EP1574478A1 - Preparation of carbonyl difluoride - Google Patents

Preparation of carbonyl difluoride Download PDF

Info

Publication number
EP1574478A1
EP1574478A1 EP04005421A EP04005421A EP1574478A1 EP 1574478 A1 EP1574478 A1 EP 1574478A1 EP 04005421 A EP04005421 A EP 04005421A EP 04005421 A EP04005421 A EP 04005421A EP 1574478 A1 EP1574478 A1 EP 1574478A1
Authority
EP
European Patent Office
Prior art keywords
mol
cof
hcl
irradiation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04005421A
Other languages
German (de)
French (fr)
Inventor
Max Dr. Braun
Johannes Dr. Eicher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Fluor GmbH
Original Assignee
Solvay Fluor GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Fluor GmbH filed Critical Solvay Fluor GmbH
Priority to EP04005421A priority Critical patent/EP1574478A1/en
Priority to KR1020067018250A priority patent/KR101300815B1/en
Priority to JP2007502213A priority patent/JP5007220B2/en
Priority to CA2557973A priority patent/CA2557973C/en
Priority to CN2005800074131A priority patent/CN1930081B/en
Priority to US10/591,783 priority patent/US7880039B2/en
Priority to EP05707275A priority patent/EP1723075B8/en
Priority to PCT/EP2005/001281 priority patent/WO2005085129A2/en
Priority to TW094105759A priority patent/TWI361795B/en
Publication of EP1574478A1 publication Critical patent/EP1574478A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides

Definitions

  • the invention relates to the preparation of carbonyl fluoride (fluorophosgene) by photochemical oxidation.
  • Carbonyl fluoride is proposed as a new etching gas for the purification of CVD reactors Service.
  • the technical preparation is by heating a monohalodifluoromethane possible, see EP-A-0 310255.
  • In scientific publications is also the photochemical oxidation of chlorodifluoromethane in the presence of chlorine See E. O. Edney and D. J. Driscoll, Int. Journal of Chemical Kinetics, Vol. 24 (1992), pages 1067 to 1081.
  • the pressure was 700 Torr.
  • the goal was to learn about to obtain the tropospheric decomposition of various halogenated hydrocarbons.
  • the object of the present invention was to provide a process which can be carried out industrially advantageously for the preparation of carbonyl fluoride, C (O) F 2 . This object is achieved by the method of the present invention.
  • the process according to the invention provides for the production of C (O) F 2 by photooxidation of CHClF 2 with oxygen.
  • light is radiated which does not consist of a single wavelength, but has a spectral range which comprises at least 50 nm (ie the light component with the lowest wavelength and the light component with the highest wavelength are at least 50 nm apart).
  • the pressure in the reactor preferably corresponds at least to the ambient pressure, ie 1 bar (abs.). He can also lie about it.
  • the pressure is preferably in the range of 1 bar (abs.) up to 11 bar (abs.).
  • the temperature is preferably in the range of 20 to 300 ° C, especially in the range of 30 to 300 ° C and in particular in the range of 30 to 90 ° C.
  • the term "depressurized” means in Within the scope of the present invention that the reaction mixture except the Ambient pressure (i.e., about 1 bar), the discharge pressure of the oxygen gas (or the oxygen-containing gas, e.g. Air or oxygen / inert gas mixtures use) and of the optionally used chlorine and optionally forming pressure by the reaction of hydrogen chloride gas no additional Pressure acts.
  • the total pressure in the reactor is then advantageously smaller than 2 bar absolute, depending on the delivery pressure even less than 1.5 bar absolute, but greater than that Ambient pressure.
  • the process can be carried out batchwise or preferably continuously.
  • the procedure is to continuously use starting material (the corresponding educt, oxygen or an oxygen-containing gas such as air or pure oxygen and optionally chlorine) fed into a flow-through apparatus and continuously withdraws reaction product according to the amount fed.
  • the average residence time in the reaction vessel is advantageously between 0.01 and 30 Minutes, preferably between 0.1 to 3 minutes, more preferably between 0.3 and 1.5 Minutes.
  • the optimum average residence time which i.a. on the type of lamps, the Radiation power of the lamps and geometric parameters of the irradiation apparatus dependent, one can by simple hand tests and analysis of the Product flow, for example by gas chromatography, determine. It can be advantageous also be, the reaction mixture, for example, by suitable internals in the reactor good to swirl.
  • the optimal residence time in batchwise implementation can in the same Be determined manner.
  • the method can be carried out in two preferred embodiments.
  • One embodiment provides for photooxidation in the absence of chlorine or others Radical initiators or activators.
  • the irradiation by Quartz glass are made through; other components of the reactor that are not between Light source and reaction mixture are arranged, of course, from any Components, e.g. also be borosilicate glass, which certain radiation levels filters (see below).
  • emitters are customary emitters, for example, radiation in the range of 250 to 400 nm or even to 600 nm (the spectrum can also beyond the lower or upper limit).
  • a further, particularly preferred embodiment provides the irradiation in the presence of elemental chlorine under irradiation with light having a wavelength of ⁇ 280 nm, wherein per part by weight of CHClF 2 at most 0.6 parts by weight of elemental chlorine are contained in the reaction mixture.
  • Preferred are preferably employed per mole of CHClF 2 1 to 50 mol% of chlorine, 5 to 20 mol% of elemental chlorine.
  • Rate of conversion, yield and selectivity are particularly high when reacted in the presence of elemental chlorine and activating irradiation with light of wavelength ⁇ ⁇ 280 nm.
  • Frequencies of a wavelength below 280 nm are then masked out substantially from the frequency spectrum. This can be achieved by using radiation lamps that emit only light of a wavelength above or at 280 nm, and / or using means that hide the corresponding frequencies from the emitted light.
  • Well suited for this purpose are, for example, borosilicate glasses.
  • Suitable glasses contain, for example, 7 to 13% B 2 O 3 , 70 to 80% SiO 2 , further 2 to 7% Al 2 O 3 and 4 to 8% Na 2 O + K 2 O and 0 to 5% alkaline earth metal oxides (in each case wt .-%).
  • Well-known brands of borosilicate glasses are Duran, Pyrex and Solidex.
  • irradiation lamps For irradiation are particularly suitable irradiation lamps, the only (UV) radiate light of a wavelength above or at 280 nm.
  • Fluorescent tubes e.g., from Philips
  • