EP1588512B1 - Transmitter and method for transmitting messages on an optical fiber - Google Patents

Transmitter and method for transmitting messages on an optical fiber Download PDF

Info

Publication number
EP1588512B1
EP1588512B1 EP04703870A EP04703870A EP1588512B1 EP 1588512 B1 EP1588512 B1 EP 1588512B1 EP 04703870 A EP04703870 A EP 04703870A EP 04703870 A EP04703870 A EP 04703870A EP 1588512 B1 EP1588512 B1 EP 1588512B1
Authority
EP
European Patent Office
Prior art keywords
channels
filling
information carrier
light sources
optical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04703870A
Other languages
German (de)
French (fr)
Other versions
EP1588512A2 (en
Inventor
Cornelius Furst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ericsson AB
Original Assignee
Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson AB filed Critical Ericsson AB
Publication of EP1588512A2 publication Critical patent/EP1588512A2/en
Application granted granted Critical
Publication of EP1588512B1 publication Critical patent/EP1588512B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters

Definitions

  • the present invention relates to a transmitter and a method for transmitting messages on an optical fiber using a plurality of carrier frequencies.
  • No. 5,907,420 recommends choosing the wavelengths of the fill channels outside the frequency band used for the message bearer channels so as to obtain its transmission capacity unrestrictedly.
  • US-6,275,313 also contemplates the possibility of using multiple fill channels with different frequencies, and locating those frequencies within the band of message bearer channels.
  • Optical fibers in communications networks are generally operated at high optical powers to maximize the distance between two amplifiers.
  • An upper limit of the optical power that can be carried on a fiber is given by the onset of nonlinear optical effects that distort the spectrum and pulse shape of the optical signals transmitted thereon.
  • stimulated Raman scattering is considered to be an elastic scattering of light to lattice vibrations of the fiber material can be understood.
  • this effect causes a spectral shift of the optical signals to lower frequencies, so that in the course of propagation of a composite of a plurality of carrier frequencies multiplex in an optical fiber, the high-frequency components of the multiplex energy and gain the low-frequency energy.
  • This shift of energies is not compensated when the multiplex passes through an amplifier inserted into the fiber so that at the end of the fiber the signal-to-noise ratio of the high carrier frequencies is affected by Raman scattering from the high frequencies.
  • this fact can be accommodated by suitable processing of the message bearer channels at the receiver.
  • the signal-to-noise ratio of the individual message carrier channels abruptly changes, and interference is the result.
  • the object of the present invention is to minimize such disturbances resulting from jumps in the signal-to-noise ratio.
  • it is necessary to minimize the changes in Raman tilt resulting from the elimination or addition of message bearer channels on the optical fiber and the respective matching of the performance of the fill channels.
  • it is proposed use a plurality of fill channels and divide a change in the optical power of the fill channels required by a change in the power of the message bearer channels to the individual fill channels such that a minimum shift of the center of gravity of the common spectrum of message bearer channels and fill channels results.
  • p n the optical power
  • f n the frequency of the channel n indicates
  • P ⁇ n P n denotes the total optical power of the message bearer channels and the fill channels.
  • the frequencies of the fill channels may be selected outside of a frequency band used for the message bearer channels.
  • This has the advantage that the transmission capacity of the frequency band is not affected by the introduction of the filling channels.
  • a disadvantage is that the amplifiers used in a long-haul optical connection outside of such a carrier frequency band in Generally, they have a lower gain than within the frequency band, and this must be taken into account in controlling the energy of the fill channels.
  • the common spectrum of message bearer channels and fill channels are composed of evenly spaced lines belonging to either a message bearer channel or a fill channel; that is, fill channels are inserted into gaps in a frequency band otherwise uniformly populated with message carrier frequencies.
  • each filling channel In order to improve the reliability of the filling channels, two radiation sources are provided for each filling channel. These radiation sources are each preferably orthogonally polarized to obtain unpolarized light on the fill channel and to achieve the associated advantages described above.
  • the two radiation sources are operated in normal operation with the same output power.
  • a sensor for detecting the failure of the radiation source is assigned to each individual radiation source of the filling channels. If the failure of a single radiation source of a filling channel is detected by means of such a sensor, it is possible to double the output power of the remaining radiation source of the same filling channel, so as to keep the total optical power on the fiber constant while avoiding a center of gravity shift of the spectrum.
  • the method described above may be performed on the entirety of the message carriers and fill channels transmitted on a given optical fiber, or on only one group of channels selected from that entity.
  • the output section shown in Figure 1 is part of a network node of an optical communications network, in particular a telecommunications network.
  • a network node is connected via optical fibers to a plurality of other network nodes or to terminals.
  • the optical fibers are wavelength-multiplexed, that is, they carry a plurality of carrier waves of different frequencies, each of which is independently modulated with message signals. These carrier waves are also referred to as message carrier channels.
  • the network node may be divided into an input section, a switching matrix and an output section, the input section comprising an optical demultiplexer spectrally splitting a multiplexing signal arriving on an optical fiber into its individual channels and relaying the message bearer channels to the optical switching matrix.
  • the optical switching matrix has a first group of outputs, each leading to the output section of the network node, and a second group of outputs, to which optical-electrical signal converters are connected.
  • the optical switching matrix forwards a message carrier channel directly to a multiplexer of the output section when the frequency of the corresponding channel is available on the optical fiber connected to the multiplexer. If this is not the case, then the message carrier channel is forwarded via an output of the second group to an optical-electrical converter.
  • the electrical message signal supplied thereby is used to drive an electrical-to-optical converter which is connected to an input terminal of the switching matrix and which provides a carrier frequency still available on the output fiber.
  • the switching matrix passes this signal on to the multiplexer of the output section.
  • Figure 1 shows schematically the structure of such an output section according to a first embodiment of the invention.
  • Optical fibers 1-1 to 1-N are respectively connected to outputs of the switching matrix and each carry a message bearer channel to a coupler 2-1, ..., 2-N too.
  • the frequencies of the message bearer channels are all different. Typically, they are staggered at a distance of 100 GHz.
  • the couplers 2-1, ..., 2-N each have two outputs, a first, over which a small part of the power of the fed message carrier channel of a photodiode 11-1, ..., 11-N is supplied, and a second via which an optical multiplexer 5 receives the majority of the power of the message bearer channel.
  • the wavelength division multiplexer 5 has two inputs which are each connected via a polarization beam splitter 7 to two laser diodes 8.
  • the two each connected to a beam splitter 7 laser diodes 8 are tuned to the same frequency and polarized orthogonal to each other so that they can feed unpolarized light in the wavelength division multiplexer 5.
  • the frequencies of the pairs of laser diodes 8 are each in a gap of the staggering of the frequencies of the message carrier channels, at a distance of 100 GHz from the adjacent message carrier channels.
  • the laser diodes 8 each receive a non-modulated with a message signal supply current of drivers 9, the output level is controlled by the control circuit 4.
  • the output line of the laser diode 8 is dependent on the supplied supply current and can be a Achieve multiple the performance of a News Vehicle channel.
  • a first photodiode 10 is disposed at the point of connection of the optical fiber 6 to the output of the wavelength division multiplexer 5 to monitor the total optical power delivered by the latter, which is composed of the contributions of all the message carrier channels and the laser diodes.
  • the photodiode 10 is connected to an input of the control circuit 4.
  • the control circuit 4 is able to detect whether the total optical power of the transmitter deviates from a nominal value required to achieve a balanced amplification of the individual message carrier channels in amplifiers arranged along the optical fiber 6 , On the basis of the photodiodes 11-1 to 11-N, moreover, it is able to recognize which are the message carrier channels whose sudden removal or insertion is due to a change in the total optical power. On the basis of this information, the control circuit 4 regulates the output power of the laser diodes 8.
  • FIG. 4 shows an analog spectrum for the case that some of the message bearer channels, shown here as dotted lines 15, have failed.
  • the resulting loss of power in the high-frequency region of the spectrum causes a shift of the characteristic curve 14 of the Raman tilting to low frequencies, that is, the attenuation or increase of the individual message carrier channels changes, and there are channels in the full spectrum 3 are exaggerated, and experienced in the spectrum of Figure 4 a damping.
  • the control circuit 4 to keep constant the optical power of the filling laser diodes 8 to be added to the entire optical power on the fiber 6 to the two Grefrequenzen that the center of gravity of the spectrum, defined by the
  • control circuit 4 selects that distribution of power on the filling laser diodes, which is the displacement of the center of gravity f minimized.
  • the failed carrier channels are all in the high-frequency region of the spectrum, it is the high-frequency pair of fill laser diodes 8 that is driven by the control circuit 4 in order to supplement the power of the failed carrier channels.
  • the power transmitted on one of the fill channels on the optical fiber 6 may be a multiple of the power on one of the message bearer channels, especially when the fill channels have to compensate for their performance by the failure of multiple message bearer channels. Since the power transmitted on the fill channels is distributed to two orthogonal polarization states, this does not result in an excessive increase in four-wave mixing and other spurious non-linear effects.
  • the control circuit 4 registers this on the basis of the total optical power detected by the photodiode 10 and fed into the fiber 6. She responds by calling the Driver 9 of both filling laser diode pairs 8 drives more. This control is tracked so long until the target value of the optical output power is reached again. In this way, the output powers of the still intact filling laser diodes each increase by an equal factor until the desired power on the fiber 6 is reached again. A resulting shift of the spectral center of gravity of the multiplex is accepted for simplicity of control.
  • FIG. 2 shows a second embodiment of the output section of a network node of the invention, in which also the filling laser diodes 8 are equipped with photodiodes 16 for monitoring their output power.
  • the photodiode 10 can be omitted at the coupling point between the wavelength division multiplexer 5 and the optical fiber 6, if the other photodiodes 11-1, ..., 11-N, 16 work exactly enough to the control circuit 4 to calculate the total power allow the fiber 6 by adding its readings.
  • the advantage of this embodiment is that in case of failure of a filling laser diode 8, the control circuit 4 is able to identify the identity of the failed Filling laser diode 8 to determine and compensate for the associated loss of total power by the more driven with the failed paired filling laser diode 8 in order to double their output power. In this way, a shift of the spectral center of gravity of the multiplex can be avoided. Only when such a doubling exceeds the rated power of the respective filling laser diode, the control circuit 4 also increases the power of the other filling laser diodes.
  • N 38 message carrier channels two fill channels may be sufficient
  • the use of larger numbers of carrier frequencies results in the problem that the fill powers required to keep the overall optical power constant are so great that, despite the lack of polarization of the fill channels the four-wave mixing makes disturbing noticeable.
  • two of the additional 40 channels will be defined as filling channels .
  • the presence of a larger number of fill channels has the advantage that the additional fill channels compensate for the failure of not only the new but also the original message bearer channels can be used. This results in additional degrees of freedom in the compensation, that is, there may be a plurality of distributions of the filling power to the individual filling laser, which allow to compensate for the failure of a message carrier channel without shifting the center of gravity of the spectrum.
  • Figure 6 shows another spectrum of message bearer channels 12 and fill channels 13-1, 13-2, 13-3, 13-4 in an optical fiber.
  • the fill channels divide the message bearer channels into three groups 12-1, 12-2, 12-3 which occupy separate spectral ranges through the fill channels 13-2, 13-3. If one or more message carrier channels fail in one of the spectral regions 12-1 to 12-3, this can be compensated while maintaining the power and the spectral center of gravity of the relevant group by readjusting the power of the two filling channels immediately adjacent to the group concerned , Thus, compensating failures in each group independently of the other groups implies that the power and spectral center of gravity remain constant for the total number of channels transmitted on the fiber.
  • the performance of each between two groups of message carrier channels lying Medkanäle 13-2, 13-3 is the sum of the power required for the compensation of one of the two adjacent groups.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

