EP1576406A2 - Optical device for observing samples on a support, designed in particular for a cytometer - Google Patents

Optical device for observing samples on a support, designed in particular for a cytometer

Info

Publication number
EP1576406A2
EP1576406A2 EP03807869A EP03807869A EP1576406A2 EP 1576406 A2 EP1576406 A2 EP 1576406A2 EP 03807869 A EP03807869 A EP 03807869A EP 03807869 A EP03807869 A EP 03807869A EP 1576406 A2 EP1576406 A2 EP 1576406A2
Authority
EP
European Patent Office
Prior art keywords
lens
plano
observation
optical device
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03807869A
Other languages
German (de)
French (fr)
Inventor
Michel Delaage
Pierre Delaage
Michel Lequime
Jean-Michel Decaudin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trophos SA
Original Assignee
Trophos SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trophos SA filed Critical Trophos SA
Publication of EP1576406A2 publication Critical patent/EP1576406A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/36Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged + -- +
    • G02B9/38Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged + -- + both - components being meniscus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements

Definitions

  • Optical device for the observation of samples on a support intended in particular for a cytometer
  • the present invention relates to an optical device for the observation of samples on a support, this device being intended in particular for a cytometer.
  • the present invention is more particularly intended for a device such as that revealed by document WO-01/88593 by the same Applicant.
  • a device of this type is used in particular for the rapid analysis of a large number of samples placed on the same support, for example a plate, these samples being constituted for example of cells, in particular adherent, eukaryotic, prokaryotic cells. , plants, etc. or other objects, such as microparticles or microdeposits.
  • the device described comprises a support positioning plate carrying the samples, an observation objective, means for illuminating at least part of the support and means for acquiring an image at the output of the objective d 'observation.
  • the support is generally in the form of a tray comprising a set of adjacent cells each intended to receive a sample.
  • This support is placed on the positioning plate and is then in a plane perpendicular to the axis of the observation objective.
  • This objective can be placed above or below the support provided with cells.
  • the observation is made directly above the sample and in the second case it is done through the underside of the support, through the bottom of each cell.
  • the positioning plate makes it possible to move the support while maintaining it in the same plane perpendicular to the observation axis so as to bring each cell successively opposite the observation objective.
  • the present invention therefore finds an application for example in the field of cytometry which consists in disposing cell cultures in optically transparent cells, subjecting them to chemical stresses and observing the evolution of cells by fluorescence imaging. We then seek to assess the number and size of living cells present in cultures, the aim being to observe their reaction to chemical stresses. The number of cells is generally very large and the very high frequency of observation. This limits the possibilities of observation and counting by an operator. Automatic methods then allow this counting and measurement.
  • the living cells are very small (their size is of the order of a few microns) while the field of observation is large (size of the order of a few millimeters) compared to the size of these cells. It is therefore necessary, while observing a large field, to be able to detect elements of small size.
  • the number of fluorescent molecules per cell is low.
  • the light available to image the cells is also weak, especially compared to the light required to excite fluorescence.
  • the optical system used must therefore be able to transport and separate the light used to excite the fluorescence and that resulting from the fluorescence.
  • the present invention therefore aims to provide an optical device which allows, under conditions satisfactory for subsequent analysis, to be able, in a single shot, to observe an entire cell, even of large size.
  • this optical device will preferably have very good resolution, a large numerical aperture and a spectral width capable of recovering the emission of fluorescence from the ultraviolet to the near infrared.
  • an optical device intended in particular for the observation of samples on a support in the field of biology, comprising a front face located on the side of the sample, or the like, to be observed and a rear face oriented towards means for acquiring an image or a user.
  • this observation device comprises a combination of four aligned lenses, and the lenses are arranged in the following order, from front to rear: a plano-convex lens, a diverging meniscus lens, a plano-concave lens and a biconvex lens, the plano-concave and plano-convex lenses respectively being such that they each have on the one hand a substantially planar face and on the other hand a concave face or a convex face respectively.
  • the optical device according to the invention has the advantage of having a large angular field which makes it possible to see an entire sample in the case of the use of the device for the observation of samples placed in wells of culture plates.
  • This configuration of the optical device also makes it possible to have a large digital aperture which makes this device a luminous device.
  • the lenses are grouped into two doublets, a front doublet with the plano-convex lens and the diverging meniscus lens and a rear doublet with the plano-concave lens and the biconvex lens.
  • the rear doublet is a bonded doublet for which the front radius of curvature of the biconvex lens corresponds to the radius of curvature of the spherical rear face of the plano-concave lens, and the two lenses of each doublet are made of materials with different refractive indices.
  • a doublet (the rear doublet) which can be glued.
  • the front doublet is for example a detached doublet but it can also be a doubled detached in the center but glued on its periphery.
  • the two lenses located in the center of the optical device have a refractive index greater than the refractive index of the lenses located outside the optical device.
  • the plano-convex lens has a rear face whose radius of curvature is between -30 and -32.5 mm and a substantially flat front face, a diameter between 15 and 20 mm and a thickness in the center between 2 and 4 mm
  • the diverging meniscus lens has a rear face of which the radius of curvature is between -22.5 and -25 mm and a front face whose radius of curvature is between -17 and -18.5 mm, a diameter substantially equal to the diameter of the plano-convex lens as well as '' a thickness in the center between 1 and 2 mm
  • the plano-concave lens has a rear face whose radius of curvature corresponds to the radius of curvature of the front face of the biconvex lens, a diameter between 22 and 26 mm as well as '' a thickness at the center of between 1 and 3.5 mm
  • the rear biconvex lens has a rear face whose radius of curvature is between -30 and -32.5 mm and
  • a device can also include light-emitting diodes arranged in a ring. Exciting light from the diodes travels around the fluorescent light cone which will pass through the optical device to form the image. Lenses which concentrate the excitation light are coaxial with the optical device and are pierced with a central hole giving way to the fluorescent light. These concentration lenses are either of the conventional type or of the Fresnel type.
  • the present invention also relates to an observation or analysis device for one or more samples placed on a support, in particular a plate, comprising an observation objective of at least part of a sample along an axis of observation from an observation face of the support, a support positioning plate adapted to ensure relative movement between the support and the observation axis in a plane perpendicular to the axis observation, while allowing free vertical movement, means for illuminating at least part of a sample and means for acquiring an image at the output of the objective, characterized in that the objective observation system includes an optical device as described above.
  • the means for acquiring an image comprise, for example, a fixed focal lens as focusing optics.
  • These image acquisition means can also include a zoom as focusing optics in order to be able to easily change the size of the image and optimally use the optical device according to the invention, but this is done at the cost of a annoying vignetting.
  • this observation device comprises behind the optical device a filtration device having variable spectral properties.
  • This filtration device can be here, for example, a filter carousel or even a liquid crystal filter, the spectral properties of which are electronically controllable.
  • One can also advantageously provide on the path of the fluorescence light a dichroic mirror returning a part of this light to second observation means.
  • FIG. 1 schematically shows in section a cellular analyzer equipped with an optical device according to the invention
  • FIG. 2 corresponds to FIG. 1 for an alternative embodiment of the cellular analyzer equipped with the same optical device
  • FIG. 3 shows in more detail and on an enlarged scale the optical device according to the invention
  • Figure 4 is a sectional view on an enlarged scale compared to Figures 1 and 2 of a cap usable in combination with the device of Figure 3 and incorporating light sources.
  • the present invention applies for example to a cellular analyzer such as that described in document WO-01/88593. Reference is made to this document, more particularly to its FIG. 1 and to the corresponding description, with regard to the general structure of this cellular analyzer. The remainder of this description is made with reference to such a cellular analyzer.
  • This analyzer is intended in particular for the observation of the fluorescence of cellular samples contained in wells 2 of a titration plate 4, also called culture plate.
  • this titration plate 4 is held in a movable frame 6 of a positioning plate mounted on a frame not shown here.
  • This plate has a substantially flat bottom 8 which forms the bottom of the wells 2 containing the samples to be observed.
  • This bottom 8 rests on a sleeve 10 of generally frustoconical shape and itself mounted on a fixed objective 12 relative to the frame of the analyzer.
  • the present invention relates to this objective 12 which will be described in more detail with reference to FIG. 3 in the following description.
  • FIG. 1 there is also a source of illumination 14 which sends light towards the titration plate 4, through the objective 12, this light being first of all reflected on a prism 16 of return.
  • a camera 18 produces an image representative of the radiation emitted by the samples located in the wells 2 of the titration plate 4. This radiation also passes through the objective 12 and is directed towards the camera 18 via a mirror inclined 20.
  • the optical axes of the illumination source 14 and of the camera 18 are shown in FIG. 1 as being parallel whereas they may for example be perpendicular to each other.
  • a focusing optic 19 very schematically represented by a double arrow is mounted on the front of the camera 18.
  • the titration plate 4 is arranged horizontally, the bottom 8 then constituting the underside of this plate.
  • the wells 2 then open on the upper face of this plate. These are cylindrical wells of circular or square section.
  • the bottom of each well is substantially flat and horizontal.
  • the edges 22 of the titration plate 4 and the movable frame 6, having a peripheral rim 24, cooperate as described in document WO-01/88593 to allow the free movement of the plate 4 in the direction of the axis of observation, which here is the vertical direction.
  • the sleeve 10 forms a spacer between the titration plate 4 and the objective 12. It has a generally frustoconical shape and its axis of revolution substantially coincides with the axis observation 26 which is also the axis of the objective 12. As indicated in the aforementioned document, the dimensions of this sleeve vary as a function of the objective 12 (and also of the size of the wells 2 of the titration plate 4).
  • the present invention relates more particularly to the objective 12 (which replaces the device bearing the reference 15 in the document WO-01/88593).
  • This objective is shown on an enlarged scale in FIG. 3.
  • this objective is symbolized by two double arrows, each double arrow schematically representing a pair of lenses.
  • FIG. 3 shows the bottom 8 of the titration plate 4.
  • this titration plate is disposed at the front of the objective 12 while the camera 18 is at the rear of this objective 12.
  • the front is oriented towards the top of the figure while the rear is towards the bottom of it.
  • the objective 12 shown comprises two pairs of lenses.
  • the front doublet comprises a plano-convex lens 28 and a divergent meniscus lens 30.
  • the rear doublet consists of a plano-concave lens 32 and a biconvex lens 34.
  • the plano-convex lenses 28 and plano-concave 32 have preferably a planar surface but it can also possibly be a substantially planar surface, that is to say one which has for example a large radius of curvature. All these lenses are spherical lenses and are all centered on the same axis, the axis 26 of the lens 12. As indicated above, this is a vertical axis. It is substantially perpendicular to the bottom 8 of the titration plate 4 for a better observation of the latter.
  • the first lens that is to say the plano-convex lens 28, is made of material of the Schott BK7 brand and has the following geometric characteristics:
  • the divergent meniscus lens 30 is made of the material known under the brand Schott F2. In particular, it has a refractive index n d of 1, 62004
  • This divergent meniscus lens 30 has the following geometric characteristics:
  • the lenses 28 and 30 thus form a first doublet.
  • This doublet can be peeled off, but one can also consider making a doublet peeled off in the center but glued on its periphery.
  • the latter solution facilitates the integration of this doublet into the frame of the analyzer.
  • the plano-concave lens 32 is made of a material sold under the brand Schott F2. It has the following geometric characteristics:
  • Diameter 24 mm +/- 2 mm
  • the biconvex lens 34 is produced from a material sold under the brand Schott BK7.
  • This fourth lens has the following geometric characteristics: Radius of curvature of the front face: 29.06 mm +/- 1 mm
  • Diameter 24 mm +/- 2 mm
  • These lenses 32 and 34 thus form a second doublet which is glued.
  • a convex face of the biconvex lens 34 conforms to the concave face of the plano-concave lens 32.
  • the flat faces of the two doublets are oriented forward.
  • the distance between them is 22.6 mm (+/- 2 mm).
  • the materials indicated are materials commonly used for the production of lenses. Other materials can also be considered. However, materials preferably chosen having, relative to the materials described, optical glasses equivalent in terms of refractive index and dispersion in a range of +/- 3%.
  • Such an objective has a large angular field which allows it to fully see the bottom of a well 2 while being placed at relatively short distance from this bottom.
  • the dimensions indicated above are adapted to be able to gather on a single image the bottom of a well with a diameter of 7 mm.
  • the numerical values indicated above can all be multiplied by the same coefficient, which then makes it possible to obtain a similar device by homothety.
  • the objective described above has the advantage of being of a low cost price. It uses traditional optical materials that are commonly used to make lenses. The lenses used do not have an aspherical surface. Their realization is thus facilitated and their cost price is therefore limited. Finally, only four lenses are necessary to achieve the objective described above. Note that the Gauss objectives usually used have at least six lenses.
  • the focusing optic 19 associated with the camera 18. This focusing optic 19 may for example be a commercial lens with fixed focal length. It is also possible to plan to use a zoom as the focusing optic. This makes it possible to easily change the size of the image and makes it possible to optimize the use of the objective according to the invention. However, the use of a focusing zoom causes vignetting problems.
  • the objective 12 can also be used in combination with a ring of light-emitting diodes 36 (FIG. 2). These diodes then replace the light source 14.
  • An individual lens is associated with each light-emitting diode 36 in order to make the light emitted by all these diodes approximately parallel.
  • a Fresnel lens 38 then allows the light from the diodes 36 to be guided towards the sample to be observed.
  • the light-emitting diodes 36 used here are, for example, diodes similar to those described in the European patent application published under No. 1,031,326.
  • the lens 12 is mounted in a conventional manner in a tubular housing not shown.
  • a tubular support 40 then covers the housing of the objective 12.
  • a locking screw 42 is advantageously provided for securing the tubular support 40 on the housing of the objective 12.
  • An annular plate 44 integral with the tubular support 40, surrounds the latter and is arranged orthogonally with respect to the axis 26 of the objective 12.
  • This annular plate 44 carries the sleeve 10.
  • the latter is preferably made of metal and has on its inner face means for fixing the Fresnel lens 38.
  • FIG. 2 makes it possible to have an excitatory light cone surrounding the light cone resulting from the fluorescence of the sample to be observed.
  • the excitation light and fluorescence cones are on the same axis. This makes it possible to have a coaxial mounting of the camera 18 with the lens 12.
  • FIG 4 shows in more detail and on an enlarged scale the mounting of an optical device according to the invention in a third embodiment a cell analyzer.
  • This embodiment is similar to that shown in Figure 2. Indeed, we find here light emitting diodes 36 arranged in a ring. Here these diodes are arranged on two concentric rings relative to the lens 12. This crown mounting makes it possible inter alia to have a coaxial mounting of the camera 18 with the lens 12.
  • the objective 12 is mounted in this embodiment inside a tubular part 46. Shoulders are provided inside this tubular part for positioning the flat surfaces of the plano-concave 32 and plano-convex lenses 28.
  • the tubular part 46 is screwed onto a base 48.
  • the latter carries a ring 50 carrying the light-emitting diodes 36. This ring 50 is mounted concentrically with respect to the tubular part 46.
  • first ring 50 On this first ring 50 is superimposed a second ring 52.
  • the same screws 54 simultaneously maintain the two rings 50 and 52 on the base 48.
  • the second base 52 carries two conventional lenses 56 pierced in their center to allow their concentric mounting around the tubular part 46. These lenses 56 concentrate the exciting light coming from the light-emitting diodes 36 in the direction of the sample to be observed.
  • the sleeve 10 is fixed with a locking screw 58 to the second ring 52.
  • FIG. 4 Note in FIG. 4 the presence of a filter 60 disposed each time between a ring of light-emitting diodes 36 and the lenses 56. These two filters 60 are mounted, in the embodiment shown, on the first ring 50.
  • the excitation light is produced at the periphery of the device and is concentrated towards the sample to be observed while the fluorescence light coming from this sample passes through the device at its center.
  • a filter 62 is placed between the lens 12 and the camera. As can be seen in FIG. 4, this filter 62 is mounted in the tubular part 46, below the two doublets of the objective 12.
  • the light emitting diodes 36 emit at different wavelengths.
  • Each ring of diodes corresponds to a wavelength.
  • a first ring of diodes emitting radiation of a wavelength around 470 nm (+/- 15 nm) is thus chosen, for example, and a second ring of diodes emitting radiation of a wavelength is around situated around 635 nm (+/- 15 nm).
  • Such an illumination device makes it possible to properly illuminate the bottom of a well 2, and this over its entire surface.
  • the entire surface of the well is illuminated at the same time by the incident beam from the light-emitting diodes 36. In this way, the entire surface of the sample is excited simultaneously.
  • the power supply for the two sets of diodes can be alternated. Two successive images are then preferably produced, which are then compared by a computer using software which performs a pixel by pixel comparison for the cytometric analysis.
  • the embodiments using diodes arranged in a crown are also advantageous because they allow the axis of illumination, observation as well as the axis of the camera to coincide.
  • the optical device according to the invention can be used with all types of device for analyzing fluorescent light.
  • a color camera, TriCCD, or a Bayer filter for example, is used.
  • a filter carousel allowing the capture of successive images in several different spectral channels, is placed behind the optical device object of the invention. This filter carousel can take place immediately before or after the stop filter 62.
  • the filter carousel is replaced by a liquid crystal filter, the spectral properties of which are electronically controllable.
  • a 45 ° dichroic mirror which returns part of the light to a second camera is installed on the path of the fluorescence light. The images are then taken simultaneously.
  • a device thus equipped can be used for energy transfer measurements between a donor and an acceptor inside the cell, called FRET (Fluorescence Resonance Energy Transfer).
  • FRET Fluorescence Resonance Energy Transfer
  • the present invention is not limited to the embodiments described above by way of nonlimiting examples. It also relates to all the variant embodiments within the reach of those skilled in the art, within the scope of the claims below.
  • the optical device described above is integrated into a cellular analyzer taking pictures automatically and analyzing the images obtained using a computer and software.
  • this objective is mounted in a manual cellular analyzer in which a user manually moves a titration plate in front of the objective and directly observes the samples deposited in this plate. titration.
  • the optical device can also be used in any device of the microscope type, with applications in particular in the field of biology but also for example of electronics.
  • the optical device according to the invention can be used with all types of illumination sources. It can thus be, for example, a lamp, a laser, light-emitting diodes, etc. It is also conceivable to eliminate the source of illumination and / or to provide an external source.
  • the camera all types of cameras can be used. It is also possible to have no camera at all, for example in the case of an eye analysis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention concerns an optical device (12) comprising a front surface located on the side of the sample to be observed and a rear surface oriented towards the means for acquiring (18, 19) an image or a user. It further comprises a combination of four aligned lenses. The lenses are arranged in the following sequence from the front rearwards: a plano-convex lens (28), a convexo-concave lens (30), a plano-concave lens (32) and a biconvex lens (34). The plano-concave (32) and the plano-convex lenses are respectively such that they each have a substantially planar surface and a concave surface or convex surface respectively. The invention is applicable to a cell analyzer.

Description

Dispositif optique pour l'observation d'échantillons sur un support, destiné notamment à un cytomètre Optical device for the observation of samples on a support, intended in particular for a cytometer
La présente invention concerne un dispositif optique pour l'observation d'échantillons sur un support, ce dispositif étant destiné notamment à un cytomètre.The present invention relates to an optical device for the observation of samples on a support, this device being intended in particular for a cytometer.
La présente invention est plus particulièrement destinée à un dispositif tel celui révélé par le document WO-01/88593 du même Demandeur. Un dispositif de ce type est utilisé notamment pour l'analyse rapide d'un grand nombre d'échantillons disposés sur un même support, par exemple une plaque, ces échantillons étant constitués par exemple de cellules, en particulier de cellules adhérentes, eucaryotes, procaryotes, végétales, etc .. ou d'autres objets, tels que microparticules ou des microdépôts. Le dispositif décrit comporte une platine de positionnement du support portant les échantillons, un objectif d'observation, des moyens d'illumination d'au moins une partie du support et des moyens d'acquisition d'une image en sortie de l'objectif d'observation.The present invention is more particularly intended for a device such as that revealed by document WO-01/88593 by the same Applicant. A device of this type is used in particular for the rapid analysis of a large number of samples placed on the same support, for example a plate, these samples being constituted for example of cells, in particular adherent, eukaryotic, prokaryotic cells. , plants, etc. or other objects, such as microparticles or microdeposits. The device described comprises a support positioning plate carrying the samples, an observation objective, means for illuminating at least part of the support and means for acquiring an image at the output of the objective d 'observation.
Le support se présente généralement sous la forme d'un plateau comportant un ensemble d'alvéoles adjacentes destinées chacune à recevoir un échantillon. Ce support est placé sur la platine de positionnement et se trouve alors dans un plan perpendiculaire à l'axe de l'objectif d'observation. Cet objectif peut être placé au-dessus ou au-dessous du support muni d'alvéoles. Dans le premier cas, l'observation s'effectue directement au-dessus de l'échantillon et dans le second cas elle s'effectue au travers de la face inférieure du support, au travers du fond de chaque alvéole. La platine de positionnement permet de déplacer le support en le maintenant dans un même plan perpendiculaire à l'axe d'observation de manière à amener successivement chaque alvéole face à l'objectif d'observation.The support is generally in the form of a tray comprising a set of adjacent cells each intended to receive a sample. This support is placed on the positioning plate and is then in a plane perpendicular to the axis of the observation objective. This objective can be placed above or below the support provided with cells. In the first case, the observation is made directly above the sample and in the second case it is done through the underside of the support, through the bottom of each cell. The positioning plate makes it possible to move the support while maintaining it in the same plane perpendicular to the observation axis so as to bring each cell successively opposite the observation objective.
La présente invention trouve donc une application par exemple dans le domaine de la cytométrie qui consiste à disposer des cultures de cellules dans des alvéoles optiquement transparentes, les soumettre à des sollicitations chimiques et observer l'évolution des cellules par imagerie de fluorescence. On cherche alors à évaluer le nombre et la dimension des cellules vivantes présentes dans les cultures, la finalité étant d'observer leur réaction par rapport aux sollicitations chimiques. Le nombre de cellules est en général très important et la fréquence d'observation très élevée. Ceci limite les possibilités d'observation et de comptage par un opérateur. Des méthodes automatiques permettent alors ce comptage et cette mesure.The present invention therefore finds an application for example in the field of cytometry which consists in disposing cell cultures in optically transparent cells, subjecting them to chemical stresses and observing the evolution of cells by fluorescence imaging. We then seek to assess the number and size of living cells present in cultures, the aim being to observe their reaction to chemical stresses. The number of cells is generally very large and the very high frequency of observation. This limits the possibilities of observation and counting by an operator. Automatic methods then allow this counting and measurement.
Les contraintes pour réaliser le comptage et la mesure des cellules sont nombreuses. On remarque que les cellules vivantes sont très petites (leur taille est de l'ordre de quelques microns) alors que le champ d'observation est grand (taille de l'ordre de quelques millimètres) par rapport à la taille de ces cellules. Il faut donc, tout en observant un champ important, pouvoir détecter des éléments de petite taille. En outre, le nombre de molécules fluorescentes par cellule est faible. De ce fait, la lumière disponible pour faire l'image des cellules est également faible, surtout comparé à la lumière nécessaire pour exciter la fluorescence. Le système optique utilisé doit donc pouvoir véhiculer et séparer la lumière servant à l'excitation de la fluorescence et celle issue de la fluorescence.There are many constraints to counting and measuring cells. Note that the living cells are very small (their size is of the order of a few microns) while the field of observation is large (size of the order of a few millimeters) compared to the size of these cells. It is therefore necessary, while observing a large field, to be able to detect elements of small size. In addition, the number of fluorescent molecules per cell is low. As a result, the light available to image the cells is also weak, especially compared to the light required to excite fluorescence. The optical system used must therefore be able to transport and separate the light used to excite the fluorescence and that resulting from the fluorescence.
A ces contraintes techniques viennent également se rajouter les contraintes économiques. Pour des raisons de productivité, l'analyse doit se faire rapidement. Il faut également que le coût de l'appareil proposé soit acceptable par le marché.In addition to these technical constraints, there are also economic constraints. For productivity reasons, the analysis must be done quickly. The cost of the proposed device must also be acceptable to the market.
Dans les cytomètres de l'art antérieur, tels celui par exemple décrit dans le document WO-01/88593, l'optique utilisée est basée sur une optique de microscope et ne permet pas de répondre de façon satisfaisante aux contraintes indiquées précédemment. Toutefois cette solution est généralement retenue à cause de son prix de revient. Avec une telle optique, lorsque les alvéoles sont des alvéoles de grandes tailles (jusqu'à 7, voire 10 mm), il est nécessaire de réaliser quatre prises de vue pour une même alvéole, ces quatre prises de vue étant ensuite combinées pour reconstituer une seule image. Bien entendu, ce procédé est pénalisant en terme de cadence et de productivité.In the prior art cytometers, such as that described for example in document WO-01/88593, the optics used are based on a microscope optics and do not make it possible to satisfactorily respond to the constraints indicated above. However, this solution is generally chosen because of its cost price. With such an optic, when the cells are large cells (up to 7 or even 10 mm), it is necessary to take four shots for the same cell, these four shots then being combined to reconstruct a single image. Of course, this process is penalizing in terms of speed and productivity.
La présente invention a alors pour but de fournir un dispositif optique qui permette, dans des conditions satisfaisantes pour l'analyse ultérieure, de pouvoir, en une seule prise de vue, observer toute une alvéole, même de grande taille. Bien entendu, ce dispositif optique présentera de préférence une très bonne résolution, une grande ouverture numérique et une largeur spectrale capable de récupérer l'émission de fluorescence de l'ultraviolet au proche infrarouge.The present invention therefore aims to provide an optical device which allows, under conditions satisfactory for subsequent analysis, to be able, in a single shot, to observe an entire cell, even of large size. Of course, this optical device will preferably have very good resolution, a large numerical aperture and a spectral width capable of recovering the emission of fluorescence from the ultraviolet to the near infrared.
A cet effet, elle propose un dispositif optique destiné notamment à l'observation d'échantillons sur un support dans le domaine de la biologie, comportant une face avant se trouvant du côté de l'échantillon, ou similaire, à observer et une face arrière orientée vers des moyens d'acquisition d'une image ou un utilisateur.To this end, it offers an optical device intended in particular for the observation of samples on a support in the field of biology, comprising a front face located on the side of the sample, or the like, to be observed and a rear face oriented towards means for acquiring an image or a user.
Selon l'invention, ce dispositif d'observation comporte une combinaison de quatre lentilles alignées, et les lentilles sont disposées dans l'ordre suivant, de l'avant vers l'arrière : une lentille plan-convexe, une lentille ménisque divergente, une lentille plan-concave et une lentille biconvexe, les lentilles plan-concave et plan-convexe respectivement étant telles qu'elles présentent chacune d'une part une face sensiblement plane et d'autre part une face concave ou une face convexe respectivement.According to the invention, this observation device comprises a combination of four aligned lenses, and the lenses are arranged in the following order, from front to rear: a plano-convex lens, a diverging meniscus lens, a plano-concave lens and a biconvex lens, the plano-concave and plano-convex lenses respectively being such that they each have on the one hand a substantially planar face and on the other hand a concave face or a convex face respectively.
Le dispositif optique selon l'invention a l'avantage de présenter un grand champ angulaire qui permet de voir un échantillon en entier dans le cas de l'utilisation du dispositif pour l'observation d'échantillons disposés dans des puits de plaques de culture. Cette configuration du dispositif optique permet également d'avoir une grande ouverture numérique qui fait de ce dispositif un dispositif lumineux.The optical device according to the invention has the advantage of having a large angular field which makes it possible to see an entire sample in the case of the use of the device for the observation of samples placed in wells of culture plates. This configuration of the optical device also makes it possible to have a large digital aperture which makes this device a luminous device.
