EP1583404B1 - Ionisationsstab und Verfahren zu dessen Herstellung - Google Patents

Ionisationsstab und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP1583404B1
EP1583404B1 EP05002597A EP05002597A EP1583404B1 EP 1583404 B1 EP1583404 B1 EP 1583404B1 EP 05002597 A EP05002597 A EP 05002597A EP 05002597 A EP05002597 A EP 05002597A EP 1583404 B1 EP1583404 B1 EP 1583404B1
Authority
EP
European Patent Office
Prior art keywords
ionizing
bar assembly
housing
slots
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP05002597A
Other languages
English (en)
French (fr)
Other versions
EP1583404A1 (de
Inventor
Mark Blitshteyn
Peter Gefter
Scott J.S. Gehlke
Lisle R. Knight Jr.
Michael J. Leonard
Ira J. Pitel
Sean Quigley
Shane O'reilly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Systems Inc
Original Assignee
Ion Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/519,159 external-priority patent/US6330146B1/en
Application filed by Ion Systems Inc filed Critical Ion Systems Inc
Publication of EP1583404A1 publication Critical patent/EP1583404A1/de
Application granted granted Critical
Publication of EP1583404B1 publication Critical patent/EP1583404B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes

Definitions

  • the invention relates to the field of air ionizers which may be used as static eliminators, and more particularly to a variable length ionizing bar and method of constructing the same, for neutralizing static electricity on moving materials, often in a form of a web or sheets of paper and/or plastic material.
  • the present invention relates to an ionizing bar assembly according to the preamble of claim 1.
  • Prior art which is relevant to the preamble of claim 1 is described in US-5,034,651 and US-A-4,263,636.
  • Ionizing bars are used to generate positive and negative ions which may be used to eliminate built-up electro-static charges on various items such as paper and/or plastic film products.
  • long webs or sheets of the paper or plastic film product are passed over or under the ionizing bar in order to remove static charges. Due to the variation in width of a wide variety of paper and plastic film products, the width of the running webs and sheets varies from a few inches to several feet. As a result, a wide range of lengths of ionizing bars must be custom manufactured, usually on a short notice.
  • Certain known ionizing bars are comprised of a single elongated central high voltage electrode.
  • the high voltage electrode is covered with an insulative or semiconductive sleeve and conductive sleeves.
  • Emitter pins for generating the positive and negative ions extend outward from the electrode.
  • a tubular metallic grounded housing surrounds the high voltage electrode.
  • the metallic grounded housing includes an arrangement of cylindrical openings through which the emitter pins extend from the high voltage electrode.
  • prior art ionizing bars are comprised of a metal housing in the form of an elongated hollow metallic channel having a longitudinally extended opening.
  • a high voltage electrode consisting of cable with an inner conductive core formed by a plurality of stranded wires is contained within the metallic channel of the housing.
  • Emitter pins are formed on the outer layer of the cable by conductive paint.
  • Still other known ionizing bars include two or more parallel rows of metal electrodes with sharp emitter pins extending therefrom for generating positive and negative ions on alternate rows.
  • an ionizing bar design which does not have a cable for connecting a high voltage power supply that is permanently hard-wired to the bar.
  • Such a design should preferably include universal connectors at each end of the ionizing bar for coupling the bar directly to a power supply, or for coupling the ionizing bar to a power supply via a disconnectable extension cable.
  • an ionizing bar design wherein the emitter pins are not arranged in a single row or in two parallel rows but are arranged in a more efficient configuration.
  • a ioinizing bar design wherein multiple ionizing bars can be daisy chained together in order to achieve alternate lengths.
  • the objective of this invention is to provide an ionizing bar that is, a) more reliable in operation, b) more economical and easy to manufacture, c) easy to connect to a high voltage power supply directly or via an extension cable, and d) a method of fabrication that provides shorter lead time to deliver bars to the customers.
  • the present invention provides an ionizing bar assembly according to claim 1 and a method of fabricating the ionizing bar assembly according to claim 16.
  • an ionizing bar assembly is comprised of a plastic housing and two individual ionizing electrode modules disposed on opposite sides of the housing.
  • the first ionizing electrode module receives voltage of a positive polarity when coupled to a source of high voltage power, thereby generating ions of a positive polarity.
  • the second ionizing electrode module receives voltage of a negative polarity when coupled to the source of high voltage power, thereby generating ions of a negative polarity.
  • the ionizing electrode modules each include a plurality of printed circuit boards having signal traces thereon with ionizing electrodes or pins extending therefrom.
  • the plurality of printed circuit boards are electrically coupled together by conductive rods or tubing which are preferably positioned adjacent to the traces on the boards and soldered at various positions along the traces.
  • the ionizing electrode modules on each side of the housing are placed at opposing angles and are offset laterally from each other in such a way that the ionizing electrodes or pins extending from one side are located between the ionizing electrodes or pins extending from the opposite side, with the tips of each aligned along a common central linear axis.
  • Each ionizing bar assembly preferably slides into two end blocks, which are each located at opposite ends of the bar assembly.
  • the end blocks each include a recess having two pins therein and two socket connectors coupled to the pins at 90 degree angles and extending through a base in each of the two end blocks.
  • the opposite ends of each of the pins extend horizontally through a back end of the end block.
  • the pins are designed to engage with the conductive rods or tubing when the ionizing bar assembly is placed into the recess of the end blocks.
  • the sockets are designed to removeably couple to a high voltage power source.
  • the opposite ends of each of the pins may terminate or may be used for coupling to dual cabling for linking multiple ionizing bar assemblies together.
  • ionizing bar assemblies may be daisy chained together such that a total length of any desired bar length may be achieved by adding or removing ionizing bar assemblies.
  • the end blocks not only allow the length of any desired ionizing bar to be varied for use in different systems; but, the end blocks further allow assemblies to be easily coupled or removed from a high voltage power source because the high voltage power source is not hard wired to the ionizing bar assemblies.