A change in power of the message-carrier channels is compensated for by an opposite change in the optical power of the filling channels. The change in the optical power of filling channels is distributed so that there is minimal resultant displacement of center of gravity of the entire spectrum of message carrier channels and filling channels. An Independent claim is included for a transmitter for optical message transmission.

Description

Die vorliegende Erfindung betrifft einen Sender und ein Verfahren für die Übertragung von Nachrichten auf einer optischen Faser unter Verwendung von mehreren Trägerfrequenzen.The present invention relates to a transmitter and a method for transmitting messages on an optical fiber using a plurality of carrier frequencies.

Auf einer optischen Faser übertragene Nachrichtensignale unterliegen einer Dämpfung, die es bei langen Übertragungsentfernungen erforderlich macht, die Signale in regelmäßigen Abständen nachzuverstärken, um zu gewährleisten, dass sie einen Empfänger mit einer ausreichenden Leistung erreichen. In einem solchen Verstärker werden alle auf der Faser übertragenen Trägerfrequenzen gleichzeitig verstärkt. Hierfür ist es erforderlich, dass der Gain des Verstärkers für alle verwendeten Trägerfrequenzen möglichst exakt derselbe ist, so dass auch nach mehrmaliger Verstärkung das Verhältnis der Leistungen der verschiedenen Trägerwellen zueinander sich nicht wesentlich verschiebt. So lange die Leistungen der Trägerwellen konstant sind, ist dieses Problem durch geeignete Wahl des Frequenzbandes der Trägerwellen und des Typs des Verstärkers lösbar. Probleme ergeben sich jedoch, wenn die Leistung der einzelnen Trägerwellen abrupt variiert. Wenn auf einer einzelnen Faser eines verzweigten optischen Nachrichtennetzes eine oder mehrere Trägerfrequenzen plötzlich wegfallen, zum Beispiel aufgrund einer automatischen Schutzfunktion oder aufgrund einer technischen Störung an einer anderen Stelle des Netzwerkes, so führt dies zu einer Erhöhung der Verstärkung für die übriggebliebenen Trägerwellen. Diese Erhöhung potenziert sich, wenn die optische Faser mehrere Verstärker enthält. Extrem schnelle, starke Intensitätssprünge können die Folge sein, die zu Störungen bei der Auswertung der von den betroffenen Trägerwellen beförderten Nachrichtensignale am Empfänger führen können. Im schlimmsten Fall können diese Störungen dazu führen, dass eine automatische Schutzfunktion greift und die betreffenden Trägerwellen abschaltet. Auf diese Weise pflanzt sich die Störung in andere Bereiche des Netzwerks fort, und ein katastrophaler Zusammenbruch kann die Folge sein.Message signals transmitted on an optical fiber are subject to attenuation which, at long transmission distances, necessitates repeating the signals at regular intervals to ensure that they reach a receiver with sufficient power. In such an amplifier, all carrier frequencies transmitted on the fiber are simultaneously amplified. For this purpose, it is necessary that the gain of the amplifier for all carrier frequencies used is as exactly the same, so that even after repeated amplification, the ratio of the powers of the different carrier waves to each other does not shift significantly. As long as the powers of the carrier waves are constant, this problem can be solved by properly selecting the frequency band of the carrier waves and the type of amplifier. However, problems arise when the Power of the individual carrier waves varies abruptly. If, on a single fiber of a branched optical communications network, one or more carrier frequencies suddenly disappear, for example due to an automatic protection function or due to a technical disturbance elsewhere in the network, this will increase the gain for the surviving carrier waves. This increase potentiates when the optical fiber contains multiple amplifiers. Extremely fast, strong jumps in intensity can be the result, which can lead to disturbances in the evaluation of the conveyed by the carrier waves concerned message signals at the receiver. In the worst case, these disturbances can cause an automatic protection function to intervene and switch off the relevant carrier waves. In this way, the disorder propagates to other areas of the network and catastrophic breakdown may result.

Um diesem Problem zu begegnen, ist zum Beispiel in US 5 907 420 und US 6 275 313 vorgeschlagen worden, auf einer optischen Faser zusammen mit einer Mehrzahl von Nachrichten-Trägerkanälen mit unterschiedlichen Trägerfrequenzen eine Mehrzahl von Füllkanälen zu übertragen, die im Allgemeinen nicht zur Nachrichtenübertragung genutzt werden, sondern im Wesentlichen dazu dienen, Leistungsschwankungen zu puffern, die sich aus dem Ein- und Ausschalten einzelner Nachrichten-Trägerkanäle ergeben. Das heißt, wenn ein Nachrichten-Trägerkanal ausfällt, so wird dies erkannt, und die optische Leistung der Füllkanäle wird so nachgeregelt, dass die optische Gesamtleistung von Nachrichten-Trägerkanälen und Füllkanälen konstant bleibt. Abrupte Änderungen der Verstärkung der Nachrichten-Trägerkanäle werden so vermieden.To address this problem, it has been proposed, for example, in US 5,907,420 and US 6,275,313, to transmit on an optical fiber along with a plurality of message bearer channels having different carrier frequencies a plurality of fill channels which are generally not for message transmission but essentially serve to buffer power fluctuations resulting from turning on and off individual message bearer channels. That is, if a message bearer channel fails, then this is detected, and the optical performance of the filling channels is adjusted so that the overall optical power of message carrier channels and filling channels remains constant. Abrupt changes in the gain of the message bearer channels are thus avoided.

US 5 907 420 empfiehlt, die Wellenlängen der Füllkanäle außerhalb des für die Nachrichten-Trägerkanäle verwendeten Frequenzbandes zu wählen, um so dessen Übertragungskapazität uneingeschränkt zu erhalten.No. 5,907,420 recommends choosing the wavelengths of the fill channels outside the frequency band used for the message bearer channels so as to obtain its transmission capacity unrestrictedly.