Dans une forme de réalisation préférentielle, les lentilles sont regroupées en deux doublets, un doublet avant avec la lentille plan-convexe et la lentille ménisque divergente et un doublet arrière avec la lentille plan-concave et la lentille biconvexe.In a preferred embodiment, the lenses are grouped into two doublets, a front doublet with the plano-convex lens and the diverging meniscus lens and a rear doublet with the plano-concave lens and the biconvex lens.
Dans une forme de réalisation avantageuse, le doublet arrière est un doublet collé pour lequel le rayon de courbure avant de la lentille biconvexe correspond au rayon de courbure de la face arrière sphérique de la lentille plan- concave, et les deux lentilles de chaque doublet sont réalisées dans des matériaux présentant des indices de réfraction différents. On a ainsi dans cette forme de réalisation un doublet (le doublet arrière) qui peut être collé.In an advantageous embodiment, the rear doublet is a bonded doublet for which the front radius of curvature of the biconvex lens corresponds to the radius of curvature of the spherical rear face of the plano-concave lens, and the two lenses of each doublet are made of materials with different refractive indices. There is thus in this embodiment a doublet (the rear doublet) which can be glued.
Le doublet avant est quant à lui par exemple un doublet décollé mais il peut aussi s'agir d'un doublet décollé au centre mais collé sur sa périphérie.The front doublet is for example a detached doublet but it can also be a doubled detached in the center but glued on its periphery.
Avantageusement, les deux lentilles se trouvant au centre du dispositif optique présentent un indice de réfraction supérieur à l'indice de réfraction des lentilles se trouvant à l'extérieur du dispositif optique.Advantageously, the two lenses located in the center of the optical device have a refractive index greater than the refractive index of the lenses located outside the optical device.
La présente invention propose aussi une forme de réalisation préférée dans laquelle : la lentille plan-convexe présente une face arrière dont le rayon de courbure est compris entre -30 et -32,5 mm et une face avant sensiblement plane, un diamètre compris entre 15 et 20 mm ainsi qu'une épaisseur au centre comprise entre 2 et 4 mm, la lentille ménisque divergente présente une face arrière dont le rayon de courbure est compris entre -22,5 et -25 mm et une face avant dont le rayon de courbure est compris entre -17 et -18,5 mm, un diamètre sensiblement égal au diamètre de la lentille plan-convexe ainsi qu'une épaisseur au centre comprise entre 1 et 2 mm, la lentille plan-concave présente une face arrière dont le rayon de courbure correspond au rayon de courbure de la face avant de la lentille biconvexe, un diamètre compris entre 22 et 26 mm ainsi qu'une épaisseur au centre comprise entre 1 et 3,5 mm, et la lentille biconvexe arrière présente une face arrière dont le rayon de courbure est compris entre -28 et -30 mm et une face avant dont le rayon de courbure est compris entre 28 et 30 mm, un diamètre sensiblement identique au diamètre de la lentille plan-concave ainsi qu'une épaisseur au centre comprise entre 4 et 7 mm, la distance entre les faces planes de la lentille plan-concave et de la lentille plan-convexe est comprise entre 20 et 25 mm, toutes les valeurs indiquées pour ce dispositif pouvant être multipliées par un même coefficient pour obtenir un dispositif semblable par homothétie.The present invention also provides a preferred embodiment in which: the plano-convex lens has a rear face whose radius of curvature is between -30 and -32.5 mm and a substantially flat front face, a diameter between 15 and 20 mm and a thickness in the center between 2 and 4 mm, the diverging meniscus lens has a rear face of which the radius of curvature is between -22.5 and -25 mm and a front face whose radius of curvature is between -17 and -18.5 mm, a diameter substantially equal to the diameter of the plano-convex lens as well as '' a thickness in the center between 1 and 2 mm, the plano-concave lens has a rear face whose radius of curvature corresponds to the radius of curvature of the front face of the biconvex lens, a diameter between 22 and 26 mm as well as '' a thickness at the center of between 1 and 3.5 mm, and the rear biconvex lens has a rear face whose radius of curvature is between -28 and -30 mm and a front face whose radius of curvature is between 28 and 30 mm, a diameter substantially identical to u diameter of the plano-concave lens as well as a thickness at the center of between 4 and 7 mm, the distance between the planar faces of the plano-concave lens and of the plano-convex lens is between 20 and 25 mm, all the values indicated for this device can be multiplied by the same coefficient to obtain a similar device by homothety.
Un dispositif selon l'invention peut également comporter des diodes électroluminescentes disposées en couronne. La lumière excitatrice issue des diodes chemine autour du cône de lumière de fluorescence qui va traverser le dispositif optique pour former l'image. Des lentilles qui concentrent la lumière excitatrice sont coaxiales au dispositif optique et sont percées d'un trou central livrant passage à la lumière de fluorescence. Ces lentilles de concentration sont soit du type classique, soit de type Fresnel.A device according to the invention can also include light-emitting diodes arranged in a ring. Exciting light from the diodes travels around the fluorescent light cone which will pass through the optical device to form the image. Lenses which concentrate the excitation light are coaxial with the optical device and are pierced with a central hole giving way to the fluorescent light. These concentration lenses are either of the conventional type or of the Fresnel type.
La présente invention concerne également un dispositif d'observation ou d'analyse d'un ou plusieurs échantillons disposés sur un support, notamment une plaque, comportant un objectif d'observation d'au moins une partie d'un échantillon suivant un axe d'observation depuis une face d'observation du support, une platine de positionnement du support adaptée pour assurer un déplacement relatif entre le support et l'axe d'observation dans un plan perpendiculaire à l'axe d'observation, tout en laissant libre le déplacement vertical, des moyens d'illumination d'au moins une partie d'un échantillon et des moyens d'acquisition d'une image en sortie d'objectif, caractérisé en ce que l'objectif d'observation comporte un dispositif optique tel que décrit ci-dessus. Dans un tel dispositif d'observation les moyens d'acquisition d'une image comportent par exemple un objectif à focale fixe comme optique de focalisation. Ces moyens d'acquisition d'une image peuvent aussi comporter un zoom comme optique de focalisation afin de pouvoir changer facilement la taille de l'image et utiliser de manière optimale le dispositif optique selon l'invention mais ceci se fait au prix d'un vignettage gênant.The present invention also relates to an observation or analysis device for one or more samples placed on a support, in particular a plate, comprising an observation objective of at least part of a sample along an axis of observation from an observation face of the support, a support positioning plate adapted to ensure relative movement between the support and the observation axis in a plane perpendicular to the axis observation, while allowing free vertical movement, means for illuminating at least part of a sample and means for acquiring an image at the output of the objective, characterized in that the objective observation system includes an optical device as described above. In such an observation device, the means for acquiring an image comprise, for example, a fixed focal lens as focusing optics. These image acquisition means can also include a zoom as focusing optics in order to be able to easily change the size of the image and optimally use the optical device according to the invention, but this is done at the cost of a annoying vignetting.
Dans une forme de réalisation avantageuse, ce dispositif d'observation comporte derrière le dispositif optique un dispositif de filtration présentant des propriétés spectrales variables. Ce dispositif de filtration peut être ici par exemple un carrousel à filtres ou bien encore un filtre à cristaux liquides, dont les propriétés spectrales sont contrôlables de manière électronique. On peut également prévoir avantageusement sur le trajet de la lumière de fluorescence un miroir dichroïque renvoyant une partie de cette lumière vers des seconds moyens d'observation.In an advantageous embodiment, this observation device comprises behind the optical device a filtration device having variable spectral properties. This filtration device can be here, for example, a filter carousel or even a liquid crystal filter, the spectral properties of which are electronically controllable. One can also advantageously provide on the path of the fluorescence light a dichroic mirror returning a part of this light to second observation means.
D'autres détails et avantages de la présente invention ressortiront mieux de la description qui suit, faite en référence au dessin schématique annexé sur lequel :Other details and advantages of the present invention will emerge more clearly from the description which follows, given with reference to the appended schematic drawing in which:
La figure 1 montre schématiquement en coupe un analyseur cellulaire équipé d'un dispositif optique selon l'invention,FIG. 1 schematically shows in section a cellular analyzer equipped with an optical device according to the invention,
La figure 2 correspond à la figure 1 pour une variante de réalisation de l'analyseur cellulaire équipé du même dispositif optique, La figure 3 montre plus en détail et à échelle agrandie le dispositif optique selon l'invention, etFIG. 2 corresponds to FIG. 1 for an alternative embodiment of the cellular analyzer equipped with the same optical device, FIG. 3 shows in more detail and on an enlarged scale the optical device according to the invention, and
La figure 4 est une vue en coupe à échelle agrandie par rapport aux figures 1 et 2 d'une coiffe utilisable en combinaison avec le dispositif de la figure 3 et intégrant des sources lumineuses. La présente invention s'applique par exemple à un analyseur cellulaire tel celui décrit dans le document WO-01/88593. Il est fait référence à ce document, plus particulièrement à sa figure 1 et à la description correspondante, en ce qui concerne la structure générale de cet analyseur cellulaire. La suite de la présente description est faite en référence à un tel analyseur cellulaire. Cet analyseur est destiné notamment à l'observation de la fluorescence d'échantillons cellulaires contenus dans des puits 2 d'une plaque de titration 4, appelée également plaque de culture.Figure 4 is a sectional view on an enlarged scale compared to Figures 1 and 2 of a cap usable in combination with the device of Figure 3 and incorporating light sources. The present invention applies for example to a cellular analyzer such as that described in document WO-01/88593. Reference is made to this document, more particularly to its FIG. 1 and to the corresponding description, with regard to the general structure of this cellular analyzer. The remainder of this description is made with reference to such a cellular analyzer. This analyzer is intended in particular for the observation of the fluorescence of cellular samples contained in wells 2 of a titration plate 4, also called culture plate.
