ß-methylstyrene, ⁇ -butylstyrene, 4-n-butylstyrene, 4-n-decylstyrene and preferably styrene.
  • nitriles are acrylonitrile and methacrylonitrile.
  • the vinyl halides are chlorine, fluorine or bromine-substituted, ethylenically unsaturated compounds, preferably vinyl chloride and vinylidene chloride.
  • vinyl ethers are vinyl ethyl ether or vinyl isobutyl ether. Vinyl ethers of alcohols containing 1 to 4 carbon atoms are preferred.
  • Butadiene, isoprene and chloroprene may be mentioned as hydrocarbons with 2 to 8 carbon atoms and two olefinic double bonds.
  • All other monomers are also particularly suitable for monomers having carboxylic acid, sulfonic acid or phosphoric acid groups, carboxylic acid groups being preferred. Examples are acrylic acid, methacrylic acid, itaconic acid, maleic acid or fumaric acid. Further monomers are, for example, monomers containing hydroxyl groups, in particular C x - to C ⁇ 0 -
  • Monomers which carry other functional groups in addition to the double bond e.g. Isocyanate, amino, hydroxyl, amide or glycidyl groups, for example, can improve the adhesion of the polymer.
  • the polyacrylate preferably has a K value of 30 to 80 and particularly preferably 40 to 60, measured in tetrahydrofuran (1% solution, 21 ° C.).
  • the Fikentscher K value is a measure of the molecular weight and viscosity of the polymer.
  • the glass transition temperature (T g ) of the polymer is preferably -60 to + 10 ° C, particularly preferably -55 to 0 ° C and very particularly preferably -55 to -10 ° C.
  • the glass transition temperature of the polyacrylate can be determined by conventional methods such as differential thermal analysis or differential scanning calorimetry (see, for example, ASTM 3418/82, so-called “midpoint temperature X” ).
  • the polyacrylates can be prepared by copolymerizing the monomeric components using the customary polymerization initiators and, if appropriate, regulators, where is polymerized at the usual temperatures in bulk, in emulsion, for example in water or liquid hydrocarbons, or in solution.
  • the copolymers are preferably obtained by polymerizing the monomers in solvents, in particular in solvents having a boiling range from 50 to 150 ° C., preferably from 60 to 120 ° C., using the customary amounts of polymerization initiators, which are generally from 0.01 to 10, in particular from 0.1 is up to 4 wt .-% (based on the total weight of the monomers).
  • Particularly suitable solvents are alcohols, such as methanol, ethanol, n- and iso-propanol, n- and iso-butanol, preferably isopropanol and / or isobutanol, and hydrocarbons such as toluene and in particular gasolines with a boiling range from 60 to 120 ° C. It is also possible to use ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and esters such as ethyl acetate and mixtures of solvents of the type mentioned.
  • alcohols such as methanol, ethanol, n- and iso-propanol, n- and iso-butanol, preferably isopropanol and / or isobutanol
  • hydrocarbons such as toluene and in particular gasolines with a boiling range from 60 to 120 ° C.
  • ketones such as acetone, methyl ethyl ketone
  • Mixtures which contain isopropanol and / or isobutanol in amounts of 5 to 95, in particular 10 to 80, preferably 25 to 60% by weight, based on the solvent mixture used, are preferred.
  • Possible polymerization initiators in solution polymerization are, for example, azo compounds, ketone peroxides and alkyl peroxides.
  • the solvents can, if appropriate, be removed under reduced pressure.
  • the process is carried out at elevated temperatures, for example in the range from 100 to 150 ° C.
  • the polymers can subsequently be used in the solvent-free state, ie as a melt.
  • the components used can be polymerized batchwise or continuously, as described, for example, in DE-A 2 439 341.
  • the composition according to the invention can contain further additives, such as stabilizers or optical brighteners.
  • the oligomeric compounds with at least one UV-crosslinkable functional group bring about an advantageous reduction in the processing temperature of this composition.
  • an oligomeric compound is understood to be a molecule which has at least 2 to 15 recurring monomer units in the structure.
  • the at least one UV-crosslinkable functional group of the oligomeric compound is selected such that a Reaction with the functional groups of the polymer or the photoinitiator groups which are preferably copolymerized in the polymer advantageously takes place.
  • UV-crosslinkable groups are advantageously arranged essentially terminally on the oligomeric compound. These reactions thus chemically permanently bind the molecule to the polymer Later escape, for example outgassing from the crosslinked composition is prevented.
  • the oligomeric compound preferably has at least two functional groups. Particularly preferred is an oligomeric compound with four functional groups. Such suitable functional groups are, for example, a vinyl group or e a carbonyl group. The conjugated presence of several of these groups is also conceivable.
  • the amount of the oligomeric compound is to be selected so that at least one of the UV-wettable functional groups of the oligomeric compound has a chemically permanent, ie essentially a covalent bond.
  • the quantity selection can prevent the oligomeric compound from evaporating from the exposed and crosslinked composition.
  • the oligomeric compound advantageously has a viscosity between 0.1 and 20 Pa.s at 25 ° C. Such a viscosity range has a positive effect on the processability of the composition according to the invention at significantly lower temperatures.