US-6 275 313 zieht auch die Möglichkeit in Betracht, mehrere Füllkanäle mit unterschiedlichen Frequenzen zu nutzen, und diese Frequenzen innerhalb des Bandes der Nachrichten-Trägerkanäle anzusiedeln.US-6,275,313 also contemplates the possibility of using multiple fill channels with different frequencies, and locating those frequencies within the band of message bearer channels.

Ein mit der Verwendung der Füllkanäle verknüpftes Problem, das auch bereits in US 6 275 313 angesprochen wird, ist die so genannte Raman-Verkippung. Optische Fasern in Nachrichtennetzen werden im Allgemeinen mit hohen optischen Leistungen betrieben, um den Abstand zwischen zwei Verstärkern möglichst groß machen zu können. Eine obere Grenze der optischen Leistung, die auf einer Faser befördert werden kann, ist gegeben durch das Einsetzen nicht-linearer optischer Effekte, die das Spektrum und die Impulsform der darauf übertragenen optischen Signale verfälschen. Einer dieser Effekte ist die stimulierte Raman-Streuung, die als eine elastische Streuung des Lichtes an Gitterschwingungen des Fasermaterials aufgefasst werden kann. Überwiegend bewirkt dieser Effekt eine spektrale Verschiebung der optischen Signale zu niedrigeren Frequenzen hin, so dass im Laufe der Ausbreitung eines aus einer Mehrzahl von Trägerfrequenzen zusammengesetzten Multiplex in einer optischen Faser die hochfrequenten Anteile des Multiplex Energie verlieren und die niederfrequenten Energie gewinnen. Diese Verschiebung der Energien wird nicht ausgeglichen, wenn der Multiplex einen in die Faser eingefügten Verstärker durchläuft, so dass am Ende der Faser das Signal-Rausch-Verhältnis der hohen Trägerfrequenzen durch Ramanstreuung aus den hohen Frequenzen beeinträchtigt ist. Unter stationären Bedingungen kann dieser Tatsache durch eine geeignete Verarbeitung der Nachrichten-Trägerkanäle am Empfänger Rechnung getragen werden. Wenn es jedoch zu einem Ausfall einzelner Nachrichten-Trägerkanäle kommt und deren Leistung durch den Füllkanal ersetzt wird, so ändert sich abrupt das Signal-Rausch-Verhältnis der einzelnen Nachrichten-Trägerkanäle, und Empfangsstörungen sind die Folge.One problem associated with the use of the fill channels, which is already addressed in US 6,275,313, is the so-called Raman tilt. Optical fibers in communications networks are generally operated at high optical powers to maximize the distance between two amplifiers. An upper limit of the optical power that can be carried on a fiber is given by the onset of nonlinear optical effects that distort the spectrum and pulse shape of the optical signals transmitted thereon. One of these effects is stimulated Raman scattering, which is considered to be an elastic scattering of light to lattice vibrations of the fiber material can be understood. Predominantly, this effect causes a spectral shift of the optical signals to lower frequencies, so that in the course of propagation of a composite of a plurality of carrier frequencies multiplex in an optical fiber, the high-frequency components of the multiplex energy and gain the low-frequency energy. This shift of energies is not compensated when the multiplex passes through an amplifier inserted into the fiber so that at the end of the fiber the signal-to-noise ratio of the high carrier frequencies is affected by Raman scattering from the high frequencies. Under steady state conditions, this fact can be accommodated by suitable processing of the message bearer channels at the receiver. However, if there is a failure of individual message carrier channels and their performance is replaced by the filling channel, so the signal-to-noise ratio of the individual message carrier channels abruptly changes, and interference is the result.

Aufgabe der vorliegenden Erfindung ist, solche aus Sprüngen des Signal-Rausch-Verhältnisses resultierende Störungen zu minimieren. Zu diesem Zweck ist es erforderlich, die Änderungen der Raman-Verkippung zu minimieren, die sich aus dem Wegfall oder dem Hinzuschalten von Nachrichten-Trägerkanälen auf der optischen Faser und der jeweils entsprechenden Anpassung der Leistung der Füllkanäle ergeben. Zu diesem Zweck wird vorgeschlagen, eine Mehrzahl von Füllkanälen zu verwenden und eine Änderung der optischen Leistung der Füllkanäle, die durch eine Änderung der Leistung der Nachrichten-Trägerkanäle erforderlich wird, so auf die einzelnen Füllkanäle aufzuteilen, dass eine minimale Verschiebung des Schwerpunktes des gemeinsamen Spektrums von Nachrichten-Trägerkanälen und Füllkanälen resultiert.The object of the present invention is to minimize such disturbances resulting from jumps in the signal-to-noise ratio. For this purpose, it is necessary to minimize the changes in Raman tilt resulting from the elimination or addition of message bearer channels on the optical fiber and the respective matching of the performance of the fill channels. For this purpose, it is proposed use a plurality of fill channels and divide a change in the optical power of the fill channels required by a change in the power of the message bearer channels to the individual fill channels such that a minimum shift of the center of gravity of the common spectrum of message bearer channels and fill channels results.

Ein solcher spektraler Schwerpunkt kann zum Beispiel definiert sein als eine leistungsgewichtet gemittelte Frequenz f = n p n f n / P ,

Figure imgb0001
wobei der Index n sich über alle Trägerkanäle und Füllkanäle erstreckt, pn die optische Leistung und fn die Frequenz des Kanals n angibt und P = n P n
Figure imgb0002
die gesamte optische Leistung der Nachrichten-Trägerkanäle und der Füllkanäle bezeichnet. Völlig äquivalent kann der Schwerpunkt auch wellenlängenbezogen nach der Formel λ = n P n λ n / P
Figure imgb0003
berechnet werden, wobei λ n jeweils die Wellenlänge des Kanals n bezeichnet.For example, such a spectral centroid may be defined as a power-weighted average frequency f ~ = Σ n p n f n / P .
Figure imgb0001
wherein the index n over all the carrier channels and the filling channels extends, p n is the optical power and f n is the frequency of the channel n indicates and P = Σ n P n
Figure imgb0002
denotes the total optical power of the message bearer channels and the fill channels. Completely equivalent, the center of gravity can also be wavelength-based according to the formula λ ~ = Σ n P n λ n / P
Figure imgb0003
are calculated, with λ n, respectively, the wavelength of the channel n, respectively.

Einer ersten Ausgestaltung zufolge können die Frequenzen der Füllkanäle außerhalb eines für die Nachrichten-Trägerkanäle verwendeten Frequenzbandes gewählt werden. Dies hat den Vorteil, dass die Übertragungskapazität des Frequenzbandes durch die Einführung der Füllkanäle nicht beeinträchtigt wird. Nachteilig ist jedoch, dass die in einer optischen Langstreckenverbindung verwendeten Verstärker außerhalb eines solchen Trägerfrequenzbandes im Allgemeinen eine geringere Verstärkung aufweisen als innerhalb des Frequenzbandes, und dass dies bei der Steuerung der Energie der Füllkanäle berücksichtigt werden muss.According to a first embodiment, the frequencies of the fill channels may be selected outside of a frequency band used for the message bearer channels. This has the advantage that the transmission capacity of the frequency band is not affected by the introduction of the filling channels. A disadvantage, however, is that the amplifiers used in a long-haul optical connection outside of such a carrier frequency band in Generally, they have a lower gain than within the frequency band, and this must be taken into account in controlling the energy of the fill channels.

Von der Realisierung her ist es daher wesentlich einfacher, für einen Füllkanal eine Frequenz innerhalb des Trägerfrequenzbandes zu verwenden, so dass für die Füllkanäle die gleichen Verstärkungswerte gelten wie für die Nachrichten-Trägerkanäle. Vorzugsweise setzt sich in diesem Falle das gemeinsame Spektrum von Nachrichten-Trägerkanälen und Füllkanälen aus gleichmäßig beabstandeten Linien zusammen, die entweder zu einem Nachrichten-Trägerkanal oder einem Füllkanal gehören; das heißt, Füllkanäle werden in Lücken eines ansonsten gleichmäßig mit Nachrichten-Trägerfrequenzen bestückten Frequenzbandes eingefügt. Es können aber auch nur einzelne Linien aus einem Spektrum von gleichmäßig beabstandeten Linien als Nachrichtenträger- bzw. Füllkanäle ausgewählt werden.In terms of implementation, it is therefore much easier to use a frequency within the carrier frequency band for a filling channel, so that the same gain values apply to the filling channels as to the message carrier channels. Preferably, in this case, the common spectrum of message bearer channels and fill channels are composed of evenly spaced lines belonging to either a message bearer channel or a fill channel; that is, fill channels are inserted into gaps in a frequency band otherwise uniformly populated with message carrier frequencies. However, it is also possible to select only individual lines from a spectrum of uniformly spaced lines as message carrier or filling channels.