Comme décrit dans le document précité, cette plaque de titration 4 est maintenue dans un cadre mobile 6 d'une platine de positionnement montée sur un bâti non représenté ici. Cette plaque comporte un fond 8 sensiblement plan qui forme le fond des puits 2 contenant les échantillons à observer. Ce fond 8 s'appuie sur un manchon 10 de forme générale tronconique et lui-même monté sur un objectif 12 fixe par rapport au bâti de l'analyseur. La présente invention porte sur cet objectif 12 qui sera décrit plus dans le détail en référence à la figure 3 dans la suite de la description.As described in the aforementioned document, this titration plate 4 is held in a movable frame 6 of a positioning plate mounted on a frame not shown here. This plate has a substantially flat bottom 8 which forms the bottom of the wells 2 containing the samples to be observed. This bottom 8 rests on a sleeve 10 of generally frustoconical shape and itself mounted on a fixed objective 12 relative to the frame of the analyzer. The present invention relates to this objective 12 which will be described in more detail with reference to FIG. 3 in the following description.
Sur la figure 1 on remarque également une source d'illumination 14 qui envoie de la lumière vers la plaque de titration 4, à travers l'objectif 12, cette lumière étant tout d'abord réfléchie sur un prisme 16 de renvoi. Une caméra 18 produit une image représentative du rayonnement émis par les échantillons se trouvant dans les puits 2 de la plaque de titration 4. Ce rayonnement traverse lui aussi l'objectif 12 et est dirigé vers la caméra 18 par l'intermédiaire d'un miroir incliné 20. Par simplification, les axes optiques de la source d'illumination 14 et de la caméra 18 sont représentés sur la figure 1 comme étant parallèles alors qu'ils peuvent être par exemple perpendiculaires entre eux. Une optique de focalisation 19 représentée de façon très schématique par une double flèche est montée à l'avant de la caméra 18.In FIG. 1 there is also a source of illumination 14 which sends light towards the titration plate 4, through the objective 12, this light being first of all reflected on a prism 16 of return. A camera 18 produces an image representative of the radiation emitted by the samples located in the wells 2 of the titration plate 4. This radiation also passes through the objective 12 and is directed towards the camera 18 via a mirror inclined 20. For simplification, the optical axes of the illumination source 14 and of the camera 18 are shown in FIG. 1 as being parallel whereas they may for example be perpendicular to each other. A focusing optic 19 very schematically represented by a double arrow is mounted on the front of the camera 18.
La plaque de titration 4 est disposée horizontalement, le fond 8 constituant alors la face inférieure de cette plaque. Les puits 2 s'ouvrent alors à la face supérieure de cette plaque. Il s'agit de puits cylindriques de section circulaire ou carrée. Le fond de chaque puits est sensiblement plan et horizontal. Différents types de plaques existent. Les plus courantes comportent 96, 384, 864 ou 1536 puits. Pour les plaques comportant le moins de puits, le diamètre de ceux-ci est de l'ordre de 7 mm. Les bords 22 de la plaque de titration 4 et le cadre mobile 6, présentant un rebord périphérique 24, coopèrent comme décrit dans le document WO-01/88593 pour permettre le libre mouvement de la plaque 4 suivant la direction de l'axe d'observation, qui est ici la direction verticale. Le manchon 10 forme une entretoise entre la plaque de titration 4 et l'objectif 12. Il est de forme générale tronconique et son axe de révolution coïncide sensiblement avec l'axe d'observation 26 qui est également l'axe de l'objectif 12. Comme indiqué dans le document précité, les dimensions de ce manchon varient en fonction de l'objectif 12 (et également de la taille des puits 2 de la plaque de titration 4).The titration plate 4 is arranged horizontally, the bottom 8 then constituting the underside of this plate. The wells 2 then open on the upper face of this plate. These are cylindrical wells of circular or square section. The bottom of each well is substantially flat and horizontal. Different types of plates exist. The most common have 96, 384, 864 or 1536 wells. For the plates having the least number of wells, the diameter of these is of the order of 7 mm. The edges 22 of the titration plate 4 and the movable frame 6, having a peripheral rim 24, cooperate as described in document WO-01/88593 to allow the free movement of the plate 4 in the direction of the axis of observation, which here is the vertical direction. The sleeve 10 forms a spacer between the titration plate 4 and the objective 12. It has a generally frustoconical shape and its axis of revolution substantially coincides with the axis observation 26 which is also the axis of the objective 12. As indicated in the aforementioned document, the dimensions of this sleeve vary as a function of the objective 12 (and also of the size of the wells 2 of the titration plate 4).
En ce qui concerne la source d'illumination 14 et la caméra 18, ainsi que les autres moyens mis en œuvre pour illuminer un puits 2 de la plaque de titration 4 et pour réaliser une image à partir de la fluorescence des cellules contenues dans les puits 2, il est fait référence au document précité.Regarding the illumination source 14 and the camera 18, as well as the other means used to illuminate a well 2 of the titration plate 4 and to produce an image from the fluorescence of the cells contained in the wells 2, reference is made to the above-mentioned document.
La présente invention concerne plus particulièrement l'objectif 12 (qui remplace le dispositif portant la référence 15 dans le document WO-01/88593). Cet objectif est montré à échelle agrandie sur la figure 3. Sur les figures 1 et 2, cet objectif est symbolisé par deux doubles flèches, chaque double flèche représentant schématiquement un doublet de lentilles. On a représenté sur la figure 3 le fond 8 de la plaque de titration 4.The present invention relates more particularly to the objective 12 (which replaces the device bearing the reference 15 in the document WO-01/88593). This objective is shown on an enlarged scale in FIG. 3. In FIGS. 1 and 2, this objective is symbolized by two double arrows, each double arrow schematically representing a pair of lenses. FIG. 3 shows the bottom 8 of the titration plate 4.
Dans la suite de la description, on considère que cette plaque de titration est disposée à l'avant de l'objectif 12 tandis que la caméra 18 se trouve à l'arrière de cet objectif 12. Ainsi, sur les figures, l'avant est orienté vers le haut de la figure tandis que l'arrière se trouve vers le bas de celle-ci.In the following description, it is considered that this titration plate is disposed at the front of the objective 12 while the camera 18 is at the rear of this objective 12. Thus, in the figures, the front is oriented towards the top of the figure while the rear is towards the bottom of it.
L'objectif 12 représenté comporte deux doublets de lentilles. Le doublet avant comprend une lentille plan-convexe 28 et une lentille ménisque divergente 30. Le doublet arrière est constitué d'une lentille plan-concave 32 et d'une lentille biconvexe 34. Les lentilles plan-convexe 28 et plan-concave 32 présentent de préférence une surface plane mais il peut aussi éventuellement s'agir d'une surface sensiblement plane, c'est-à-dire qui présente par exemple un grand rayon de courbure. Toutes ces lentilles sont des lentilles sphériques et sont toutes centrées sur un même axe, l'axe 26 de l'objectif 12. Comme indiqué plus haut, il s'agit ici d'un axe vertical. Il est sensiblement perpendiculaire au fond 8 de la plaque de titration 4 pour une meilleure observation de celle-ci.The objective 12 shown comprises two pairs of lenses. The front doublet comprises a plano-convex lens 28 and a divergent meniscus lens 30. The rear doublet consists of a plano-concave lens 32 and a biconvex lens 34. The plano-convex lenses 28 and plano-concave 32 have preferably a planar surface but it can also possibly be a substantially planar surface, that is to say one which has for example a large radius of curvature. All these lenses are spherical lenses and are all centered on the same axis, the axis 26 of the lens 12. As indicated above, this is a vertical axis. It is substantially perpendicular to the bottom 8 of the titration plate 4 for a better observation of the latter.
La première lentille, c'est-à-dire la lentille plan-convexe 28, est réalisée en matériau de la marque Schott BK7 et présente les caractéristiques géométriques suivantes :The first lens, that is to say the plano-convex lens 28, is made of material of the Schott BK7 brand and has the following geometric characteristics:
Rayon de courbure de la face avant : infiniRadius of curvature of the front face: infinite
Rayon de courbure de la face arrière : -31 ,23 mm +/- 1 mmRadius of curvature of the rear face: -31, 23 mm +/- 1 mm
Epaisseur au centre : 3 mm +/- 1 mm Diamètre : 18 mm +/- 2 mmCenter thickness: 3 mm +/- 1 mm Diameter: 18 mm +/- 2 mm
Le matériau utilisé pour cette lentille présente notamment un indice de réfraction nd de 1 ,51680 (λ=587,6 nm) et un indice de réfraction ne de 1 ,51872The material used for this lens notably has a refractive index n d of 1.51680 (λ = 587.6 nm) and a refractive index n e of 1.517872
(λ=546,1 nm). Le coefficient d'Abbe, qui caractérise la dispersion de ce matériau, est υe=64, 17 (ou υd=64,96).(λ = 546.1 nm). The Abbe coefficient, which characterizes the dispersion of this material, is υ e = 64, 17 (or υ d = 64.96).
La lentille ménisque divergente 30 est dans le matériau connu sous la marque Schott F2. Il présente notamment un indice de réfraction nd de 1 ,62004The divergent meniscus lens 30 is made of the material known under the brand Schott F2. In particular, it has a refractive index n d of 1, 62004
(λ=587,6 nm) et un indice de réfraction ne de 1 ,62408 (λ=546,1 nm). Le coefficient d'Abbe, qui caractérise la dispersion de ce matériau, est υe=36,37 (ou υd=36,11 ). Cette lentille ménisque divergente 30 présente les caractéristiques géométriques suivantes :(λ = 587.6 nm) and a refractive index n e of 1.62408 (λ = 546.1 nm). The Abbe coefficient, which characterizes the dispersion of this material, is υ e = 36.37 (or υ d = 36.11). This divergent meniscus lens 30 has the following geometric characteristics:
Rayon de courbure de la face avant : -17,693 mm +/- 0,5 mm Rayon de courbure de la face arrière : -23,820 mm +/- 1 mm Epaisseur au centre : 1 ,5 mm +/- 0,5 mm Diamètre : 18 mm +/- 2 mmRadius of curvature of the front face: -17.693 mm +/- 0.5 mm Radius of curvature of the rear face: -23.820 mm +/- 1 mm Thickness in the center: 1.5 mm +/- 0.5 mm Diameter : 18 mm +/- 2 mm
Les lentilles 28 et 30 forment ainsi un premier doublet. Ce doublet peut être décollé mais on peut également envisager de réaliser un doublet décollé au centre mais collé sur sa périphérie. Cette dernière solution facilite l'intégration de ce doublet dans le bâti de l'analyseur. La lentille plan-concave 32 est réalisée dans un matériau commercialisé sous la marque Schott F2. Elle présente les caractéristiques géométriques suivantes :The lenses 28 and 30 thus form a first doublet. This doublet can be peeled off, but one can also consider making a doublet peeled off in the center but glued on its periphery. The latter solution facilitates the integration of this doublet into the frame of the analyzer. The plano-concave lens 32 is made of a material sold under the brand Schott F2. It has the following geometric characteristics:
Rayon de courbure de la face avant : infiniRadius of curvature of the front face: infinite
Rayon de courbure de la face arrière : 29,06 mm +/- 1 mm Epaisseur au centre : 2,2 mm +/- 1 mmRadius of curvature of the rear face: 29.06 mm +/- 1 mm Thickness in the center: 2.2 mm +/- 1 mm
Diamètre : 24 mm +/- 2 mmDiameter: 24 mm +/- 2 mm
La lentille biconvexe 34 est réalisée dans un matériau commercialisé sous la marque Schott BK7. Cette quatrième lentille présente les caractéristiques géométriques suivantes : Rayon de courbure de la face avant : 29,06 mm +/- 1 mmThe biconvex lens 34 is produced from a material sold under the brand Schott BK7. This fourth lens has the following geometric characteristics: Radius of curvature of the front face: 29.06 mm +/- 1 mm
Rayon de courbure de la face arrière : -29,06 mm +/- 1 mm Epaisseur au centre : 5,6 mm +/- 0,5 mmRadius of curvature of the rear face: -29.06 mm +/- 1 mm Thickness in the center: 5.6 mm +/- 0.5 mm
Diamètre : 24 mm +/- 2 mm Ces lentilles 32 et 34 forment ainsi un second doublet qui est collé. Une face convexe de la lentille biconvexe 34 vient épouser la face concave de la lentille plan-concave 32.Diameter: 24 mm +/- 2 mm These lenses 32 and 34 thus form a second doublet which is glued. A convex face of the biconvex lens 34 conforms to the concave face of the plano-concave lens 32.
Dans cet objectif, les faces planes des deux doublets sont orientées vers l'avant. La distance les séparant est de 22,6 mm (+/- 2 mm).For this purpose, the flat faces of the two doublets are oriented forward. The distance between them is 22.6 mm (+/- 2 mm).
L'objectif ainsi réalisé présente une longueur focale de 50 mm et a une ouverture numérique NA = 0,22.The objective thus produced has a focal length of 50 mm and has a numerical aperture NA = 0.22.
Les matériaux indiqués sont des matériaux utilisés couramment pour la réalisation de lentilles. D'autres matériaux peuvent également être envisagés. Toutefois, on choisira de préférence des matériaux présentant, par rapport aux matériaux décrits, des verres optiques équivalents en termes d'indice de réfraction et de dispersion dans une fourchette de +/- 3%.The materials indicated are materials commonly used for the production of lenses. Other materials can also be considered. However, materials preferably chosen having, relative to the materials described, optical glasses equivalent in terms of refractive index and dispersion in a range of +/- 3%.
Un tel objectif présente un grand champ angulaire qui lui permet de voir entièrement le fond d'un puits 2 tout en étant placé à relativement faible distance de ce fond.Such an objective has a large angular field which allows it to fully see the bottom of a well 2 while being placed at relatively short distance from this bottom.
Il présente également une largeur spectrale capable de récupérer la fluorescence d'excitation de l'ultraviolet au proche infrarouge. En supposant une excitation démarrant dans le bleu, cet objectif permet de couvrir le reste du spectre, soit du vert à l'infrarouge, ou en terme de longueurs d'ondes, de 500 à 750 nm.It also has a spectral width capable of recovering the excitation fluorescence from the ultraviolet to the near infrared. Assuming an excitation starting in blue, this objective makes it possible to cover the rest of the spectrum, either from green to infrared, or in terms of wavelengths, from 500 to 750 nm.
L'objectif décrit permet en outre une très bonne résolution et a une grande ouverture (NA = 0,22).The objective described also allows very good resolution and has a large aperture (NA = 0.22).
Les dimensions indiquées ci-dessus sont adaptées pour pouvoir rassembler sur une seule image le fond d'un puits d'un diamètre de 7 mm. Pour des dimensions différentes, les valeurs numériques indiquées ci-dessus peuvent toutes être multipliées par un même coefficient, ce qui permet alors d'obtenir un dispositif semblable par homothétie.The dimensions indicated above are adapted to be able to gather on a single image the bottom of a well with a diameter of 7 mm. For different dimensions, the numerical values indicated above can all be multiplied by the same coefficient, which then makes it possible to obtain a similar device by homothety.
L'objectif décrit ci-dessus présente l'avantage d'être d'un prix de revient peu élevé. Il met en œuvre des matériaux optiques traditionnels que l'on utilise couramment pour réaliser des lentilles. Les lentilles utilisées ne présentent pas de surface asphérique. Leur réalisation est ainsi facilitée et leur coût de revient est donc limité. Enfin, seules quatre lentilles sont nécessaires pour réaliser l'objectif décrit ci-dessus. On remarque que les objectifs de Gauss utilisés habituellement comportent quant à eux au moins six lentilles. Pour réaliser l'image de l'échantillon, on utilise l'optique de focalisation 19 associée à la caméra 18. Cette optique de focalisation 19 peut être par exemple un objectif du commerce à focale fixe. On peut également prévoir d'utiliser un zoom comme optique de focalisation. Ceci permet de facilement changer la taille de l'image et permet d'optimiser l'utilisation de l'objectif selon l'invention. Toutefois, l'utilisation d'un zoom de focalisation entraîne des problèmes de vignettage.The objective described above has the advantage of being of a low cost price. It uses traditional optical materials that are commonly used to make lenses. The lenses used do not have an aspherical surface. Their realization is thus facilitated and their cost price is therefore limited. Finally, only four lenses are necessary to achieve the objective described above. Note that the Gauss objectives usually used have at least six lenses. To produce the image of the sample, use is made of the focusing optic 19 associated with the camera 18. This focusing optic 19 may for example be a commercial lens with fixed focal length. It is also possible to plan to use a zoom as the focusing optic. This makes it possible to easily change the size of the image and makes it possible to optimize the use of the objective according to the invention. However, the use of a focusing zoom causes vignetting problems.
L'objectif 12 peut également être utilisé en association avec une couronne de diodes électroluminescentes 36 (figure 2). Ces diodes remplacent alors la source lumineuse 14. Une lentille individuelle est associée à chaque diode électroluminescente 36 afin de rendre la lumière émise par toutes ces diodes approximativement parallèle. Une lentille de Fresnel 38 permet alors le guidage de la lumière des diodes 36 vers l'échantillon à observer. Les diodes électroluminescentes 36 utilisées ici sont par exemple des diodes semblables à celles décrites dans la demande de brevet européen publiée sous le N° 1 031 326.The objective 12 can also be used in combination with a ring of light-emitting diodes 36 (FIG. 2). These diodes then replace the light source 14. An individual lens is associated with each light-emitting diode 36 in order to make the light emitted by all these diodes approximately parallel. A Fresnel lens 38 then allows the light from the diodes 36 to be guided towards the sample to be observed. The light-emitting diodes 36 used here are, for example, diodes similar to those described in the European patent application published under No. 1,031,326.
On suppose sur la figure 2 que l'objectif 12 est monté de manière classique dans un boîtier tubulaire non représenté. La présence de deux surfaces planes dans cet objectif facilite le montage dans son boîtier tubulaire. Un support tubulaire 40 vient alors coiffer le boîtier de l'objectif 12. Une vis de blocage 42 est avantageusement prévue pour solidariser le support tubulaire 40 sur le boîtier de l'objectif 12. Sa face avant, sensiblement radiale par rapport à l'axe 26 de l'objectif 12, porte les diodes électroluminescentes 36. Une plaquette annulaire 44, solidaire du support tubulaire 40, entoure ce dernier et est disposée orthogonalement par rapport à l'axe 26 de l'objectif 12. Cette plaquette annulaire 44 porte le manchon 10. Ce dernier est de préférence réalisé en métal et présente sur sa face intérieure des moyens permettant la fixation de la lentille de Fresnel 38.It is assumed in Figure 2 that the lens 12 is mounted in a conventional manner in a tubular housing not shown. The presence of two flat surfaces in this objective facilitates mounting in its tubular housing. A tubular support 40 then covers the housing of the objective 12. A locking screw 42 is advantageously provided for securing the tubular support 40 on the housing of the objective 12. Its front face, substantially radial with respect to the axis 26 of the objective 12, carries the light-emitting diodes 36. An annular plate 44, integral with the tubular support 40, surrounds the latter and is arranged orthogonally with respect to the axis 26 of the objective 12. This annular plate 44 carries the sleeve 10. The latter is preferably made of metal and has on its inner face means for fixing the Fresnel lens 38.
La forme de réalisation de cette figure 2 permet d'avoir un cône de lumière excitatrice entourant le cône de lumière issu de la fluorescence de l'échantillon à observer. Les cônes de lumière excitatrice et de fluorescence sont de même axe. Ceci permet d'avoir un montage coaxial de la caméra 18 avec l'objectif 12.The embodiment of this FIG. 2 makes it possible to have an excitatory light cone surrounding the light cone resulting from the fluorescence of the sample to be observed. The excitation light and fluorescence cones are on the same axis. This makes it possible to have a coaxial mounting of the camera 18 with the lens 12.
La figure 4 montre plus dans le détail et à échelle agrandie le montage d'un dispositif optique selon l'invention dans une troisième forme de réalisation d'un analyseur cellulaire. Cette forme de réalisation se rapproche de celle montrée sur la figure 2. En effet, on retrouve ici des diodes électroluminescentes 36 disposées en couronne. Ici ces diodes sont disposées sur deux couronnes concentriques par rapport à l'objectif 12. Ce montage en couronne permet entre autres d'avoir un montage coaxial de la caméra 18 avec l'objectif 12.Figure 4 shows in more detail and on an enlarged scale the mounting of an optical device according to the invention in a third embodiment a cell analyzer. This embodiment is similar to that shown in Figure 2. Indeed, we find here light emitting diodes 36 arranged in a ring. Here these diodes are arranged on two concentric rings relative to the lens 12. This crown mounting makes it possible inter alia to have a coaxial mounting of the camera 18 with the lens 12.