  • an ionizing bar assembly comprised of a plastic housing and two individual ionizing electrode modules disposed on opposite sides of the housing.
  • the first ionizing electrode module receives voltage of a positive polarity when coupled to a source of high voltage power, thereby generating ions of a positive polarity.
  • the second ionizing electrode module receives voltage of a negative polarity when coupled to the source of high voltage power, thereby generating ions of a negative polarity.
  • the ionizing electrode modules each include a plurality of printed circuit boards having signal traces thereon with ionizing electrodes or pins extending therefrom.
  • the plurality of printed circuit boards are electrically coupled together by conductive rods or tubing which are preferably positioned adjacent to the traces on the boards and soldered at various positions along the traces.
  • the ionizing electrode modules on each side of the housing are placed at opposing angles and are offset laterally from each other in such a way that the ionizing electrodes or pins extending from one side are located between the ionizing electrodes or pins extending from the opposite side, with the tips of each substantially aligned along a common central linear axis.
  • Each ionizing bar assembly preferably slides into two end blocks, which are each located at opposite ends of the bar assembly.
  • the end blocks each include a recess having two pins therein and two socket connectors coupled to the pins at 90 degree angles and extending through a base in each of the two end blocks.
  • the opposite ends of each of the pins extend horizontally through a back end of the end block.
  • the pins are designed to engage with the conductive rods or tubing when the ionizing bar assembly is placed into the recess of the end blocks.
  • the sockets are designed to removeably couple to a high voltage power source.
  • the opposite ends of each of the pins may terminate or may be used for coupling to dual cabling for linking multiple ionizing bar assemblies together.
  • ionizing bar assemblies may be coupled together to achieve a total length of any desired bar length simply by adding or removing ionizing bar assemblies in a daisy-chain type configuration.
  • the end blocks not only allow the length of any desired ionizing bar to be varied for use in different systems; but, the end blocks further allow assemblies to be easily coupled or removed from a high voltage power source because the high voltage power source is not hard wired to the ionizing bar assemblies.
  • Figure 1 shows a side sectional view of an ionizing bar assembly in accordance with onepreferred embodiment of the present invention.
  • the ionizing bar assembly 1 includes an elongated rigid dielectric housing 11 which is preferably fabricated of plastic or any other electrically insulating material using any well known extrusion process.
  • the ionizing bar assembly 1 further includes two identical ionizing electrode modules 13a and 13b which are located on opposite sides of the dielectric housing 11, and two identical end blocks 15a and 15b, located at opposite ends of the dieletric housing 11.
  • FIG. 2 shows a cross-sectional view of the ionizing bar assembly in accordance with one preferred embodiment of the present invention.
  • the dielectric housing 11 has two symmetrical slots 22a and 22b which extend along the length of the dielectric housing 11.
  • the symmetrical slots 22a and 22b are separated by an insulating barrier 23 located between them which also extends along the length of the dielectric housing 11.
  • the symmetrical slots 22a and 22b receive two high voltage ionizing electrode modules 13a and 13b which are inserted securely into the symmetrical slots 22a and 22b and extend along the entire length of each slot.
  • Each high voltage ionizing electrode module 13a and 13b includes a printed circuit board (PCB) component 23a and 23b and ionizing electrodes 25 extending therefrom.
  • PCB printed circuit board
  • Components 23a and 23b are absolutely identical and are specified under two numbers for convenience only. It is understood that a single PCB component 23a or 23b has several ionizing electrodes 25 extending therefrom at regular intervals along the length of the PCB component 23a and 23b.
  • the ionizing electrodes 25 are in the form of tapered pins which are electrically coupled to PCB components 23a and 23b - i.e. the ionizing electrodes 25 are preferably soldered to the PCB components 23a and 23b along the length of the module at equal and regular intervals.
  • the sharp ends of the ionizing electrodes 25 protrude through the narrow slots 22a and 22b that extend along the length of the dielectric housing 11.
  • the ionizing electrode modules 13a and 13b are positioned at opposing angels toward each other and are offset from each other laterally in such a way that the ionizing electrodes 25 of one module 13a on a first side of the ionizing bar assembly 1 are located between the electrodes 25 of the opposing module 13b on the opposite side of the ionizing bar assembly 1, with the tips of each of the opposing electrodes 25 substantially aligned along a common linear axis running parallel to the ionizing bar assembly 1.
  • the electrodes 25 are arranged at an angle facing each other so that the tips of the ionizing electrodes 25 are substantially aligned along the common linear axis which extends parallel to the center of the housing 11.
  • Positioning the ionizing electrodes at an angle preferrably ranging from 30° to 120° toward each other and substantially aligning their tips along a straight central axis has several advantages over conventional electrode designs in which the electrodes are arranged in a row along the same plane. First, this arrangement helps maximize electrical field intensity between emitter pins of two electrodes of opposite polarity in order to improve ionization efficiency. Second, this arrangement also physically separates positive and negative electrode modules, increasing clearance and creepage distances between the conductors of opposite polarities and thus improving the reliability of the device.
  • the dielectric housing 11 and the high voltage ionizing electrode modules 13a and 13b can be made as long as necessary and practical.
  • the dielectric housing 11 can be extruded as long as tens of feet and longer, and then cut to a manageable length of 10-12 feet.
  • the PCB components 23a and 23b of the high voltage ionizing electrode modules 13a and 13b will be manufactured in smaller lengths, such as 12" or so, and multiple PCB components are then linked together, as will be further described later herein.
  • high-value high-voltage rated resistors are connected in series with the ionizing electrodes 25. The purpose of these resistors is to limit short-circuit current from the electrodes for safety, as well as to help stabilize corona discharge at the ionizing electrodes 25.
  • FIG 3A shows a side view of a PCB component 23a with ionizing electrodes extending therefrom in accordance with a preferred embodiment of the present invention.
  • Figure 3B shows a close-up view of the PCB component 23a in order to illustrate how a single PCB component and ionizing electrodes 25 extending therefrom are coupled.
  • the PCB component 23a comprises a two-sided printed circuit board strip 33. Surface mount resistors 41 and electrodes 25 are mounted on one side of the printed circuit board strip 33.
  • a bus trace 35 is located on the opposite side of the circuit board strip 33.
  • the first side of the printed circuit board strip 33 is shown, with a cut out showing the bus trace 35 located on the opposite side of the board strip 33.
  • several smaller traces 37 are included on the first side of the board strip 33 and are positioned perpendicular to the bus trace 35 and extending from the bus trace 35. These smaller traces 37 are positioned at equal and regular intervals that can range from 1 ⁇ 2" to 4" apart from each other along the bus trace 35 depending upon the required density of ionization along the length of the bar.
  • the smaller traces 37 are coupled to the bus trace 35 on the opposite side of the board strip 33 by a plated through hole.
  • the smaller traces 37 electrically coupled the bus trace 35 to first ends 39a of surface-mount resistors 41 which are preferably soldered on the first side of the circuit board strip 33.
  • additional small traces 43 connect opposite ends 39b of the surface mount resistors 41 to individual electrode pads 45.
  • the ionizing electrodes 25 are soldered to these pads on the first side of the board strip 33. In this way, each of the ionizing electrodes 25 is electrically coupled to the bus trace 35 through a surface mount resistor 41.
  • the ionizing electrodes 25 are made of stainless steel, tungsten, or some other metal.
  • the electrodes 25 are machine tapered to a tip. Alternatively, the tip may be tapered using any electro-chemical etching process known in the art of wafer fabrication.
  • Electro-chemical etching is preferred for tapering the electrodes 25 since this process provides a smoother surface that stabilizes ion current over time and helps lower the rate of emitter point contamination.
  • the electrodes 25 are made from stainless steel or tungsten, these metals may be difficult to solder to the first side of the board strip 33.
  • the electrodes 25 can be electro-chemically plated with a nickel or gold layer. The plating of the electrodes 25 makes it possible to solder the electrodes to the electro pads 45 on the first side of the board strip 33.
  • different plating material may be used for positive or negative electrodes.
  • negative ionizing electrodes may have emitter points plated with nickel, and positive electrodes which are typically more prone to contamination, may have emitter points plated with gold.
  • the dielectric housing 11 has two symmetrical details 27a and 27b which extend the length of the housing 11. Conductive rods 29a and 29b, or lengths of copper or brass tubing are disposed inside the details 27a and 27b.
  • conductive rods 29a and 29b are positioned in close contact with the bus traces 35 on each of the circuit board strips 33 of the PCB components 23a and 23b. Accordingly, multiple PCB components 23a and 23b are electrically coupled to one another by the engagement of the bus traces 35 on each of the circuit board strips 33 with the conductive rods 29a and 29b. In order to ensure reliable coupling of the conductive rods 29a and 29b with the bus traces 35, the conductive rods 29a and 29b may be soldered to the bus traces 35 at regular intervals along each of the PCB components 23a and 23b.
  • the outer walls 21 of the housing 11 close over the high voltage ionizing electrode modules 13a and 13b, locking the PCB components 23a and 23b inside the housing 11 and narrowing the slots 22a and 22b substantially to the diameter of the ionizing electrodes 25 which extend outward from the PCB components 23a and 23b.
  • the slots are filled with an insulating sealant (not shown) in order to prevent industrial dirt and residue from entering inside the ionizing bar assembly 1.
  • room temperature curing adhesive, or heat curing or light curing adhesive is used as the insulating sealant.
  • the ionizing bar assembly 1 may be manufactured in a long standard length of several feet. Once assembled, the ionizing bar assembly 1 can be cut into any desired length.
  • Figure 4 shows the preferred locations where the ionizing bar assembly 1 can be cut into shorter lengths.
  • the locations where the ionizing bar subassembly could be conveniently cut are indicated by numerals 48a through 48i. These locations preferably repeat at increments equal to the distance between neighboring ionizing electrodes in the electrode module on one side of the bar in order to ensure that there will always be an equal number ofpairs of positive and negative electrodes.
  • the cuts are made exactly in the center between the neighboring ionizing electrodes on both sides of the ionizing bar assembly 1 at locations where there are no surface mount resistors.
  • end blocks 15a and 15b safely terminate the bus traces 35 on the high voltage ionizing electrode modules 13a and 13b and insulate the ends of the conductive rods 29a and 29b.
  • the end blocks 15a and 15b further provide reliable electrical connection of a high voltage power supply to the bus traces 35 of the high voltage ionizing electrode modules 13a and 13b through the slotted pin assemblies contained within the end blocks 15a and 15b.
  • the end blocks 15a and 15b facilitate the mechanical attachment of the ionizing bar assembly 1 to the production equipment where the bar is to be installed and utilized.
  • FIG. 5A shows an isometric view of an end block 51 used in a preferred embodiment of the ionizing bar assembly of the present invention.
  • the end block 51 can be molded out of dielectric polymer materials, such as ABS, PVC, or any other dielectric polymer known in the art.
  • the end block 51 includes a recess 53 in the cross-sectional shape of the dielectric housing 11, such that the ends of the housing slide inside the recess 53 in each of the two end blocks 51.
  • the end block 51 further includes two pin connector assemblies 55 that can be either insert-molded or inserted into a rear side of the end block 51.
  • the pin connector assemblies 55 engage with the conductive rods 29a and 29b (i.e. the slotted pins 56 will fit securely within the copper tubing) when the housing 11 slides into the recess, thereby electrically coupling the pin connector assemblies 55 to the bus traces 35 of the high voltage ionizing electrode modules 13a and 13b.
  • Figure 5B shows a cross sectional side view of an end block 51 used in a preferred embodiment of the ionizing bar assembly of the present invention.
  • the pin connector assemblies 55 are preferably slotted pins and socket assemblies which include a slotted pin 56 that fits securely into the metal tubing (i.e. the conductive rod 29a) while the socket 59 extends vertically upward through the end block 1 when the end block 51 is secured to the end of the ionizing bar assembly 1.
  • the sockets 59 are accessible via holes or openings molded into the end blocks 51.