Da die Zahl der Füllkanäle im Allgemeinen deutlich geringer als die der Nachrichten-Trägerkanäle sein wird, kann zum Kompensieren des Ausfalls mehrerer Nachrichten-Trägerkanäle eine Leistung auf einem Füllkanal erforderlich sein, die ein Vielfaches der typischen Leistung eines Nachrichten-Trägerkanals entspricht. Derart hohe Leistungen in einem engen Frequenzbereich begünstigen das Auftreten von störenden nichtlinearen Effekten wie etwa Vierwellenmischung. Um die Vierwellenmischung zu begrenzen, ist es zweckmäßig, dass auf den Füllkanälen unpolarisiertes Licht übertragen wird, das heißt, auf jedem Füllkanal können sich zwei orthogonale Polarisationszustände ausbreiten, die nicht miteinander kohärent sind und daher nur jeweils für sich allein zu nichtlinearen Prozessen beitragen können.Since the number of fill channels will generally be significantly less than that of the message bearer channels, to compensate for the failure of multiple message bearer channels may require performance on a fill channel that is many times the typical performance of a message bearer channel. Such high powers in a narrow frequency range favor the occurrence of disturbing nonlinear effects such as four-wave mixing. To limit the four-wave mixing, it is expedient that unpolarized light is transmitted on the filling channels, that is to say that on each filling channel two orthogonal states of polarization can propagate, which are not coherent with one another and therefore can only contribute to non-linear processes alone.

Um die Ausfallsicherheit der Füllkanäle zu verbessern, sind für jeden Füllkanal jeweils zwei Strahlungsquellen vorgesehen. Diese Strahlungsquellen sind vorzugsweise jeweils orthogonal polarisiert, um auf dem Füllkanal unpolarisiertes Licht zu erhalten und die damit verbundenen oben beschriebenen Vorteile zu erreichen.In order to improve the reliability of the filling channels, two radiation sources are provided for each filling channel. These radiation sources are each preferably orthogonally polarized to obtain unpolarized light on the fill channel and to achieve the associated advantages described above.

Zweckmäßigerweise werden die zwei Strahlungsquellen im Normalbetrieb mit gleicher Ausgangsleistung betrieben.Conveniently, the two radiation sources are operated in normal operation with the same output power.

Falls eine dieser Strahlungsquellen ausfällt, kann man sich darauf beschränken, lediglich die optische Gesamtleistung auf der Faser konstant zu halten und eine gewisse Schwerpunktverschiebung in Kauf zu nehmen, die mit einer Steigerung der Leistung der anderen Füllkanäle verbunden ist. Vorzugsweise ist jedoch jeder einzelnen Strahlungsquelle der Füllkanäle ein Sensor zum Erfassen des Ausfalls der Strahlungsquelle zugeordnet. Wenn mit Hilfe eines solchen Sensors der Ausfall einer einzelnen Strahlungsquelle eines Füllkanals erfasst wird, ist es möglich, die Ausgangsleistung der übrig gebliebenen Strahlungsquelle des gleichen Füllkanals zu verdoppeln, um so die optische Gesamtleistung auf der Faser konstant zu halten und gleichzeitig eine Schwerpunktsverlagerung des Spektrums zu vermeiden.If one of these radiation sources fails, one can confine itself to just keeping the overall optical power constant on the fiber and accepting some center of gravity shift associated with an increase in the performance of the other fill channels. Preferably, however, a sensor for detecting the failure of the radiation source is assigned to each individual radiation source of the filling channels. If the failure of a single radiation source of a filling channel is detected by means of such a sensor, it is possible to double the output power of the remaining radiation source of the same filling channel, so as to keep the total optical power on the fiber constant while avoiding a center of gravity shift of the spectrum.

Das oben beschriebene Verfahren kann an der Gesamtheit der auf einer gegebenen optischen Faser übertragenen Nachrichtenträger und Füllkanäle durchgeführt werden oder nur an einer aus dieser Gesamtheit ausgewählten Gruppe von Kanälen.The method described above may be performed on the entirety of the message carriers and fill channels transmitted on a given optical fiber, or on only one group of channels selected from that entity.

Es kann auch zweckmäßig sein, die Gesamtheit der Kanäle in eine erste, eine zweite und evtl. weitere Gruppe von Nachrichtenträger- und Füllkanälen aufzuteilen und das oben beschriebene Verfahren an jeweils einer Gruppe von Nachrichtenträger- und Füllkanälen unabhängig von der anderen durchzuführen. Dies ist insbesondere dann vorteilhaft, wenn die Gruppen jeweils unterschiedliche Spektralbereiche abdecken.It may also be expedient to divide the entirety of the channels into a first, a second and possibly further group of message carrier and fill channels and to carry out the method described above on one group of message carrier and fill channels independently of the other. This is particularly advantageous when the groups each cover different spectral ranges.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezug auf die beigefügten Figuren. Es zeigen:

Figur 1
ein Blockdiagramm eines Ausgangsabschnitts eines optischen Netzknotens gemäß einer ersten Ausgestaltung der Erfindung;
Figur 2
ein Blockdiagramm eines Ausgangsabschnitts gemäß einer zweiten Ausgestaltung der Erfindung;
Figur 3
ein schematisches Spektrum eines von dem Ausgangsabschnitt in eine optische Faser eingespeisten Wellenlängenmultiplex-Signals;
Figur 4
ein entsprechendes Wellenlängenmultiplex-Signal im Falle einer Störung oder nur teilweiser Auslastung des Ausgangsabschnitts;
Figur 5
ein schematisches Spektrum des Ausgangsabschnitts in einer erweiterten Ausbaustufe; und
Figur 6
ein weiteres Spektrum zur Erläuterung einer Abwandlung des erfindungsgemäßen Verfahrens.
Further features and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the accompanying figures. Show it:
FIG. 1
a block diagram of an output section of an optical network node according to a first embodiment of the invention;
FIG. 2
a block diagram of an output section according to a second embodiment of the invention;
FIG. 3
a schematic spectrum of a wavelength division multiplexed signal fed from the output section into an optical fiber;
FIG. 4
a corresponding wavelength division multiplex signal in the event of a fault or only partial utilization of the output section;
FIG. 5
a schematic spectrum of the output section in an extended stage; and
FIG. 6
another spectrum for explaining a modification of the method according to the invention.

Der in Figur 1 gezeigte Ausgangsabschnitt ist Teil eines Netzknotens eines optischen Nachrichtenübertragungsnetzes, insbesondere eines Fernmeldenetzes. Ein solcher Netzknoten ist über optische Fasern mit einer Mehrzahl von anderen Netzknoten oder mit Endgeräten verbunden. Die optischen Fasern werden im Wellenlängenmultiplex betrieben, das heißt sie befördern eine Mehrzahl von Trägerwellen unterschiedlicher Frequenz, die jeweils unabhängig voneinander mit Nachrichtensignalen moduliert sind. Diese Trägerwellen werden auch als Nachrichten-Trägerkanäle bezeichnet. Der Netzknoten kann unterteilt werden in einen Eingangsabschnitt, eine Vermittlungsmatrix und einen Ausgangsabschnitt, wobei der Eingangsabschnitt einen optischen Demultiplexer umfasst, der ein auf einer optischen Faser eintreffendes Multiplexsignal in seine einzelnen Kanäle spektral zerlegt und die Nachrichten-Trägerkanäle an die optische Vermittlungsmatrix weitergibt. Die optische Vermittlungsmatrix hat eine erste Gruppe von Ausgängen, die jeweils zu dem Ausgangsabschnitt des Netzknotens führen, und eine zweite Gruppe von Ausgängen, an die optisch-elektrische Signalwandler angeschlossen sind. Die optische Vermittlungsmatrix leitet einen Nachrichten-Trägerkanal unmittelbar an einen Multiplexer des Ausgangsabschnitts weiter, wenn auf der an den Multiplexer angeschlossenen optischen Faser die Frequenz des entsprechenden Kanals verfügbar ist. Ist es nicht der Fall, so wird der Nachrichten-Trägerkanal über einen Ausgang der zweiten Gruppe an einen optisch-elektrischen Wandler weitergeleitet. Das von diesem gelieferte elektrische Nachrichtensignal wird benutzt, um einen elektrisch-optischen Wandler zu treiben, der mit einem Eingangsanschluss der Vermittlungsmatrix verbunden ist und der eine auf der Ausgangsfaser.noch verfügbare Trägerfrequenz liefert. Die Vermittlungsmatrix wiederum gibt dieses Signal weiter an den Multiplexer des Ausgangsabschnitts.The output section shown in Figure 1 is part of a network node of an optical communications network, in particular a telecommunications network. Such a network node is connected via optical fibers to a plurality of other network nodes or to terminals. The optical fibers are wavelength-multiplexed, that is, they carry a plurality of carrier waves of different frequencies, each of which is independently modulated with message signals. These carrier waves are also referred to as message carrier channels. The network node may be divided into an input section, a switching matrix and an output section, the input section comprising an optical demultiplexer spectrally splitting a multiplexing signal arriving on an optical fiber into its individual channels and relaying the message bearer channels to the optical switching matrix. The optical switching matrix has a first group of outputs, each leading to the output section of the network node, and a second group of outputs, to which optical-electrical signal converters are connected. The optical switching matrix forwards a message carrier channel directly to a multiplexer of the output section when the frequency of the corresponding channel is available on the optical fiber connected to the multiplexer. If this is not the case, then the message carrier channel is forwarded via an output of the second group to an optical-electrical converter. The electrical message signal supplied thereby is used to drive an electrical-to-optical converter which is connected to an input terminal of the switching matrix and which provides a carrier frequency still available on the output fiber. The switching matrix, in turn, passes this signal on to the multiplexer of the output section.

