EP1603684B1 - Low-temperature high-velocity flame spraying system - Google Patents

Low-temperature high-velocity flame spraying system Download PDF

Info

Publication number
EP1603684B1
EP1603684B1 EP03778244A EP03778244A EP1603684B1 EP 1603684 B1 EP1603684 B1 EP 1603684B1 EP 03778244 A EP03778244 A EP 03778244A EP 03778244 A EP03778244 A EP 03778244A EP 1603684 B1 EP1603684 B1 EP 1603684B1
Authority
EP
European Patent Office
Prior art keywords
low
combustion chamber
spray
flame spraying
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03778244A
Other languages
German (de)
French (fr)
Other versions
EP1603684A1 (en
Inventor
Erwin Dieter Hühne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibeda Sicherheitsgeraete und Gastechnik & Co GmbH
Original Assignee
Ibeda Sicherheitsgerate und Gastechnik & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10253794A external-priority patent/DE10253794B4/en
Application filed by Ibeda Sicherheitsgerate und Gastechnik & Co KG GmbH filed Critical Ibeda Sicherheitsgerate und Gastechnik & Co KG GmbH
Publication of EP1603684A1 publication Critical patent/EP1603684A1/en
Application granted granted Critical
Publication of EP1603684B1 publication Critical patent/EP1603684B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the invention relates to low-temperature high-speed flame spraying systems for the thermal spraying of powdered materials and an auxiliary device for plasma torches for low-temperature high-speed spraying with the features of the preambles of claims 1, 2 and 14.
  • the DE 199 05 811 A1 discloses a high speed flame spray gun for thermal spraying of rod, wire, and / or powder spray additives with a port for introducing gaseous and liquid fuel operating media and an expansion nozzle combustor.
  • Noble gases such as argon, helium, etc., as non-flammable gases can be added to the combustion chamber and create the opportunity to optimally match the physical and chemical properties of the high-energy hypersonic gas jet exactly to the respective spray additive material.
  • highly reactive spray additives such. B. pure nickel or superalloys, as they are for. B. are advantageously used when coating aircraft engine parts, found in the spray coatings much lower levels of oxygen.
  • a high energy electrical arc is ignited between a thoriated tungsten electrode (tungsten cathode) and a constricting copper nozzle as an anode.
  • the gas, nitrogen, hydrogen, argon, helium and mixtures thereof flowing in a gap between the cathode and the anode are heated to a high degree, so that monatomic gases partially ionize, diatomic gases dissociate and partially ionize and form a plasma jet.
  • Spray additives by means of a carrier gas, such. B. Ar, N 2 o.
  • a in the highly heated gas mixture of the plasma jet are injected radially from one or more of the anode downstream Pulverinjektoren adhere substantially by mechanical anchoring on by roughening, z.
  • B sandblasting, prepared base material.
  • DC plasma spray gun with "not transferred arc" at a power of about 30 to 100 kW.
  • metallic, ceramic and metal-ceramic powder types are sprayed which could not or only to a limited extent be processed with the usual flame or arc spraying.
  • Plasma-sprayed coatings enhance the economical use of metal spraying and, in terms of their homogeneity, exceed the technical and physical properties of conventional sprayed coatings. Due to the high gas jet temperature of emerging from the end face of the plasma torch plasma jet are introduced into the spray additives, depending on the chemical composition of the grain shape, the particle structure and size, a more or less strong surface oxidation of the individual melt-plastic and or molten spray particles one. These oxides cause a reduced Interpellehaftung after the impact of the spray particles on the substrate surface. The chemical and physical properties of a high oxide spray coating are not suitable for specific applications in coating technology.
  • the US 5,330,798 (Browning) discloses a low temperature, high velocity flame spraying system for thermal spraying of powdered spray additives with ports for introducing gaseous and liquid fuel operating media into a combustion chamber.
  • the US 5,330,798 get liquid and gaseous fuel and oxidizing gas in each case together in the combustion chamber.
  • US 5,330,798 discloses an expansion nozzle downstream of the combustion chamber and further downstream an additional mixing chamber having a non-combustible gas injection system and / or water by means of which the temperature of the supersonic flame jet entering the mixing chamber from the combustion chamber is adjustably lowered by admixing the non-combustible gases and / or water , Expansion of the gases takes place in the expansion nozzle only up to the injection system for non-combustible gases and / or water.
  • the object of the invention is to provide improved and inexpensive low-temperature high-speed flame spraying systems which allows the processing of oxidation-sensitive, non-ductile spray additives with melting temperatures> 800 ° C but also with low melting temperatures and at the same time practically prevents the oxidation of the active ingredients during their flight phase.
  • Another object of the invention is to provide low temperature, high speed flame spraying systems that provide retrofit perspectives to existing HVOF technology users for upgrading existing state of the art HVOF burner systems or plasma powder spray guns.
  • the combustion chamber of known HVOF combustion systems for operation with gaseous and / or liquid fuels in conjunction with oxidizing gases, for spraying powdery spray additives an additional mixing chamber with an injection system with downstream expansion nozzle added, in the controllable quantities and with selectable inflow pressure
  • Non-combustible gases eg argon, helium, nitrogen, etc.
  • controllable in terms of quantity and pressure are supplied by a plurality of radially and / or axially arranged in the flow direction supply channels of the injection system so that after the exit orifice of the combustion chamber with a gas temperature of about 1600 - 3.165 ° C in the mixing chamber inflowing Hypersonic flame jet by mixing the non-combustible gases and / or water at a temperature corresponding to the discharge temperature of steel bottles, bottle bundles or tank facilities, on desired gas jet temperatures can be lowered until the flame is completely extinguished.
  • Non-combustible gases eg argon, helium, nitrogen, etc.
  • Spray additives with a melting point> 1200 ° C such as Cr steel, CrNI steel, as well as the superalloys "M-CrAIY” and others can be processed according to the invention.
  • Fluorine-containing plastics such.
  • the gas jet temperature can be set exactly to the required process temperature, without causing a decomposition process by overheating of the fluorine-containing plastics and thereby the formation of toxic, neurotic gases would and would lose the specific, technical physical properties of fluorine-containing plastics thereby.
  • the addition of the non-combustible gases and / or water into the mixing chamber does not affect the combustion in the upstream combustion chamber in any way, so that the combustion in the combustion chamber by the admixture of the non-combustible gases is not limited in the mixing chamber.
  • the gas jet flowing from the mixing chamber into the downstream, optionally cylindrical, conical and / or laval nozzle-shaped expansion nozzle, lowered to its setpoint temperature is composed of at least two injectors arranged at a radial angle or at an angle between about 45 ° to 90 ° of the mixing chamber outlet orifice powdery spray additive charged, which is heated in the gas jet to its temperature, accelerated and is shot with the kinetic energy of the gas jet to the substrate surface.
  • the "low temperature hyperkinetics" HVOF burner according to the invention is designed in terms of material, functional components and in its dimensioning that sufficient reliability of the burner system at sufficiently high inflow of gaseous and / or liquid fuels to ensure against backflow, such as non-combustible cooling gases between about 5 -> 20 bar, as well as, primary and mixing chamber pressures of the same order of magnitude is guaranteed.
  • the low-temperature high-speed flame-spraying system makes it possible to retrofit or modify state-of-the-art HVOF burner systems by retrofitting a mixing chamber with e.g. radial injection and admixture of non-combustible gases and / or water for arbitrary lowering of the high temperature of the Hypersonic gas jet, which flows through the retrofitted mixing chamber from the combustion chamber (primary chamber).
  • a mixing chamber with e.g. radial injection and admixture of non-combustible gases and / or water for arbitrary lowering of the high temperature of the Hypersonic gas jet, which flows through the retrofitted mixing chamber from the combustion chamber (primary chamber).
  • the advantage of the coating technology of the invention is u.a. It is based on the fact that practically all pulverulent spray additives can be processed in the melting point range 100-2000 ° C.
  • the controllable choice of the mixing ratios between gaseous and liquid fuels with oxidizing gases can be used to set a hypersonic, over-stoichiometric or hypochromic HVOF flame as required become.
  • the low-temperature high-speed flame spraying system according to the invention is controlled by a so-called "mass flow meter", so that with increasing backpressure in the combustion chamber by expanding coolant additions to the outlet opening of the combustion chamber, the flow rate of the gaseous or liquid fuels with oxidizing gases to a previously set value can be held. Faults in the control are indicated acoustically and / or visually by the Mass Flow Meter.
  • controllable amounts and controllable adjustable inflow pressures and / or - temperatures of non-combustible gases and / or water in the "HyperKinetic gas jet" whose beam temperature and its kinetic energy can be flexibly adapted to the respective requirements. Due to the specific training in the field of powder feed into the device system, it is possible to work with cost-effective, extreme low-pressure powder conveying systems.
  • a HVOF combustion system with at least one injector is provided, through which preferably finely atomized demineralized water can be separately conducted into the combustion chamber.
  • the combustion temperature could be arbitrarily lowered at tested fuel-oxygen combinations, without the flame went out in the combustion chamber.
  • the exiting from the combustion chamber, cooled, regulated gas jet is fed from one or more of the combustion chamber downstream radial powder injectors with spray powder and shot with very high kinetic energy at low Spritzpumbletempera-tur on the surface to be coated on which an optimally adhering , dense, oxide-free spray layer deposited from special powder with very high purity of copper, aluminum, zinc and stainless steel (316L) in Grain size range smaller than 25 microns and larger than 5 microns.
  • the inflow pressures of the finely atomized water are between about 3-> 15 bar.
  • HVOF standard TopGun burner with centric powder feed from the Heckanschlußflansches through the center of Gasmischblockitatis, the gas mixing block and the combustion chamber in the water-cooled expansion nozzle and frontally emerging as in the prior art are according to the invention by simple conversion, namely by the replacement of the central Verschl constitutikinserts in gas mixing block against a water injector with at least one or more diverging arranged injector holes and replacement of the combustion chamber with downstream expansion nozzle, intermediate andclassschraubhülse of the prior art against the invention corresponding components for radial powder injection with one or more Pulverinjektoren to low temperature HVOF coating system convertible.
  • the injector of the finely atomized water is provided with at least one axially or focussing in the mouth region to the combustion chamber, arranged fine atomizer nozzle bore.
  • At least one metal seal is provided between the housing of the combustion chamber and preferably an end face of a mixing block of the HVOF fuel system.
  • an additional device downstream, for low-temperature high-speed spraying of powder spray additives to a plasma torch corresponding to the prior art is arranged to mount a chamber, for. B. as a mixing or cooling chamber, an injection system for water or non-combustible gases in the chamber, injectors for powdery spray additives and a chamber downstream expansion nozzle has.
  • the additional device according to the invention is flexible and inexpensive to adapt to virtually all known plasma torch, with radial or centric feeding device, for thermal spraying of powdery materials.
  • the assembly of the auxiliary device according to the invention with known plasma torches allows the spraying of highly reactive powdered spray additives in a "hyperkinetics low-temperature high-speed plasma jet, and thereby produces sprayed layer qualities with extremely low oxygen contents and excellent adhesion to the substrate surface, with excellent density of the sprayed layer and optimal Interparticle adhesion, as previously possible only by vacuum plasma spraying.
  • the plasma jet temperature is arbitrary, adjustable lowered outside the plasma torch without lowering the preset performance data and values such.
  • ignition voltage, current and plasma gas quantities with simultaneous arbitrary increase in the plasma jet speed to> 1000 m / sec.
  • the plasma coating technique of the present invention is applicable to the aerospace industry for coating turbine blades of gas turbines, the chemical industry, paper mills, in the printing press industry and others.
  • the plasma coating technique according to the invention is applicable in the field of modern medical technology, for. B. for coating applications such as titanium implants u. or CrNi steel and other carrier materials.
  • a plasma burner having a cathode and an anode is provided with a front plate with a central outlet bore, from which the high-energy plasma jet emerges and opens into the cylindrical annular space (cooling space) of the additional device according to the invention ,
  • At least one replaceable injector of the injection system is provided, through which finely atomized, demineralized water can be fed into the chamber.
  • the injectors for powdery spray additives are connected downstream of the at least one injector of the injection system.
  • replaceable injection nozzles of different nozzle bore diameters are provided for the at least one injector of the injection system.
  • the junction area of the plasma jet provided at very high set power, in the cylindrical chamber (mixing chamber) with an inner wall of a copper-cast, dimensionally processed tungsten profile part.
  • access and outlet connections for cooling water of an additional, independent of the cooling circuit of the plasma torch own cooling system are provided on the additional device.
  • the gas jet flowing from the cylindrical chamber or mixing chamber into the downstream, optionally cylindrical, conical and / or laval nozzle-shaped expansion nozzle, lowered to its setpoint temperature is composed of at least two injectors arranged radially or at an angle between approximately 45 ° and 90 ° of the mixing chamber orifice charged with the corresponding powdery spray additive, which is heated in the gas jet to its temperature, accelerated and shot with the kinetic energy of the gas jet to the substrate surface.
  • the additional device according to the invention for adapting to plasma torches is designed in terms of material, functional components and in their dimensions so that sufficient reliability of the burner system, at sufficiently high inflow of gaseous and / or liquid cooling media, such.
  • the additional device according to the invention for plasma torches for low-temperature high-speed flame spraying allows the retrofitting, or modification of the prior art plasma torch systems by retrofitting an additional device with a mixing chamber with z.
  • the advantage of the coating technology of the invention is u.a. It is based on the fact that virtually all pulverulent spray additives in the melting point range 200 -> 2000 ° C can be processed inexpensively and flexibly.
  • a high speed flame spray gun 10 includes a port 9 for introducing gaseous and liquid fuel operating media which are supplied to the port 9 under high pressure.
  • a port 9 for introducing gaseous and liquid fuel operating media which are supplied to the port 9 under high pressure.
  • liquid fuel such as.
  • gaseous Fuel such as.
  • hydrogen As hydrogen
  • oxidizing gas such as.
  • air or oxygen passed.
  • Terminal 9 is bordered on the outer periphery and on a flat end surface 12 gas and liquid-tight in a mouthpiece 4.
  • a combustion chamber housing 6 is flanged with a seal.
  • the combustion chamber housing 6 contains a combustion chamber 8 and then to the combustion chamber 8, an expansion nozzle 13. Radially at the expansion nozzle 13 nozzles 7 are provided for the injection of spray additives.
  • Mouthpiece 4 is flat on the flat end face 12 of terminal 9 and gas and liquid-tight. Through a central bore 14 in mouthpiece 4, the needle-shaped injection nozzle 11 protrudes a small distance beyond an end face 19 of the mouthpiece 4 out into the combustion chamber 8. Coaxial with the channels 2 are provided in the mouthpiece 4 connecting holes 15 with a narrower cross-section. Channels 3 open into a chamber 16 between the outer circumference of the terminal 9 and mouthpiece 4. Holes 17 in mouthpiece 4 connect chamber 16 to the combustion chamber 8. The piece of the needle-shaped injection nozzle 11 projecting beyond the end face 19 of the mouthpiece 4 into the combustion chamber 8 is in FIG Operation preferably glowing hot, so that the passing kerosene is vaporized and gaseous flows into the combustion chamber 8.
  • the high speed flame spraying gun 10 may be mounted in a periphery similar to that of FIG DE 197 32 815.6 equivalent.
  • the revelation of DE 197 32 815.6 is incorporated in full in the present description.
  • the individual channels can be variably charged with different fuels.
  • Fig. 2 Corresponding features are indicated by the reference numerals Fig. 1 Mistake.
  • the end face 19 of the mouthpiece 4 has on concentric rings, the holes 17, the connection holes 15 and the central bore 14.
  • a low-temperature high-velocity flame spraying system is supplied at port 3 cooling water at an inflow pressure> 8 bar.
  • the cooling water passes through the channels 9, 21 via the radial bores 27 in the cooling water annulus 18, which is formed by the intermediate sleeve 19 and the outer wall of the expansion nozzle 23, - then flows through the annulus, the is formed by the intermediate sleeve 19 and the secondary chamber outer wall 16, to finally flow out via an outflow bore, which is connected to the port 47. Due to the above-described cooling water management all functional parts exposed to the operating temperature are optimally cooled by the combustion chamber 30 during operation.
  • oxidation gas (predominantly oxygen) is supplied to the connecting piece 1 via an upstream explosion protection device with integrated gas backflow protection at an inflow pressure> 5 bar and reaches via the distributor grooves 5 and an axial bore in the radial Sauerstoffverteilernute 11 of mixing block carrier 39. From here it passes through a plurality of axial channels in the annular space 35, and then in axial or focusing in the flow direction constricted Injektormischbohronne 48, 49 to arrive.
  • the highly accelerated oxygen streams flow through the filled with hydrogen as a fuel gas Injektorringkanal 34 which is fed via the connection 44 with upstream circuit breaker with integrated Gas Wegströmtechnisch by means of the feed channels 36 in the Injektorringraum 34 at an inflow> 8 bar, then at the front of the concentric around the Central hole arranged Injektormischbohronne 48 and 49 in the combustion chamber space 30 as premixed fuel gas / oxygen mixture (mainly hydrogen / oxygen mixture) einunden.
  • premixed fuel gas / oxygen mixture mainly hydrogen / oxygen mixture
  • the fuel gas-oxygen mixture is selected with respect to the mixing ratio so that stoichiometric combustion takes place in the combustion chamber 30 when the mixture is ignited.
  • the mixture of oxygen and fuel gas flows from the constricted exit bore 29 and flows through the mixing chamber 28, then to flow through the central outlet bore X of the mixing chamber 28 and finally exit as fuel gas-oxygen mixture from the lavaldüsenförmig formed expansion nozzle bore 26 frontally, where the fuel gas Oxygen mixture is ignited electrically.
  • the inflow pressure for fuel gas and oxygen is selected so that the ignition speed of the fuel gas-oxygen mixture exiting the expansion nozzle orifice is higher than the outflow velocity of the fuel gas-oxygen mixture, so that the flame ignites back into the combustion chamber 30.
  • the inflow pressures for both operating gases, fuel gas and oxygen in a predetermined time interval of z. B. raised to the desired values for 5 sec, so that from the output hole 29, a hypersonic flame jet with a temperature> 2.600 ° C is formed, which flows through the mixing chamber 28 at very high speed to get into the expansion nozzle bore 26 via the central outflow bore X and exit at the front.
  • the spray powder feed into the "HyperKinetic gas jet" via two or more radially to the beam direction, arranged between the outflow hole X and the expansion nozzle bore Y injectors 22 in the expanded diameter expansion nozzle bore 26 in the HyperKinetic gas jet, in which the powder is heated to the gas jet temperature and with the kinetic energy of the hyper kinetic gas jet of> 1,000 m / sec. is shot onto the substrate surface to form a virtually oxide-free, dense sprayed layer with excellent interparticle adhesion and excellent bonding to the base material.
  • the central bore 45 can be used to measure the pressure in the combustion chamber 30.
  • the measurement data thus determined are digitally displayed via a process control (not shown) and u. a. used as parameter for process control.
  • a high-speed, conventional kerosene-fueled flame-spraying system for upgrading to the low-temperature, high-velocity flame-spraying system, has opposed non-combustible gas injectors A1, which are mountable with an insert 2 to an end cross-section 37 of the known high-speed flame-spraying system.
  • the use 2 forms after a passage, a mixing chamber X to an expansion nozzle 5 with an injection system B2 for Pulverinjektoren. 4
  • the low-temperature high-speed flame spraying system Prior to commissioning, the low-temperature high-speed flame spraying system is supplied with cooling water at an inlet pressure> 5 bar at an inlet connection of approx. 16 - 20 ° C inlet temperature.
  • Combustion chamber 36 and flange nut 13 form a cooling water annulus.
  • the cooling water passes through channels between a water jacket 1 and an intermediate sleeve 3 to the outlet mouth of the expansion nozzle 5, - then flows through a plurality of radial bores in the intermediate sleeve 3 and cools the wall of the expansion nozzle 5, the wall of the cylindrical mixing chamber X with the injectors A1 for non-combustible, cold gas.
  • the cooling water cools the outer wall 36 of the combustion chamber and an oxygen-kerosene mixture block 17 to finally exit via channels from the connecting piece 34 via a hose line to an external cooling system (not shown). Due to the cooling water guide described above, the cooling water heats up to over 60 ° C. Combustion chamber 36 is optimally cooled during operation. In the external cooling system of the circuit, the cooling water is cooled to 16 - 20 ° C before it is fed back into the connecting piece 33. After the cooling system of the low-temperature high-speed flame-spraying system is activated, the kerosene-oxygen mixture is ignited with a special spark plug 49 protruding into the combustion chamber 36.
  • Oxygen is supplied at an inflow pressure> 8 bar via connecting pieces 27 and passes via concentric around the central bore of the nozzle carrier 20 arranged axial bores and radial-axial pressure equalization chambers for oxygen and kerosene via a plurality of axially or focusing arranged in the flow direction bores in the combustion chamber 36th ,
  • Kerosene is fed via the port 26 by means of a fuel pump with an inflow> 8 bar and passes via the radial-axial pressure compensation chamber of the nozzle carrier 20 via concentrically arranged axially around the central bore of the nozzle carrier 20 channels in at least four atomizer holes of the mixing block 17, which on a inner pitch concentrically focusing around the central bore 20 are arranged with special spark plug 49 and open into the combustion chamber 36.
  • the finely atomized kerosene is mixed with the oxygen and ignited.
  • the resulting during the combustion of the kerosene oxygen mixture high-speed flame flows through the central outlet bore of the combustion chamber 36 and the mixing chamber X with at least 2 injectors A1 for non-combustible gas and then enters the area of the injection system B2 for Pulverinjektoren 4 of the injector-shaped, water-cooled expansion nozzle 5, where the flame escapes from the front.
  • the respective inflow pressures for the kerosene and the oxygen are raised to the setpoint values greater than 8 bar and the mixing ratio is selected so that a stoichiometric combustion takes place in the combustion chamber 36 when the mixture is ignited.
  • the combustion chamber pressure increases to values greater than 8 to greater than 20 bar.
  • the extreme gas expansion during combustion leads to a hypersonic gas jet, with a gas jet temperature of about 2 600 - 2 900 ° C from the narrowed central bore of the water-cooled combustion chamber 36, the mixing chamber X, and by the cylindrical or lavaldüsenförmig formed expansion nozzle bore. 5 emerges on the front side.
  • the injectors A1 can be used to introduce nonflammable gases with any desired inflow pressures and quantities into the cylindrical mixing chamber X into the high-energy Hypersonic flame jet in order to lower it to the desired temperature.
  • the cooled "HyperKinetic gas jet” now has the desired temperature and flows through the central outflow hole X, to then flow through the expansion nozzle bore 5 and the front side with high kinetic jet velocity of> 1,000 m / sec. withdraw.
  • the spray powder feed into the "HyperKinetic gas jet" via two or more radially to the beam direction between the outlet bore X and the expansion nozzle bore 5 arranged injectors "B2" in the expansion nozzle 5 in the "HyperKinetic gas jet” in which the powder is heated to the gas jet temperature and with the kinetic energy of the "HyperKinetic gas jet” of> 1,000 m / sec. is shot onto the substrate surface to form a super-dense, oxide-free, sprayed layer with excellent interparticle adhesion and excellent bonding to the base material.
  • An alternative high speed flame spray burner 50 has an outer screw sleeve 1, a socket 6 and a device housing 16.
  • a connecting piece 28 an oxidizing gas connection piece 26, a fuel connection piece 27 and cooling water connections 33, 34 are provided on a device connection flange 25.
  • Device connection flange 25 is screwed to the device housing 16.
  • the device housing 16 contains a mixing block 17 for mixing the operating media, namely liquid fuels with at least one oxidation gas, preferably oxygen.
  • a union nut 18 abuts axially against a radially outer stop of the mixing block 17 and holds the mixing block 17 against a mixing block carrier 20 which is arranged coaxially in the device connection flange 25 and in the device housing 16.
  • a distributor plate 22 is provided for the operating components.
  • annular channel 60 for liquid fuels, in particular kerosene, is arranged.
  • an expansion nozzle tube 5 Coaxial with the expansion chamber 36 is an expansion nozzle tube 5. Coaxially with expansion nozzle tube 5, in the outer screw sleeve 1, an intermediate sleeve 3 surrounds the expansion nozzle tube 5 as a delimitation between the cooling water supply and return. The outer screw sleeve 1 is screwed to an outer threaded sleeve 6.
  • a press nut 11 is screwed onto a thread in the device housing 16 and holds the Theschraubsteckhülse 6 in the device housing 16.
  • Theschraubsteckhülse 6 is located on a flange nut 13 for the attachment of the combustion chamber 36 at. Flange nut 13 is screwed into device housing 16.
  • nozzles 65, 66 are screwed, which open with their nozzle heads into the interior of the expansion nozzle tube 5. Through the nozzles 65, 66, the spray additives are injected into the Hypersonicflammstrahl in the expansion nozzle.
  • the for assembly The nozzles 65, 66 required adjustment between holisticschraubsteckhggse 6 and expansion nozzle tube 5 by means of cylindrical pins 38th
  • the alternative high speed flame spray burner 50 is ignited analogous to that for Fig. 3 described method, wherein the injection of demineralized water by injector 53 into the combustion chamber 36 is preferably carried out only after stable combustion state in the combustion chamber 36.
  • a plasma torch 6 includes a port 8 for introducing plasma gases, nitrogen, argon, etc., as well as plasma gas mixtures with hydrogen proportions.
  • a rear connection 5 with a cooling water inlet and power connection (minus pole) 7dewasser Weglauf- and power connector (plus pole) 9, flanged.
  • a tungsten cathode 3 and an anode 10 is arranged.
  • the cathode 10 has a flat end surface, with a central access bore for the plasma jet (plasma flame).
  • the transferring plasma arc is drawn. Due to the constriction of the anode 10, the plasma gas expanding through the highly heated tungsten cathode 3 is greatly accelerated and thereby obtains outflow velocities of the order of magnitude of up to> 800 m / sec.
  • the plasma torch is first supplied with cooling water at port 7 at an inflow pressure> 5 bar.
  • the cooling water passes through channels, radial bores and cooling water annuli of the plasma torch to the cooling water outlet port 9.
  • all operating temperature exposed functional parts are optimally cooled by the combustion chamber between the cathode 3 and anode 10 during operation.
  • a Hf current is first supplied to the terminal 7 and the terminal 9 and a pilot arc between the negatively poled tungsten cathode 3 and the positively poled copper anode 10 is ignited.
  • plasma gas is simultaneously passed through the terminal 8 from the cathode 3 and the anode 10 and thereby ionized, ie made electrically conductive, then the main current is turned on by the sequencer, which is connected between the negatively polarized cathode 3 and the positive polarity
  • Anode 10 flowing, ionized plasma gas from the cathode 3 to the anode 10 skips so that there is an extreme expansion of the plague gas and the high-energy arc burning between the cathode 3 and the anode 10 is blown out of the central bore, so that a bright-luminescent plasma flame is produced.
  • FIG. 1 schematically illustrated plasma torch for low-temperature high-speed flame spraying system.
  • An injection system with powder injectors 20 for pulverulent spray additives opens into a mixing chamber X, to which an expansion nozzle 29 connects with a central outlet bore of the auxiliary device 1
  • the plasma torch 6 is turned on by generating a high-energy arc between the tungsten cathode 3 and the copper anode 10, whereby the extremely expanding plasma gas flowing between the cathode 3 and the anode 10 is blown from the plasma burner 6 at the end and via the central bore 13 of the attachment flange 11 of the auxiliary device 1 passes into the cylindrical annular space of the mixing chamber 28.
  • the plasma jet temperature is at this time, depending on the set current and plasma gas used> 5000 degrees K.
  • the inner wall of the central bore 13 is made of a tungsten profile part 14, which is encapsulated for reasons of thermal engineering with copper and then machined to measure.
  • cooling water at an inlet temperature of about 18 ° C first flows through the cooling system of the plasma torch 6 and flows through cooling water channels 12 and the subsequent Radialkühlementringraum via radial / axial bores 25 in the front side arranged cooling water annulus 31, including the front of the fferver gleichdeckel 24 is formed with the central outlet bore 30.
  • the cooling water then flows at a temperature of max. 60 ° C via radially / axially disposed cooling water channels 26, radially arranged Verteilernute 27 and radially / axially disposed cooling water channels 31 back into the cooling water system of the plasma torch back to a Cooling block system, where it is cooled down again to about 18 degrees Celsius and the cooling circuit begins again.
  • the cooling system of the attachment can with access or exit ports for cooling water to the cooling water inlet 12 and cooling water return 32 (not shown) to an additional cooling circuit bez. Cooling block system can be connected.
  • the additional device 1 can also be designed so that it has its own, independent of the plasma torch to be adapted 6 cooling water circuit, with its own connections "cooling water inlet” 7 and “cooling water outlet” 9 and for the best possible cooling of the entire system 1, 6 by a separate cooling block system is powered.
  • At least one or more powder injectors 20 is sprayed radially, preferably in the grain size ranges -25 .mu.m + 10 .mu.m in the injector-like transition of the cylinder bore X in the expansion nozzle bore 29 in the lowered in its temperature, accelerated gas jet.
  • the spray powder particles are highly accelerated by the gas jet and heat during the residence time - ie from entering the gas jet to impinging on the substrate surface - to the preselected desired temperature, the gas jet temperature and speed is selected so that highly reactive spray additives, which is a very have high affinity for oxygen, do not oxidize during the coating process in the gas jet, ie do not absorb oxygen.
  • the spray powder particles located in the highly accelerated gas jet which is adapted to the process temperature, are shot onto the substrate surface with the high kinetic energy of the gas jet, where they plastically deform due to the extremely high impact energy, the impact energy of the spray particles being converted into heat energy, resulting in a very dense one , extremely low-pore, oxide-free sprayed layer leads with optimal connection to the base material.
  • FIG. 9 Corresponding features are indicated by the reference numerals FIG. 6 designated.
  • a so-called "Wills ring” formed C-shaped metal gasket 67 is provided between the housing of the combustion chamber 36 and an end face of the mixing block 17, for increased pressures and temperatures during operation of the high-speed flame spray burner 50th