  • the end block 51 is designed in two individual portions, a bar-side portion 60 (where the recess is located) and mount-side portion 62 (where the bar may be coupled to the apparatus or to another bar using cabling, as will be described further hereinafter).
  • the two portions will telescope into each other and be secured together using epoxy or another type of adhesive.
  • a source of high voltage can be connected to the ionizing bar assembly 1 directly via the sockets 59 or may be coupled to the ionizing bar assembly 1 via a cable connected between the power supply and the sockets 59 in the end block 51. If cabling is used, the cable will preferably have cable plugs on each end for coupling to the sockets 59.
  • Figure 6 shows a preferred embodiment of a cable plug 61 with a cable attached to it which may used to couple a high voltage power supply to the ionizing bar assembly.
  • the cable plug 61 consists of a base 63 and a cover 65 which are formed as two plastic molded parts. In the base, there are two socket connectors 67a and 67b inserted into two holes.
  • the sockets in the cable plug 61 are identical to the sockets 59 in the end blocks 51, and the distance between the sockets in both components is identical.
  • the two cables 69a and 69b are cut to the desired length and their ends are stripped of insulation.
  • the center conductor of each cable 69a and 69b is inserted into a through hole 71 formed at the outer end of the corresponding socket and then secured with a set screw 72.
  • the base of the cable plug and the cover are joined together with two self-tapping screws from the base side of the assembly.
  • the socket connecters on the end blocks 1 may be converted into male pins using double-ended pin assemblies.
  • Figure 7 shows a double-ended pin assembly 73 which may be is used to change the female socket connectors in the end blocks 51 into male pin connectors.
  • a first end 75 of the double-ended pin 73 has a machined groove 77.
  • a second and opposite end 79 of the double-end pin 73 is preferably smooth.
  • a grommet 81 made of an elastic material is securely fastened around the middle portion of the double-end pin 73.
  • the sockets used in the end blocks 51 are each equipped with a contact, such as #08 contact manufactured by Mill-Max Mfg. Corp., which is press fit inside the barrel of the socket.
  • the machined groove 77 located at the first end 75 of the double-ended pin 73 is formed to slip through the contact when engaged in the sockets in the end block 51.
  • the fingers of the contact will engage into the machined groove 77 and prevent easy removal of the double-ended pin out of the socket in the end block 51.
  • the second and opposite end 79 of the double-ended pin 73 has a smooth surface which preferably couples to the cable plug of a high voltage power supply or an extension cable.
  • Figure 8 illustrates double-ended pins 73 engaged between an end block 51 of an ionizing bar and a cable plug 61 coupled to a high voltage power supply for supplying power to the ionizing bar assembly 1.
  • the end block 51 has two sockets 59
  • the cable plug 61 also has two sockets 67.
  • the double-end pins 73 are inserted into the end block of the ionizing bar with the grooved ends 75 inside.
  • the fingers of the contact 83 allow the grooved end 75 to pass through.
  • the double-ended pins 73 are securely held in place by the fingers of the contact 83 which engage into the groove 77 and prevent extraction of the pin. Therefore, the end block of the bar becomes a male connector in the illustrated configuration.
  • the socket 67 of the cable plug 63 accepts the smooth end 79 of the double-end pin 73.
  • the extraction force of the pin inserted with its smooth end is low, and upon separation of the cable plug from the end block 51 of the ionizing bar assembly 1 the double ended pins 73 remain locked within the end block 51.
  • the cable plug will remain a female connector.
  • the cable plug that attaches the high voltage cables to the ionizing bar will not have any exposed high voltage pins if the cable plug is disconnected from the ionizing bar assembly 1. This provides an additional safety measure and makes it easier and safer to connect/disconnect the ionizing bar from the application system.
  • the grommet 81 that is placed over the middle portion of the double-end pins 73 engages and seals the interface between the end block 51 and the connector plug.
  • the two parts are mechanically held together with a plastic snap-in fastener 90.
  • the ionizing bar assembly of the present invention has several advantages.
  • a removeable power supply 92 with output sockets can be directly connected to one of the end blocks 93 of the ionizing bar 1a, with double-ended pins coupled between the sockets in the end block 93 and the high voltage power supply 92 in order to safely secure the removeable power supply 92 to the end block 93.
  • the opposite end block 94 may terminate with sockets at the end block 94 without any double-ended pins inserted therein. This configuration is illustrated in Figure 9a.
  • a high voltage power supply 92 with output sockets can be directly connected to one of the end blocks 93 of the ionizing bar 1a, with double-ended pins coupled between the sockets in the end block 93 and the high voltage power supply 92.
  • the second end block 94 located at an opposite end of the ionizing bar 1a, always terminates with connector sockets for safety.
  • a cable plug 95, of an extension cable 96, can be used at the end block 94 in order to couple a second ionizing bar 1b assembly to the first ionizing bar assembly 1a.
  • the cable plug 95 has pins.
  • a cable plug 97 has sockets that would connect to the pins in the end block 98 of the second bar 1b.
  • An extension cable similar to a bar, always has sockets at the open energized end.
  • An opposite end block 99 in the second ionizing bar assembly 1b terminates with sockets at the end block 99 without any double-ended pins inserted therein. This configuration is illustrated in Figure 9b.
  • a high voltage power supply 92 with output sockets may be connected to a first cable plug 101 at a first end of a first extension cable 102.
  • the first cable plug 101 has double-end pins inserted into its sockets with the grooved ends inside in order to safely secure the first cable plug 101 to the power supply 92.
  • a second cable plug 103, located at the other opposite end of the first extension cable 102 preferably has output sockets.
  • the second cable plug 103 connects to a first end block 93 of a first ionizing bar 1a, the first end block 93 preferably has double-ended pins inserted into its sockets with the grooved ends inside.
  • the first cable plug 95 of the second extension cable 96 is connected to the second end block 94 of the first ionizing bar 1a, located at the opposite end of the ionizing bar 1a.
  • the second cable plug 97 on the other end of the second extension cable 96 connects to the first end block 98 of the second ionizing bar 1b.
  • the opposite end block 99 of the second ionizing bar 1b terminates with output sockets. This configuration is illustrated in Figure 9c.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Elimination Of Static Electricity (AREA)