L'objectif 12 est monté dans cette forme de réalisation à l'intérieur d'une pièce tubulaire 46. Des épaulements sont prévus à l'intérieur de cette pièce tubulaire pour le positionnement des surfaces planes des lentilles plan-concave 32 et plan-convexe 28. La pièce tubulaire 46 est vissée sur une base 48. Cette dernière porte une bague 50 portant les diodes électroluminescentes 36. Cette bague 50 est montée concentriquement par rapport à la pièce tubulaire 46.The objective 12 is mounted in this embodiment inside a tubular part 46. Shoulders are provided inside this tubular part for positioning the flat surfaces of the plano-concave 32 and plano-convex lenses 28. The tubular part 46 is screwed onto a base 48. The latter carries a ring 50 carrying the light-emitting diodes 36. This ring 50 is mounted concentrically with respect to the tubular part 46.
Sur cette première bague 50 est superposée une seconde bague 52. Des mêmes vis 54 maintiennent simultanément les deux bagues 50 et 52 sur la base 48. La seconde base 52 porte deux lentilles 56 classiques percées en leur centre pour permettre leur montage concentrique autour de la pièce tubulaire 46. Ces lentilles 56 concentrent la lumière excitatrice en provenance des diodes électroluminescentes 36 en direction de l'échantillon à observer. Le manchon 10 est fixé à l'aide d'une vis de blocage 58 sur la seconde bague 52.On this first ring 50 is superimposed a second ring 52. The same screws 54 simultaneously maintain the two rings 50 and 52 on the base 48. The second base 52 carries two conventional lenses 56 pierced in their center to allow their concentric mounting around the tubular part 46. These lenses 56 concentrate the exciting light coming from the light-emitting diodes 36 in the direction of the sample to be observed. The sleeve 10 is fixed with a locking screw 58 to the second ring 52.
On remarque sur la figure 4 la présence d'un filtre 60 disposé à chaque fois entre une couronne de diodes électroluminescentes 36 et les lentilles 56. Ces deux filtres 60 sont montés, dans la forme de réalisation représentée, sur la première bague 50.Note in FIG. 4 the presence of a filter 60 disposed each time between a ring of light-emitting diodes 36 and the lenses 56. These two filters 60 are mounted, in the embodiment shown, on the first ring 50.
Dans le dispositif décrit ci-dessus, la lumière excitatrice est réalisée à la périphérie du dispositif et est concentrée vers l'échantillon à observer tandis que la lumière de fluorescence en provenance de cet échantillon traverse le dispositif en son centre. Pour arrêter les reflets de la lumière excitatrice sur la voie de l'émission de fluorescence et donc éviter que la lumière excitatrice parvienne jusqu'à la caméra, un filtre 62 est disposé entre l'objectif 12 et la caméra. Comme on peut le voir sur la figure 4, ce filtre 62 est monté dans la pièce tubulaire 46, en dessous des deux doublets de l'objectif 12.In the device described above, the excitation light is produced at the periphery of the device and is concentrated towards the sample to be observed while the fluorescence light coming from this sample passes through the device at its center. To stop the reflections of the excitation light on the fluorescence emission path and therefore prevent the excitation light from reaching the camera, a filter 62 is placed between the lens 12 and the camera. As can be seen in FIG. 4, this filter 62 is mounted in the tubular part 46, below the two doublets of the objective 12.
Dans cette dernière forme de réalisation, les diodes électroluminescentes 36 émettent à des longueurs d'ondes différentes. A chaque couronne de diodes correspond une longueur d'onde. On peut procéder à des illuminations successives du même échantillon à des longueurs d'ondes différentes. On choisit ainsi par exemple une première couronne de diodes émettant des rayonnements d'une longueur d'onde se situant autour de 470 nm (+/- 15 nm) et une seconde couronne de diodes émettant des rayonnements d'une longueur d'onde se situant autour de 635 nm (+/- 15 nm). On peut prévoir que chaque série de diodes comporte entre deux et cinquante diodes, de préférence entre cinq et vingt. La puissance de chacune de ces diodes est par exemple comprise entre 1 et 10 mW.In this latter embodiment, the light emitting diodes 36 emit at different wavelengths. Each ring of diodes corresponds to a wavelength. We can proceed to successive illuminations of the same sample at wavelengths different. A first ring of diodes emitting radiation of a wavelength around 470 nm (+/- 15 nm) is thus chosen, for example, and a second ring of diodes emitting radiation of a wavelength is around situated around 635 nm (+/- 15 nm). Provision may be made for each series of diodes to have between two and fifty diodes, preferably between five and twenty. The power of each of these diodes is for example between 1 and 10 mW.
Un tel dispositif d'illumination permet de bien éclairer le fond d'un puits 2, et ceci sur toute sa surface. En outre, toute la surface du puits est illuminée en même temps par le faisceau incident issu des diodes électroluminescentes 36. De cette manière, la totalité de la surface de l'échantillon est excitée simultanément.Such an illumination device makes it possible to properly illuminate the bottom of a well 2, and this over its entire surface. In addition, the entire surface of the well is illuminated at the same time by the incident beam from the light-emitting diodes 36. In this way, the entire surface of the sample is excited simultaneously.
L'alimentation électrique des deux séries de diodes peut être alternée. On réalise alors de préférence deux images successives qui sont par la suite rapprochées par un ordinateur à l'aide d'un logiciel qui réalise une comparaison pixel par pixel pour l'analyse cytométrique.The power supply for the two sets of diodes can be alternated. Two successive images are then preferably produced, which are then compared by a computer using software which performs a pixel by pixel comparison for the cytometric analysis.
Les formes de réalisation mettant en œuvre des diodes disposées en couronne sont également avantageuses car elles permettent de faire coïncider l'axe d'illumination, d'observation ainsi que l'axe de la caméra.The embodiments using diodes arranged in a crown are also advantageous because they allow the axis of illumination, observation as well as the axis of the camera to coincide.
Le dispositif optique selon l'invention peut être utilisé avec tous types de dispositif d'analyse de la lumière de fluorescence. Dans une forme de réalisation simple on utilise une caméra couleur, TriCCD, ou à filtres Bayer, par exemple. Dans une forme de réalisation préférée un carrousel à filtres, permettant la saisie d'images successives dans plusieurs canaux spectraux différents, est placé derrière le dispositif optique objet de l'invention. Ce carrousel à filtres peut prendre place immédiatement avant ou après le filtre d'arrêt 62. Dans une variante de réalisation avantageuse le carrousel à filtres est remplacé par un filtre à cristaux liquides, dont les propriétés spectrales sont contrôlables de manière électronique.The optical device according to the invention can be used with all types of device for analyzing fluorescent light. In a simple embodiment, a color camera, TriCCD, or a Bayer filter, for example, is used. In a preferred embodiment, a filter carousel, allowing the capture of successive images in several different spectral channels, is placed behind the optical device object of the invention. This filter carousel can take place immediately before or after the stop filter 62. In an advantageous alternative embodiment, the filter carousel is replaced by a liquid crystal filter, the spectral properties of which are electronically controllable.
Dans une autre variante de réalisation, un miroir dichroïque à 45° qui renvoie une partie de la lumière sur une deuxième caméra est installé sur le trajet de la lumière de fluorescence. Les images sont alors réalisées simultanément. Un appareil ainsi équipé peut être utilisé pour des mesures de transfert d'énergie entre un donneur et un accepteur à l'intérieur de la cellule, dites FRET (Fluorescence Résonance Energy Transfer ou transfert d'énergie de fluorescence de résonnance). La présente invention ne se limite pas aux formes de réalisation décrites ci-dessus à titre d'exemples non limitatifs. Elle concerne également toutes les variantes de réalisation à la portée de l'homme du métier, dans le cadre des revendications ci-après. Le dispositif optique décrit ci-dessus est intégré à un analyseur cellulaire réalisant des prises de vue de façon automatique et analysant les images obtenues à l'aide d'un ordinateur et d'un logiciel. Bien entendu, on ne sortirait pas du cadre de l'invention dans le cas où cet objectif serait monté dans un analyseur cellulaire manuel dans lequel un utilisateur bouge manuellement une plaque de titration devant l'objectif et observe directement les échantillons déposés dans cette plaque de titration. Le dispositif optique peut également être utilisé dans tout appareil de type microscope, avec des applications notamment dans le domaine de la biologie mais aussi par exemple de l'électronique.In another alternative embodiment, a 45 ° dichroic mirror which returns part of the light to a second camera is installed on the path of the fluorescence light. The images are then taken simultaneously. A device thus equipped can be used for energy transfer measurements between a donor and an acceptor inside the cell, called FRET (Fluorescence Resonance Energy Transfer). The present invention is not limited to the embodiments described above by way of nonlimiting examples. It also relates to all the variant embodiments within the reach of those skilled in the art, within the scope of the claims below. The optical device described above is integrated into a cellular analyzer taking pictures automatically and analyzing the images obtained using a computer and software. Of course, it would not go beyond the scope of the invention if this objective is mounted in a manual cellular analyzer in which a user manually moves a titration plate in front of the objective and directly observes the samples deposited in this plate. titration. The optical device can also be used in any device of the microscope type, with applications in particular in the field of biology but also for example of electronics.
Le dispositif optique selon l'invention peut être utilisé avec tous types de sources d'illumination. Il peut s'agir ainsi par exemple d'une lampe, d'un laser, de diodes électroluminescentes, etc.... Il est également envisageable de supprimer la source d'illumination et/ou de prévoir une source externe.The optical device according to the invention can be used with all types of illumination sources. It can thus be, for example, a lamp, a laser, light-emitting diodes, etc. It is also conceivable to eliminate the source of illumination and / or to provide an external source.
De même pour la caméra, tous types de caméra peut être utilisés. Il est également envisageable de ne pas avoir de caméra du tout comme par exemple dans le cas d'une analyse à l'œil. Similarly for the camera, all types of cameras can be used. It is also possible to have no camera at all, for example in the case of an eye analysis.