  • the compound preferably has a viscosity between 2 and 17 Pa.s and particularly preferably between 4 and 15 Pa.s at 25 ° C. (Brookfield measuring system).
  • the oligomeric compound preferably has a molecular weight of less than 2500 g / mol, preferably less than 1800 g / mol and more preferably less than 1400 g / mol.
  • the oligomeric compound is advantageously a urethane acrylate, epoxy acrylate, polyester acrylate or mixtures thereof: the oligomeric compound preferably has at least two functional groups and further advantageously at least four functional groups. Due to the large number of functional groups, sufficient reactivity of the oligomeric compound with regard to crosslinking is ensured.
  • a urethane acrylate, in particular a urethane acrylate with two functional groups, is particularly preferred as the oligomeric compound.
  • a urethane acrylate with four functional groups is further preferred.
  • the urethane functionality also proves advantageous for the adhesive properties of the crosslinked composition. A corresponding selection of the urethane acrylate can therefore have an additional influence on the adhesive properties.
  • composition according to the invention in which the polyacrylate contains 70 to 98% by weight and the oligomeric ones Compound comprises 2 to 30% by weight of the total composition.
  • the composition preferably contains 75 to 95% by weight of polyacrylate and 5 to 25% by weight of oligomeric compound.
  • the composition according to the invention can be used as a crosslinkable hot melt adhesive.
  • the composition is heated to a processing temperature between 60 and 160 ° C., preferably between 70 and 140 ° C. and particularly preferably between 80 and 120 ° C., and applied to a substrate.
  • a film, a paper, a plastic substrate or a textile can serve as the substrate.
  • the film or the plastic substrate can consist of PET, PE, PP, polyamide or PUR.
  • the composition according to the invention can be applied very advantageously to temperature-sensitive materials, since these materials are not destroyed at the application temperature.
  • the crosslinkable layer is applied with a layer thickness between 1 and 200 ⁇ m, preferably between 10 and 140 ⁇ m and particularly preferably between 15 and 80 ⁇ m.
  • UV light preferably in the wavelength range between 200 and 300 nm
  • a UV laser or an Hg lamp can be used as the light source.
  • the applied composition is usually exposed to a UV dose (in the wavelength range from 200 to 300 nm) of 0.01 to 10 J / cm 2 .
  • Suitable UV light sources are known to the person skilled in the art.
  • the crosslinking of the coating advantageously takes place significantly faster in comparison to a polyacrylate composition which has no addition of the oligomeric compound according to the invention, so that higher application speeds or processing speeds of the coated substrate are possible.
  • the crosslinked compositions achieve identical properties despite the significantly lower processing temperature.
  • shear temperatures SAFT, Shear Adhesion Failure Temperature, measured in accordance with ASTM D4498-00, 25 mm ⁇ 25 mm, 1000 g, 0.5 ° C./min., 24 h. Adhesive bond
  • composition according to the invention is explained in more detail with reference to the following examples.
  • the percentages are percentages by weight and based on the total weight of the composition.
  • acResin® from BASF is used as a polyacrylate component in the composition.
  • This class of substances is characterized by polymerized monomers to which UV-activatable photoinitiator groups have been chemically bound using a spacer group as a spacer. The property of the polymer can be changed in a targeted manner by different ratios of the monomers used.
  • Actilane 276 (Akcros Chemical America, tetrafunctional urethane acrylate with M of 1000 g / mol) and 0.3% Irganox B 612 (Ciba SC) are mixed intimately with 84.7% acResin A 203 UV.
  • the composition is highly viscous at room temperature.
  • the mixture is heated to 100 to 110 ° C. and applied to a PET film (Wachendorf, 50 ⁇ m thick) with a hot melt adhesive coating device from Nordson.
  • the crosslinking is triggered by exposure with an exposure device UV minicure system (from IST) at a transport speed of 10 m / min and a lamp power of 160 W / cm.
  • the power of the UV light source used is 0.8 J / cm 2 (in the wavelength range from 200 to 300 nm).
  • a SAFT temperature of greater than 150 ° C was determined using a bonded test strip.
  • a mixture of 89.7% acResin A 203 UV, 10% Actilane 276 and 0.3% Irganox B 612 is produced analogously to Example 1 and applied to a PET substrate at a temperature of 100-120 ° C. A SAFT temperature greater than 140 ° C was determined.
  • the sample compositions were examined for their fogging behavior after exposure and crosslinking.
  • fogging means the disadvantageous outgassing of monomers or small molecules, which must not occur in certain applications.
  • the samples (approx. 200 cm 2 area) were heated in a glass cylinder using an oil bath at 100 ° C. for 16 hours. The cover of this cylinder was simultaneously actively cooled to 21 ° C.
  • the proportion of volatile constituents of the crosslinked composition was determined by differential weighing of the lid before and after the temperature treatment (in accordance with DIN 75210 B).
  • the examined samples showed no mass loss, ie outside the error range of the method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

UV-härtender Schmelzklebstoff
Die Erfindung betrifft eine UV-härtbare Zusammensetzung, die Verwendung dieser UV-härtbaren Zusammensetzung als Schmelzklebstoff und ein Beschichtungsverfahren mit der Zusammensetzung zur Anwendung bei temperaturempfindlichen Trägermaterialien.
Schmelzklebstoffe gewinnen zunehmend an Bedeutung für verschiedene Klebe-Anwendungen in der Industrie. Hierbei weisen vernetzbare Schmelzklebstoffe den Vorteil auf, dass diese Materialien sich zuerst als geschmolzener Film auf einen Träger aufbringen lassen und durch Vernetzungsreaktion zu hochmolekularen Verbindungen modifiziert werden können. Diese Vernetzungsreaktion lässt sich thermisch oder mittels Strahlung, insbesondere Strahlung im UV-Lichtbereich initiieren. Durch die Schmelzfähigkeit dieser Klebstoffe lässt sich weitgehend ein Einsatz von Lösungsmitteln mit den bekannten Nachteilen vermeiden.
Diese vernetzbaren Schmelzklebstoffe basieren meist auf Polymerisaten mit entsprechenden, reaktiven Gruppen. Mit UV-Licht vernetzbare Polymerisate sind beispielsweise aus DE-A 3 844 444, DE-A 10 103 428, WO-A 01/23488, WO-A 01/23489 oder WO-A 01/84544 und den in diesen Schriften zitierten Dokumenten bekannt.
In der Regel werden diese vernetzbaren Schmelzklebestoffe bei Temperaturen zwischen 120 und 160 °C verarbeitet, d.h. auf ein Substrat aufgebracht. Es hat sich gezeigt, dass jedoch diese Vorgehensweise nicht für alle Substratmaterialien und Auftragsverfahren geeignet ist. Verschiedene Materialien wie PE, PP oder PVC verlieren bei derartig hohen Temperaturen ihre Stabilität und verformen sich oder werden gar teilweise zerstört. Für bestimmte Auftragsverfahren wie beispielsweise Siebdruck gilt eine obere, tolerierbare Viskositätsgrenze. Auch hier kann eine Erhöhung der Auftragstemperatur zwecks Senkung der Schmelzviskosität zur Zerstörung des Substrates führen. Versuche, die Verarbei- tungs- und Auftragungstemperatur durch einen Additivzusatz abzusenken, führen zu dem Nachteil des sogenannten Foggings, d.h. dem Entweichen dieser Zusätze aus der belichteten Schmelzklebstoff-Zusammensetzung. Ein derartiges Ausdampfen der Zusätze sind jedoch bei verschiedenen Anwendung, z.B. in der Automobil- oder Flugzeugindustrie nicht tolerierbar.
Die Aufgabe der vorliegenden Erfindung ist es, die Nachteile des Bekannten zu vermeiden, und insbesondere einen UV-vernetzbaren Schmelzklebstoff bereitzustellen, welcher sich ohne gravierende Einschränkungen seiner Eigenschaften bei niedrigeren Temperaturen verarbeiten lässt.
Dies wird durch eine Zusammensetzung mit einem UV-vernetzbaren Polyacrylat, der Verwendung dieser Zusammensetzung sowie durch ein damit ausführbares Beschichtungsverfahren gemäss den unabhängigen Ansprüchen gelöst.
Die erfindungsgemässe Zusammensetzung enthält ein schmelzfähiges, mit UV-Licht vernetzbares Polyacrylat und optional Additive und wird gekennzeichnet durch mindestens eine oligomere Verbindung mit UV-vernetzbaren funktionellen Gruppen, die mit dem Polyacrylat reaktionsfähig sind.
Die oligomere Verbindung weist vorzugsweise daher mindestens eine UV-vernetzbare funktioneile Gruppe auf. Weiter vorteilhaft ist die oligomere Verbindung in der Menge so ausgewählt ist, dass im wesentlichen mindestens eine funktioneile Gruppe je oli- gomerer Verbindung mit dem Polyacrylat reagiert . Die oligomere Verbindung besitzt weiter vorteilhaft eine geringere Viskosität als das Polyacrylat, wodurch die oligomere Verbindung als eine Art Verdünner wirkt.
In einer bevorzugten Ausführungsform weist die oligomere Verbindung eine Viskosität zwischen 0.1 und 20 Pa . s bei 25 °C auf (Messsystem Brookfield) . Das Polyacrylat weist vorteilhaft eine Viskosität von 1 bis 100 Pa.s bei 130°C auf (Messsystem Ke- gel/Plate, EN ISO 3219) .
Das mit UV-Licht härtbare bzw. vernetzbare Polyacrylat ist ein radikalisch polymerisiertes Polymerisat, welches zu mindestens 50 Gew.-% des Polymerisats aus C2- bis C_.8-Alkyl (meth) acrylaten besteht, wobei es sich bei 0.1 bis 30 Gew.-% der Monomeren, aus denen das Polymerisat aufgebaut ist, um Monomere A ohne Carbonsäure- oder Carbonsäureanhydridgruppen und mit einer Wasserlöslichkeit grösser 5 g Monomere pro Liter Wasser handelt. Das Polymerisat wird aus ethylenisch ungesättigten, radikalisch poly- merisierbaren Verbindungen erhalten. Dieses Polymerisat besteht vorzugsweise zu 50 bis 99.85 Gew.-%, bevorzugt zu 60 bis 99.4 Gew.-% und besonders bevorzugt zu 80 bis 98.9 Gew.-% bezogen auf das Polymerisat aus C2- bis Cι8-Alkyl (meth) acrylaten. Bevorzugt sind C2- bis Cio-Alkyl (meth) acrylate, z.b. n-Butylacrylat , Ethy- lacrylat und 2-Ethylhexylacrylate . Insbesondere werden Mischungen der Alkyl (meth) acrylate verwendet .
Zur Verbesserung der Vernetzung kann das Polymerisat einen UV- Licht empfindlichen Photoinititator enthalten. Der Photoinitiator kann an das Polymerisat gebunden sein, er kann aber auch ungebunden und lediglich mit dem Polymerisat vermischt sein. Übliche Photoinitiatoren, die dem Polymerisat zugesetzt werden können, sind z.B. Acetophenon, Benzoinether, Benzyldialkylketole oder deren Derivate. Der Gehalt des zugemischten Photoinitiators beträgt vorzugsweise 0.05 bis 10 Gew. Teile, und besonders bevorzugt 0.1 bis 2 Gew. Teile pro 100 Gew. Teile Polymerisat.
Durch Bestrahlung mit energiereichem Licht, insbesondere UV- Licht im Wellenlängenbereich zwischen 200 bis 450 nm, bewirkt der Photoinitiator ein beschleunigtes Einsetzen der Vernetzung des Polymeren, vorzugsweise durch eine chemische Propfreaktion des Photoinitiators mit einer räumlich benachbarten Polymerkette. Die Vernetzung kann beispielsweise durch Einschub einer Car- bonylgruppe des Photoinitiators in eine benachbarte C-H-Bindung unter Ausbildung einer -C-C-O-H Gruppierung erfolgen. Grundsätzlich weist das Polyacrylat funktionelle Gruppen auf, die aufgrund ihrer Struktur eine Neigung zur Reaktion bei Bestrahlung mit Licht im UV-Bereich aufweisen. Dies sind zum Beispiel C-C-, C-O-, C-N-Mehrfachbindungen. Vorstellbar ist auch das konjugierte Vorliegen von diesen Doppel- oder Dreifachbindungen.
Im Fall eines einpolymerisierten Photoinitiators enthält das Polymerisat zu 0.05 bis 10 Gew.-%, bevorzugt zu 0.1 bis 2 Gew.-% und besonders bevorzugt 0.1 bis 1 Gew.-% (bezogen auf das Polymerisat) ethylenisch ungesättigte Verbindungen mit einer Photoinitiatorgruppe. Die ethylenisch ungesättigte Verbindung weist mindestens eine Acryl- oder Methacrylgruppe auf. Als Photoinitiatorkomponente sind Acteophenon- oder Benzophenonderivate geeignet. Bevorzugt ist dabei die Photoinitiatorgruppe durch eine Spacergruppe von der ethylenisch ungesättigten Gruppe der Verbindung getrennt. Diese Spacergruppe kann z.B. bis zu 100 C- Atome enthalten. Aufgrund der Spacergruppe wird die Wahrscheinlichkeit für eine intramolekulare Vernetzungs-Reaktion verringert und intermolekulare Vernetzung bevorzugt.
Geeignete Acetophenon- oder Benzophenonderivate sind z.B. in EP- A 346 734, EP-A 377 199 (1. Anspruch), DE-A 4 037 079 (1. An- spruch) und DE-A 3 844 444 (1. Anspruch) beschrieben und werden hiermit in die Offenbarung dieser Anmeldung aufgenommen. Die bevorzugten Acetophenon- und Benzophenonderivate sind solche der Formel
worin R1 für einen organischen Rest mit bis zu 30 C-Atomen, R2 für ein H-Atom oder eine Methylgruppe und R3 für eine gegebenenfalls substituierte Phenylgruppe oder eine Cι-C4-Alkylgruppe steht .
R1 steht besonders bevorzugt für eine Alkylengruppe, insbesondere für eine C2- bis C8- Alkylengruppe.
R3 steht besonders bevorzugt für eine Methylgruppe oder eine Phenylgruppe. Weitere Monomere, aus denen das Polycrylat aufgebaut sein kann, sind z.B. Vinylester von bis zu 20 C-Atome enthaltenden Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigte Nitrile, Vinylhalogenide, Vinylether von 1 bis 10 C-Atome enthaltenden Alkoholen, aliphatischen Kohlenwasserstoffen mit 2 bis 8 C-Atomen und 1 oder 2 Doppelbindungen oder Mischungen dieser Monomere.
Als vinylaromatische Verbindungen kommen z.B. Vinyltoluol, α- und ß-Methylstyrol, α-Butylstyrol , 4-n-Butylstyrol , 4-n- Decylstyrol und vorzugsweise Styrol in Betracht. Beispiele für Nitrile sind Acrylnitril und Methacrylnitril .
Die Vinylhalogenide sind mit Chlor, Fluor oder Brom substituierte, ethylenisch ungesättigte Verbindungen, bevorzugt Vinylchlo- rid und Vinylidenchlorid. Als Vinylether zu nennen sind z.B. Vinyl ethylether oder Viny- lisobutylether. Bevorzugt wird Vinylether von 1 bis 4 C-Atome enthaltenden Alkoholen.
Als Kohlenwasserstoffe mit 2 bis 8 C-Atomen und zwei olefini- schen Doppelbindungen seien Butadien, Isopren und Chloropren genannt .
Ale weitere Monomere in Betracht kommen insbesondere auch Monomere mit Carbonsaure-, Sulfonsaure- oder Phosphorsauregruppen, wobei Carbonsauregruppen bevorzugt sind. Beispiele sind Acryl- saure, Methacrylsaure, Itaconsaure, Maleinsäure oder Fumarsaure. Weitere Monomere sind beispielsweise auf Hydroxylgruppen enthaltende Monomere, insbesondere Cx- bis Cι0-
Hydroxyalkyl (meth) acrylate oder (Meth) acrylamid. Weiterhin sind Phenyloxyethylglykolmono- (meth) acrylat , Glycidylacrylat , Glyci- dylmethacrylat , Amino- (meth) acrylate wie 2- Aminoethyl (meth) acrylate genannt .
Monomere, die ausser der Doppelbindung noch weitere funktionelle Gruppen tragen, z.B. Isocyanat-, Amino-, Hydroxy- , Amid- oder Glycidyl-Gruppen, können beispielsweise die Haftung des Polymerisats verbessern.
Das Polyacrylat hat vorzugsweise einen K-Wert von 30 bis 80 und besonders bevorzugt von 40 bis 60, gemessen in Tetrahydrofuran (l%ige Losung, 21 °C) . Der K-Wert nach Fikentscher ist ein Mass für das Molekulargewicht und Viskosität des Polymerisats. Die Glasubergangstemperatur (Tg) des Polymerisats betragt vorzugsweise -60 bis +10°C, besonders bevorzugt -55 bis 0°C und ganz besonders bevorzugt -55 bis -10 °C. Die Glasubergangstemperatur des Polyacrylates lasst sich nach üblichen Methoden wie Differen- tialthermoanalyse oder Diffenential Scanning Calorimetrie (s. z.B. ASTM 3418/82, sog. „midpoint temperatureX ) bestimmen. Die Polyacrylate können durch Copolymerisation der monomeren Komponenten unter Verwendung der üblichen Polymerisationsinitiatoren sowie gegebenenfalls von Reglern hergestellt werden, wobei bei den üblichen Temperaturen in Substanz, in Emulsion, z.B. in Wasser oder flüssigen Kohlenwasserstoffen, oder in Lösung poly- merisiert wird. Vorzugsweise werden die Copoly erisate durch Polymerisation der Monomeren in Lösungsmitteln, insbesondere in Lösungsmitteln eines Siedebereichs von 50 bis 150°C, vorzugsweise von 60 bis 120 °C unter Verwendung der üblichen Mengen an Polymerisationsinitiatoren, die im allgemeinen bei 0.01 bis 10, insbesondere bei 0.1 bis 4 Gew.-% (bezogen auf das Gesamtgewicht der Monomeren) liegt, hergestellt. Als Lösungsmittel kommen insbesondere Alkohole, wie Methanol, Ethanol, n- und iso-Propanol , n- und iso-Butanol, vorzugsweise Isopropanol und/oder Isobutanol sowie Kohlenwasserstoffe wie Toluol und insbesondere Benzine mit einem Siedebereich von 60 bis 120 °C in Frage. Es könne auch Ke- tone, wie Aceton, Methylethylketon, Methylisobutylketon und Ester, wie Essigsäureethylester sowie Gemische von Lösungsmitteln der genannten Art eingesetzt werden. Gemische, die Isopropanol und/oder Isobutanol in Mengen von 5 bis 95, insbesondere von 10 bis 80, vorzugsweise von 25 bis 60 Gew.% bezogen auf das eingesetzte Lösungsmittelgemisch enthalten, werden vorgezogen. Als Polymerisationsinitiatoren kommen bei der Lösungspolymerisation z.B. Azoverbindungen, Ketonperoxide und Alkylperoxide in Betracht .
Nach der Polymerisation in Lösung können die Lösungsmittel gegebenenfalls unter reduziertem Druck abgetrennt werden. Dabei wird bei erhöhten Temperaturen, z.B. im Bereich von 100 bis 150 °C gearbeitet. Die Polymerisate lassen sich nachfolgend im lösungsmittelfreien Zustand, d.h. als Schmelze, einsetzen. Manchmal ist es vorteilhaft, die UV-vernetzbaren Polymerisate durch Polymerisation in Substanz, d.h. ohne Mitverwendung eines Lösungsmittels herzustellen. Die Polymerisation der eingesetzten Komponenten kann dabei chargenweise oder kontinuierlich erfolgen, wie es z.B. in DE-A 2 439 341 beschrieben ist. Die erfindungsge ässe Zusammensetzung kann weitere Additive enthalten, wie z.B. Stabilisatoren oder optische Aufheller.
Die oligomeren Verbindungen mit mindestens einer UV-vernetzbaren funktionellen Gruppe bewirken die vorteilhafte Absenkung der Verarbeitungstemperatur dieser Zusammensetzung. Als eine oligomere Verbindung ist im Rahmen der vorliegenden Erfindung ein Molekül zu verstehen, welches mindestens 2 bis 15 wiederkehrende Monomereinheiten in der Struktur aufweist . Im weiteren wird auf die Definition in Rö pp, Lexikon Lacke und Druckfarben, Georg Thieme Verlag Stuttgart, New York, 1998, „Oligomere", Seite 425 verwiesen. Die mindestens eine UV-vernetzbare funktionelle Gruppe der oligomeren Verbindung ist derart ausgewählt, dass eine Reaktion mit den funktionellen Gruppen des Polymerisats bzw. der vorzugsweise im Polymerisat einpolymerisierten Photoinitiator- Gruppen erfolgt. Vorteilhafterweise sind diese UV-vernetzbaren Gruppen im wesentlichen endständig an der oligomeren Verbindung angeordnet. Durch diese Reaktionen wird das Molekül somit chemisch dauerhaft an das Polymerisat gebunden. Ein späteres Entweichen, beispielsweise ein Ausgasen aus der vernetzten Zusammensetzung wird so unterbunden. Bevorzugt weist die oligomere Verbindung mindestens zwei funktionelle Gruppen auf. Besonders bevorzugt ist eine oligomere Verbindung mit vier funktionellen Gruppen. Derartige geeignete, funktionelle Gruppen sind beispielsweise eine Vinyl-Gruppe oder eine Carbonyl-Gruppe. Vorstellbar ist auch das konjugierte Vorliegen mehrerer dieser Gruppen.
Die Menge der oligomeren Verbindung ist so zu wählen, dass zumindest eine der UV- ernetzbaren funktionellen Gruppe der oligomeren Verbindung innerhalb der Belichtungsphase der Zusammensetzung und/oder Abkühlphase der aufgeschmolzenen Zusammensetzung mit dem Polyacrylat eine chemisch dauerhafte, d.h. im wesentli- chen eine kovalente Bindung eingeht . Durch die Mengenauswahl kann ein Ausdünsten der oligomeren Verbindung aus der belichteten und vernetzten Zusammensetzung unterbunden werden.
Die oligomere Verbindung besitzt vorteilhafterweise eine Viskosität zwischen 0.1 und 20 Pa.s bei 25°C. Ein derartiger Viskositätsbereich wirkt sich positiv auf die Verarbeitungsfähigkeit der erfindungsgemässen Zusammensetzung bei deutlich niedrigeren Temperaturen aus. Vorzugsweise weist die Verbindung eine Viskosität zwischen 2 und 17 Pa.s und besonders bevorzugt zwischen 4 und 15 Pa.s bei 25 °C auf (Messsystem Brookfield) .
Bevorzugt weist die oligomere Verbindung ein Molekulargewicht von weniger als 2500 g/mol , vorzugsweise weniger als 1800 g/mol und weiter bevorzugt von weniger als 1400 g/mol auf.
Vorteilhaft ist die oligomere Verbindung ein Urethanacrylat , Epoxyacrylat , Polyesteracrylat oder Gemische davon: Die oligomere Verbindung besitzt vorzugsweise mindestens zwei funktionelle Gruppen und weiter vorteilhaft mindestens vier funktionellen Gruppen. Aufgrund der Mehrzahl an funktionellen Gruppen ist eine ausreichende Reaktivität der oligomeren Verbindung im Hinblick auf die Vernetzung sichergestellt. Besonders bevorzugt als oligomere Verbindung ist ein Urethanacrylat, insbesondere ein Urethanacrylat mit zwei funktionellen Gruppen. Weiter bevorzugt wird ein Urethanacrylat mit vier funktionellen Gruppen. Die Urethan- Funktionalität erweist sich zudem vorteilhaft für die Klebeeigenschaften der vernetzten Zusammensetzung. Durch eine entsprechenden Auswahl des Urethanacrylates kann somit, zusätzlich Ein- fluss auf die Klebeeigenschaften genommen werden.