Claims (24)

  1. Ionisierungs-Stabaufbau mit einem länglichen Gehäuse (11), das eine Vielzahl länglicher Schlitze (22a, 22b) und eine Vielzahl Emitterstifte (25) aufweist, die sich von diesen entlang der Länge des Gehäuses erstrecken, und mit einem Ionisierungs-Elektrodenmodul (13a, 13b), das in jedem der Vielzahl der länglichen Schlitze angeordnet ist, wobei Emitterstifte (25) an jedem Modul angebracht sind, um sich von der Vielzahl der Schlitze (22a, 22b) an ausgewählten Positionen entlang dieser zu erstrecken, dadurch gekennzeichnet, daß ein Leiter (29a, 29b) gleichmäßig entlang jedes der Vielzahl der Schlitze (22a, 22b) in Kontakt mit dem darin angeordneten Ionisierungs-Elektrodenmodul (13al, 13b) angeordnet ist.
  2. Ionisierungs-Stabaufbau nach Anspruch 1, dadurch gekennzeichnet, daß ein Endblock (15a, 15b; 51) aus dielektrischem Material an einem Ende des dielektrischen Gehäuses (11) angeordnet ist, um eine externe elektrische Verbindung zu dem Leiter (29a, 29b) in jedem der Vielzahl der Schlitze (22a, 22b) vorzusehen.
  3. Ionisierungs-Stabaufbau nach Anspruch 1 oder 2, gekennzeichnet durch eine Vielzahl von Ionisierungs-Elektrodenmodulen (13a, 13b), die jeweils eine gedruckte Schaltungsplatte (23a, 23b) mit einem Buselement (35a) darauf aufweisen, wobei die Emitterstifte (25) daran befestigt sind und sich von diesem erstrecken, und daß jeder der Leiter (29a, 29b) in Kontakt mit den Buselementen (35) der gedruckten Schaltungsplatten (23a, 23b) angeordnet ist, um die Ionisierungs-Elektrodenmodule (13a, 13), die in einem Schlitz (22a, 22b) angeordnet sind, miteinander zu verbinden.
  4. Ionisierungs-Stabaufbau nach Anspruch 3, dadurch gekennzeichnet, daß die Vielzahl der Ionisierungs-Elektrodenmodule (13a, 13b) in einer im wesentlichen fortlaufenden Anordnung entlang jeder der Vielzahl der länglichen Schlitze (22a, 22b) angeordnet sind, wobei deren Buselemente (35) über die Leiter (29a, 29b) mit diesen in Kontakt stehen.
  5. Ionisierungs-Stabaufbau nach Anspruch 3, dadurch gekennzeichnet, daß die Buselemente (35) jeweils auf einer ersten Seite jeder der gedruckten Schaltungsplatten (23 a, 23b) liegen und die Emitterstifte (25), die sich von diesen erstrecken, an Elektroden (45) angebracht sind, die auf einer zweiten Seite jeder der gedruckten Schaltungsplatten (23a, 23b) angebracht sind, und daß die Elektrodenfelder (15) mit den Buselementen (35) über Spuren (37) elektrisch verbunden sind, welche auf und durch die gedruckten Schaltungsplatten (23a, 23b) angeordnet sind, um die Elektrodenfelder (15) mit den zweiten Seiten der Buselemente (35) auf den ersten Seiten zu verbinden.
  6. Ionisierungs-Stabaufbau nach Anspruch 5, gekennzeichnet durch Widerstände (41), die jede der Elektrodenflächen (15), die auf der zweiten Seite der gedruckten Leiterplatte (23a, 23b) angeordnet sind, und die Buselemente, die auf der ersten Seite angeordnet sind, verbinden.
  7. Ionisierungs-Stabaufbau nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (11) ein Paar längliche Schlitze (22a, 22b) aufweist und daß die Gruppe der Emitterstifte der Ionisierungs-Elektrodenmodule (13a, 13b), die in dem Schlitzpaar (22a, 22b) angeordnet sind, in Längsrichtung gegenüber der Gruppe der Emitterstifte (25) der Ionisierungs-Elektrodenmodule (13a, 13b) in dem anderen Schlitzpaar (22a, 22b) versetzt sind, um die Emitterstifte (25), die sich von den in dem Schlitzpaar (22a, 22b) angeordneten Ionisierungs-Elektrodenmodulen (13a, 13b) erstrecken, mit Zwischenraum zueinander anzuordnen.
  8. Ionisierungs-Stabaufbau nach Anspruch 7, dadurch gekennzeichnet, daß die Gruppe der Emitterstifte (25) der Ionisierungs-Elektrodenmodule (13a, 13b) so angeordnet sind, daß sie sich von den Schlitzen (22a, 22b) mit konvergierenden Winkeln zueinander erstrecken.
  9. Ionisierungs-Stabaufbau nach Anspruch 2, gekennzeichnet durch ein Paar Endblökke (15a, 15b; 51), die an gegenüberliegenden Enden des Gehäuses (11) angeordnet sind, um externe elektrische Verbindungen an jedem Ende des Gehäuses (11) zu den Leitern (29a, 29b) innerhalb eines Schlitzpaars (22a, 22b) zu bilden.
  10. Ionisierungs-Stabaufbau nach Anspruch 9, gekennzeichnet durch einen zusätzlichen Ionisierungs-Stabaufbau (1b) mit Leitern (29a, 29b), die mit Buselementen der Ionisierungs-Elektrodenmodule innerhalb der länglichen Schlitze in Kontakt sind, und durch elektrische Verbindungen (96) über entsprechende Endblöcke (95, 97) zwischen den Leitern (29a, 29b), die in Kontakt sind mit den Ionisierungs-Elektrodenmodulen des Ionisierungs-Stabaufbaus (1a) und in Kontakt mit den Ionisierungs-Elektrodenmodulen des zusätzlichen Ionisierungs-Stabaufbaus (1b) sind.