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Luminescent Compositions (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The invention relates to a low-temperature high-velocity flame spraying system for thermally spraying powdery spray additional materials, comprising at least one connection (1, 3, 9, 26, 27, 44) for introducing operating media consisting of gaseous and liquid fuels into a combustion chamber (30, 36), and comprising an expansion nozzle (5, 26). An additional chamber serving as a mixing chamber (28, X) with an injection system (2, 43, A1) for noncombustible gases and/or for water is provided downstream from the combustion chamber (30, 36). This additional chamber variably lowers the temperature of the hypersonic flame jet exiting the combustion chamber and entering the mixing chamber. At least two injectors (22) for introducing powdery spray additional materials and the expansion nozzle (5, 26) are connected downstream from the mixing chamber (28, X).

Description

Die Erfindung betrifft Niedertemperatur Hochgeschwindigkeits-Flammspritzsysteme zum thermischen Spritzen von pulverförmigen Werkstoffen und eine Zusatzeinrichtung für Plasmabrenner zum Niedertemperatur-Hochgeschwindigkeits-Spritzen mit den Merkmalen der Oberbegriffe von Ansprüchen 1, 2 und 14.The invention relates to low-temperature high-speed flame spraying systems for the thermal spraying of powdered materials and an auxiliary device for plasma torches for low-temperature high-speed spraying with the features of the preambles of claims 1, 2 and 14.

Die DE 199 05 811 A1 offenbart eine HochgeschwindigkeitsFlammspritzkanone zum thermischen Spritzen von stab-, draht-, und/oder pulverförmigen Spritzzusatzwerkstoffen mit einem Anschluß zum Einleiten von Betriebsmedien aus gasförmigen und flüssigen Brennstoffen und einer Brennkammer mit Expansionsdüse. Edelgase, wie Argon, Helium u. a., als nicht brennbare Gase können der Brennkammer zugemischt werden und schaffen die Möglichkeit, die physikalischen und chemischen Eigenschaften des hochenergetischen Hypersonicgasstrahls exakt auf den jeweiligen Spritzzusatzwerkstoff optimal abzustimmen. Durch das Zumischen von Edelgasen werden gemäß diesem Stand der Technik beim Verarbeiten hochreaktiver Spritzzusatzwerkstoffe, wie z. B. Reinnickel oder Superlegierungen, wie sie z. B. beim Beschichten von Flugzeugtriebwerksteilen vorteilhaft zum Einsatz gebracht werden, in den Spritzschichten wesentlich geringere Sauerstoffanteile gefunden. Durch das Zumischen von Edelgasen in die Brennkammer gemäß diesem Stand der Technik darf die Temperatur der Betriebsmedien aus gasförmigen und flüssigen Brennstoffen allerdings nicht zu weit abgesenkt werden, da sonst die Flamme ausgeht und die Verbrennung in der Brennkammer zum Erliegen kommt, was einem Totalausfall der HochgeschwindigkeitsFlammspritzkanone entsprechen würde.The DE 199 05 811 A1 discloses a high speed flame spray gun for thermal spraying of rod, wire, and / or powder spray additives with a port for introducing gaseous and liquid fuel operating media and an expansion nozzle combustor. Noble gases, such as argon, helium, etc., as non-flammable gases can be added to the combustion chamber and create the opportunity to optimally match the physical and chemical properties of the high-energy hypersonic gas jet exactly to the respective spray additive material. By mixing noble gases according to this prior art when processing highly reactive spray additives, such. B. pure nickel or superalloys, as they are for. B. are advantageously used when coating aircraft engine parts, found in the spray coatings much lower levels of oxygen. By mixing noble gases into the combustion chamber according to this prior art, however, the temperature of the operating media from gaseous and liquid fuels must not be lowered too far, otherwise the flame goes out and the combustion in the combustion chamber comes to a standstill, causing a total failure of the high-speed flame gun would correspond.

Beim Plasmaspritzen wird ein elektrischer HochenergieLichtbogen zwischen einer thorierten Wolframelektrode (Wolframkathode) und einer sich einengenden Kupferdüse als Anode gezündet. Das in einem Zwischenraum zwischen Kathode und Anode strömende Gas, Stickstoff, Wasserstoff, Argon, Helium und deren Gemische, wird sehr hoch erhitzt, so dass einatomige Gase teilweise ionisieren, zweiatomige Gase dissozieren und teilweise ionisieren und einen Plasmastrahl bilden. Spritzzusatzwerkstoffe, die mittels eines Trägergases, wie z. B. Ar, N2 o. a in das hoch erhitzte Gasgemisch des Plasmastrahls radial aus einem oder mehreren der Anode nachgeschalteten Pulverinjektoren eingeblasen werden, haften im wesentlichen durch mechanische Verankerung auf dem durch Aufrauhen, z. B. Sandstrahlen, vorbereiteten Grundwerkstoff. Als Spritzeinrichtungen dienen vorzugsweise mit Stickstoff-Wasserstoff-Gemischen betriebene Gleichstrom-Plasmaspritzbrenner mit "nicht übertragenem Lichtbogen" bei einer Leistung von etwa 30 bis 100 kW. Verspritzt werden vorzugsweise metallische, keramische und metallkeramische Pulversorten, die mit dem bisher üblichen Flamm- oder Lichtbogenspritzen nicht oder nur bedingt verarbeitet werden konnten.In plasma spraying, a high energy electrical arc is ignited between a thoriated tungsten electrode (tungsten cathode) and a constricting copper nozzle as an anode. The gas, nitrogen, hydrogen, argon, helium and mixtures thereof flowing in a gap between the cathode and the anode are heated to a high degree, so that monatomic gases partially ionize, diatomic gases dissociate and partially ionize and form a plasma jet. Spray additives, by means of a carrier gas, such. B. Ar, N 2 o. A in the highly heated gas mixture of the plasma jet are injected radially from one or more of the anode downstream Pulverinjektoren adhere substantially by mechanical anchoring on by roughening, z. B. sandblasting, prepared base material. When spraying preferably operated with nitrogen-hydrogen mixtures DC plasma spray gun with "not transferred arc" at a power of about 30 to 100 kW. Preferably, metallic, ceramic and metal-ceramic powder types are sprayed which could not or only to a limited extent be processed with the usual flame or arc spraying.

Plasmagespritzte Schichten erweitern den wirtschaftlichen Einsatz des Metallspritzens und übertreffen in bezug auf ihre Homogenität die technischen und physikalischen Eigenschaften herkömmlicher Spritzschichten. Auf Grund der hohen Gasstrahltemperatur des aus der Stirnseite des Plasmabrenners austretenden Plasmastrahls, in die Spritzzusatzwerkstoffe eingebracht werden, tritt in Abhängigkeit von der chemischen Zusammensetzung der Kornform, der Partikelstruktur und -größe, eine mehr oder weniger starke Oberflächenoxidation der einzelnen schmelzplastischen- und oder schmelzflüssigen Spritzpartikel ein. Diese Oxide verursachen nach dem Auftreffen der Spritzpartikel auf die Substratoberfläche eine abgeminderte Interpartikelhaftung. Die chemischen-und physikalischen Eigenschaften einer Spritzschicht mit hohen Oxidgehalten sind für spezielle Anwendungen in der Beschichtungstechnik nicht geeignet.Plasma-sprayed coatings enhance the economical use of metal spraying and, in terms of their homogeneity, exceed the technical and physical properties of conventional sprayed coatings. Due to the high gas jet temperature of emerging from the end face of the plasma torch plasma jet are introduced into the spray additives, depending on the chemical composition of the grain shape, the particle structure and size, a more or less strong surface oxidation of the individual melt-plastic and or molten spray particles one. These oxides cause a reduced Interpartikelhaftung after the impact of the spray particles on the substrate surface. The chemical and physical properties of a high oxide spray coating are not suitable for specific applications in coating technology.

Die US 5 330 798 (Browning) offenbart ein Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem zum thermischen Spritzen von pulverförmigen Spritzzusatzwerkstoffen mit Anschlüssen zum Einleiten von Betriebsmedien aus gasförmigen und flüssigen Brennstoffen in eine Brennkammer. Bei der US 5 330 798 gelangen flüssiger und gasförmiger Brennstoff und Oxidationsgas jeweils gemeinsam in die Brennkammer. US 5 330 798 offenbart eine Expansionsdüse stromabwärts der Brennkammer und weiter stromabwärts eine zusätzliche Mischkammer mit einem Injektionssystem für nichtbrennbare Gase und/oder Wasser, mittels der die Temperatur des aus der Brennkammer in die Mischkammer einströmenden Supersonic-Flammstrahl durch Zumischen der nichtbrennbaren Gase und/oder Wasser einstellbar absenkbar ist. Expansion der Gase erfolgt in der Expansionsdüse nur bis vor das Injektionssystem für nichtbrennbare Gase und/oder Wasser. The US 5,330,798 (Browning) discloses a low temperature, high velocity flame spraying system for thermal spraying of powdered spray additives with ports for introducing gaseous and liquid fuel operating media into a combustion chamber. In the US 5,330,798 get liquid and gaseous fuel and oxidizing gas in each case together in the combustion chamber. US 5,330,798 discloses an expansion nozzle downstream of the combustion chamber and further downstream an additional mixing chamber having a non-combustible gas injection system and / or water by means of which the temperature of the supersonic flame jet entering the mixing chamber from the combustion chamber is adjustably lowered by admixing the non-combustible gases and / or water , Expansion of the gases takes place in the expansion nozzle only up to the injection system for non-combustible gases and / or water.

Aufgabe der Erfindung ist es, verbesserte und kostengünstige Niedertemperatur Hochgeschwindigkeits-Flammspritzsysteme zu schaffen, welche die Verarbeitung oxidationsempfindlicher, nicht duktiler Spritzzusatzwerkstoffe mit Schmelztemperaturen > 800° C aber auch mit niedrigen Schmelztemperaturen ermöglicht und gleichzeitig die Oxidation der Wirkstoffe während ihrer Flugphase praktisch verhindert. Eine weitere Aufgabe der Erfindung ist es, Niedertemperatur Hochgeschwindigkeits-Flammspritzsysteme zu schaffen, die den bisherigen Verwendern der HVOF-Technologie Nachrüstperspektiven bieten, um vorhandene, dem Stand der Technik entsprechende HVOF Brennersysteme oder Plasmapulverspritzbrenner aufzuwerten.The object of the invention is to provide improved and inexpensive low-temperature high-speed flame spraying systems which allows the processing of oxidation-sensitive, non-ductile spray additives with melting temperatures> 800 ° C but also with low melting temperatures and at the same time practically prevents the oxidation of the active ingredients during their flight phase. Another object of the invention is to provide low temperature, high speed flame spraying systems that provide retrofit perspectives to existing HVOF technology users for upgrading existing state of the art HVOF burner systems or plasma powder spray guns.

Die Lösung erfolgt erfindungsgemäß mit Niedertemperatur Hochgeschwindigkeits-Flammspritzsystemen mit den Merkmalen der Ansprüche 1 oder 2 oder einer Zusatzeinrichtung für Plasmabrenner zum Niedertemperatur-Hochgeschwindigkeits-Spritzen mit den Merkmalen von Anspruch 14. Vorteilhafte Ausgestaltungen sind mit den Unteransprüchen dargestellt.The solution according to the invention with low-temperature high-speed flame spraying systems having the features of claims 1 or 2 or an accessory for plasma torches for low-temperature high-speed spraying with the features of claim 14. Advantageous embodiments are illustrated by the dependent claims.

Gemäß der Erfindung wird der Brennkammer von bekannten HVOF Brennsystemen zum Betrieb mit gasförmigen und/oder flüssigen Brennstoffen in Verbindung mit Oxidationsgasen, zum Verspritzen von pulverförmigen Spritzzusatzwerkstoffen eine zusätzliche Mischkammer mit einem Injektionssystem mit nachgeschalteter Expansionsdüse hinzu gefügt, in die in steuerbaren Mengen und mit wählbarem Zuströmdruck, durch eine Vielzahl von radial und/oder axial in Strömungsrichtung angeordnete Zuführungskanäle des Injektionssystems nichtbrennbare Gase (z.B. Argon, Helium, Stickstoff u.a.) sowie Formiergase und/oder Wasser, mengen- und druckmäßig steuerbar so zuführbar sind, dass nach der Austrittsmündung der Brennkammer der mit einer Gastemperatur von ca. 1600 - 3,165° C in die Mischkammer einströmende Hypersonic Flammstrahl durch Zumischen der nichtbrennbaren Gase und/oder Wasser mit einer Temperatur, die der Entnahmetemperatur aus Stahlflaschen, Flaschenbündel oder Tankanlagen entspricht, auf gewünschte Gasstrahltemperaturen bis zum vollständigen Erlöschen der Flamme absenkbar ist. Spritzzusatzwerkstoffe mit einem Schmelzpunkt > 1200° C wie z.B. Cr-Stahl, CrNI-Stahl, sowie die Superlegierungen "M-CrAIY" u.a. können gemäß der Erfindung verarbeitet werden. Fluorhaltige Kunststoffe, wie z. B. Teflon, Halar, sowie neuartige Spritzzusatzwerkstoffe, wie metallische, karbidische und/oder oxidkeramische, pulverförmige Werkstoffe mit Anteilen von fluorhaltigen Kunststoffen von > 5% - > 30% Gewichtsanteilen, deren Verarbeitung eine genau einstellbare Temperatur von z. B. ca. 430° C voraussetzt, können gemäß der Erfindung auch verarbeitet werden, weil die Gasstrahltemperatur exakt auf die erforderliche Prozesstemperatur eingestellt werden kann, ohne dass es zu einem Zersetzungsprozess durch Überhitzen der fluorhaltigen Kunststoffe und dadurch zur Bildung von giftigen, neurosen Gasen kommen würde und die spezifischen, technisch physikalischen Eigenschaften der fluorhaltigen Kunststoffe dabei verloren gehen würden. Die Zugabe der nichtbrennbaren Gase und/oder Wasser in die Mischkammer beeinträchtigt die Verbrennung in der stromaufwärts gelegenen Brennkammer in keiner Weise, so daß die Verbrennung in der Brennkammer durch die Zumischung der nichtbrennbaren Gase in die Mischkammer nicht eingeschränkt ist. Der aus der Mischkammer in die nachgeschaltete, wahlweise zylindrisch, konisch und/oder lavaldüsenförmig ausgebildete Expansionsdüse einströmende, auf seine Solltemperatur abgesenkte Gasstrahl wird aus mindestens zwei, radialen oder mit eingestelltem Winkel zwischen ca. 45° bis 90° der Mischkammeraustrittsmündung nachgeordneten Injektoren mit dem entsprechenden pulverförmigen Spritzzusatzwerkstoff beschickt, der im Gasstrahl auf dessen Temperatur aufgeheizt, beschleunigt und mit der kinetischen Energie des Gasstrahles auf die Substratoberfläche aufgeschossen wird. Der erfindungsgemäße "Low Temperature Hyperkinetik" HVOF Brenner ist bezüglich Werkstoff, Funktionsbauteilen und in seiner Dimensionierung so ausgelegt, dass ausreichende Betriebssicherheit des Brennersystems bei ausreichend hohen Zuströmdrücken der gasförmigen-und/oder flüssigen Brennstoffe zur Absicherung gegen Rückströmung, wie nichtbrennbare Kühlgase zwischen ca. 5-> 20 bar, sowie, Primär- und Mischkammerdrücken in der gleichen Größenordnung gewährleistet ist.According to the invention, the combustion chamber of known HVOF combustion systems for operation with gaseous and / or liquid fuels in conjunction with oxidizing gases, for spraying powdery spray additives an additional mixing chamber with an injection system with downstream expansion nozzle added, in the controllable quantities and with selectable inflow pressure , Non-combustible gases (eg argon, helium, nitrogen, etc.) as well as forming gases and / or water, controllable in terms of quantity and pressure are supplied by a plurality of radially and / or axially arranged in the flow direction supply channels of the injection system so that after the exit orifice of the combustion chamber with a gas temperature of about 1600 - 3.165 ° C in the mixing chamber inflowing Hypersonic flame jet by mixing the non-combustible gases and / or water at a temperature corresponding to the discharge temperature of steel bottles, bottle bundles or tank facilities, on desired gas jet temperatures can be lowered until the flame is completely extinguished. Spray additives with a melting point> 1200 ° C such as Cr steel, CrNI steel, as well as the superalloys "M-CrAIY" and others can be processed according to the invention. Fluorine-containing plastics, such. B. Teflon, Halar, as well as novel spray additives, such as metallic, carbide and / or oxide ceramic, powdery materials with proportions of fluorine-containing plastics of> 5% -> 30% by weight, the processing of a precisely adjustable temperature of z. B. about 430 ° C, can also be processed according to the invention, because the gas jet temperature can be set exactly to the required process temperature, without causing a decomposition process by overheating of the fluorine-containing plastics and thereby the formation of toxic, neurotic gases would and would lose the specific, technical physical properties of fluorine-containing plastics thereby. The addition of the non-combustible gases and / or water into the mixing chamber does not affect the combustion in the upstream combustion chamber in any way, so that the combustion in the combustion chamber by the admixture of the non-combustible gases is not limited in the mixing chamber. The gas jet flowing from the mixing chamber into the downstream, optionally cylindrical, conical and / or laval nozzle-shaped expansion nozzle, lowered to its setpoint temperature, is composed of at least two injectors arranged at a radial angle or at an angle between about 45 ° to 90 ° of the mixing chamber outlet orifice powdery spray additive charged, which is heated in the gas jet to its temperature, accelerated and is shot with the kinetic energy of the gas jet to the substrate surface. The "low temperature hyperkinetics" HVOF burner according to the invention is designed in terms of material, functional components and in its dimensioning that sufficient reliability of the burner system at sufficiently high inflow of gaseous and / or liquid fuels to ensure against backflow, such as non-combustible cooling gases between about 5 -> 20 bar, as well as, primary and mixing chamber pressures of the same order of magnitude is guaranteed.

Mit der Erfindung wurde eine neue Technologie entwickelt, die es mit geringem Kostenaufwand ermöglicht, Spezialwerkstoffe, wie z. B. Tantal, Niob, Titan, Titanhydrid, Silber und Silberlegierungen, sowie die große Palette an Superlegierungen (M-CrAlY,s), Zinn, Lote auf Kupfer- und / oder Silberbasis, Aluminium, Aluminiumlegierungen, Zink und Zinklegierungen, Kupfer und Kupferlegierungen, Molybdän, oxidfrei zu verspritzen, so daß mit dem erfindungsgemäßen Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem, sauerstofffreie Schichten erzeugt werden können und ein neues HVOF Beschichtungsverfahren damit den Anwendern die Möglichkeit eröffnet, die vorgenannten Spritzzusatzwerkstoffe auf nichtmetallische Substratoberflächen, wie z. B. Keramik oder Kunststoffe aufzuspritzen, was mit den dem Stand der Technik entsprechenden HVOF Verfahren, auf Grund ihrer hohen auf die Substratoberflächen einwirkenden Gasstrahltemperatur > 2000° C nicht möglich ist.With the invention, a new technology has been developed, which allows it with low cost, special materials such. Tantalum, niobium, titanium, titanium hydride, silver and silver alloys, as well as the wide range of superalloys (M-CrAlY, s), tin, copper and / or silver based solders, aluminum, aluminum alloys, zinc and zinc alloys, copper and copper alloys To spray molybdenum, oxide-free, so that with the low temperature high-velocity flame spraying system according to the invention, oxygen-free layers can be produced and a new HVOF coating process thus allowing users the opportunity to apply the aforementioned spray additives on non-metallic substrate surfaces such. As ceramics or plastics aufzuspritzen, which is not possible with the state of the art HVOF method, due to their high acting on the substrate surfaces gas jet temperature> 2000 ° C.