Figur 1 zeigt schematisch den Aufbau eines solchen Ausgangsabschnitts gemäß einem ersten Ausführungsbeispiel der Erfindung.Figure 1 shows schematically the structure of such an output section according to a first embodiment of the invention.

Lichtleiter 1-1 bis 1-N sind jeweils an Ausgänge der Vermittlungsmatrix angeschlossen und führen jeweils einen Nachrichten-Trägerkanal einem Koppler 2-1, ..., 2-N zu. Die Frequenzen der Nachrichten-Trägerkanäle sind sämtlich unterschiedlich. Typischerweise sind sie in einem Abstand von 100 GHz gestaffelt.Optical fibers 1-1 to 1-N are respectively connected to outputs of the switching matrix and each carry a message bearer channel to a coupler 2-1, ..., 2-N too. The frequencies of the message bearer channels are all different. Typically, they are staggered at a distance of 100 GHz.

Die Koppler 2-1, ..., 2-N haben jeweils zwei Ausgänge, einen ersten, über den ein kleiner Teil der Leistung des eingespeisten Nachrichten-Trägerkanals einer Fotodiode 11-1, ..., 11-N zugeführt wird, und einen zweiten, über den ein optischer Multiplexer 5 den überwiegenden Anteil der Leistung des Nachrichten-Trägerkanals empfängt.The couplers 2-1, ..., 2-N each have two outputs, a first, over which a small part of the power of the fed message carrier channel of a photodiode 11-1, ..., 11-N is supplied, and a second via which an optical multiplexer 5 receives the majority of the power of the message bearer channel.

Zusätzlich zu seinen N mit den Kopplern 2-1, ..., 2-N verbundenen Eingängen verfügt der Wellenlängenmultiplexer 5 über zwei Eingänge, die jeweils über einen Polarisations-Strahlteiler 7 mit zwei Laserdioden 8 verbunden sind. Die zwei jeweils mit einem Strahlteiler 7 verbundenen Laserdioden 8 sind auf die gleiche Frequenz abgestimmt und orthogonal zueinander polarisiert, so dass sie unpolarisiertes Licht in den Wellenlängenmultiplexer 5 einspeisen können. Die Frequenzen der Paare von Laserdioden 8 liegen jeweils in einer Lücke der Staffelung der Frequenzen der Nachrichten-Trägerkanäle, in einem Abstand von 100 GHz von den benachbarten Nachrichten-Trägerkanälen. Die Laserdioden 8 empfangen jeweils einen nicht mit einem Nachrichtensignal modulierten Versorgungsstrom von Treibern 9, deren Ausgangspegel durch die Steuerschaltung 4 gesteuert ist. Die Ausgangsleitung der Laserdioden 8 ist vom zugeführten Versorgungsstrom abhängig und kann ein Vielfaches der Leistung eines Nachrichten-Trägerkanals erreichen.In addition to its N inputs connected to the couplers 2-1, ..., 2-N, the wavelength division multiplexer 5 has two inputs which are each connected via a polarization beam splitter 7 to two laser diodes 8. The two each connected to a beam splitter 7 laser diodes 8 are tuned to the same frequency and polarized orthogonal to each other so that they can feed unpolarized light in the wavelength division multiplexer 5. The frequencies of the pairs of laser diodes 8 are each in a gap of the staggering of the frequencies of the message carrier channels, at a distance of 100 GHz from the adjacent message carrier channels. The laser diodes 8 each receive a non-modulated with a message signal supply current of drivers 9, the output level is controlled by the control circuit 4. The output line of the laser diode 8 is dependent on the supplied supply current and can be a Achieve multiple the performance of a News Vehicle channel.

Eine erste Fotodiode 10 ist am Anschlusspunkt der optischen Faser 6 an den Ausgang des Wellenlängenmultiplexers 5 angeordnet, um die von Letzterem gelieferte optische Gesamtleistung zu überwachen, die sich aus den Beiträgen sämtlicher Nachrichten-Trägerkanäle sowie der Laserdioden zusammensetzt. Die Fotodiode 10 ist mit einem Eingang der Steuerschaltung 4 verbunden. Anhand der Fotodiode 10 ist die Steuerschaltung 4 in der Lage, zu erkennen, ob die gesamte optische Leistung des Senders von einem Sollwert abweicht, der erforderlich ist, um eine ausgewogene Verstärkung der einzelnen Nachrichten-Trägerkanäle in entlang der optischen Faser 6 angeordneten Verstärkern zu erzielen. Anhand der Fotodioden 11-1 bis 11-N ist sie darüber hinaus in der Lage, zu erkennen, welches die Nachrichten-Trägerkanäle sind, auf deren plötzliches Aus- oder Einsetzen eine Änderung der optischen Gesamtleistung zurückzuführen ist. Anhand dieser Informationen regelt die Steuerschaltung 4 die Ausgangsleistung der Laserdioden 8.A first photodiode 10 is disposed at the point of connection of the optical fiber 6 to the output of the wavelength division multiplexer 5 to monitor the total optical power delivered by the latter, which is composed of the contributions of all the message carrier channels and the laser diodes. The photodiode 10 is connected to an input of the control circuit 4. By means of the photodiode 10, the control circuit 4 is able to detect whether the total optical power of the transmitter deviates from a nominal value required to achieve a balanced amplification of the individual message carrier channels in amplifiers arranged along the optical fiber 6 , On the basis of the photodiodes 11-1 to 11-N, moreover, it is able to recognize which are the message carrier channels whose sudden removal or insertion is due to a change in the total optical power. On the basis of this information, the control circuit 4 regulates the output power of the laser diodes 8.

Zur Erläuterung des Steuerverfahrens wird auf die Figuren 3 und 4 Bezug genommen. Figur 3 zeigt ein typisches Spektrum eines von dem erfindungsgemäßen Sender in die optische Faser 6 eingespeisten Wellenlängenmultiplex. Es setzt sich zusammen aus N = 38 Linien 12 mit im Wesentlichen gleicher Leistung p, die jeweils den von den Laserdioden 3-1 bis 3-N eingespeisten Trägerwellen entsprechen. Im hoch- und niederfrequenten Randbereich weist das Spektrum der Trägerwellen zwei Lücken auf, an denen die Frequenzen der Füll-Laserdioden 8 angesiedelt sind. Deren Linien 13 sind in der Figur punktiert dargestellt, um zu verdeutlichen, dass ihre Leistung variabel ist und im dargestellten Fall, dass alle Träger-Laserdioden 3-1 bis 3-N aktiv sind, verschwinden kann. Die bereits eingangs angesprochene, im Laufe der Ausbreitung des Wellenlängenmultiplex auf der optischen Faser 6 auftretende Raman-Verkippung bewirkt, dass der Multiplex einen in der Faser 6 angeordneten Zwischenverstärker mit einem entsprechend der gestrichelten Linie 14 verzerrten Spektrum erreicht, bei dem die hochfrequenten Linien des Multiplex gedämmt und die niedrigfrequenten im Vergleich dazu überhöht sind.To explain the control method, reference is made to FIGS. 3 and 4. FIG. 3 shows a typical spectrum of a wavelength division multiplex fed by the transmitter according to the invention into the optical fiber 6. It is composed of N = 38 lines 12 with substantially equal power p, each of the laser diodes 3-1 to 3-N correspond fed carrier waves. In the high and low frequency edge region, the spectrum of the carrier waves has two gaps at which the frequencies of the filling laser diodes 8 are located. Their lines 13 are shown in dotted lines in the figure in order to make clear that their power is variable and in the case illustrated that all the carrier laser diodes 3-1 to 3-N are active can disappear. The already mentioned at the beginning, occurring in the course of the propagation of the wavelength division multiplexing on the optical fiber 6 Raman tilting causes the multiplex reaches a arranged in the fiber 6 repeater with a corresponding dashed line 14 distorted spectrum in which the high-frequency lines of the multiplex insulated and the low-frequency compared to excessive.

Figur 4 zeigt ein analoges Spektrum für den Fall, dass einige der Nachrichten-Trägerkanäle, hier als punktierte Linien 15 dargestellt, ausgefallen sind. Der dadurch bedingte Verlust an Leistung im hochfrequenten Bereich des Spektrums bewirkt eine Verschiebung der Kennlinie 14 der Raman-Verkippung zu niedrigen Frequenzen hin, das heißt die Dämpfung bzw. Überhöhung der einzelnen Nachrichten-Trägerkanäle verändert sich, und es gibt Kanäle, die im vollständigen Spektrum der Figur 3 überhöht werden, und im Spektrum der Figur 4 eine Dämpfung erfahren. Um dieser Erscheinung entgegenzuwirken, verteilt beim Ausfall einer oder mehrerer Trägerkanäle die Steuerschaltung 4 die zum Konstanthalten der gesamten optischen Leistung auf der Faser 6 hinzuzufügende optische Leistung der Füll-Laserdioden 8 so auf die zwei Füllfrequenzen, dass der Schwerpunkt des Spektrums, definiert durch dieFIG. 4 shows an analog spectrum for the case that some of the message bearer channels, shown here as dotted lines 15, have failed. The resulting loss of power in the high-frequency region of the spectrum causes a shift of the characteristic curve 14 of the Raman tilting to low frequencies, that is, the attenuation or increase of the individual message carrier channels changes, and there are channels in the full spectrum 3 are exaggerated, and experienced in the spectrum of Figure 4 a damping. In order to counteract this phenomenon, distributed in the failure of one or more carrier channels, the control circuit 4 to keep constant the optical power of the filling laser diodes 8 to be added to the entire optical power on the fiber 6 to the two Füllfrequenzen that the center of gravity of the spectrum, defined by the

Formel f = n P n f n / P ,

Figure imgb0004
so wenig wie möglich variiert.formula f ~ = Σ n P n f n / P .
Figure imgb0004
varies as little as possible.

Bei Verwendung von nur zwei Füllfrequenzen, wie im vorliegenden Ausführungsbeispiel, ist es nicht immer möglich, diese Anforderung exakt zu erfüllen; in einem solchen Fall wählt die Steuerschaltung 4 diejenige Aufteilung der Leistung auf die Füll-Laserdioden, die die Verschiebung des Schwerpunktes f minimiert.When using only two Füllfrequenzen, as in the present embodiment, it is not always possible to meet this requirement exactly; in such a case, the control circuit 4 selects that distribution of power on the filling laser diodes, which is the displacement of the center of gravity f minimized.

Im in Figur 4 gezeigten Fall, dass die ausgefallenen Trägerkanäle sämtlich im hochfrequenten Bereich des Spektrums liegen, ist es das hochfrequente Paar von Füll-Laserdioden 8, das von der Steuerschaltung 4 angesteuert wird, um die Leistung der ausgefallenen Trägerkanäle zu ergänzen.In the case shown in FIG. 4, that the failed carrier channels are all in the high-frequency region of the spectrum, it is the high-frequency pair of fill laser diodes 8 that is driven by the control circuit 4 in order to supplement the power of the failed carrier channels.

Auf diese Weise steht im hochfrequenten Bereich des Multiplexspektrums wieder ausreichend Energie zur Verfügung, um die Verschiebung der Kennlinie 14 der Raman-Verkippung aufzuheben.In this way, sufficient energy is again available in the high-frequency range of the multiplex spectrum in order to cancel the shift of the characteristic curve 14 of the Raman tilt.

Bei der obigen Schilderung ist davon ausgegangen worden, dass am Ausgang des Multiplexers 5 die Leistungen aller Nachrichten-Trägerkanäle gleich sind. Um den Auswirkungen der Raman-Verkippung zu begegnen, ist es selbstverständlich auch möglich, die Leistung der höherfrequenten unter diesen Trägerkanälen am Ausgang des Multiplexers 5 mit Hilfe von jeweils den Eingängen des Multiplexers 5 vorgeschalteten Verstärkern oder Abschwächern höher zu machen als die der niederfrequenten, um so zu erreichen, dass die Trägerkanäle an einem Verstärker der optischen Faser 6 mit gleichen Leistungen oder wenigstens mit einem schwächeren Abfall der Leistung zu höheren Frequenzen hin eintreffen. Auf diese Weise kann zwar die Signalqualität am Ausgang der Faser 6 ein Stück weit verbessert werden, die Empfindlichkeit gegen das Ein- oder Ausschalten einzelner Kanäle im Multiplex bleibt jedoch bestehen.In the above description, it has been assumed that at the output of the multiplexer 5, the powers of all the message bearer channels are the same. Of course, to counter the effects of Raman tilt, it is also possible to increase the performance of the higher frequency ones among these carrier channels at the output of the multiplexer 5 by means of amplifiers or attenuators upstream of the inputs of the multiplexer 5, respectively, to make them higher than those of the low frequency ones, so as to achieve that the carrier channels at an amplifier of the optical fiber 6 with equal powers or at least with a weaker drop the power to higher frequencies arrive. In this way, although the signal quality at the output of the fiber 6 can be improved to some extent, the sensitivity to the switching on or off of individual channels in the multiplex remains.

Die auf einem der Füllkanäle auf der optischen Faser 6 übertragene Leistung kann ein Vielfaches der Leistung auf einem der Nachrichten-Trägerkanäle sein, insbesondere wenn die Füllkanäle mit ihrer Leistung den Ausfall mehrerer Nachrichten-Trägerkanäle kompensieren müssen. Da sich die auf den Füllkanälen übertragene Leistung auf zwei orthogonale Polarisationszustände verteilt, führt dies zu keiner übermäßigen Zunahme der Vierwellenmischung und anderer störender nicht-linearer Effekte.The power transmitted on one of the fill channels on the optical fiber 6 may be a multiple of the power on one of the message bearer channels, especially when the fill channels have to compensate for their performance by the failure of multiple message bearer channels. Since the power transmitted on the fill channels is distributed to two orthogonal polarization states, this does not result in an excessive increase in four-wave mixing and other spurious non-linear effects.

Wenn in einem Paar von Füll-Laserdioden 8 gleicher Frequenz eine ausfällt, so registriert die Steuerschaltung 4 dies anhand der von der Fotodiode 10 erfassten, in die Faser 6 eingespeisten optischen Gesamtleistung. Sie reagiert darauf, indem sie die Treiber 9 beider Füll-Laserdiodenpaare 8 stärker ansteuert. Diese Ansteuerung wird so lange nachgeführt, bis der Sollwert der optischen Ausgangsleistung wieder erreicht ist. Auf diese Weise erhöhen sich die Ausgangsleistungen der noch intakten Füll-Laserdioden um jeweils einen gleichen Faktor so weit, bis die gewünschte Leistung auf der Faser 6 wieder erreicht ist. Eine daraus resultierende Verschiebung des spektralen Schwerpunktes des Multiplex wird der Einfachheit der Steuerung halber in Kauf genommen. Auch falls beim Nachführen der Leistung auf den Füllkanälen einer der Treiber 9 oder eine der Laserdioden 8 die Sättigungsleistung erreicht, kann durch einfaches weiteres Verstärken der Ansteuerung erreicht werden, dass die nichtgesättigten Füll-Laserdioden 8 mehr Leistung liefern, bis die Soll-Gesamtleistung wieder erreicht ist.If one fails in a pair of filling laser diodes 8 of the same frequency, the control circuit 4 registers this on the basis of the total optical power detected by the photodiode 10 and fed into the fiber 6. She responds by calling the Driver 9 of both filling laser diode pairs 8 drives more. This control is tracked so long until the target value of the optical output power is reached again. In this way, the output powers of the still intact filling laser diodes each increase by an equal factor until the desired power on the fiber 6 is reached again. A resulting shift of the spectral center of gravity of the multiplex is accepted for simplicity of control. Even if when tracking the power on the Füllkanälen one of the drivers 9 or one of the laser diodes 8 reaches the saturation power can be achieved by simply further amplify the control that the non-saturated filling laser diode 8 provide more power until the target total power reached again is.

Figur 2 zeigt eine zweite Ausgestaltung des Ausgangsabschnitts eines Netzknotens der Erfindung, bei dem zusätzlich auch die Füll-Laserdioden 8 mit Fotodioden 16 zum Überwachen ihrer Ausgangsleistung ausgestattet sind. Bei dieser Ausgestaltung kann die Fotodiode 10 am Kopplungspunkt zwischen dem Wellenlängenmultiplexer 5 und der optischen Faser 6 entfallen, sofern die anderen Fotodioden 11-1, ..., 11-N, 16 exakt genug arbeiten, um der Steuerschaltung 4 ein Berechnen der Gesamtleistung auf der Faser 6 durch Addieren ihrer Messwerte zu ermöglichen. Der Vorteil dieser Ausgestaltung ist, dass beim Ausfall einer Füll-Laserdiode 8 die Steuerschaltung 4 in der Lage ist, die Identität der ausgefallenen Füll-Laserdiode 8 zu ermitteln und den damit verbundenen Verlust an Gesamtleistung zu kompensieren, indem sie die mit der ausgefallenen gepaarte Füll-Laserdiode 8 stärker ansteuert, um deren Ausgangsleistung zu verdoppeln. Auf diese Weise kann eine Verschiebung des spektralen Schwerpunktes des Multiplex vermieden werden. Erst wenn eine solche Verdopplung die Nennleistung der betreffenden Füll-Laserdiode überschreitet, setzt die Steuerschaltung 4 auch die Leistung der übrigen Füll-Laserdioden herauf.Figure 2 shows a second embodiment of the output section of a network node of the invention, in which also the filling laser diodes 8 are equipped with photodiodes 16 for monitoring their output power. In this embodiment, the photodiode 10 can be omitted at the coupling point between the wavelength division multiplexer 5 and the optical fiber 6, if the other photodiodes 11-1, ..., 11-N, 16 work exactly enough to the control circuit 4 to calculate the total power allow the fiber 6 by adding its readings. The advantage of this embodiment is that in case of failure of a filling laser diode 8, the control circuit 4 is able to identify the identity of the failed Filling laser diode 8 to determine and compensate for the associated loss of total power by the more driven with the failed paired filling laser diode 8 in order to double their output power. In this way, a shift of the spectral center of gravity of the multiplex can be avoided. Only when such a doubling exceeds the rated power of the respective filling laser diode, the control circuit 4 also increases the power of the other filling laser diodes.

Während beim oben betrachteten Beispiel von N = 38 Nachrichten-Trägerkanälen zwei Füllkanäle ausreichend sein können, ergibt sich bei Verwendung größerer Zahlen von Trägerfrequenzen das Problem, dass die zum Konstanthalten der optischen Gesamtleistung erforderlichen Füll-Leistungen so groß werden, dass trotz fehlender Polarisierung der Füllkanäle sich die Vierwellenmischung störend bemerkbar macht. Bei größeren Zahlen von Nachrichten-Trägerkanälen im Multiplex wird man daher zweckmäßigerweise auch entsprechend mehr Füllkanäle einsetzen. Das heißt, wenn man von einem Multiplex mit dem in Figur 3 gezeigten Spektrum zu einem 80-Kanal-Multiplex mit Kanalabständen von 50 GHz übergeht, wie im Spektrum der Figur 5 dargestellt, so wird man auch unter den zusätzlichen 40 Kanälen zwei als Füllkanäle festlegen. Das Vorhandensein einer größeren Zahl von Füllkanälen hat den Vorteil, dass die zusätzlichen Füllkanäle zur Kompensation des Ausfalls nicht nur der neuen, sondern auch der ursprünglichen Nachrichten-Trägerkanäle eingesetzt werden können. Es ergeben sich so zusätzliche Freiheitsgrade bei der Kompensation, das heißt es kann eine Mehrzahl von Verteilungen der Füllleistung auf die einzelnen Fülllaser geben, die es erlauben, den Ausfall eines Nachrichten-Trägerkanals zu kompensieren, ohne dass sich der Schwerpunkt des Spektrums verlagert. Unter diesen verschiedenen Möglichkeiten kann dann z.B. diejenige bevorzugt verwendet werden, die die gleichmäßigste Verteilung der Leistung auf die Fülllaser aufweist und so Störungen aufgrund von Vierwellenmischung minimiert.While in the above-considered example of N = 38 message carrier channels two fill channels may be sufficient, the use of larger numbers of carrier frequencies results in the problem that the fill powers required to keep the overall optical power constant are so great that, despite the lack of polarization of the fill channels the four-wave mixing makes disturbing noticeable. For larger numbers of message carrier channels in the multiplex you will therefore expediently use correspondingly more filling channels. That is, if one transitions from a multiplex having the spectrum shown in FIG. 3 to an 80-channel multiplex with channel spacings of 50 GHz, as shown in the spectrum of FIG. 5, two of the additional 40 channels will be defined as filling channels , The presence of a larger number of fill channels has the advantage that the additional fill channels compensate for the failure of not only the new but also the original message bearer channels can be used. This results in additional degrees of freedom in the compensation, that is, there may be a plurality of distributions of the filling power to the individual filling laser, which allow to compensate for the failure of a message carrier channel without shifting the center of gravity of the spectrum. Among these various possibilities, it is then possible to use, for example, the one which has the most uniform distribution of the power on the filling laser and thus minimizes interference due to four-wave mixing.

Figur 6 zeigt ein weiteres Spektrum von Nachrichten-Trägerkanälen 12 und Füllkanälen 13-1, 13-2, 13-3, 13-4 in einer optischen Faser. Die Füllkanäle unterteilen die Nachrichten-Trägerkanäle in drei Gruppen 12-1, 12-2, 12-3, die durch die Füllkanäle 13-2, 13-3 voneinander getrennte Spektralbereiche belegen. Wenn in einem der Spektralbereiche 12-1 bis 12-3 ein oder mehrere Nachrichten-Trägerkanäle ausfallen, so kann dies unter Beibehaltung der Leistung und des spektralen Schwerpunkts der betreffenden Gruppe kompensiert werden, indem die Leistung der zwei der betroffenen Gruppe unmittelbar benachbarten Füllkanäle nachgeregelt wird. Wenn auf diese Weise Ausfälle in jeder einzelnen Gruppe unabhängig von den anderen Gruppen kompensiert werden, so folgt daraus, dass auch für die Gesamtheit der auf der Faser übertragenen Kanäle Leistung und spektraler Schwerpunkt konstant bleiben. Die Leistung der jeweils zwischen zwei Gruppen von Nachrichten-Trägerkanälen liegenden Füllkanäle 13-2, 13-3 ist die Summe der Leistungen, die jeweils für die Kompensation einer der zwei angrenzenden Gruppen benötigt werden.Figure 6 shows another spectrum of message bearer channels 12 and fill channels 13-1, 13-2, 13-3, 13-4 in an optical fiber. The fill channels divide the message bearer channels into three groups 12-1, 12-2, 12-3 which occupy separate spectral ranges through the fill channels 13-2, 13-3. If one or more message carrier channels fail in one of the spectral regions 12-1 to 12-3, this can be compensated while maintaining the power and the spectral center of gravity of the relevant group by readjusting the power of the two filling channels immediately adjacent to the group concerned , Thus, compensating failures in each group independently of the other groups implies that the power and spectral center of gravity remain constant for the total number of channels transmitted on the fiber. The performance of each between two groups of message carrier channels lying Füllkanäle 13-2, 13-3 is the sum of the power required for the compensation of one of the two adjacent groups.

Claims (21)

  1. A method of transmitting messages on an optical fibre (6) using a group of information carrier channels (12) at different carrier frequencies and a group of filling channels (13), which are conveyed together with the information carrier channels (12) along the fibre (6), wherein the total optical power of the information carrier channels and the filling channels transmitted on the fibre (6) is kept constant by compensating each change of the optical power of the information carrier channels by an opposite identical change of the optical power of the filling channels, characterised in that the change of the optical power of the filling channels is distributed onto the individual filling channels such that a minimum displacement of the centre of gravity of the common spectrum of the information carrier channels and the filling channels results and that the light transmitted on each filling channel (13) is generated by two radiation sources (8).
  2. The method according to claim 1, characterised in that the optical powers of the filling channels are continuously adapted.
  3. The method according to any one of the preceding claims, characterised in that the frequencies of the filling channels are selected outside of a frequency band which is used for the information carrier channels.
  4. The method according to one of claims 1 to 3, characterised in that the frequencies of the filling channels are selected inside a frequency band which is used for the information carrier channels.
  5. The method according to any one of the preceding claims, characterised in that the common spectrum of the information carrier channels (12) and the filling channels (13) is formed of equidistant lines (12, 13) which belong to either an information carrier channel or a filling channel.
  6. The method according to one of claims 1 to 4, characterised in that the frequencies of the information carrier channels (12) and the filling channels (13) are selected from a spectrum of equidistant lines.
  7. The method according to any one of the preceding claims, characterised in that unpolarised light is transmitted in the filling channels (13).
  8. The method according to claim 7, characterised in that the two radiation sources (8) generate orthogonally polarized light.
  9. The method according to claim 7 or 8, characterised in that the two radiation sources (8) are operated at equal output power.
  10. The method according to claim 9, characterised in that in case of a failure of one of the two radiation sources (8), the other one is operated at doubled output power.
  11. The method according to any one of the preceding claims, characterised in that the filling channels (13) are coupled into the optical fibre (6) by a wavelength multiplexer (5).
  12. A method of transmitting messages on an optical fibre (6) using a set of information carrier channels (12) at different carrier frequencies and a set of filling channels (13), which are conveyed together with the information carrier channels (12) along the fibre (12), characterised in that the set of the information carrier channels (12) and the set of the filling channels (13) is divided into at least one first group and a second group, and that the method according any one of the preceding claims is carried out for the first group.
  13. The method of according to claim 12, characterised in that the method according to any one of claims 1 to 11 is carried out for the second group.
  14. The method according to claim 12 or 13, characterised in that the information carrier channels of the first group are located on one side, and the information carrier channels of the second group are located on the other side, of a limit frequency.
  15. A transmitter for an optical information transmission system, comprising a plurality of modulatable light sources (3-1, ..., 3-N) modulated by an information signal, a plurality of filling light sources (8) connected in common to a port for an optical fibre (6), a sensor (10) for monitoring a total optical power of the modulatable light sources (3-1, ..., 3-N) and the filling light sources (8) provided at said port, and a control circuit (4) for controlling the optical power of the filling light sources (7, 8) such that the total optical power does substantially not vary, characterised in that the control circuit (4) is designed to control the optical power of the filling light sources (7, 8) such that the spectral centre of gravity of the total optical power does substantially not vary and that each filling light source is composed of two individual light sources.
  16. The transmitter according to claim 15, characterised in that the filling light sources have frequencies outside a frequency band of the modulatable light sources.
  17. The transmitter according to claim 15, characterised in that the filling light sources have frequencies inside a frequency band of the modulatable light sources.
  18. The transmitter according to claim 17, characterised in that the spectrum of the total optical power is formed of equidistant lines which are generated either by a modulatable light source or a filling light source.
  19. The transmitter according to any one of claims 15 to 18, characterised in that the filling light sources provide unpolarised light.
  20. The transmitter according to claim 19, characterised in that the two individual light sources are polarized orthogonally.
  21. The transmitter according to claim 20, characterised in that each individual light source (8) has a sensor (16) associated to it for detecting a failure of the light source (8).
EP04703870A 2003-01-28 2004-01-21 Transmitter and method for transmitting messages on an optical fiber Expired - Lifetime EP1588512B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10303313A DE10303313A1 (en) 2003-01-28 2003-01-28 Message transmission method via optical fiber, by distributing change in optical power of filling channels to reduce displacement of entire spectrum
DE10303313 2003-01-28
PCT/IB2004/000711 WO2004068268A2 (en) 2003-01-28 2004-01-21 Transmitter and method for transmitting messages on an optical fiber