Claims

REVENDICATIONS
1. Dispositif optique (12) destiné notamment à l'observation d'échantillons sur un support (4) dans le domaine de la biologie, comportant une face avant se trouvant du côté de l'échantillon, ou similaire, à observer et une face arrière orientée vers des moyens d'acquisition (18, 19) d'une image ou un utilisateur, caractérisé en ce qu'il comporte une combinaison de quatre lentilles alignées et en ce que les lentilles sont disposées dans l'ordre suivant de l'avant vers l'arrière : une lentille plan-convexe (28), une lentille ménisque divergente (30), une lentille plan-concave (32) et une lentille biconvexe (34), les lentilles plan- concave (32) et plan-convexe (28) respectivement étant telles qu'elles présentent chacune d'une part une face sensiblement plane et d'autre part une face concave ou une face convexe respectivement.1. Optical device (12) intended in particular for the observation of samples on a support (4) in the field of biology, comprising a front face located on the side of the sample, or the like, to be observed and a face rear oriented towards an image or user acquisition means (18, 19), characterized in that it comprises a combination of four aligned lenses and in that the lenses are arranged in the following order of the front to back: a plano-convex lens (28), a diverging meniscus lens (30), a plano-concave lens (32) and a biconvex lens (34), the plano-concave (32) and plano lenses convex (28) respectively being such that they each have on the one hand a substantially planar face and on the other hand a concave face or a convex face respectively.
2. Dispositif optique selon la revendication 1 , caractérisé en ce que les lentilles sont regroupées en deux doublets, un doublet avant avec la lentille plan- convexe (28) et la lentille ménisque divergente (30) et un doublet arrière avec la lentille plan-concave (32) et la lentille biconvexe (34).2. Optical device according to claim 1, characterized in that the lenses are grouped into two doublets, a front doublet with the plano-convex lens (28) and the diverging meniscus lens (30) and a rear doublet with the planar lens concave (32) and the biconvex lens (34).
3. Dispositif optique selon la revendication 2, caractérisé en ce que le doublet arrière est un doublet collé pour lequel le rayon de courbure avant de la lentille biconvexe (34) correspond au rayon de courbure de la face arrière sphérique de la lentille plan-concave (32), et en ce que les deux lentilles de chaque doublet sont réalisées dans des matériaux présentant des indices de réfraction différents.3. Optical device according to claim 2, characterized in that the rear doublet is a bonded doublet for which the front radius of curvature of the biconvex lens (34) corresponds to the radius of curvature of the spherical rear face of the plano-concave lens (32), and in that the two lenses of each doublet are made of materials having different refractive indices.
4. Dispositif optique selon l'une des revendications 2 ou 3, caractérisé en ce que le doublet avant est un doublet décollé.4. Optical device according to one of claims 2 or 3, characterized in that the front doublet is a detached doublet.
5. Dispositif optique selon l'une des revendications 2 ou 3, caractérisé en ce que le doublet avant est un doublet décollé au centre mais collé sur sa périphérie.5. Optical device according to one of claims 2 or 3, characterized in that the front doublet is a doublet peeled off in the center but glued on its periphery.
6. Dispositif optique selon l'une des revendications 1 à 5, caractérisé en ce que les deux lentilles (30, 32) se trouvant au centre du dispositif optique présentent un indice de réfraction supérieur à l'indice de réfraction des lentilles (28, 34) se trouvant à l'extérieur du dispositif optique (12).6. Optical device according to one of claims 1 to 5, characterized in that the two lenses (30, 32) located in the center of the optical device have a refractive index greater than the refractive index of the lenses (28, 34) located outside the optical device (12).
7. Dispositif optique selon l'une des revendications 1 à 6, caractérisé en ce que la lentille plan-convexe (28) présente une face arrière dont le rayon de courbure est compris entre -30 et -32,5 mm et une face avant sensiblement plane, un diamètre compris entre 20 et 25 mm ainsi qu'une épaisseur au centre comprise entre 2 et 4 mm, en ce que la lentille ménisque divergente (30) présente une face arrière dont le rayon de courbure est compris entre -22,5 et -25 mm et une face avant dont le rayon de courbure est compris entre -17 et -18,5 mm, un diamètre sensiblement égal au diamètre de la lentille plan-convexe ainsi qu'une épaisseur au centre comprise entre 1 et 2 mm, en ce que la lentille plan-concave (32) présente une face arrière dont le rayon de courbure correspond au rayon de courbure de la face avant de la lentille biconvexe (34), un diamètre sensiblement identique au diamètre de la lentille biconvexe (34) ainsi qu'une épaisseur au centre comprise entre 1 et 3,5 mm, en ce que la lentille biconvexe arrière (34) présente une face arrière dont le rayon de courbure est compris entre -28 et -30 mm et une face avant dont le rayon de courbure est compris entre 28 et 30 mm, un diamètre compris entre 22 et 26 mm ainsi qu'une épaisseur au centre comprise entre 4 et 7 mm, et en ce que la distance entre les faces planes de la lentille plan-concave (32) et de la lentille plan-convexe (28) est comprise entre 20 et 25 mm, toutes les valeurs indiquées pour ce dispositif pouvant être multipliées par un même coefficient pour obtenir un dispositif semblable par homothétie. 7. Optical device according to one of claims 1 to 6, characterized in that the plano-convex lens (28) has a rear face whose radius of curvature is between -30 and -32.5 mm and a substantially flat front face, a diameter between 20 and 25 mm and a thickness in the center between 2 and 4 mm, in that the diverging meniscus lens (30 ) has a rear face whose radius of curvature is between -22.5 and -25 mm and a front face whose radius of curvature is between -17 and -18.5 mm, a diameter substantially equal to the diameter of the plano-convex lens and a thickness in the center of between 1 and 2 mm, in that the plano-concave lens (32) has a rear face whose radius of curvature corresponds to the radius of curvature of the front face of the lens biconvex (34), a diameter substantially identical to the diameter of the biconvex lens (34) as well as a thickness in the center of between 1 and 3.5 mm, in that the rear biconvex lens (34) has a rear face whose radius of curvature is between -28 and -30 mm and a front face whose radius of curvature is between 28 and 30 mm, a diameter between 22 and 26 mm and a thickness in the center between 4 and 7 mm, and in that the distance between the planar faces of the plano-concave lens ( 32) and the plano-convex lens (28) is between 20 and 25 mm, all the values indicated for this device can be multiplied by the same coefficient to obtain a similar device by homothety.
8. Dispositif optique selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte en outre des diodes électroluminescentes (36) disposées en couronne autour de son axe ainsi qu'une lentille de Fresnel (38) interposée entre les diodes (36) et l'échantillon, ou similaire, à observer.8. Optical device according to one of claims 1 to 7, characterized in that it further comprises light-emitting diodes (36) arranged in a ring around its axis as well as a Fresnel lens (38) interposed between the diodes (36) and the sample, or the like, to be observed.
9. Dispositif d'observation ou d'analyse d'un ou plusieurs échantillons disposés sur un support (4), notamment une plaque, comportant un objectif d'observation (12) d'au moins une partie d'un échantillon suivant un axe d'observation (26) depuis une face d'observation du support, une platine de positionnement du support adaptée pour assurer un déplacement relatif entre le support (4) et l'axe d'observation (26) dans un plan perpendiculaire à l'axe d'observation, tout en laissant libre le déplacement vertical, des moyens d'illumination (14) d'au moins une partie d'un échantillon et des moyens d'acquisition (18) d'une image en sortie d'objectif, caractérisé en ce que l'objectif d'observation comporte un dispositif optique (12) selon l'une des revendications 1 à 8. 9. Device for observing or analyzing one or more samples placed on a support (4), in particular a plate, comprising an observation objective (12) of at least part of a sample along an axis observation (26) from an observation face of the support, a support positioning plate adapted to ensure relative movement between the support (4) and the observation axis (26) in a plane perpendicular to the axis of observation, while allowing free vertical movement, means of illumination (14) of at least part of a sample and means of acquisition (18) of an image at the lens output, characterized in that the observation objective comprises an optical device (12) according to one of claims 1 to 8.
10. Dispositif d'observation selon la revendication 9, caractérisé en ce que les moyens d'acquisition d'une image comportent un objectif à focale fixe comme optique de focalisation (19).10. Observation device according to claim 9, characterized in that the means for acquiring an image comprise a fixed focal lens as focusing optics (19).
11. Dispositif d'observation selon la revendication 9, caractérisé en ce que les moyens d'acquisition d'une image comportent un zoom comme optique de focalisation (19).11. Observation device according to claim 9, characterized in that the means for acquiring an image comprise a zoom as focusing optics (19).
12. Dispositif d'observation selon l'une des revendications 9 à 11 , caractérisé en ce qu'il comporte derrière le dispositif optique un dispositif de filtration présentant des propriétés spectrales variables. 12. Observation device according to one of claims 9 to 11, characterized in that it includes behind the optical device a filtration device having variable spectral properties.
13. Dispositif d'observation selon l'une des revendications 9 à 12, caractérisé en ce qu'il comporte sur le trajet de la lumière de flurorescence un miroir dichroïque renvoyant une partie de cette lumière vers des seconds moyens d'observation. 13. Observation device according to one of claims 9 to 12, characterized in that it comprises on the path of the fluorescent light a dichroic mirror returning part of this light to second observation means.
EP03807869A 2002-10-08 2003-10-06 Optical device for observing samples on a support, designed in particular for a cytometer Withdrawn EP1576406A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0212473A FR2845488B1 (en) 2002-10-08 2002-10-08 OPTICAL DEVICE FOR OBSERVING SAMPLES ON A SUPPORT, IN PARTICULAR FOR A CYTOMETER
FR0212473 2002-10-08
PCT/FR2003/002930 WO2004034122A2 (en) 2002-10-08 2003-10-06 Optical device for observing samples on a support, designed in particular for a cytometer

Publications (1)

Publication Number Publication Date
EP1576406A2 true EP1576406A2 (en) 2005-09-21

Family

ID=32011499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03807869A Withdrawn EP1576406A2 (en) 2002-10-08 2003-10-06 Optical device for observing samples on a support, designed in particular for a cytometer

Country Status (5)

Country Link
US (1) US20060139746A1 (en)
EP (1) EP1576406A2 (en)
AU (1) AU2003299442A1 (en)
FR (1) FR2845488B1 (en)
WO (1) WO2004034122A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873815B1 (en) * 2004-08-02 2006-11-24 Inodiag Sa READING DEVICE FOR BLADES CARRYING MICRO DEPOSITS BIOLOGICAL REACTION CARRIERS
US7110192B2 (en) 2005-01-12 2006-09-19 Dako Denmark A/S System and method for a composite lens for a flow cytometer
GB2548764B (en) 2015-01-27 2020-10-21 Hitachi High Tech Corp Multicolor fluorescence analysis device
AU2016284332B2 (en) 2015-06-22 2019-05-09 The Brigham And Women's Hospital, Inc Home evaluation of the quality of semen samples

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659924A (en) * 1971-03-18 1972-05-02 American Optical Corp Four member 100x microscope objective

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1388723A (en) * 1971-05-07 1975-03-26 Tubix Sa Wide-angle lens
JPS5526545A (en) * 1978-08-17 1980-02-26 Olympus Optical Co Ltd Reproducing lens for video disc
JPH07122692B2 (en) * 1988-09-29 1995-12-25 富士写真光機株式会社 Objective lens for endoscope
JPH05264895A (en) * 1992-03-16 1993-10-15 Konica Corp Wide-angle lens
US5532879A (en) * 1993-07-23 1996-07-02 Nikon Corporation Microscope objective lens
JPH11344675A (en) * 1998-05-29 1999-12-14 Nikon Corp Inverted microscope
FR2808888B1 (en) * 2000-05-15 2003-06-20 Trophos SEQUENTIAL SAMPLE OBSERVATION DEVICE AND METHODS USING THE SAME
JP4754675B2 (en) * 2000-07-14 2011-08-24 オリンパス株式会社 Microscope objective lens
US6985616B2 (en) * 2001-10-18 2006-01-10 Robodesign International, Inc. Automated verification and inspection device for sequentially inspecting microscopic crystals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659924A (en) * 1971-03-18 1972-05-02 American Optical Corp Four member 100x microscope objective

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004034122A3 *
WARREN J. SMITH: "Modern Lens Design", 1992, MCGRAW-HILL, INC., ROCHESTER, NEW YORK, 059178 *

Also Published As

Publication number Publication date
WO2004034122A2 (en) 2004-04-22
AU2003299442A1 (en) 2004-05-04
FR2845488B1 (en) 2004-12-17
US20060139746A1 (en) 2006-06-29
FR2845488A1 (en) 2004-04-09
WO2004034122A3 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
EP0165868B1 (en) Optical system with high collection efficiency, and cytofluorimeter using such a system
EP2646789B9 (en) Method of determining at least one refraction characteristic of an ophthalmic lens
EP1817574A1 (en) Illumination method and device for determining the presence of defects on the surface of a container collar
CA2898641C (en) Method for regulating the relative position of an analyte in relation to a light beam
CA2408731C (en) Device for sequential observation of samples and methods using same
EP3559635B1 (en) Device and method for observing the radiation backscattered by an object
EP3559636B1 (en) Device and method for observing the radiation backscattered by an object
WO2020157265A1 (en) Device for wavefront analysis and microscopic imaging systems comprising such analysis devices
FR2716003A1 (en) Method for automatic analysis of elements in low concentration on a support for objects of low occurrence and device for implementing said method.
FR2936251A1 (en) DEVICE FOR MICROBIOLOGICAL ANALYSIS.
EP1576406A2 (en) Optical device for observing samples on a support, designed in particular for a cytometer
FR2896041A1 (en) Object e.g. bottle, inspection device for e.g. detecting fabrication defects, has polyhedric optic with external and internal surfaces permitting reflections of light radiated by hidden surface of object to transmit light towards camera
EP3899460B1 (en) Apparatus and method for light-beam scanning microspectrometry
EP1010126A1 (en) Method and device for reading raised designs borne by a transparent or translucent container
CA2287097C (en) Process and instrument for monitoring the bond between the alveolar component and the skin component of a honeycomb assembly
WO2024061843A1 (en) Optical microscope with resonator
EP4260116A1 (en) Confocal microscope with photon re-allocation
FR3113741A1 (en) focusing and collection optical system
FR3129582A1 (en) Device for inspecting a portion of the human body and associated method
WO2023025842A1 (en) Biocompatible optical slide intended for total internal reflection microscopy and microscopy imaging system comprising such a slide
WO2015185837A9 (en) Optical device for observing an object, minimising the internal reflection phenomenon
WO1999009447A1 (en) Device for automatic microscopy
FR2954499A1 (en) METHOD AND SYSTEM FOR MOLECULAR ANALYSIS SWITCHING IMAGING AND SPECTROSCOPY MEASUREMENTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050404

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070502