Das erfindungsgemäße Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem ermöglicht die Nachrüstung, bzw. Modifikation von dem Stand der Technik entsprechenden HVOF Brennersystemen durch die Nachrüstung einer Mischkammer mit z.B. radialer Injektion und Zumischung von nichtbrennbaren Gasen und/oder Wasser zur beliebigen Absenkung der hohen Temperatur des Hypersonic Gasstrahls, der aus der Brennkammer (Primärkammer) die nachgerüstete Mischkammer durchströmt. Der Vorteil der erfindungsgemäßen Beschichtungstechnologie liegt u.a. darin begründet, daß praktisch alle pulverförmigen Spritzzusatzwerkstoffe im Schmelzpunktbereich 100 - 2000° C verarbeitet werden können.The low-temperature high-speed flame-spraying system according to the invention makes it possible to retrofit or modify state-of-the-art HVOF burner systems by retrofitting a mixing chamber with e.g. radial injection and admixture of non-combustible gases and / or water for arbitrary lowering of the high temperature of the Hypersonic gas jet, which flows through the retrofitted mixing chamber from the combustion chamber (primary chamber). The advantage of the coating technology of the invention is u.a. It is based on the fact that practically all pulverulent spray additives can be processed in the melting point range 100-2000 ° C.

Durch die steuerbare Wahl der Mischungsverhältnisse zwischen gasförmigen- bzw. flüssigen Brennstoffen mit Oxidationsgasen kann je nach Bedarf eine unter-, über-oder stöchiometrische Hypersonic HVOF Flamme eingestellt werden. Vorzugsweise ist das erfindungsgemäße Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem mit einem sogenannten "Mass Flow Meter" geregelt, so dass bei steigendem Gegendruck in der Brennkammer durch expandierende Kühlmittelzugaben nach der Austrittsöffnung der Brennkammer die Strömungsmenge der gasförmigen- bzw. flüssigen Brennstoffen mit Oxidationsgasen auf einem vorher eingestellten Wert gehalten werden kann. Störungen der Regelung werden vom Mass Flow Meter akustisch und/oder optisch angezeigt.The controllable choice of the mixing ratios between gaseous and liquid fuels with oxidizing gases can be used to set a hypersonic, over-stoichiometric or hypochromic HVOF flame as required become. Preferably, the low-temperature high-speed flame spraying system according to the invention is controlled by a so-called "mass flow meter", so that with increasing backpressure in the combustion chamber by expanding coolant additions to the outlet opening of the combustion chamber, the flow rate of the gaseous or liquid fuels with oxidizing gases to a previously set value can be held. Faults in the control are indicated acoustically and / or visually by the Mass Flow Meter.

Durch die Möglichkeit der Zumischung steuerbarer Mengen und bei steuerbar einstellbaren Zuströmdrücken und/oder - temperaturen von nicht brennbaren Gasen und/oder Wasser in den "HyperKinetic-Gasstrahl" kann dessen Strahltemperatur und dessen kinetische Energie den jeweiligen Erfordernissen flexibel angepasst werden. Durch die spezifische Ausbildung im Bereich der Pulverzuführung in das Gerätesystem, kann mit kostengünstigen, extremen Niederdruck Pulverfördersystemen gearbeitet werden.Due to the possibility of mixing controllable amounts and controllable adjustable inflow pressures and / or - temperatures of non-combustible gases and / or water in the "HyperKinetic gas jet" whose beam temperature and its kinetic energy can be flexibly adapted to the respective requirements. Due to the specific training in the field of powder feed into the device system, it is possible to work with cost-effective, extreme low-pressure powder conveying systems.

Gemäß einer alternativen Ausgestaltung der Erfindung ist ein HVOF Brennsystem mit mindestens einem Injektor vorgesehen, durch den vorzugsweise fein zerstäubtes entmineralisiertes Wasser separat in die Brennkammer geführt werden kann. In Abhängigkeit vom jeweiligen Wasserzuströmdruck und der davon abhängigen Einspritzmenge des fein zerstäubten entmineralisierten Wassers in die Brennkammer konnte die Verbrennungstemperatur bei getesteten Brennstoff-Sauerstoffkombinationen beliebig abgesenkt werden, ohne dass die Flamme in der Brennkammer erlosch. Bei einem Brennversuch mit einer Wasserstoff-Sauerstoff Mischung bei einem Mischverhältnis 1:2, z. B. stöchiometrische Verbrennung von 40 m3/h Wasserstoff + 20 m3/h Sauerstoff, in der Brennkammer des HVOF Brennsystems der alternativen Ausgestaltung der Erfindung wurde eine Flammtemperatur von ca. 2950° C erzielt und durch die Injektion von 50 dm3/h entmineralisiertes, fein zerstäubtes Wasser direkt in die Brennkammer während der Verbrennung konnte die Gasstrahltemperatur bis auf 300° C abgesenkt werden. Der aus der Brennkammer austretende, abgekühlte, geregelte Gasstrahl wird aus einem oder mehreren der Brennkammer nachgeschalteten Radial-Pulver-injektoren mit Spritzpulver beschickt und mit sehr hoher kinetischer Energie bei niedriger Spritzpartikeltempera-tur auf die zu beschichtende Oberfläche aufgeschossen, auf der sich eine optimal haftende, dichte, oxidfreie Spritzschicht ablagert aus Spezialpulver mit sehr hohem Reinheitsgrad aus Kupfer, Aluminium, Zink und CrNi-Stahl(316L) im Korngrößenbereich kleiner 25 µm und größer 5 µm. Vorzugsweise sind die Zuströmdrücke des fein zerstäubten Wassers zwischen ca. 3-> 15 bar. HVOF Standard TopGun Brenner mit zentrischer Pulverzuführung vom Heckanschlußflansch durch das Zentrum des Gasmischblockträgers, den Gasmischblock und die Brennkammer in die wassergekühlte Expansionsdüse und stirnseitig austretend wie beim Stand der Technik sind erfindungsgemäß durch einfache Umrüstung, nämlich durch den Austausch des zentralen Verschleißschutzinserts im Gasmischblock gegen einen Wasserinjektor mit mindestens einer oder mehreren divergierend angeordneten Einspritzdüsenbohrungen und Austausch der Brennkammer mit nach geschalteter Expansionsdüse, Zwischen- und Außenschraubhülse des Standes der Technik gegen die erfindungsgemäß entsprechenden Bauteile für Radialpulverinjektion mit einem oder mehreren Pulverinjektoren zum Niedertemperatur HVOF-Beschichtungssystem umrüstbar. Der Injektor des fein zerstäubten Wassers ist mit mindestens einer axial oder fokussierend im Mündungsbereich zur Brennkammer angeordneten, feinen Zerstäuberdüsenbohrung versehen.According to an alternative embodiment of the invention, a HVOF combustion system with at least one injector is provided, through which preferably finely atomized demineralized water can be separately conducted into the combustion chamber. Depending on the respective Wasserzuströmdruck and the dependent injection quantity of finely atomized demineralized water in the combustion chamber, the combustion temperature could be arbitrarily lowered at tested fuel-oxygen combinations, without the flame went out in the combustion chamber. In a burning test with a hydrogen-oxygen mixture at a mixing ratio 1: 2, z. B. stoichiometric combustion of 40 m 3 / h of hydrogen + 20 m 3 / h oxygen, in the combustion chamber of the HVOF combustion system of the alternative embodiment of the invention, a flame temperature of about 2950 ° C was achieved and by the injection of 50 dm 3 / h Demineralized, finely atomized water directly into the combustion chamber during combustion, the gas jet temperature could be lowered to 300 ° C. The exiting from the combustion chamber, cooled, regulated gas jet is fed from one or more of the combustion chamber downstream radial powder injectors with spray powder and shot with very high kinetic energy at low Spritzpartikeltempera-tur on the surface to be coated on which an optimally adhering , dense, oxide-free spray layer deposited from special powder with very high purity of copper, aluminum, zinc and stainless steel (316L) in Grain size range smaller than 25 microns and larger than 5 microns. Preferably, the inflow pressures of the finely atomized water are between about 3-> 15 bar. HVOF standard TopGun burner with centric powder feed from the Heckanschlußflansches through the center of Gasmischblockträgers, the gas mixing block and the combustion chamber in the water-cooled expansion nozzle and frontally emerging as in the prior art are according to the invention by simple conversion, namely by the replacement of the central Verschleißschutzinserts in gas mixing block against a water injector with at least one or more diverging arranged injector holes and replacement of the combustion chamber with downstream expansion nozzle, intermediate and Außenschraubhülse of the prior art against the invention corresponding components for radial powder injection with one or more Pulverinjektoren to low temperature HVOF coating system convertible. The injector of the finely atomized water is provided with at least one axially or focussing in the mouth region to the combustion chamber, arranged fine atomizer nozzle bore.

Gemäß einer weiteren Ausgestaltung der Erfindung ist zwischen Gehäuse der Brennkammer und vorzugsweise einer stirnseitigen Planfläche eines Mischblocks des HVOF Brennsystems mindestens eine Metalldichtung vorgesehen.According to a further embodiment of the invention, at least one metal seal is provided between the housing of the combustion chamber and preferably an end face of a mixing block of the HVOF fuel system.

Gemäß einer weiteren alternativen Ausgestaltung der Erfindung ist eine Zusatzeinrichtung stromabwärts, zum Niedertemperatur-Hochgeschwindigkeits-Spritzen von pulverförmigen Spritzzusatzwerkstoffen an einen dem Stand der Technik entsprechenden Plasmabrenner montierbar angeordnet, der eine Kammer, z. B. als Misch- oder Kühlkammer, ein Injektionssystem für Wasser oder nicht brennbare Gase in die Kammer, Injektoren für pulverförmige Spritzzusatzwerkstoffe und eine der Kammer nachgeschaltete Expansionsdüse aufweist. Die erfindungsgemäße Zusatzeinrichtung eignet sich flexibel und kostengünstig zum adaptieren an praktisch alle bekannten Plasmabrenner, mit radialer oder zentrischer Zufuhreinrichtung, zum thermischen Spritzen von pulverförmigen Werkstoffen. Der Zusammenbau der erfindungsgemäßen Zusatzeinrichtung mit bekannten Plasmabrennern ermöglicht das Verspritzen von hochreaktiven pulverförmigen Spritzzusatzwerkstoffen in einem "Hyperkinetik Niedertemparatur Hochgeschwindigkeits Plasmagasstrahl, und erzeugt dadurch Spritzschichtqualitäten mit extrem niedrigen Sauerstoffgehalten und exzellenter Anbindung (Haftung) an der Substratoberfläche, bei hervoragender Dichte der Spritzschicht und optimaler Interpartikelhaftung, wie dies bisher nur durch Vakuumplasmaspritzen möglich ist. Erfindungsgemäß ist die Plasmastrahltemperatur beliebig, regelbar absenkbar außerhalb des Plasmabrenners ohne Absenkung der voreingestellten Leistungsdaten und -werte, wie z. B. Zündspannung, Stromstärke und Plasmagasmengen bei gleichzeitiger beliebiger Erhöhung der Plasmagasstrahlgeschwindigkeit bis > 1000 m/sec. Die erfindungsgemäße Plasmabeschichtungstechnik ist anwendbar in der Luft- und Raumfahrtindustrie, zum Beschichten von Turbienenschaufeln von Gasturbinen, der Chemischen Industrie, Papierfabriken, in der Druckmaschinenindustrie u. a.. Die erfindungsgemäße Plasmabeschichtungstechnik ist anwendbar im Bereich der modernen Medizintechnik, z. B. für Beschichtungsapplikationen wie Implantaten aus Titan u. oder CrNi-Stahl u. a. Trägerwerkstoffe.According to a further alternative embodiment of the invention, an additional device downstream, for low-temperature high-speed spraying of powder spray additives to a plasma torch corresponding to the prior art is arranged to mount a chamber, for. B. as a mixing or cooling chamber, an injection system for water or non-combustible gases in the chamber, injectors for powdery spray additives and a chamber downstream expansion nozzle has. The additional device according to the invention is flexible and inexpensive to adapt to virtually all known plasma torch, with radial or centric feeding device, for thermal spraying of powdery materials. The assembly of the auxiliary device according to the invention with known plasma torches allows the spraying of highly reactive powdered spray additives in a "hyperkinetics low-temperature high-speed plasma jet, and thereby produces sprayed layer qualities with extremely low oxygen contents and excellent adhesion to the substrate surface, with excellent density of the sprayed layer and optimal Interparticle adhesion, as previously possible only by vacuum plasma spraying. According to the plasma jet temperature is arbitrary, adjustable lowered outside the plasma torch without lowering the preset performance data and values such. As ignition voltage, current and plasma gas quantities with simultaneous arbitrary increase in the plasma jet speed to> 1000 m / sec. The plasma coating technique of the present invention is applicable to the aerospace industry for coating turbine blades of gas turbines, the chemical industry, paper mills, in the printing press industry and others. The plasma coating technique according to the invention is applicable in the field of modern medical technology, for. B. for coating applications such as titanium implants u. or CrNi steel and other carrier materials.

Gemäß einer bevorzugten Ausgestaltung der weiteren alternativen Ausgestaltungder Erfindung ist an einen Plasmabrenner, der mit einer Kathode und einer Anode ausgestattet ist, eine Frontplatte mit zentraler Auslassbohrung vorgesehen, aus der der Hochenergie - Plasmastrahl austritt und in den zylindrichen Ringraum (Kühlraum) der erfindungsgemäßen Zusatzeinrichtung eimündet.According to a preferred embodiment of the further alternative embodiment of the invention, a plasma burner having a cathode and an anode is provided with a front plate with a central outlet bore, from which the high-energy plasma jet emerges and opens into the cylindrical annular space (cooling space) of the additional device according to the invention ,

Gemäß einer weiteren bevorzugten Ausgestaltung der weiteren alternativen Ausgestaltung der Erfindung ist mindestens ein auswechselbarer Injektor des Injektionssystem vorgesehen, durch den fein zerstäubtes, entmineralisiertes Wasser in die Kammer zuführbar ist.According to a further preferred embodiment of the further alternative embodiment of the invention, at least one replaceable injector of the injection system is provided, through which finely atomized, demineralized water can be fed into the chamber.

Gemäß einer weiteren bevorzugten Ausgestaltung der weiteren alternativen Ausgestaltung der Erfindung sind die Injektoren für pulverförmige Spritzzusatzwerkstoffe dem mindestens einen Injektor des Injektionssystem nach geschaltet.According to a further preferred embodiment of the further alternative embodiment of the invention, the injectors for powdery spray additives are connected downstream of the at least one injector of the injection system.

Gemäß einer weiteren bevorzugten Ausgestaltung der weiteren alternativen Ausgestaltung der Erfindung sind für den mindestens einen Injektor des Injektionssystem auswechselbare Einspritzdüsen verschiedener Düsenbohrungsdurchmesser vorgesehen.According to a further preferred embodiment of the further alternative embodiment of the invention, replaceable injection nozzles of different nozzle bore diameters are provided for the at least one injector of the injection system.

Gemäß einer weiteren bevorzugten Ausgestaltung der weiteren alternativen Ausgestaltung der Erfindung ist der Einmündungsbereich des Plasmastrahles, bei sehr hoch eingestellter Leistung, in die zylindrische Kammer (Mischkammer) mit einer Innenwandung versehen aus einem mit Kupfer umgossenen, maßgenau bearbeiteten Wolframprofilteil.According to a further preferred embodiment of the further alternative embodiment of the invention, the junction area of the plasma jet, provided at very high set power, in the cylindrical chamber (mixing chamber) with an inner wall of a copper-cast, dimensionally processed tungsten profile part.

Gemäß einer weiteren bevorzugten Ausgestaltung der weiteren alternativen Ausgestaltung der Erfindung sind an der Zusatzeinrichtung Zugangs- und Abgangsanschlüsse für Kühlwasser eines zusätzlichen, unabhängig vom Kühlkreislauf des Plasmabrenners, eigenen Kühlsystem vorgesehen.According to a further preferred embodiment of the further alternative embodiment of the invention access and outlet connections for cooling water of an additional, independent of the cooling circuit of the plasma torch own cooling system are provided on the additional device.

Die erfindungsgemäße Zugabe der nichtbrennbaren Gase, oder von fein zerstäubtem Wasser in die zylindrische Kammer oder Mischkammer der erfindungsgemäßen Zusatzeinrichtung, die an die Frontplatte des Plasmabrenner adaptiert ist, beeinträchtigt den Lichtbogen - Übergang von der negativ gepolten Kathode zur positiv gepolten Anode und die durch den Zwischenraum strömenden, ionisierten und expandierenden Plasmagase und den daraus entstehenden Plasmastrahl in keiner Weise.The inventive addition of the non-combustible gases, or of finely atomized water into the cylindrical chamber or mixing chamber of the auxiliary device according to the invention, which is adapted to the front panel of the plasma torch interferes with the arc transition from the negative poled cathode to the positive poled anode and through the gap flowing, ionized and expanding plasma gases and the resulting plasma jet in any way.