Publications (2)

Publication Number Publication Date
EP1588512A2 EP1588512A2 (en) 2005-10-26
EP1588512B1 true EP1588512B1 (en) 2007-04-18

Family

ID=32603005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04703870A Expired - Lifetime EP1588512B1 (en) 2003-01-28 2004-01-21 Transmitter and method for transmitting messages on an optical fiber

Country Status (6)

Country Link
US (1) US7738791B2 (en)
EP (1) EP1588512B1 (en)
CN (1) CN1745531B (en)
AT (1) ATE360302T1 (en)
DE (2) DE10303313A1 (en)
WO (1) WO2004068268A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076660B2 (en) * 2007-06-11 2012-11-21 日本電気株式会社 Wavelength multiplex transmission apparatus, control method, and control program
TWI378661B (en) * 2008-01-04 2012-12-01 Amtran Technology Co Ltd Data transmission system using optical fiber and home entertainment system using hdcp
EP2081308B1 (en) * 2008-01-15 2013-08-28 Nokia Siemens Networks GmbH & Co. KG Method and device for providing and/or controlling an optical signal
JP2010004251A (en) * 2008-06-19 2010-01-07 Hitachi Communication Technologies Ltd Optical transmission device and optical transmission method
WO2013170909A1 (en) 2012-05-15 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Dummy optical signals for optical networks
US8718466B2 (en) 2012-07-12 2014-05-06 Micron Technology Inc. Method and apparatus providing wave division multiplexing optical communication system with active carrier hopping
US10200121B2 (en) 2017-06-14 2019-02-05 At&T Intellectual Property I, L.P. Reachability determination in wavelength division multiplexing network based upon fiber loss measurements

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254668A (en) * 1995-03-17 1996-10-01 Fujitsu Ltd Laser diode module and depolarizer
JP3422398B2 (en) * 1995-12-07 2003-06-30 富士通株式会社 Center-of-gravity wavelength monitoring method and apparatus, optical amplifier, and optical communication system
US5907420A (en) * 1996-09-13 1999-05-25 Lucent Technologies, Inc. System and method for mitigating cross-saturation in optically amplified networks
DE59807139D1 (en) * 1997-11-28 2003-03-13 Siemens Ag METHOD FOR LEVEL ADJUSTMENT FOR OPTICAL SIGNALS
US6275313B1 (en) * 1998-02-03 2001-08-14 Lucent Technologies Inc. Raman gain tilt equalization in optical fiber communication systems
JP3605629B2 (en) * 1998-12-15 2004-12-22 富士通株式会社 Light source redundancy switching method and wavelength division multiplex transmission apparatus by the method
US6563614B1 (en) * 1999-05-21 2003-05-13 Corvis Corporation Optical transmission system and amplifier control apparatuses and methods
EP1164737B1 (en) * 2000-06-16 2008-04-16 Alcatel Lucent Wavelength allocation method and WDM equipment
JP3875190B2 (en) * 2000-07-31 2007-01-31 三菱電機株式会社 Wavelength division multiplexing optical transmission equipment
DE10040790B4 (en) * 2000-08-21 2004-03-04 Siemens Ag Control method and optical data transmission link with a device for compensating for changes in the SRS-related power exchange
JP2003035919A (en) * 2000-11-07 2003-02-07 Furukawa Electric Co Ltd:The Optical amplification apparatus and optical transmission system
US6765722B2 (en) * 2000-12-15 2004-07-20 Dicon Fiberoptics, Inc. Polarization beam combiner for fiber optic applications
JP4686906B2 (en) * 2001-06-04 2011-05-25 株式会社日立製作所 Wavelength multiplexing optical transmission equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2004068268A3 (en) 2004-10-07
ATE360302T1 (en) 2007-05-15
US20060177221A1 (en) 2006-08-10
EP1588512A2 (en) 2005-10-26
US7738791B2 (en) 2010-06-15
CN1745531B (en) 2012-05-30
DE10303313A1 (en) 2004-07-29
DE502004003538D1 (en) 2007-05-31
WO2004068268A2 (en) 2004-08-12
CN1745531A (en) 2006-03-08

Similar Documents

Publication Publication Date Title
DE69828658T2 (en) Broadband optical amplifier with uniform amplification
DE69838463T2 (en) Optical transmission device and optical transmission system
DE69011718T2 (en) Optical regenerator and its use in an optical network.
DE69932557T2 (en) Optical transmission device, optical transmission system and optical terminal
DE60031141T2 (en) LIGHT AMPLIFIER USING THE RAMANIUM GAIN AND ASSOCIATED CONTROL METHOD
DE69017737T2 (en) Optical branching device and its use in an optical network.
DE60031813T2 (en) An optical amplifying apparatus and method for amplifying a wavelength broadband light
DE60036774T2 (en) OPTICAL GAIN REPEATER AND OPTICAL GAIN REPEATER AND TRANSMISSION ARRANGEMENT
DE60206683T2 (en) Optical amplifiers in a bidirectional wavelength-multiplexed system
DE69627438T2 (en) Method and device for level compensation of the power of the channels of a spectrally multiplexed optical signal
DE69831127T2 (en) OPTICAL WAVELENGTH MULTIPLEX TRANSMISSION SYSTEMS
DE69920451T2 (en) METHOD AND DEVICE FOR DISTRIBUTING OPTICAL CHANNELS IN AN OPTICAL TRANSMISSION SYSTEM
DE60022288T2 (en) Optical amplifying device, broadband optical amplifying device and optical transmission system
EP0721708B1 (en) Fibre-optic communications transmission method and intermediate repeater therefor
DE60301785T2 (en) Optical amplifier, transmission system and tilt control method in a transmission system
EP1588512B1 (en) Transmitter and method for transmitting messages on an optical fiber
DE60312085T2 (en) WDM light amplifier for detecting the change in the number of wavelength-multiplexed signals
DE60128756T2 (en) Method for determining the input power of an optical wavelength-division multiplexed transmission system
DE10057659B4 (en) Optical transmission system with cascaded Raman amplifiers each having several pump sources
DE60023033T2 (en) CANAL-BASED OPTICAL GAIN IN SATURDAY CONDITION
DE69125065T2 (en) Light transmission system
DE10303314A1 (en) Output stage for wavelength division multiplexing transmission, has auxiliary circuit for supplying one of two filling light sources with continuously decreasing desired-power signal
DE69737505T2 (en) Method and apparatus for saturating an optical amplification chain to prevent the overmodulation of a wavelength-multiplexed signal
DE60202923T2 (en) Method and device for bidirectional single-wire transmission
DE60209841T2 (en) Dispersion-compensated optical fiber amplifier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050728

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ERICSSON AB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004003538

Country of ref document: DE

Date of ref document: 20070531

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070918

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

26N No opposition filed

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

BERE Be: lapsed

Owner name: ERICSSON A.B.

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080121

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170125

Year of fee payment: 14

Ref country code: FR

Payment date: 20170125

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170127

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170124

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004003538

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180121