  11. Ionisierungs-Stabaufbau nach Anspruch 2, dadurch gekennzeichnet, daß das Gehäuse (11) ein Paar länglicher Schlitze (22a, 22b) aufweist, wobei ein hohler Leiter (29a, 29b) entlang jedes Schlitzpaares gleichmäßig angeordnet ist, und daß wenigstens einer der Endblöcke (15a, 15b; 51) ein Paar Verbinder (55) aufweist, die jeweils einen leitenden geschlitzten Stift (56) umfassen, der in dem Endblock (15a, 15b; 51) angeordnet ist, um eine verschiebbare elektrische Verbindung innerhalb des hohlen Leiters (29a, 29b) in einem Schlitz an dem Ende des dielektrischen Gehäuses zu bilden, wenn der Endblock (15a, 15b; 51) mit dem Gehäuse (11) verschieblich in Eingriff gebracht wird, um eine externe elektrische Verbindung zum Zuführen hoher positiver und negativer Spannungen über den Endblock (15a, 15b; 51) an die Leiter (29a, 29b), die in Kontakt sind mit den Ionisierungs-Elektrodenmodulen (13a, 13b), welche in dem Schlitzpaar (22a, 22b) in dem Gehäuse (11) angeordnet sind, herzustellen.
  12. Ionisierungs-Stabaufbau nach Anspruch 11, dadurch gekennzeichnet, daß jeder der Blöcke (15a, 15b; 51) ein Paar Verbinder (55) aufweist, die jeweils einen leitenden Sokkel (59) haben, der hinter einer Öffnung in dem Endblock (15a, 15b; 51) angeordnet ist, und daß der leitende, geschlitzte Stift an dem leitenden Sockel angebracht ist.
  13. Ionisierungs-Stabaufbau nach Anspruch 12, dadurch gekennzeichnet, daß ein leitender Stift mit zwei Enden in jeden der leitenden Sockeln (59) in einem der Endblöcke (15a, 15b; 51) eingefügt und befestigt wird, so daß er durch die Öffnung vorsteht.
  14. Ionisierungs-Stabaufbau nach Anspruch 13, dadurch gekennzeichnet, daß der Endblock (15a, 15b; 51) mit den vorstehenden zweiendigen Stiften (73) mit einer Quelle einer hohen Ionisierungsspannung lösbar verbunden ist, um die hohe Ionisierungsspannung an die Ionisierungs-Elektrodenmodule (13a, 13b) anzulegen.
  15. Ionisierungs-Stabaufbau nach Anspruch 14, gekennzeichnet durch einen weiteren Ionisierungs-Stabaufbau (1b) und dadurch, daß der Endblock (15a, 15b; 51) mit leitenden Sockeln (59) mit den leitenden Stiften (73) in dem Endblock (15a, 15b; 51) des anderen Ionisierungs-Stabaufbaus (1a) elektrisch verbunden ist, um eine Gesamtlänge der Ionisierungs-Stabaufbauten (1a, 1b) vorzusehen, welche elektrisch miteinander verbunden sind, um die hohen Ionisierungsspannungen zu empfangen.
  16. Verfahren zum Herstellen des Ionisierungs-Stabaufbaud nach Anspruch 1, gekennzeichnet durch
    Ausbilden mehrerer Ionisierungs-Elektrodenmodule (13a, 13b), von denen jedes einen leitenden Bus aufweist, der entlang seiner Länge angeordnet ist, wobei Emitterstifte (25) mit diesem verbunden sind und sich entlang der Länge erstrecken; und durch Befestigen der mehreren Ionisierungs-Elektrodenmodule (13a, 13b) in einer fortlaufenden Anordnung mit jeder der Vielzahl von Schlitzen (22a, 22b) in dem Gehäuse (11), wobei die leitenden Busse der Ionisierungs-Elektrodenmodule (13a, 13b) in einem Schlitz elektrisch miteinander verbunden sind, und durch Schneiden des Gehäuses (11) quer zu der Vielzahl der Schlitze bei einer gewünschten Länge, nachdem die Ionisierungs-Elektrodenmodule (13a, 13b) in jedem der Vielzahl der Schlitze befestigt wurden.
  17. Verfahren nach Anspruch 16, gekennzeichnet durch das Ausbilden dielektrischer Endblöcke (15a, 15b; 51), die jeweils eine Ausnehmung zum Empfangen eines Endes des dielektrischen Gehäuses (11) darin und einen Verbinderaufbau haben, der darin angeordnet ist, um mit den leitenden Bussen an Ionisierungs-Elektrodenmnodulen (13a, 13b) in dem Schlitz (22a, 22b), die miteinander verbunden sind, verbunden zu werden, und durch Befestigen eines Blocks (15a, 15b; 51) mit einem Ende der gewünschten Länge des dielektrischen Gehäuses, wobei der Verbinderaufbau in Kontakt mit den leitenden Bussen in jeder der Vielzahl der Schlitze (22a, 22b) ist; und durch Anbringen eines anderen Endblocks (15a, 15b; 51) an einem gegenüberliegenden Ende des Gehäuses (11), wobei der Verbinderaufbau in Kontakt mit den leitenden Bussen in jeder der Vielzahl der Schlitze (22a, 22b) ist.
  18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß die Ionisierungs-Elektrodenmodule (13a, 13b) in einem Schlitzpaar (22a, 22b) befestigt werden, wobei sich die Emitterstifte (25) mit konvergierenden Winkeln zueinander von diesem erstrecken, wobei die Spitzen der Emitterstifte (25) im wesentlichen ausgerichtet und in Längsrichtung mit Abstand entlang einer gemeinsamen Zentralachse angeordnet sind.