Der aus der zylindrischen Kammer oder Mischkammer in die nachgeschaltete, wahlweise zylindrisch, konisch und/oder lavaldüsenförmig ausgebildete Expansionsdüse einströmende, auf seine Solltemperatur abgesenkte Gasstrahl wird aus mindestens zwei, radialen oder mit eingestelltem Winkel zwischen ca. 45° bis 90° der Mischkammeraustittsmündung nachgeordneten Injektoren mit dem entsprechenden pulverförmigen Spritzzusatzwerkstoff beschickt, der im Gasstrahl auf dessen Temperatur aufgeheizt, beschleunigt und mit der kinetischen Energie des Gasstrahles auf die Substratoberfläche aufgeschossen wird. Die erfindungsgemäße Zusatzeinrichtung zum Adaptieren an Plasmabrenner ist bezüglich Werkstoff, Funktionsbauteilen und in ihrer Dimensionierung so ausgelegt, dass ausreichende Betriebssicherheit des Brennersystems, bei ausreichend hohen Zuströmdrücken der gasförmigen- und/oder flüssigen Kühlmedien, wie z. B. nichtbrennbare Kühlgase, oder fein zerstäubtes, entmineralisiertes Wasser zwischen ca. 5-> 20 bar gewährleistet ist.The gas jet flowing from the cylindrical chamber or mixing chamber into the downstream, optionally cylindrical, conical and / or laval nozzle-shaped expansion nozzle, lowered to its setpoint temperature, is composed of at least two injectors arranged radially or at an angle between approximately 45 ° and 90 ° of the mixing chamber orifice charged with the corresponding powdery spray additive, which is heated in the gas jet to its temperature, accelerated and shot with the kinetic energy of the gas jet to the substrate surface. The additional device according to the invention for adapting to plasma torches is designed in terms of material, functional components and in their dimensions so that sufficient reliability of the burner system, at sufficiently high inflow of gaseous and / or liquid cooling media, such. B. non-combustible cooling gases, or finely atomized, demineralized water between about 5-> 20 bar guaranteed.

Die erfindungsgemäße Zusatzeinrichtung für Plasmabrenner für Niedertemperatur Hochgeschwindigkeits-Flammspritzen ermöglicht die Nachrüstung, bzw. Modifikation von dem Stand der Technik entsprechenden Plasmabrennersystemen durch die Nachrüstung einer Zusatzeinrichtung mit einer Mischkammer mit z. B. radialer Injektion und Zumischung von Wasser und/oder nichtbrennbaren Gasen zur beliebigen Absenkung der hohen Temperatur des Plasma Gasstrahls, der aus der Zentralbohrung der Frontplatte des Plasmabrenners die nachgeschaltete, zylindrische Kammer (Mischkammer) der erfindungsgemäßen Zusatzeinrichtung durchströmt.The additional device according to the invention for plasma torches for low-temperature high-speed flame spraying allows the retrofitting, or modification of the prior art plasma torch systems by retrofitting an additional device with a mixing chamber with z. B. radial injection and admixture of water and / or non-combustible gases for arbitrary lowering of the high temperature of the plasma gas jet, which flows through the central bore of the front panel of the plasma burner, the downstream, cylindrical chamber (mixing chamber) of the auxiliary device according to the invention.

Der Vorteil der erfindungsgemäßen Beschichtungstechnologie liegt u.a. darin begründet, dass praktisch alle pulverförmigen Spritzzusatzwerkstoffe im Schmelzpunktbereich 200 - > 2000° C kostengünstig und flexibel verarbeitet werden können.The advantage of the coating technology of the invention is u.a. It is based on the fact that virtually all pulverulent spray additives in the melting point range 200 -> 2000 ° C can be processed inexpensively and flexibly.

Bevorzugte Ausführungsbeispiele der Erfindung werden anhand von Figuren nun näher beschrieben. Es zeigen:

- Fig. 1:
ein Hypersonic HVOF Brennersystem Typ: TopGun K" (Kerosin) des Standes der Technik und
- Fig. 2:
einen Querschnitt durch das Brennersystem von Fig. 1,
- Fig. 3:
ein Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem gemäß der Erfindung,
- Fig. 4:
ein weitere Ausgestaltung des Niedertemperatur Hochgeschwindigkeits-Flammspritzsystems gemäß der Erfindung,
- Fig. 5:
eine Ansicht des Heckflanschs des Niedertemperatur Hochgeschwindigkeits-Flammspritzsystems von Fig. 4,
- Fig. 6:
einen Querschnitt durch ein alternatives Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem gemäß der Erfindung,
- Fig. 7:
einen Querschnitt durch einen Gasmischblock des Injektors gemäß Fig. 6,
- Fig. 8:
eine Zusatzeinrichtung für einen Plasmabrenner zum "Niedertemperatur Hochgeschwindigkeits-Flammspritzen von pulverförmigen Spritzzusatzwerkstoffen" gemäß der Erfindung, und
- Fig. 9:
einen Ausschnitt eines alternativen Niedertemperatur Hochgeschwindigkeits-Flammspritzsystems gemäß Fig. 6 der Erfindung.
Preferred embodiments of the invention will now be described with reference to figures. Show it:
- Fig. 1 :
a Hypersonic HVOF burner system type: TopGun K "(kerosene) of the prior art and
- Fig. 2 :
a cross section through the burner system of Fig. 1 .
- Fig. 3 :
a low-temperature high-speed flame-spraying system according to the invention,
- Fig. 4 :
a further embodiment of the low-temperature high-speed flame spraying system according to the invention,
- Fig. 5 :
a view of the rear flange of the low-temperature high-speed flame spraying system of Fig. 4 .
- Fig. 6 :
a cross-section through an alternative low-temperature high-speed flame spraying system according to the invention,
- Fig. 7 :
a cross section through a gas mixing block of the injector according to Fig. 6 .
- Fig. 8 :
an accessory for a plasma torch for "low-temperature high-speed flame spraying of powder spray additives" according to the invention, and
- Fig. 9 :
a section of an alternative low-temperature high-speed flame spray system according to Fig. 6 the invention.

Fig. 1: Eine Hochgeschwindigkeitsflammspritzkanone 10 enthält einen Anschluß 9 zum Einleiten von Betriebsmedien aus gasförmigen und flüssigen Brennstoffen, die dem Anschluß 9 unter Hochdruck zugeführt werden. Durch einen Kanal 1 mit einer nadelförmigen Einspritzdüse 11 des Anschlusses 9 wird flüssiger Brennstoff, wie z. B. Kerosin, durch Kanäle 2 des Anschlusses 9 wird gasförmiger
Brennstoff, wie z. B. Wasserstoff, und durch Kanäle 3 des Anschlusses 9 wird Oxidationsgas, wie z. B. Luft oder Sauerstoff, geleitet.
Fig. 1 A high speed flame spray gun 10 includes a port 9 for introducing gaseous and liquid fuel operating media which are supplied to the port 9 under high pressure. Through a channel 1 with a needle-shaped injection nozzle 11 of the terminal 9 becomes liquid fuel, such as. As kerosene, through channels 2 of the terminal 9 is gaseous
Fuel, such as. As hydrogen, and through channels 3 of the terminal 9 is oxidizing gas, such as. As air or oxygen, passed.

Anschluß 9 ist am äußeren Umfang und an einer planen Endfläche 12 gas- und flüssigkeitsdicht in ein Mundstück 4 eingefaßt. An das Mundstück 4 ist mit einer Dichtung ein Brennkammergehäuse 6 angeflanscht. Das Brennkammergehäuse 6 enthält eine Brennkammer 8 und anschließend an die Brennkammer 8 eine Expansionsdüse 13. Radial an der Expansionsdüse 13 sind Düsen 7 für die Injektion von Spritzzusatzwerkstoffen vorgesehen.Terminal 9 is bordered on the outer periphery and on a flat end surface 12 gas and liquid-tight in a mouthpiece 4. At the mouthpiece 4, a combustion chamber housing 6 is flanged with a seal. The combustion chamber housing 6 contains a combustion chamber 8 and then to the combustion chamber 8, an expansion nozzle 13. Radially at the expansion nozzle 13 nozzles 7 are provided for the injection of spray additives.

Mundstück 4 liegt an der planen Endfläche 12 von Anschluß 9 plan und gas- und flüssigkeitsdicht an. Durch eine Zentralbohrung 14 in Mundstück 4 ragt die nadelförmige Einspritzdüse 11 ein kleines Stück über eine Stirnseite 19 des Mundstücks 4 hinaus in die Brennkammer 8. Koaxial zu den Kanälen 2 sind im Mundstück 4 Anschlußbohrungen 15 mit engerem Querschnitt enthalten. Kanäle 3 münden in eine Kammer 16 zwischen äußerem Umfang des Anschlusses 9 und Mundstück 4. Bohrungen 17 in Mundstück 4 verbinden Kammer 16 mit der Brennkammer 8. Das über die Stirnseite 19 des Mundstücks 4 in die Brennkammer 8 ragende Stück der nadelförmigen Einspritzdüse 11 ist im Betrieb vorzugsweise glühend heiß, so daß das hindurchtretende Kerosin verdampft wird und gasförmig in die Brennkammer 8 strömt.Mouthpiece 4 is flat on the flat end face 12 of terminal 9 and gas and liquid-tight. Through a central bore 14 in mouthpiece 4, the needle-shaped injection nozzle 11 protrudes a small distance beyond an end face 19 of the mouthpiece 4 out into the combustion chamber 8. Coaxial with the channels 2 are provided in the mouthpiece 4 connecting holes 15 with a narrower cross-section. Channels 3 open into a chamber 16 between the outer circumference of the terminal 9 and mouthpiece 4. Holes 17 in mouthpiece 4 connect chamber 16 to the combustion chamber 8. The piece of the needle-shaped injection nozzle 11 projecting beyond the end face 19 of the mouthpiece 4 into the combustion chamber 8 is in FIG Operation preferably glowing hot, so that the passing kerosene is vaporized and gaseous flows into the combustion chamber 8.

Die Hochgeschwindigkeitsflammspritzkanone 10 kann in eine Peripherie montiert sein, die der aus der DE 197 32 815.6 entspricht. Die Offenbarung der DE 197 32 815.6 wird vollinhaltlich in die vorliegende Beschreibung aufgenommen. Die einzelnen Kanäle können variabel mit unterschiedlichen Brennstoffen beaufschlagt sein.The high speed flame spraying gun 10 may be mounted in a periphery similar to that of FIG DE 197 32 815.6 equivalent. The revelation of DE 197 32 815.6 is incorporated in full in the present description. The individual channels can be variably charged with different fuels.

Fig. 2: Entsprechende Merkmale sind mit den Bezugszeichen aus Fig. 1 versehen. Die Stirnseite 19 des Mundstücks 4 weist auf konzentrischen Ringen die Bohrungen 17, die Anschlußbohrungen 15 und die Zentralbohrung 14 auf. Fig. 2 Corresponding features are indicated by the reference numerals Fig. 1 Mistake. The end face 19 of the mouthpiece 4 has on concentric rings, the holes 17, the connection holes 15 and the central bore 14.

Fig. 3: Vor Inbetriebnahme wird einem Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem am Anschluss 3 Kühlwasser bei einem Zuströmdruck > 8 bar zugeführt. Das Kühlwasser gelangt über die Kanäle 9, 21 über die Radialbohrungen 27 in den Kühlwasserringraum 18, der durch die Zwischenhülse 19 und die Außenwand der Expansionsdüse 23 gebildet wird, - strömt alsdann über den Ringraum, der durch die Zwischenhülse 19 und die Sekundärkammer Außenwand 16 gebildet wird, um letztendlich über eine Abströmbohrung, die mit dem Anschluss 47 verbunden ist, auszuströmen. Durch die voran beschriebene Kühlwasserführung werden alle der Betriebstemperatur ausgesetzten Funktionsteile um die Brennkammer 30 während des Betriebes optimal gekühlt. Fig. 3 : Before commissioning, a low-temperature high-velocity flame spraying system is supplied at port 3 cooling water at an inflow pressure> 8 bar. The cooling water passes through the channels 9, 21 via the radial bores 27 in the cooling water annulus 18, which is formed by the intermediate sleeve 19 and the outer wall of the expansion nozzle 23, - then flows through the annulus, the is formed by the intermediate sleeve 19 and the secondary chamber outer wall 16, to finally flow out via an outflow bore, which is connected to the port 47. Due to the above-described cooling water management all functional parts exposed to the operating temperature are optimally cooled by the combustion chamber 30 during operation.

Nachdem das Kühlsystem des Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem aktiviert ist, wird an den Anschlussstutzen 1 über eine vorgeschaltete Explosionsschutzsicherung mit integrierter Gas-Rückstromsicherung Oxidationsgas (vorwiegend Sauerstoff) bei einem Zuströmdruck > 5 bar (max. 40 bar) zugeführt und gelangt über die Verteilernute 5 und eine axiale Bohrung in die radiale Sauerstoffverteilernute 11 von Mischblockträger 39. Von hier aus gelangt es über eine Vielzahl von Axialkanälen in den Ringraum 35, um dann in axiale bzw. fokussierend in Strömungsrichtung angeordnete verengte Injektormischbohrungen 48, 49 zu gelangen. Die hoch beschleunigten Sauerstoffströme durchströmen den mit Wasserstoff als Brenngas gefüllten Injektorringkanal 34, der über den Anschluss 44 mit vorgeschaltetem Sicherungsautomat mit integrierter Gasrückströmsicherung mittels der Zuführungskanäle 36 in den Injektorringraum 34 bei einem Zuströmdruck > 8 bar eingespeist wird, um alsdann stirnseitig aus den konzentrisch um die Zentralbohrung angeordneten Injektormischbohrungen 48 und 49 in den Brennkammerraum 30 als vorgemischtes Brenngas-/Sauerstoffgemisch (vorwiegend Wasserstoff-/Sauerstoffgemisch) einzumünden.After the cooling system of the low-temperature high-velocity flame spraying system is activated, oxidation gas (predominantly oxygen) is supplied to the connecting piece 1 via an upstream explosion protection device with integrated gas backflow protection at an inflow pressure> 5 bar and reaches via the distributor grooves 5 and an axial bore in the radial Sauerstoffverteilernute 11 of mixing block carrier 39. From here it passes through a plurality of axial channels in the annular space 35, and then in axial or focusing in the flow direction constricted Injektormischbohrungen 48, 49 to arrive. The highly accelerated oxygen streams flow through the filled with hydrogen as a fuel gas Injektorringkanal 34 which is fed via the connection 44 with upstream circuit breaker with integrated Gasrückströmsicherung by means of the feed channels 36 in the Injektorringraum 34 at an inflow> 8 bar, then at the front of the concentric around the Central hole arranged Injektormischbohrungen 48 and 49 in the combustion chamber space 30 as premixed fuel gas / oxygen mixture (mainly hydrogen / oxygen mixture) einunden.

Das Brenngas-Sauerstoffgemisch wird bezüglich des Mischungsverhältnisses so gewählt, dass bei der Zündung des Gemisches eine stöchiometrische Verbrennung in der Brennkammer 30 stattfindet. Vor der Zündung strömt das Gemisch aus Sauerstoff und Brenngas aus der verengten Austrittsbohrung 29 und durchströmt die Mischkammer 28, um dann die zentrale Abgangsbohrung X der Mischkammer 28 zu durchströmen und schlußendlich als Brenngas-Sauerstoffgemisch aus der lavaldüsenförmig ausgebildeten Expansionsdüsenbohrung 26 stirnseitig auszutreten, wo das Brenngas-Sauerstoffgemisch elektrisch gezündet wird.The fuel gas-oxygen mixture is selected with respect to the mixing ratio so that stoichiometric combustion takes place in the combustion chamber 30 when the mixture is ignited. Before ignition, the mixture of oxygen and fuel gas flows from the constricted exit bore 29 and flows through the mixing chamber 28, then to flow through the central outlet bore X of the mixing chamber 28 and finally exit as fuel gas-oxygen mixture from the lavaldüsenförmig formed expansion nozzle bore 26 frontally, where the fuel gas Oxygen mixture is ignited electrically.