Weiterhin vorteilhaft ist eine erfindungsgemässe Zusammensetzung, in der das Polyacrylat 70 bis 98 Gew.-% und die oligomere Verbindung 2 bis 30 Gew.-% der gesamten Zusammensetzung umfasst. Bevorzugt enthält die Zusammensetzung 75 bis 95 Gew.-% an Polyacrylat und 5 bis 25 Gew.-% an oligomerer Verbindung.
Die erfindungsgemässe Zusammensetzung kann als vernetzbarer Schmelzklebstoff verwendet werden. Hierzu wird die Zusammensetzung auf eine Verarbeitungstemperatur zwischen 60 und 160 °C, bevorzugt zwischen 70 und 140 °C und besonders bevorzugt zwischen 80 und 120 °C erhitzt und auf ein Substrat aufgebracht. Als Substrat kann eine Folie, ein Papier, ein Kunststoffsubstrat oder ein Textil dienen. Die Folie bzw. das Kunststoffsubstrat kann aus PET, PE, PP, Polyamid oder PUR bestehen. Die erfindungsgemässe Zusammensetzung lässt sich sehr vorteilhaft auf temperaturempfindliche Materialien aufbringen, da diese Materialien bei der Auftragungstemperatur nicht zerstört werden. Der Auftrag der vernetzbaren Schicht erfolgt mit einer Schichtdicke zwischen 1 und 200 μm, vorzugsweise zwischen 10 und 140 μm und besonders bevorzugt zwischen 15 und 80 μm. Eine nachfolgende Belichtung mit UV-Licht, vorzugsweise im Wellenlängenbereich zwischen 200 und 300 nm, startet die Vernetzungsreaktion der Zusammensetzung. Als Licht-Quelle kann beispielsweise ein UV-Laser oder eine Hg-Lampe eingesetzt werden. Die aufgetragene Zusammensetzung wird üblicherweise mit einer UV-Dosis (im Wellenlängenbereich von 200 bis 300 nm) von 0.01 bis 10 J/cm2 belichtet . Dem Fachmann sind geeignete UV- ichtquellen bekannt.
Die Vernetzung der Beschichtung erfolgt vorteilhafterweise im Vergleich zu einer Polyacrylat-Zusammensetzung, welche keinen erfindungsgemässen Zusatz der oligomeren Verbindung hat, deutlich schneller, so dass höhere Auftragsgeschwindigkeiten bzw. Verarbeitungsgeschwindigkeiten des beschichteten Substrats möglich sind. Die vernetzten Zusammensetzungen erreichen trotz der deutlich niedrigeren Verarbeitungstemperatur identische Eigenschaften. Mit der erfindungsgemässen Zusammensetzung können Schertemperaturen (SAFT, Shear Adhesion Failure Temperature, gemessen in Anlehnung zu ASTM D4498-00, 25mm x 25mm, 1000 g, 0.5°C/min., 24 h. Verklebung) von rund 150 °C erhalten werden.
Anhand der folgenden Beispiele wird die erfindungsgemässe Zusammensetzung näher erläutert. Die Prozentangaben sind jeweils Gewichtsprozent und bezogen auf das Gesamtgewicht der Zusammensetzung.
acResin® der Firma BASF wird als Polyacrylat-Komponente in der Zusammensetzung eingesetzt. Diese Substanzklasse zeichnet sich durch einpolymerisierte Monomere aus, an die unter Verwendung einer Spacergruppe als Abstandshalter UV-aktivierbare Photoinitiatorgruppen chemisch gebunden wurden. Durch unterschiedliche Verhältnisse der eingesetzten Monomere kann die Eigenschaft des Polymers gezielt verändert werden.
Beispiel 1:
Zu 84.7 % acResin A 203 UV werden 15 % Actilane 276 (Fa. Akcros Chemical America, tetrafunktionales Urethanacrylat mit M von 1000 g/mol) sowie 0.3 % Irganox B 612 (Fa. Ciba SC) innig gemischt. Die Zusammensetzung ist bei Raumtemperatur hochviskos. Das Gemisch wird für das Auftragen auf 100 bis 110 °C erhitzt und mit einem Schmelzklebstoffbeschichtungsgerät der Fa. Nordson auf eine PET-Folie (Fa. Wachendorf, 50 μm dick) aufgebracht. Das Auslösen der Vernetzung erfolgt durch Belichtung mit einem Belichtungsgerät UV Minicure Anlage (Fa. IST) bei einer Transportgeschwindigkeit von 10 m/min und einer Lampenleistung von 160 W/cm. Die Leistung der verwendeten UV-Lichtquelle beträgt dabei 0.8 J/cm2 (im Wellenlängenbereich von 200 bis 300 nm) . Mit einem verklebten Teststreifen wurde eine SAFT-Temperatur von grösser als 150 °C ermittelt.
Beispiel 2 :
Eine Mischung aus 89.7% acResin A 203 UV, 10% Actilane 276 und 0.3% Irganox B 612 wird analog zu Beispiel 1 hergestellt und bei einer Temperatur von 100-120 °C auf ein PET-Substrat aufgebracht. Es wurde eine SAFT-Temperatur von grösser als 140 °C ermittelt .
Die Beispiel-Zusammensetzungen wurden nach der Belichtung und der erfolgten Vernetzung hinsichtlich ihres Fogging-Verhaltens untersucht. Unter Fogging wird wie vorstehend erläutert das nachteilige Ausgasen von Monomeren oder kleinen Molekülen verstanden, das bei bestimmten Anwendungen nicht auftreten darf. Die Proben (ca. 200 cm2 Fläche) wurden in einem Glaszylinder mittels eines Ölbades für 16 Stunden auf 100°C erhitzt. Der Deckel dieses Zylinders wurde gleichzeitig aktiv auf 21 °C gekühlt. Durch Differenzwägung des Deckels vor und nach der Temperaturbehandlung wurde der Anteil an flüchtigen Bestandteile der vernetzten Zusammensetzung ermittelt (ge äss DIN 75210 B) . Die untersuchten Proben zeigten dabei keinen, d.h. ausserhalb des Fehlerbereichs der Methode liegenden Masseverlust.

Claims

Patentansprüche
1. Zusammensetzung enthaltend ein schmelzfähiges, UV- vernetzbares Polyacrylat und optional Additive, dadurch gekennzeichnet, dass die Zusammense zung eine oligomere Verbindung mit UV-vernetzbaren funktionellen Gruppen enthält, die mit dem Polyacrylat reaktionsfähig sind.
2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass die Viskosität der oligomeren Verbindung niederer ist als die Viskosität des Polyacrylats .
3. Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die oligomere Verbindung eine Viskosität zwischen 0.1 und 20 Pa.s bei 25°C aufweist.
4. Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Polyacrylat eine Viskosität zwischen 1 und 100 Pa.s bei 130°C aufweist.
5. Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Polyacrylat aus einem Polymerisat mit 0.05 bis 10 Gew.-% aus ethylenisch ungesättigten Verbindungen mit einer Photoinitiatorgruppe besteht .
6. Zusammensetzung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die oligomere Verbindung ein Urethanacrylat, bevorzugt ein Urethanacrylat mit zwei vernetzbaren funktionellen Gruppe und besonderes bevorzugt ein Urethanacrylat mit vier vernetzbaren funktionellen Gruppen.
7. Zusammensetzung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Polyacrylat 70 bis 95 Gew.-% und die oligomere Verbindung 5 bis 30 Gew.-% der gesamten Zusammensetzung umfasst .
8. Zusammensetzung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Zusammensetzung einen UV- Initiator enthält.
9. Zusammensetzung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das Urethanacrylat ein Molekulargewicht von weniger als 2500 g/mol, vorzugsweise weniger als 1800 g/mol aufweist.
10. Zusammensetzung nach einem der vorangehenden Ansprüche, wobei die oligomere Verbindung in der Menge so ausgewählt ist, dass im wesentlichen mindestens eine funktionelle Gruppe je oligomerer Verbindung mit dem Polyacrylat reagieren kann.
11. Verfahren zur Beschichtung eines Substrates mit einer klebefähigen Schicht, enthaltend die Schritte:
Bereitstellen einer Zusammensetzung nach einem der An Sprüche 1 bis 10;
Aufschmelzen der Zusammensetzung und Aufbringen auf ein Substrat ; und
Bestrahlung der aufgebrachten Zusammensetzung mit ul travioletter Strahlung zur Vernetzung der in der Zusammensetzung enthaltenen Komponenten.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Aufschmelzen im Temperaturbereich zwischen 70 und 140 °C erfolgt .
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Zusammensetzung mit einer Schichtdicke zwischen 1 und 200 μm, vorzugsweise zwischen 10 und 140 μm auf das Substrat aufgebracht wird.
EP04715885A 2003-03-19 2004-03-01 Uv-härtender schmelzklebstoff Withdrawn EP1603973A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04715885A EP1603973A1 (de) 2003-03-19 2004-03-01 Uv-härtender schmelzklebstoff

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03405189A EP1469036B1 (de) 2003-03-19 2003-03-19 UV-härtender schmelzklebstoff
EP03405189 2003-03-19
EP04715885A EP1603973A1 (de) 2003-03-19 2004-03-01 Uv-härtender schmelzklebstoff
PCT/EP2004/002033 WO2004083302A1 (de) 2003-03-19 2004-03-01 Uv-härtender schmelzklebstoff

Publications (1)

Publication Number Publication Date
EP1603973A1 true EP1603973A1 (de) 2005-12-14

Family

ID=32893013

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03405189A Expired - Lifetime EP1469036B1 (de) 2003-03-19 2003-03-19 UV-härtender schmelzklebstoff
EP04715885A Withdrawn EP1603973A1 (de) 2003-03-19 2004-03-01 Uv-härtender schmelzklebstoff

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03405189A Expired - Lifetime EP1469036B1 (de) 2003-03-19 2003-03-19 UV-härtender schmelzklebstoff

Country Status (16)

Country Link
US (1) US20070054088A1 (de)
EP (2) EP1469036B1 (de)
JP (1) JP2006522178A (de)
KR (1) KR20050111360A (de)
CN (1) CN1761713A (de)
AT (1) ATE307168T1 (de)
AU (1) AU2004222200A1 (de)
CA (1) CA2518619A1 (de)
DE (1) DE50301421D1 (de)
ES (1) ES2252644T3 (de)
HR (1) HRP20050761A2 (de)
MX (1) MXPA05009956A (de)
NO (1) NO20054703L (de)
PL (1) PL377500A1 (de)
WO (1) WO2004083302A1 (de)
ZA (1) ZA200507543B (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004007444D1 (de) * 2004-07-16 2008-08-07 Collano Ag Heissschmelzzusammensetzung mit Hydrocolloid
JP2009518902A (ja) 2005-12-05 2009-05-07 聯想(北京)有限公司 無線表示システム及び方法
JP4987968B2 (ja) * 2006-05-11 2012-08-01 ヘンケル・アーゲー・アンド・カンパニー・カーゲーアーアー アクリルホットメルト接着剤
EP2087021B1 (de) * 2006-10-27 2011-12-28 Basf Se Strahlungshärtbare mischung, enthaltend niedermolekulare, ethylenisch ungesättigte verbindungen mit nicht-aromatischen ringsystemen
ATE553963T1 (de) 2007-03-08 2012-05-15 Nolax Ag Airbag
US8796348B2 (en) 2007-09-26 2014-08-05 Henkel Ag & Co. Kgaa UV curable coating composition
US8686060B2 (en) 2009-08-03 2014-04-01 Morgan Adhesives Company Adhesive compositions for easy application and improved durability
JP5068793B2 (ja) * 2009-09-24 2012-11-07 リンテック株式会社 粘着シート
CN104893411A (zh) 2009-12-17 2015-09-09 帝斯曼知识产权资产管理有限公司 聚合物组合物
DE102010002622A1 (de) * 2010-03-05 2011-09-08 Henkel Ag & Co. Kgaa Ionische Gruppen aufweisender Schmelzklebstoff
JP5762781B2 (ja) 2011-03-22 2015-08-12 リンテック株式会社 基材フィルムおよび該基材フィルムを備えた粘着シート
US8871827B2 (en) 2011-06-07 2014-10-28 Basf Se Hotmelt adhesive comprising radiation-crosslinkable poly(meth)acrylate and oligo(meth)acrylate with nonacrylic C-C double bonds
CN103687921B (zh) * 2011-06-07 2016-03-02 巴斯夫欧洲公司 包含可辐射交联的聚(甲基)丙烯酸酯和含有非丙烯酸c-c双键的低聚(甲基)丙烯酸酯的热熔性粘合剂
WO2014015497A1 (en) 2012-07-26 2014-01-30 Henkel Ag & Co. Kgaa Uv-curing hot melt adhesive containing low content of oligomers
CN104507992B (zh) * 2012-07-26 2016-09-14 汉高股份有限及两合公司 含有低含量的低聚物的uv固化型热熔粘合剂
DE102013211628A1 (de) 2013-06-20 2014-12-24 Tesa Se UV-vernetzbare, harzmodifizierte Klebemasse
EP3521012A1 (de) 2013-09-18 2019-08-07 Firestone Building Products Co., LLC Abziehbare und klebbare dachmembranen mit gehärteten druckempfindlichen haftstoffen
DE102013111378A1 (de) 2013-10-15 2015-04-16 Marabu Gmbh & Co. Kg Verfahren zur Dekoration von Substraten sowie dekoriertes Substrat
EP2873708B1 (de) 2013-11-19 2019-02-13 Artimelt AG Klebstoffzusammensetzung
CN105694750A (zh) * 2016-02-03 2016-06-22 河北华夏实业有限公司 一种新型耐高温聚氯乙烯胶带的制作方法
US12006692B2 (en) * 2016-03-25 2024-06-11 Holcim Technology Ltd Fully-adhered roof system adhered and seamed with a common adhesive
EP3433098A1 (de) 2016-03-25 2019-01-30 Firestone Building Products Co., LLC Mit einem herkömmlichen klebstoff verklebtes und gefalztes, vollständig verklebtes dachsystem
US11098151B2 (en) 2016-10-14 2021-08-24 Basf Se Hardenable polymer composition
EP4386019A1 (de) 2022-12-16 2024-06-19 Henkel AG & Co. KGaA Copolymer und heissschmelzmaterialien mit diesem copolymer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2249744A (en) * 1938-03-05 1941-07-22 Sperry Gyroscope Co Inc Gyro vertical
US2283824A (en) * 1940-09-26 1942-05-19 Albert A Evans Shearing machine
GB9110783D0 (en) * 1991-05-18 1991-07-10 Ciba Geigy Adhesives
TW434456B (en) * 1994-12-30 2001-05-16 Novartis Ag A compound as functionalized photoinitiator, its production process, its corresponding oligomers or polymers and its application in coating a substrate
US6610492B1 (en) * 1998-10-01 2003-08-26 Variagenics, Inc. Base-modified nucleotides and cleavage of polynucleotides incorporating them
US6458945B1 (en) * 1998-10-01 2002-10-01 Variagenics, Inc. Method for analyzing polynucleotides
US6566059B1 (en) * 1998-10-01 2003-05-20 Variagenics, Inc. Method for analyzing polynucleotides
JP2002533520A (ja) * 1998-12-22 2002-10-08 スリーエム イノベイティブ プロパティズ カンパニー 研磨物品の基材用アクリル化オリゴマー/熱可塑性ポリアミドプレサイズコーティング
DE10008842C1 (de) * 2000-02-25 2001-06-28 Beiersdorf Ag Polymerblends
EP1373561B1 (de) * 2000-06-13 2009-02-18 The Trustees of Boston University Verwendung von mass-matched nukleotide in der analyse von oligonukleotidmischungen sowie in der hoch-multiplexen nukleinsäuresequenzierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004083302A1 *

Also Published As

Publication number Publication date
ES2252644T3 (es) 2006-05-16
JP2006522178A (ja) 2006-09-28
HRP20050761A2 (en) 2006-06-30
US20070054088A1 (en) 2007-03-08
ZA200507543B (en) 2006-07-26
PL377500A1 (pl) 2006-02-06
EP1469036B1 (de) 2005-10-19
DE50301421D1 (de) 2006-03-02
KR20050111360A (ko) 2005-11-24
AU2004222200A1 (en) 2004-09-30
EP1469036A1 (de) 2004-10-20
WO2004083302A1 (de) 2004-09-30
ATE307168T1 (de) 2005-11-15
NO20054703L (no) 2005-10-12
CN1761713A (zh) 2006-04-19
MXPA05009956A (es) 2005-11-04
CA2518619A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
EP1469036B1 (de) UV-härtender schmelzklebstoff
DE602005001556T2 (de) Strahlungshärtbare klebstoffzusammensetzung
EP2718385B1 (de) Schmelzklebstoff, enthaltend strahlungsvernetzbares poly(meth)acrylat und oligo(meth)acrylat mit nicht-acrylischen c-c-doppelbindungen
DE102012218335A1 (de) Haftklebstoff, enthaltend Poly(meth)acrylat aus hochverzweigten C13- bis C21-Alky(meth)acrylaten
DE102013206376A1 (de) Schwarzer Silan-Primer zur Verbesserung der Adhäsion von Klebebändern auf Glasoberflächen
EP1297023B1 (de) Verfahren zur herstellung vernetzbarer acrylathaftklebemassen
EP1213306B1 (de) Lösungen von UV-vernetzbaren Polyacrylaten
EP1329492B1 (de) Haftklebstoff, enthaltend Vinylpyrrolidon
EP3322764B1 (de) Schmelzklebstoff, enthaltend poly(meth)acrylat aus alky(meth)acrylaten und aus bestimmten heterocyclische gruppen enthaltenden (meth)acrylaten
EP1316597B1 (de) Glycidyl(meth)acrylat enthaltende Klebstoff
WO2006058694A1 (de) Strahlungshärtbare schmelzklebstoffe
EP1412427B1 (de) Stabilisatoren enthaltende uv-vernetzbare schmelzhaftklebstoffe
DE10103428A1 (de) Stabilisatoren enthaltende UV-vernetzbare Schmelzhaftklebstoffe
DE102015209753A1 (de) Verfahren zum Erwärmen eines Schmelzklebstoffs, enthaltend Poly(meth)acrylat
EP1242550B1 (de) Klebstoffe für tiefgekühlte substrate
EP3694946B1 (de) Gegen weichmachermigration resistenter, uv-härtbarer schmelzklebstoff für graphikfolien und etiketten aus weich-pvc
DE202014101183U1 (de) Mit Klebstoff beschichtetes thermisch empfindliches Polymersubstrat
DE10208843A1 (de) UV-vernetzbare Schmelzhaftklebstoffe, enthaltend pyrogene Kieselsäuren
EP1560859A2 (de) Chemisch inerter haftkleber mit verbesserter haftung, verfahren zu seiner herstellung
DE19600154A1 (de) Strahlungshärtbare Lacke
WO2001023488A1 (de) Klebstoffe für wiederabziehbare träger
EP1229096A1 (de) Mischungen aus Polyvinylalkylether und Polyacrylat
EP3272828A1 (de) Haftklebemassen für die verklebung von flexiblen druckplatten
DE102004003764A1 (de) Haftklebstoff, enthaltend Kondensationsharze
DE102021133983A1 (de) Haftklebemasse für die Verklebung von Druckplatten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20051006

Extension state: LT

Payment date: 20051006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060812