  19. Verfahren nach Anspruch 16, 17 oder 18, gekennzeichnet durch Positionieren eines Leiters (29a, 29b) gleichmäßig entlang der Länge jeder der Vielzahl der Schlitze (22a, 22b) zum elektrischen Verbinden der Ionisierungs-Elektrodenmodule (13a, 13b), die in diesen Schlitzen (22a, 22b) angebracht sind.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Ionisierungs-Elektrodenmodule (13a, 13b) als gedruckte Schaltungsplatten hergestellt werden, die mit einer Busspur auf einer Seite ausgebildet werden, wobei die Emitterstifte (25) mit der Busspur verbunden werden und sich von der gegenüberliegenden Seite erstrecken; und daß die gedruckten Schaltungsplatten in jedem der Vielzahl der Schlitze (22a, 22b) angeordnet werden, wobei die Busspuren auf jeder der gedruckten Schaltungsplatten in einem Schlitz (22a, 22b) in elektrischem Kontakt mit dem Leiter (29a, 29b) darin sind, um einen kontinuierlichen elektrischen Schaltkreis entlang der Länge des Gehäuses (11) zu bilden.
  21. Verfahren nach Anspruch 19, gekennzeichnet durch das Herstellen eines Paares dielektrischer Endblöcke (15a, 15b; 51), die jeweils eine Ausnehmung zum Aufnehmen von Enden des dielektrischen Gehäuses (11) darin aufweisen, wobei die Ionisierungs-Elektrodenmodule (13a, 13b) darin befestigt sind, und wenigstens eines elektrischen Leiters (55), der zur Verbindung mit dem Leiter (29a, 29b) an dem Ende des Gehäuses (11) innerhalb der Ausnehmung darin aufgenommen wird, in elektrischem Kontakt mit den Ionisierungs-Elektrodenmodulen (13a, 13b), um eine externe elektrische Verbindung zum Anlegen einer hohen Ionisierungsspannung zu bilden.
  22. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß in jedem Endblock (15a, 15b; 51) jeder Verbinderaufbau ein Paar elektrisch gekoppelter leitender Verbinder (55) aufweist, die in dem Endblock (15a, 15b; 51) für die Verbindung an dem Ende des Gehäuses (11) mit den leitenden Bussen der in einem Schlitz (22a, 22b) angebrachten Ionisierungs-Elektrodenmodule (13a, 13b) aufgenommen sind, wobei einer aus dem Paar leitender Verbinder (55) von innerhalb der Ausnehmung zugänglich ist und der andere des Paares leitender Verbinder (55) von einer anderen Seite desselben Endblocks (15a, 15b; 51) zugänglich ist, und daß ein Endblock an einem Ende des Gehäuses (11) angebracht ist, wobei der leitende Bus eines Ionisierungs-Elektrodenmoduls (13a, 13b) in einem Schlitz (22a, 22b) mit einem aus dem Paar leitender Verbinder elektrisch verbunden ist, und daß der andere Endblock (15a, 15b; 51) an einem gegenüberliegenden Ende des Gehäuses (11) angebracht ist, wobei der leitende Bus eines Ionisierungs-Elektrodenmoduls (13a, 13b) in dem einen Schlitz mit einem aus dem Paar leitender Verbinder elektrisch verbunden ist, um externe elektrische Verbindungen zu den leitenden Bussen der Ionisierungs-Elektrodenmodule (13a, 13b) in einem Schlitz und den beiden gegenüberliegenden Enden des Gehäuses (11) über jeden anderen aus dem Paar leitender Verbinder, der von der anderen Seite des Endblocks (15a, 15b; 51) zugänglich ist, bereitzustellen.
  23. Verfahren nach Anspruch 22, gekennzeichnet durch das Ausbilden eines zusätzlichen Ionisierungs-Stabaufbaus gewünschter Länge; und Anbringen von Endblöcken (15a, 15b; 51) an Enden des Gehäuses (11) des zusätzlichen Ionisierungs-Stabaufbaus; und elektrisches Koppeln der leitenden Busse der Ionisierungs-Elektrodenmodule (13a, 13b) in den Schlitzen innerhalb der getrennten Gehäuse (11) des Ionisierungs-Stabaufbaus und des zusätzlichen Ionisierungs-Stabaufbaus durch die anderen Verbinder der Paare leitender Verbinder, die von dieser anderen Seite der Endblöcke (15a, 15b; 51), die an dem getrennten Gehäuse (11) angebracht sind, zugänglich sind.
  24. Verfahren zum Entfernen elektrostatischer Ladung von einem beweglichen dielektrischen Netz mittels des Ionisierungs-Stabaufbaus nach Anspruch 2, dadurch gekennzeichnet, daß das längliche Gehäuse (11) quer zur Bewegung des dielektrischen Netzes angeordnet wird, wobei die Emitterstifte (52) in großer Nähe zu einer Oberfläche des Netzes angeordnet sind; und daß hohe Ionisierungsspannungen an die Ionisierungs-Elektrodenmodule (13a, 13b) angelegt werden, die in jedem der Vielzahl von Schlitzen (22a, 22b) angeordnet sind, um in der Nähe der Oberfläche des Netzes benachbart den Spitzen der Emitterstifte (25) Ionen zu bilden, wobei die Emitterstifte im wesentlichen ausgerichtet entlang einer Querachse relativ zur Bewegung des Netzes sind.
EP05002597A 1999-03-12 2000-03-10 Ionisationsstab und Verfahren zu dessen Herstellung Expired - Lifetime EP1583404B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12423199P 1999-03-12 1999-03-12
US124231P 1999-03-12
US519159 2000-03-06
US09/519,159 US6330146B1 (en) 1999-03-12 2000-03-06 Piezoelectric/electrostrictive device and method of manufacturing same
EP00913856A EP1161854B1 (de) 1999-03-12 2000-03-10 Ionisationsstab und verfahren zu dessen herstellung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00913856A Division EP1161854B1 (de) 1999-03-12 2000-03-10 Ionisationsstab und verfahren zu dessen herstellung