Bei dieser Operation wird der Zuströmdruck für Brenngas und Sauerstoff so gewählt, dass die Zündgeschwindigkeit des aus der Expansionsdüsenmündung austretenden Brenngas-Sauerstoffgemisches höher ist, als die Ausströmgeschwindigkeit des Brenngas-Sauerstoffgemisches so dass die Flamme in die Brennkammer 30 zurück zündet. Nun werden die Zuströmdrücke für beide Betriebsgase, Brenngas und Sauerstoff, in einem vorgegebenen Zeitintervall von z. B. 5 sec auf die Sollwerte hochgefahren, so dass aus der Ausgangsbohrung 29 ein Hypersonic Flammenstrahl mit einer Temperatur > 2.600° C entsteht, der mit sehr hoher Geschwindigkeit die Mischkammer 28 durchströmt, um über die zentrale Abgangsbohrung X in die Expansionsdüsenbohrung 26 zu gelangen und stirnseitig auszutreten.In this operation, the inflow pressure for fuel gas and oxygen is selected so that the ignition speed of the fuel gas-oxygen mixture exiting the expansion nozzle orifice is higher than the outflow velocity of the fuel gas-oxygen mixture, so that the flame ignites back into the combustion chamber 30. Well be the inflow pressures for both operating gases, fuel gas and oxygen, in a predetermined time interval of z. B. raised to the desired values for 5 sec, so that from the output hole 29, a hypersonic flame jet with a temperature> 2.600 ° C is formed, which flows through the mixing chamber 28 at very high speed to get into the expansion nozzle bore 26 via the central outflow bore X and exit at the front.

Dann werden über die Anschlüsse 2 und/oder 43 ein oder zwei verschiedene, nicht brennbare Gase und/oder Wasser mit einem Zuströmdruck > 10 bar eingespeist, die über entsprechende Bohrungen und Kanäle 14, 31, 51 gemischt oder auch ungemischt über die konzentrisch, teilweise fokussierend um die zentrale Austrittsbohrung 29 angeordneten Bohrungen 46, 47 in die Mischkammer 28 einmünden und den Hypersonic Flammenstrahl auf die gewünschte Temperatur von bis zu 100° C absenken.
Der abgekühlte "HyperKinetic-Gasstrahl" besitzt nun die gewünschte Temperatur und strömt durch die zentrale Abgangsbohrung X, um dann die Expansionsdüsenbohrung 26 zu durchströmen und stirnseitig mit sehr hoher kinetischer Strahlgeschwindigkeit von > 1.000 m/sec. auszutreten.
Then one or two different, non-flammable gases and / or water with an inflow> 10 bar are fed through the ports 2 and / or 43, which are mixed via corresponding bores and channels 14, 31, 51 or unmixed over the concentric, partially focussing around the central outlet bore 29 arranged bores 46, 47 open into the mixing chamber 28 and lower the Hypersonic flame jet to the desired temperature of up to 100 ° C.
The cooled "HyperKinetic gas jet" now has the desired temperature and flows through the central outflow hole X, to then flow through the expansion nozzle bore 26 and the front side with a very high kinetic jet velocity of> 1,000 m / sec. withdraw.

Die Spritzpulverzuführung in den "HyperKinetic-Gasstrahl" erfolgt über zwei oder mehrere radial zur Strahlrichtung, zwischen der Abgangsbohrung X und der Expansionsdüsenbohrung Y angeordnete Injektoren 22 in die im Durchmesser erweiterte Expansionsdüsenbohrung 26 in dem HyperKinetic-Gasstrahl, in dem das Pulver auf die Gasstrahltemperatur aufgeheizt und mit der kinetischen Energie des Hyper-Kinetic-Gasstrahls von > 1.000 m/sec. auf die Substratoberfläche aufgeschossen wird, um eine praktisch oxidfreie, dichte Spritzschicht mit hervorragender Interpartikelhaftung und exzellenter Anbindung an den Grundwerkstoff zu bilden.The spray powder feed into the "HyperKinetic gas jet" via two or more radially to the beam direction, arranged between the outflow hole X and the expansion nozzle bore Y injectors 22 in the expanded diameter expansion nozzle bore 26 in the HyperKinetic gas jet, in which the powder is heated to the gas jet temperature and with the kinetic energy of the hyper kinetic gas jet of> 1,000 m / sec. is shot onto the substrate surface to form a virtually oxide-free, dense sprayed layer with excellent interparticle adhesion and excellent bonding to the base material.

Die Zentralbohrung 45 kann zur Messung des Drucks in der Brennkammer 30 herangezogen werden. Die so ermittelten Messdaten werden über eine Prozesssteuerung (nicht dargestellt) digital angezeigt und u. a. als Parameter zur Prozesssteuerung herangezogen.The central bore 45 can be used to measure the pressure in the combustion chamber 30. The measurement data thus determined are digitally displayed via a process control (not shown) and u. a. used as parameter for process control.

Fig. 4, 5: Ein an sich bekanntes Hochgeschwindigkeits-Flammspritzsystem mit Kerosin als Brennstoff weist zur Aufrüstung zum Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem einander gegenüber liegende Injektoren A1 für nichtbrennbares Gas auf, die mit einem Einsatz 2 an einen Endquerschnitt 37 des bekannten Hochgeschwindigkeits-Flammspritzsystems montierbar sind. Der Einsatz 2 bildet nach einem Durchlass eine Mischkammer X zu einer Expansionsdüse 5 mit einem Injektionssystem B2 für Pulverinjektoren 4. Fig. 4 . 5 A high-speed, conventional kerosene-fueled flame-spraying system, for upgrading to the low-temperature, high-velocity flame-spraying system, has opposed non-combustible gas injectors A1, which are mountable with an insert 2 to an end cross-section 37 of the known high-speed flame-spraying system. The use 2 forms after a passage, a mixing chamber X to an expansion nozzle 5 with an injection system B2 for Pulverinjektoren. 4

Vor Inbetriebnahme wird dem Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem an einem Anschlussstutzen 33 Kühlwasser bei einem Zuströmdruck > 5 bar mit ca. 16 - 20° C Eingangstemperatur zugeführt. Brennkammer 36 und Flanschmutter 13 bilden einen Kühlwasserringraum. Das Kühlwasser gelangt über Kanäle zwischen einem Wassermantel 1 und einer Zwischenhülse 3 bis zur Austrittsmündung der Expansionsdüse 5, - strömt dann durch eine Vielzahl von Radialbohrungen in der Zwischenhülse 3 und kühlt die Wandung der Expansionsdüse 5, die Wandung der zylindrischen Mischkammer X mit den Injektoren A1 für nichtbrennbares, kaltes Gas. Beim Rückströmen kühlt das Kühlwasser die Außenwand 36 der Brennkammer und einen Sauerstoff-Kerosin-Gemischblock 17, um letztendlich über Kanäle aus dem Anschlussstutzen 34 auszuströmen über eine Schlauchleitung zu einem externen Kühlsystem (nicht dargestellt). Durch die voran beschriebene Kühlwasserführung erwärmt sich das Kühlwasser auf über 60° C. Brennkammer 36 wird während des Betriebes optimal gekühlt. Im externen Kühlsystem des Kreislaufs wird das Kühlwasser auf 16 - 20° C abgekühlt, bevor es wieder in den Anschlussstutzen 33 eingespeist wird. Nachdem das Kühlsystem des Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem aktiviert ist, wird das Kerosin-Sauerstoffgemisch mit einer in die Brennkammer 36 ragenden Spezial-Zündkerze 49 gezündet. Sauerstoff wird bei einem Zuströmdruck > 8 bar über Anschlussstutzen 27 zugeführt und gelangt über konzentrisch um die Zentralbohrung des Düsenträgers 20 angeordnete axiale Bohrungen und radial-axiale Druckausgleichskammern für Sauerstoff und Kerosin über eine Vielzahl von axial bzw. fokussierend in Strömungsrichtung angeordneten Bohrungen in die Brennkammer 36.Prior to commissioning, the low-temperature high-speed flame spraying system is supplied with cooling water at an inlet pressure> 5 bar at an inlet connection of approx. 16 - 20 ° C inlet temperature. Combustion chamber 36 and flange nut 13 form a cooling water annulus. The cooling water passes through channels between a water jacket 1 and an intermediate sleeve 3 to the outlet mouth of the expansion nozzle 5, - then flows through a plurality of radial bores in the intermediate sleeve 3 and cools the wall of the expansion nozzle 5, the wall of the cylindrical mixing chamber X with the injectors A1 for non-combustible, cold gas. During the return flow, the cooling water cools the outer wall 36 of the combustion chamber and an oxygen-kerosene mixture block 17 to finally exit via channels from the connecting piece 34 via a hose line to an external cooling system (not shown). Due to the cooling water guide described above, the cooling water heats up to over 60 ° C. Combustion chamber 36 is optimally cooled during operation. In the external cooling system of the circuit, the cooling water is cooled to 16 - 20 ° C before it is fed back into the connecting piece 33. After the cooling system of the low-temperature high-speed flame-spraying system is activated, the kerosene-oxygen mixture is ignited with a special spark plug 49 protruding into the combustion chamber 36. Oxygen is supplied at an inflow pressure> 8 bar via connecting pieces 27 and passes via concentric around the central bore of the nozzle carrier 20 arranged axial bores and radial-axial pressure equalization chambers for oxygen and kerosene via a plurality of axially or focusing arranged in the flow direction bores in the combustion chamber 36th ,

Über den Anschluss 26 wird Kerosin mittels einer Kraftstoffpumpe mit einem Zuströmdruck > 8 bar eingespeist und gelangt über die radial-axiale Druckausgleichskammer des Düsenträgers 20 über konzentrisch, axial um die Zentralbohrung des Düsenträgers 20 angeordnete Kanäle in mindestens vier Zerstäuberbohrungen des Mischblocks 17, die auf einem inneren Teilkreis konzentrisch fokussierend um die Zentralbohrung 20 mit Spezial-Zündkerze 49 angeordnet sind und in die Brennkammer 36 münden. In der Brennkammer 36 wird das fein zerstäubte Kerosin mit dem Sauerstoff gemischt und gezündet.Kerosene is fed via the port 26 by means of a fuel pump with an inflow> 8 bar and passes via the radial-axial pressure compensation chamber of the nozzle carrier 20 via concentrically arranged axially around the central bore of the nozzle carrier 20 channels in at least four atomizer holes of the mixing block 17, which on a inner pitch concentrically focusing around the central bore 20 are arranged with special spark plug 49 and open into the combustion chamber 36. In the combustion chamber 36, the finely atomized kerosene is mixed with the oxygen and ignited.

Die bei der Verbrennung des Kerosin- Sauerstoffgemisches entstehende Hochgeschwindigkeitsflamme durchströmt die zentrale Austrittsbohrung der Brennkammer 36 und die Mischkammer X mit mindestens 2 Injektoren A1 für nicht brennbares Gas und gelangt dann in den Bereich des Injektionssystems B2 für Pulverinjektoren 4 der injektorförmigen, wassergekühlten Expansionsdüse 5, wo die Flamme stirnseitig austritt.The resulting during the combustion of the kerosene oxygen mixture high-speed flame flows through the central outlet bore of the combustion chamber 36 and the mixing chamber X with at least 2 injectors A1 for non-combustible gas and then enters the area of the injection system B2 for Pulverinjektoren 4 of the injector-shaped, water-cooled expansion nozzle 5, where the flame escapes from the front.

Nach Zündung des Kerosin- Sauerstoffgemisches werden die jeweiligen Zuströmdrücke für das Kerosin und den Sauerstoff auf die Sollwerte größer 8 bar hochgefahren und das Mischungsverhältnis so gewählt, dass bei der Zündung des Gemisches eine stöchiometrische Verbrennung in der Brennkammer 36 stattfindet. Der Brennkammerdruck steigt dabei auf Werte größer 8 bis größer 20 bar an. Die extreme Gasexpansion bei der Verbrennung führt zu einem Hypersonic-Gasstrahl, der mit einer Gasstrahltemperatur von ca. 2 600 - 2 900° C aus der verengten Zentralbohrung der wassergekühlten Brennkammer 36, der Mischkammer X, und durch die zylindrisch- oder lavaldüsenförmig ausgebildete Expansionsdüsenbohrung 5 stirnseitig austritt.After ignition of the kerosene oxygen mixture, the respective inflow pressures for the kerosene and the oxygen are raised to the setpoint values greater than 8 bar and the mixing ratio is selected so that a stoichiometric combustion takes place in the combustion chamber 36 when the mixture is ignited. The combustion chamber pressure increases to values greater than 8 to greater than 20 bar. The extreme gas expansion during combustion leads to a hypersonic gas jet, with a gas jet temperature of about 2 600 - 2 900 ° C from the narrowed central bore of the water-cooled combustion chamber 36, the mixing chamber X, and by the cylindrical or lavaldüsenförmig formed expansion nozzle bore. 5 emerges on the front side.

Über die Injektoren A1 können nicht brennbare Gase mit beliebigen Zuströmdrücken und Mengen in die zylindrische Mischkammer X in den hochenergetischen Hypersonic Flammenstrahl eingebracht werden, um diesen auf die gewünschte Temperatur abzusenken.The injectors A1 can be used to introduce nonflammable gases with any desired inflow pressures and quantities into the cylindrical mixing chamber X into the high-energy Hypersonic flame jet in order to lower it to the desired temperature.

Der abgekühlte "HyperKinetic-Gasstrahl" besitzt nun die gewünschte Temperatur und strömt durch die zentrale Abgangsbohrung X, um dann die Expansionsdüsenbohrung 5 zu durchströmen und stirnseitig mit hohe kinetischer Strahlgeschwindigkeit von > 1.000 m/sec. auszutreten.The cooled "HyperKinetic gas jet" now has the desired temperature and flows through the central outflow hole X, to then flow through the expansion nozzle bore 5 and the front side with high kinetic jet velocity of> 1,000 m / sec. withdraw.

Die Spritzpulverzuführung in den "HyperKinetic-Gasstrahl" erfolgt über zwei oder mehrere radial zur Strahlrichtung zwischen der Abgangsbohrung X und der Expansionsdüsenbohrung 5 angeordnete Injektoren "B2" in die Expansionsdüse 5 in den "HyperKinetic-Gasstrahl", in dem das Pulver auf die Gasstrahltemperatur aufgeheizt und mit der kinetischen Energie des "HyperKinetic-Gasstrahls" von > 1.000 m/sec. auf die Substratoberfläche aufgeschossen wird, um eine superdichte oxidfreie, Spritzschicht mit hervorragender Interpartikelhaftung und exzellenter Anbindung an den Grundwerkstoff zu bilden.The spray powder feed into the "HyperKinetic gas jet" via two or more radially to the beam direction between the outlet bore X and the expansion nozzle bore 5 arranged injectors "B2" in the expansion nozzle 5 in the "HyperKinetic gas jet" in which the powder is heated to the gas jet temperature and with the kinetic energy of the "HyperKinetic gas jet" of> 1,000 m / sec. is shot onto the substrate surface to form a super-dense, oxide-free, sprayed layer with excellent interparticle adhesion and excellent bonding to the base material.

Fig. 6, 7: Entsprechende Merkmale sind mit den Bezugszeichen aus Fig. 4, 5 bezeichnet. Ein alternativer Hochgeschwindigkeitsflammspritzbrenner 50 weist eine Außenschraubhülse 1, eine Steckhülse 6 und ein Gerätegehäuse 16 auf. Im Gerätegehäuse 16 sind ein Anschlussstutzen 28, ein Oxidationsgasanschlussstutzen 26 ein Brennstoffanschlussstutzen 27 und Kühlwasseranschlüsse 33, 34 an einem Geräteanschlussflansch 25 vorgesehen. Geräteanschlussflansch 25 ist mit Gerätegehäuse 16 verschraubt. Fig. 6 . 7 Corresponding features are indicated by the reference numerals Fig. 4 . 5 designated. An alternative high speed flame spray burner 50 has an outer screw sleeve 1, a socket 6 and a device housing 16. In the device housing 16, a connecting piece 28, an oxidizing gas connection piece 26, a fuel connection piece 27 and cooling water connections 33, 34 are provided on a device connection flange 25. Device connection flange 25 is screwed to the device housing 16.

Im Gerätegehäuse 16 ist ein Mischblock 17 für die Mischung der Betriebsmedien, nämlich von flüssigen Brennstoffen mit mindestens einem Oxidationsgas, vorzugsweise Sauerstoff, enthalten. Eine Überwurfmutter 18 liegt axial an einem radial außen gelegenen Anschlag des Mischblocks 17 an und hält den Mischblock 17 gegen einen Mischblockträger 20, der koaxial im Geräteanschlussflansch 25 und im Gerätegehäuse 16 angeordnet ist. Zwischen Geräteanschlussflansch 25 und Gerätegehäuse 16 ist eine Verteilerplatte 22 für die Betriebskomponenten vorgesehen.The device housing 16 contains a mixing block 17 for mixing the operating media, namely liquid fuels with at least one oxidation gas, preferably oxygen. A union nut 18 abuts axially against a radially outer stop of the mixing block 17 and holds the mixing block 17 against a mixing block carrier 20 which is arranged coaxially in the device connection flange 25 and in the device housing 16. Between device connection flange 25 and device housing 16, a distributor plate 22 is provided for the operating components.

Vom Anschlussstutzen 28 führt koaxial durch den Mischblockträger 20 und Mischblock 17 anstelle von Verschleißschutzinsert 35 ein Injektor 53 für entmineralisiertes Wasser mit mindestens einer Düsenbohrung 52, die axial oder divergierend im Mündungsbereich zur Brennkammer 36 angeordnet ist. Mit Sauerstoffkanälen 58, 59 fluchtende achsial-radial gerichtete Mischdüsen 54, 55 münden in Brennkammer 36.From the connecting piece 28 leads coaxially through the mixing block carrier 20 and mixing block 17 instead of Verschleißschutzinsert 35 an injector 53 for demineralized water with at least one nozzle bore 52 which is arranged axially or divergently in the mouth region to the combustion chamber 36. With oxygen channels 58, 59 aligned axially-radially directed mixing nozzles 54, 55 open into the combustion chamber 36th

Zwischen Mischblock 17 und Mischblockträger 20 ist ein Ringkanal 60 für flüssige Brennstoffe, insbesondere Kerosin, angeordnet.Between mixing block 17 and mixing block carrier 20, an annular channel 60 for liquid fuels, in particular kerosene, is arranged.

An die Brennkammer 36 schließt koaxial ein Expansionsdüsenrohr 5 an. Koaxial zu Expansionsdüsenrohr 5 ummantelt in der Außenschraubhülse 1 eine Zwischensteckhülse 3 als Abgrenzung zwischen Kühlwasservor- und - rücklauf das Expansionsdüsenrohr 5. Außenschraubhülse 1 ist mit einer Außenschraubsteckhülse 6 verschraubt.Coaxial with the expansion chamber 36 is an expansion nozzle tube 5. Coaxially with expansion nozzle tube 5, in the outer screw sleeve 1, an intermediate sleeve 3 surrounds the expansion nozzle tube 5 as a delimitation between the cooling water supply and return. The outer screw sleeve 1 is screwed to an outer threaded sleeve 6.

Eine Pressmutter 11 ist auf ein Gewinde im Gerätegehäuse 16 geschraubt und hält die Außenschraubsteckhülse 6 im Gerätegehäuse 16. Außenschraubsteckhülse 6 liegt an einer Flanschmutter 13 für die Befestigung der Brennkammer 36 an. Flanschmutter 13 ist in Gerätegehäuse 16 verschraubt. In die Außenschraubsteckhülse 6 sind Düsen 65, 66 eingeschraubt, die mit ihren Düsenköpfen in das Innere des Expansionsdüsenrohrs 5 münden. Durch die Düsen 65, 66 werden die Spritzzusatzwerkstoffe in den Hypersonicflammstrahl in der Expansionsdüse eingedüst. Die zur Montage der Düsen 65, 66 erforderliche Justierung zwischen Außenschraubsteckhülse 6 und Expansionsdüsenrohr 5 erfolgt mittels Zylinderstiften 38.A press nut 11 is screwed onto a thread in the device housing 16 and holds the Außenschraubsteckhülse 6 in the device housing 16. Außenschraubsteckhülse 6 is located on a flange nut 13 for the attachment of the combustion chamber 36 at. Flange nut 13 is screwed into device housing 16. In the Außenschraubsteckhülse 6 nozzles 65, 66 are screwed, which open with their nozzle heads into the interior of the expansion nozzle tube 5. Through the nozzles 65, 66, the spray additives are injected into the Hypersonicflammstrahl in the expansion nozzle. The for assembly The nozzles 65, 66 required adjustment between Außenschraubsteckhülse 6 and expansion nozzle tube 5 by means of cylindrical pins 38th

Der alternative Hochgeschwindigkeitsflammspritzbrenner 50 wird gezündet analog dem für Fig. 3 beschriebenen Verfahren, wobei die Injektion von entmineralisiertem Wasser durch Injektor 53 in die Brennkammer 36 vorzugsweise erst nach stabilem Brennzustand in der Brennkammer 36 erfolgt.The alternative high speed flame spray burner 50 is ignited analogous to that for Fig. 3 described method, wherein the injection of demineralized water by injector 53 into the combustion chamber 36 is preferably carried out only after stable combustion state in the combustion chamber 36.

Fig. 8 : Ein Plasmabrenner 6 enthält einen Anschluss 8 zum Einleiten von Plasmagasen, Stickstoff, Argon u. a., sowie Plasmagasgemischen mit Wasserstoffanteilen. An ein Plasmabrennergehäuse 4 ist ein Heckanschluss 5 mit einen Kühlwassereingangs- und Stromanschluss (Minus Pol) 7 Kühlwasserrücklauf- und Stromanschluss (Plus Pol) 9, angeflanscht. Im Plasmabrennergehäuse 4 ist eine Wolframkathode 3 und eine Anode 10 angeordnet. Radial im Plasmabrennergehäuse 4 an der Anode 10 sind Pulvereinlassbohrungen für ein angeschlossenes Pulverzufuhranschlussrohr 2 mit Anschlussgewinde für Spritzzusatzwerkstoffe vorgesehen. Die Kathode 10 weist eine plane Endfläche auf, mit einer zentralen Ausrittsbohrung für den Plasmastrahl (Plasmaflamme). Zwischen der Kathode 3 und der Anode 10 wird der übertragende Plasmalichtbogen gezogen. Durch die Einengung der Anode 10 wird das durch die hocherhitzte Wolframkathode 3 sich ausdehnende Plasmagas stark beschleunigt und erhält dadurch Ausströmgeschwindigkeiten in der Größenordnung von bis > ca. 800 m/sek. Fig. 8 : A plasma torch 6 includes a port 8 for introducing plasma gases, nitrogen, argon, etc., as well as plasma gas mixtures with hydrogen proportions. To a plasma torch housing 4, a rear connection 5 with a cooling water inlet and power connection (minus pole) 7 Kühlwasserrücklauf- and power connector (plus pole) 9, flanged. In the plasma torch housing 4, a tungsten cathode 3 and an anode 10 is arranged. Radially in the plasma torch housing 4 at the anode 10 are provided powder inlet holes for a connected powder feed connection pipe 2 with connecting thread for spray additives. The cathode 10 has a flat end surface, with a central access bore for the plasma jet (plasma flame). Between the cathode 3 and the anode 10, the transferring plasma arc is drawn. Due to the constriction of the anode 10, the plasma gas expanding through the highly heated tungsten cathode 3 is greatly accelerated and thereby obtains outflow velocities of the order of magnitude of up to> 800 m / sec.

Bei der Inbetriebnahme wird dem Plasmabrenner zunächst am Anschluß 7 Kühlwasser bei einem Zuströmdruck > 5 bar zugeführt. Das Kühlwasser gelangt über Kanäle, Radialbohrungen und Kühlwasserringräume des Plasmabrenners zum Kühlwasserabgangsanschluss 9. Durch die beschriebene Kühlwasserführung werden alle der Betriebstemperatur ausgesetzten Funktionsteile um die Brennkammer zwischen Kathode 3 und Anode 10 während des Betriebes optimal gekühlt. Nachdem der Kühlwasserkreislauf aktiviert ist, wird am Anschluss 7 und dem Anschluss 9 zunächst ein Hf Strom zugeführt und ein Pilotlichtbogen zwischen der negativ gepolten Wolframkathode 3 und der positiv gepolten Kupferanode 10 gezündet. Während dieser Operation wird gleichzeitig vom Anschluß 8 aus Plasmagas zwischen der Kathode 3 und der Anode 10 durchgeleitet und dabei ionisiert, d. h. elektrisch leitend gemacht, dann wird der Hauptstrom durch die Folgesteuerung eingeschaltet, der über das zwischen der negativ gepolten Kathode 3 und der positiv gepolten Anode 10 strömende, ionisierte Plasmagas von der Kathode 3 zur Anode 10 überspringt, so dass es zu einer extremen Expansion des Plamagases kommt und der zwischen der Kathode 3 und Anode 10 brennende Hochenergielichtbogen aus der Zentralbohrung geblasen wird, so dass eine hellleuchtend Plasmaflamme entsteht.During commissioning, the plasma torch is first supplied with cooling water at port 7 at an inflow pressure> 5 bar. The cooling water passes through channels, radial bores and cooling water annuli of the plasma torch to the cooling water outlet port 9. By the described cooling water flow all operating temperature exposed functional parts are optimally cooled by the combustion chamber between the cathode 3 and anode 10 during operation. After the cooling water circuit is activated, a Hf current is first supplied to the terminal 7 and the terminal 9 and a pilot arc between the negatively poled tungsten cathode 3 and the positively poled copper anode 10 is ignited. During this operation, plasma gas is simultaneously passed through the terminal 8 from the cathode 3 and the anode 10 and thereby ionized, ie made electrically conductive, then the main current is turned on by the sequencer, which is connected between the negatively polarized cathode 3 and the positive polarity Anode 10 flowing, ionized plasma gas from the cathode 3 to the anode 10 skips so that there is an extreme expansion of the plague gas and the high-energy arc burning between the cathode 3 and the anode 10 is blown out of the central bore, so that a bright-luminescent plasma flame is produced.

An der planen Endfläche liegt plan, gas- und flüssigkeitsdicht montiert eine Zusatzeinrichtung 1 an zur Aufrüstung des in FIG 1 Abb. 1 schematisch dargestellten Plasmabrenners zum Niedertemperatur Hochgeschwindigkeits-Flammspritzsystem. Einander gegenüber liegende Injektoren 16 für fein zerstäubtes, entmineralisiertes Wasser münden in eine Kühlkammer 28 der Zusatzeinrichtung 1. Ein Injektionssystem mit Pulverinjektoren 20 für pulverförmige Spritzzusatzwerkstoffe mündet in eine Mischkammer X, an die eine Expansionsdüse 29 mit einer zentralen Austrittsbohrung der Zusatzeinrichtung 1 anschließtOn the flat end surface is plane, gas and liquid tight mounted an additional device 1 to upgrade the in FIG. 1 FIG. 1 schematically illustrated plasma torch for low-temperature high-speed flame spraying system. An injection system with powder injectors 20 for pulverulent spray additives opens into a mixing chamber X, to which an expansion nozzle 29 connects with a central outlet bore of the auxiliary device 1

Der Plasmabrenner 6 wird eingeschaltet, indem zwischen der Wolframkathode 3 und der Kupferanode 10 ein Hochenergielichtbogen erzeugt wird, wodurch das zwischen der Kathode 3 und Anode 10 strömende, extrem expandierende Plasmagas stirnseitig aus dem Plasmabrenner 6 geblasen und über die Zentralbohrung 13 des Anschlussflansches 11 der Zusatzeinrichtung 1 in den zylindrischen Ringraum der Mischkammer 28 gelangt. Die Plasmastrahltemperatur beträgt zu diesen Zeitpunkt, je nach eingestellter Stromstärke und verwendetem Plasmagas > 5000 Grad K.The plasma torch 6 is turned on by generating a high-energy arc between the tungsten cathode 3 and the copper anode 10, whereby the extremely expanding plasma gas flowing between the cathode 3 and the anode 10 is blown from the plasma burner 6 at the end and via the central bore 13 of the attachment flange 11 of the auxiliary device 1 passes into the cylindrical annular space of the mixing chamber 28. The plasma jet temperature is at this time, depending on the set current and plasma gas used> 5000 degrees K.

Beim Einmünden der Plasmaflamme in die Zusatzeinrichtung 1 über die Zentralbohrung 13 in den zylindrischen Ringraum der Mischkammer 28 wirkt sehr hohe Temperatur auf die betroffenen Baukomponenten. Die Innenwandung der Zentralbohrung 13 ist aus einem Wolframprofilteil 14 gefertigt, das aus wärmetechnischen Gründen mit Kupfer umgossen und alsdann auf Maß bearbeitet ist.When the plasma flame enters the auxiliary device 1 via the central bore 13 into the cylindrical annular space of the mixing chamber 28, a very high temperature acts on the structural components involved. The inner wall of the central bore 13 is made of a tungsten profile part 14, which is encapsulated for reasons of thermal engineering with copper and then machined to measure.

Nach dem Einschalten eines Kühlsystems durchströmt Kühlwasser mit einer Eingangstemperatur von ca. 18° C zunächst das Kühlsystem des Plasmabrenners 6 und mündet über Kühlwasserkanäle 12 und dem sich anschließenden Radialkühlwasserringraum über Radial/ Axialbohrungen 25 in den stirnseitig angeordneten Kühlwasserringraum 31, der u. a. stirnseitig von dem Schraubverschlussdeckel 24 mit der zentralen Austrittsbohrung 30 gebildet wird. Das Kühlwasser strömt dann mit einer Temperatur von max. 60° C über radial/axial angeordnete Kühlwasserkanäle 26, radial angeordnete Verteilernute 27 und radial/axial angeordnete Kühlwasserkanäle 31 wieder in das Kühlwassersystem des Plasmabrenners zurück zu einem Kühlblocksystem, wo es wieder auf ca. 18 Grad Celsius abgekühlt wird und der Kühlkreislauf aufs Neue beginnt.After switching on a cooling system, cooling water at an inlet temperature of about 18 ° C first flows through the cooling system of the plasma torch 6 and flows through cooling water channels 12 and the subsequent Radialkühlwasserringraum via radial / axial bores 25 in the front side arranged cooling water annulus 31, including the front of the Schraubverschlussdeckel 24 is formed with the central outlet bore 30. The cooling water then flows at a temperature of max. 60 ° C via radially / axially disposed cooling water channels 26, radially arranged Verteilernute 27 and radially / axially disposed cooling water channels 31 back into the cooling water system of the plasma torch back to a Cooling block system, where it is cooled down again to about 18 degrees Celsius and the cooling circuit begins again.

Das Kühlsystem der Zusatzeinrichtung kann mit Zugangs- bzw. Abgangsanschlüssen für Kühlwasser an den Kühlwasserzugang 12 und Kühlwasserrücklauf 32 (nicht dargestellt) an einen zusätzlich Kühlkreislauf bez. Kühlblocksystem angeschlossen werden.The cooling system of the attachment can with access or exit ports for cooling water to the cooling water inlet 12 and cooling water return 32 (not shown) to an additional cooling circuit bez. Cooling block system can be connected.

Die Zusatzeinrichtung 1 kann aber auch so ausgelegt sein, daß sie einen eigenen, von dem zu adaptierenden Plasmabrenner 6 unabhängigen Kühlwasserkreislauf, mit eigenen Anschlüssen "Kühlwassereingang" 7 und "Kühlwasserausgang" 9 aufweist und für eine bestmögliche Kühlung des gesamten Systems 1, 6 durch ein separates Kühlblocksystem gespeist wird.The additional device 1 can also be designed so that it has its own, independent of the plasma torch to be adapted 6 cooling water circuit, with its own connections "cooling water inlet" 7 and "cooling water outlet" 9 and for the best possible cooling of the entire system 1, 6 by a separate cooling block system is powered.

Bereits während des Zündvorganges des Plasmabrenners 6 durch Zünden des Hf - Pilotlichtbogens, öffnen der Magnetventile für die Plasmagase und dem Einschalten des Hauptstromes werden über einen oder mehrere Kühlmedieninjektoren 16 wahlweise nichtbrennbare Gase, wie z. B. Ar. He. N2, gasförmig oder tiefgekühlt, flüssig, oder Gasgemische, sowie feinzerstäubtes, entmineralisiertes Wasser, über eine Vielzahl von Radialbohrungen 16 mit austauschbaren Einspritzdüsen 33 mit verschiedenen Düsenbohrungsdurchmesser, in den Ringraum 28 bei einem Zuströmdruck von 1 - > 20 Bar injektiert, so dass die Gasstrahltemperatur des axial in den zylindrischen Ringraum 28 einströmende Hochenergie Plasmastrahls durch die injektierten Kühlmedien abgesenkt wird.Already during the ignition process of the plasma torch 6 by igniting the Hf - pilot arc, open the solenoid valves for the plasma gas and switching on the main stream are either one or more Kühlmedieninjektoren 16 non-combustible gases such. Bar. He. N 2 , gaseous or frozen, liquid, or gas mixtures, and finely atomized, demineralized water, via a plurality of radial bores 16 with interchangeable injection nozzles 33 with different nozzle bore diameter, in the annular space 28 at an inlet pressure of 1 -> 20 bar injected, so that the Gas jet temperature of the axially flowing into the cylindrical annulus 28 high energy plasma jet is lowered by the injected cooling media.