Publications (2)

Publication Number Publication Date
EP1583404A1 EP1583404A1 (de) 2005-10-05
EP1583404B1 true EP1583404B1 (de) 2007-05-23

Family

ID=34890752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05002597A Expired - Lifetime EP1583404B1 (de) 1999-03-12 2000-03-10 Ionisationsstab und Verfahren zu dessen Herstellung

Country Status (1)

Country Link
EP (1) EP1583404B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034651A (en) * 1990-02-23 1991-07-23 Eltex-Electrostatik-Gmbh High-voltage electrode
DE19602510A1 (de) * 1996-01-25 1997-07-31 Haug Gmbh & Co Kg Vorrichtung zur Neutralisierung elektrostatischer Ladungen
DE59800829D1 (de) * 1997-04-08 2001-07-19 Klaus Domschat Hochspannungselektroden-Anordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1583404A1 (de) 2005-10-05

Similar Documents

Publication Publication Date Title
EP1161854B1 (de) Ionisationsstab und verfahren zu dessen herstellung
US4983132A (en) Connector for mating bus bars
US4981449A (en) Connector for mating multi-layer blade-shaped members
EP2608338B1 (de) Endgerätverbindungsvorrichtung für ein Stromkabel
JP2574275B2 (ja) 電気コネクタ
US4181384A (en) Flat cable connector having wire deployment means
US4878862A (en) Connector for mating two bus bars
EP1313179B1 (de) Einpress-Sammelschiene für Leistungsversorgung
US7909649B2 (en) Connection device for local area network
US4487463A (en) Multiple contact header assembly
US4755145A (en) Electrically connecting circuit board system
US4869676A (en) Connector assembly for use between mother and daughter circuit boards
US4553799A (en) Electrical connector clip assembly
EP0637104A2 (de) Verbinder für flexibles Flachkabel
US5580271A (en) SCSI cable with termination circuit and method of making
US5989073A (en) Panel feedthrough terminal block assembly
WO2002049174A2 (en) Power distribution circuit board with bullet connectors
US4707040A (en) Connector for coaxially shielded cable
EP1158616A2 (de) Leistungssteckverbinder für den Anschluss an eine Leiterplatte
EP1583404B1 (de) Ionisationsstab und Verfahren zu dessen Herstellung
CN111384614B (zh) 端子组件和电源连接器
US4708659A (en) PC board connector with shorting bus bar
CA1207047A (en) Electrically connecting
CN111812364A (zh) 计量接线盒
EP4078732B1 (de) Klemmenblock-baugruppe für mittel- und hochspannungsanwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1161854

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 20060309

AKX Designation fees paid

Designated state(s): CH DE GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1161854

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60034975

Country of ref document: DE

Date of ref document: 20070705

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080328

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60034975

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120301 AND 20120307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60034975

Country of ref document: DE

Owner name: ILLINOIS TOOL WORKS INC., US

Free format text: FORMER OWNER: ION SYSTEMS, INC., BERKELEY, US

Effective date: 20120206

Ref country code: DE

Ref legal event code: R082

Ref document number: 60034975

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT, DE

Effective date: 20120206

Ref country code: DE

Ref legal event code: R081

Ref document number: 60034975

Country of ref document: DE

Owner name: ILLINOIS TOOL WORKS INC., GLENVIEW, US

Free format text: FORMER OWNER: ION SYSTEMS, INC., BERKELEY, CALIF., US

Effective date: 20120206

Ref country code: DE

Ref legal event code: R082

Ref document number: 60034975

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

Effective date: 20120206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190404

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60034975

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200309