Zu dem Zeitpunkt zu dem die Plasmaflamme Ihre vorgegebene volle Leistung erreicht hat, wird über mindestens einen Injektor 16 soviel Kühlmedium über die radial angeordneten Düsensysteme eingespeist, bis die gewünschte, vorgewählte Gasstahltemperatur, sowie Gasstrahlgeschwindigkeit erreicht ist. Durch die jeweiligen Mengen und die Art der eingespeisten Kühlmedien kommt es beim Auftreffen auf den Plasmagasstrahl zu einer extremen Volumenexpansion der eingespeisten Kühlmedien, was zu einer enormen Beschleunigung > 2000 m/sec. des in seiner Temperatur abgesenkten Plasmagasstrahles führt. Der in seiner Temperatur abgesenkte, hoch beschleunigte Plasmagasstrahl durchströmt zunächst den gesamten Ringraum (Mischraum) 28 und mündet in die im Durchmesser reduzierte zylindrische Übergangsbohrung "X", um dann die im Durchmesser erweiterte Expansionsdüsenbohrung 29 zu durchströmen, um schlussendlich stirnseitig aus der Zentralbohrung 30 des Schraubverschlussdeckels 24 auszutreten.By the time the plasma flame has reached its predetermined full capacity, 16 so much cooling medium is fed via the radially arranged nozzle systems via at least one injector until the desired preselected gas temperature and gas jet velocity are reached. Due to the respective amounts and the type of the injected cooling media, an extreme volume expansion of the supplied cooling media occurs when hitting the plasma jet, resulting in an enormous acceleration> 2000 m / sec. of the lowered in its temperature plasma jet leads. The lowered in its temperature, high-speed plasma jet first flows through the entire annular space (mixing chamber) 28 and flows into the reduced diameter cylindrical transition hole "X", and then to flow through the diameter-expanded expansion nozzle bore 29, to finally end face of the central bore 30 of the Exit screw cap 24.

Über mindestens einen oder mehrere Pulverinjektoren 20 wird radial Spritzpulver, vorzugsweise in den Korngrößenbereichen -25µm+10µm in den injektorartig ausgebildeten Übergang der Zylinderbohrung X in die Expansionsdüsenbohrung 29 in den in seiner Temperatur abgesenkten, beschleunigten Gasstrahl eingespeist. Die Spritzpulverpartikel werden von dem Gasstrahl hoch beschleunigt und erwärmen sich während der Verweilzeit - d. h. vom Eintreten in den Gasstrahl bis zum Auftreffen auf die Substratoberfläche - auf die vorgewählte Solltemperatur, wobei die Gasstrahltemperatur und -geschwindigkeit so vorgewählt wird, daß hochreaktive Spritzzusatzwerkstoffe, die eine sehr hohe Affinität zu Sauerstoff besitzen, während des Beschichtungsprozesses im Gasstrahl nicht oxidieren, d. h. keinen Sauerstoff aufnehmen. Die sich im auf Prozeßtemperatur abgestimmten, hochbeschleunigten Gasstrahl befindlichen Spritzpulverpartikel werden mit der hohen kinetischen Energie des Gasstrahle auf die Substratoberfläche geschossen, wo sie sich durch die extrem hohe Aufprallenergie plastisch verformen, wobei die Aufprallenergie der Spritzpartikel in Wärmeenergie umgewandelt wird, was zu einer sehr dichten, extrem porenarmen, oxidfreien Spritzschicht führt mit optimaler Anbindung an den Grundwerkstoff.Via at least one or more powder injectors 20 is sprayed radially, preferably in the grain size ranges -25 .mu.m + 10 .mu.m in the injector-like transition of the cylinder bore X in the expansion nozzle bore 29 in the lowered in its temperature, accelerated gas jet. The spray powder particles are highly accelerated by the gas jet and heat during the residence time - ie from entering the gas jet to impinging on the substrate surface - to the preselected desired temperature, the gas jet temperature and speed is selected so that highly reactive spray additives, which is a very have high affinity for oxygen, do not oxidize during the coating process in the gas jet, ie do not absorb oxygen. The spray powder particles located in the highly accelerated gas jet, which is adapted to the process temperature, are shot onto the substrate surface with the high kinetic energy of the gas jet, where they plastically deform due to the extremely high impact energy, the impact energy of the spray particles being converted into heat energy, resulting in a very dense one , extremely low-pore, oxide-free sprayed layer leads with optimal connection to the base material.

Fig. 9: Entsprechende Merkmale sind mit den Bezugszeichen aus Figur 6 bezeichnet. Zwischen dem Gehäuse der Brennkammer 36 und einer stirnseitigen Planfläche des Mischblocks 17 ist eine als sogenannter "Wills Ring" ausgebildete C-förmige Metalldichtung 67 vorgesehen für erhöhte Drücke und Temperaturen beim Betrieb des Hochgeschwindigkeitsflammspritzbrenners 50. Fig. 9 Corresponding features are indicated by the reference numerals FIG. 6 designated. Between the housing of the combustion chamber 36 and an end face of the mixing block 17, a so-called "Wills ring" formed C-shaped metal gasket 67 is provided for increased pressures and temperatures during operation of the high-speed flame spray burner 50th

Claims (20)

  1. Low-temperature high-velocity flame spraying system for thermal spraying of powder like spray-additives with at least one supply (1, 3, 9, 26, 27, 44) for introduction of operational media of gaseous and liquid combustibles into a combustion chamber (30, 36), said at least one supply being designed for separate supply of gaseous and liquid combustibles and oxidation gas into the combustion chamber (30, 36), and an expansion nozzle (5, 26),
    characterized in that an additional chamber as mixing chamber (28, X) is provided downstream of the combustion chamber (30, 36) with an injection system (2, 43, A1) for incombustible gases and/or water, the temperature of the hypersonic-flame spray flowing out of the combustion chamber and into the mixing chamber with a gas temperature of about 1600 - 3,165° C being adjustably lowerable by adding incombustible gases and/or water with a gas temperature corresponding to the exit temperature from steel bottles, bottle bundles or fuel tanks and in that at least two injectors (22) for the supply of powder like spray-additives and the expansion nozzle (5, 26) are installed downstream of the mixing chamber (28, X).
  2. Low-temperature high-velocity flame spraying system for thermal spraying of powder like spray-additives with the features of the preamble of claim 1, at least one injector (53) is provided allowing the supply of preferably fine dispersed water separatly into the combustion chamber (30, 36) and in that at least two injectors (22) for the supply of powder like spray-additives and the expansion nozzle (5, 26) are installed downstream of the combustion chamber (30, 36).
  3. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that the injection system (2, 43, A1) comprises at least one supply duct positioned radially and/or axially in flow direction allowing the supply of the incombustible gases and/or water with controlable supply pressure.
  4. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that incombustible gases are argon, helium, nitrogen as well as forming gas being controlable with respect to quantity and pressure.
  5. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that the gas spray from the mixing chamber (28, X) flowing into the downstream, optionally cylindrical, conical and/or like a laval nozzle shaped expansion nozzle (5, 26) is charged with the respective powder like spray-additives from at least two radial or with a preset angle between about 45° to 90° injectors downstream of the exit of the mixing chamber.
  6. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that the supply pressures of the gaseous and liquid combustibles and oxidation gas and of the incombustible gases are between 5 ⇒ 20 bar and premium- and mixing chamber pressures in the same range.
  7. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that injectors (A1) for incombustible gases facing each other are provided at a final cross section of a high-velocity flame spraying system being mountable with a fitting of the high-velocity flame spraying system comprising a mixing chamber (X) downstream of a passage towards an expansion nozzle (5) with an injection system B2 for powder injectors.
  8. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that the spray additives, e.g. Cr-steel, CrNI-steel and the super alloys "M-CrAIY" and fluor containing plastics, like for example teflon, Halar or metallic, carbidic and/or oxide ceramic, powderlike materials with shares of fluor containing plastics of > 5% - > 30% mass-%.
  9. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that a mass flow meter is provided regulating the flow quantity of the gaseous and liquid combustibles and oxidation gas to a predetermined value at rising counter pressure in the combustion chamber by adding expanding refrigerant downstream of the exit opening of the combustion chamber.
  10. Low-temperature high-velocity flame spraying system according to claim 9, characterized in that irregularities of the regulation are indicated acoustically and/or optically by the mass flow meter.
  11. Low-temperature high-velocity flame spraying system according to claim 2, characterized in that the supply pressures of the finely dispersed demineralised water are between about 3 ⇒ 15 bar.
  12. Low-temperature high-velocity flame spraying system according to claim 2, characterized in that the injector (53) is provided with at least one fine sprayer (52) positioned axially or focussing in the outlet of combustion chamber (36).
  13. Low-temperature high-velocity flame spraying system according to claim 1, characterized in that at least a metallic seal (67) is provided between the casing of the combustion chamber (30, 36) and preferably a frontal planar surface of a mixing block (17).
  14. Supplementary means (1) for low-temperature high-velocity flame spraying system of powder like spray-additives being mountable to a plasma-burner (6) characterized in that an additional chamber as mixing chamber (28) with an injection system (16) for incombustible gases and/or water is provided, the temperature of the hypersonic-flame spray flowing out of the plasma burner (6) and into the mixing chamber being adjustably lowerable by adding incombustible gases and/or water and in that at least two injectors (20) for the supply of powder like spray-additives and the expansion nozzle (29) are installed downstream of the mixing chamber (28).
  15. Supplementary means (1) according to claim 14,
    characterized in that at least one replaceable injector of the injector system (16) is provided allowing the supply of finely dispersed demineralised water into the chamber (28).
  16. Supplementary means (1) according to claim 14,
    characterized in that the injectors (20) for the supply of powder like spray-additives are downstream of the at least one injector of the injector system (16).
  17. Supplementary means (1) according to claim 14,
    characterized in that replaceable injection nozzles with varying nozzle openings are provided for the at least one injector of the injector system (16).
  18. Supplementary means (1) according to claim 14,
    characterized in that the chamber (28, X) is provided with an inner surface (14) of a copper layered Wolfram structural element made at measure.
  19. Supplementary means (1) according to claim 14,
    characterized in that supply and discharge are provided for cooling water of an additional cooling circuit.
  20. Supplementary means (1) according to claim 14,
    characterized in that the additional cooling circuit can be connected to the cooling circuit of the plasma burner.
EP03778244A 2002-11-19 2003-11-03 Low-temperature high-velocity flame spraying system Expired - Lifetime EP1603684B1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE10253794 2002-11-19
DE10253794A DE10253794B4 (en) 2002-11-19 2002-11-19 Low temperature high speed flame spraying system
DE10319608 2003-05-02
DE10319608 2003-05-02
DE10325432 2003-06-05
DE10325432 2003-06-05
PCT/DE2003/003641 WO2004045777A1 (en) 2002-11-19 2003-11-03 Low-temperature high-velocity flame spraying system

Publications (2)

Publication Number Publication Date
EP1603684A1 EP1603684A1 (en) 2005-12-14
EP1603684B1 true EP1603684B1 (en) 2009-03-11

Family

ID=32329441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03778244A Expired - Lifetime EP1603684B1 (en) 2002-11-19 2003-11-03 Low-temperature high-velocity flame spraying system

Country Status (5)

Country Link
EP (1) EP1603684B1 (en)
AT (1) ATE424932T1 (en)
AU (1) AU2003285268A1 (en)
DE (2) DE10394064D2 (en)
WO (1) WO2004045777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151629A (en) * 2011-04-11 2011-08-17 北京航空航天大学 Pulse combustion-driven hot fine water mist generation method and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046111A1 (en) * 2004-09-23 2006-04-06 Elringklinger Ag Process for coating flat gaskets
JP5098109B2 (en) * 2005-03-28 2012-12-12 独立行政法人物質・材料研究機構 Film formation method
JP5071706B2 (en) * 2006-10-11 2012-11-14 独立行政法人物質・材料研究機構 HVOF spraying equipment
CH702999A1 (en) * 2010-04-29 2011-10-31 Amt Ag A device for coating substrates by high-speed flame spraying.
EP3586954B1 (en) * 2018-06-22 2023-07-19 Molecular Plasma Group SA Improved method and apparatus for atmospheric pressure plasma jet coating deposition on a substrate
CN113957376A (en) * 2021-10-25 2022-01-21 中机凯博表面技术江苏有限公司 Inner hole dual-fuel supersonic flame spray gun and spraying method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234164A (en) * 1990-05-22 1993-08-10 Utp Schweibmaterial Gmbh & Co. Kg Device for high speed flame spraying of refractory wire of powder weld filler for the coating of surfaces
US5330798A (en) * 1992-12-09 1994-07-19 Browning Thermal Systems, Inc. Thermal spray method and apparatus for optimizing flame jet temperature
US5405085A (en) * 1993-01-21 1995-04-11 White; Randall R. Tuneable high velocity thermal spray gun
US5834066A (en) * 1996-07-17 1998-11-10 Huhne & Kunzli GmbH Oberflachentechnik Spraying material feeding means for flame spraying burner
DE19905811A1 (en) * 1999-02-12 2000-08-17 Erwin Huehne High speed flame spray gun for thermal spraying of rod, wire or powder-form filler materials, has connection constructed so that liquid and gaseous fuels and oxidation gas can be directed separately into combustion chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151629A (en) * 2011-04-11 2011-08-17 北京航空航天大学 Pulse combustion-driven hot fine water mist generation method and device
CN102151629B (en) * 2011-04-11 2013-05-01 北京航空航天大学 Pulse combustion-driven hot fine water mist generation method and device

Also Published As

Publication number Publication date
DE50311294D1 (en) 2009-04-23
EP1603684A1 (en) 2005-12-14
DE10394064D2 (en) 2005-10-06
AU2003285268A1 (en) 2004-06-15
ATE424932T1 (en) 2009-03-15
WO2004045777A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US6001426A (en) High velocity pulsed wire-arc spray
US4841114A (en) High-velocity controlled-temperature plasma spray method and apparatus
US4916273A (en) High-velocity controlled-temperature plasma spray method
EP0135826B1 (en) Apparatus for thermally spraying coating plasma
DD259586A5 (en) METHOD FOR THE PRODUCTION OF DEPRESSED RETRACTABLE COATINGS AND COATING MADE ACCORDING TO THE PROCESS
DE3929960A1 (en) NOZZLE FOR A PLASMA BURNER AND METHOD FOR INPUTING A POWDER INTO THE PLASMA FLAME OF A PLASMA BURNER
EP1603684B1 (en) Low-temperature high-velocity flame spraying system
DE10253794B4 (en) Low temperature high speed flame spraying system
DE102005038453B4 (en) Method and device for thermal spraying of suspensions
DE10357440B4 (en) Low-temperature high-speed flame spraying system for preparing surfaces and / or for thermal spraying of pulverulent spray additives
EP0458018B1 (en) Process and device for high speed flame spraying of refractory filler material in form of powder or wire for coating surfaces
KR102207933B1 (en) Suspension plasma spray device and method for controlling the same
EP0412355B1 (en) High velocity flame spray gun
DE10037276B4 (en) Additional equipment for powder and wire flame spraying equipment
DE102007033405A1 (en) Chilled high speed-flame spray unit for use in e.g. aeronautical-aerospace industry, has annular space supplied with cladding cool gas flow from non-combustible cool and atomizing gas, where cooling medium is provided for mixing with gas
DE4443811A1 (en) Universal high speed flame spraying burner
DE102005063145A1 (en) Burner head for air-cooled high velocity flame-spraying equipment, comprises spray nozzle adapter, mounting sleeve, gas-mixing spray nozzle and combustion chamber
DE4339345C2 (en) Process for applying a hard material layer by means of plasma spraying
EP2823892A2 (en) A high velocity oxy-liquid flame spray gun and a process for coating thereof
DE10160325A1 (en) Burner with lance has atomizer nozzle, oxidizer-outlet, fuel supply pipe, inflow pipe for primary oxidizer, and two supply ducts for secondary oxidizer
Fauchais et al. Wire arc spraying
Kadyrov et al. Interaction of particles with carrier gas in HVOF spraying systems
Bhadauria et al. Classification of Thermal Spray Techniques
DE4219992C3 (en) Thermal spraying method and injection and acceleration nozzle for the production of metal layers
DE112014004111T5 (en) Wire alloy for plasma arc coating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IBEDA SICHERHEITSGERAETE UND GASTECHNIK GMBH & CO.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HUEHNE, ERWIN DIETER

17Q First examination report despatched

Effective date: 20071107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50311294

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090824

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

26N No opposition filed

Effective date: 20091214

BERE Be: lapsed

Owner name: IBEDA SICHERHEITSGERATE UND GASTECHNIK G.M.B.H. &

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090612

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101202

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311294

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601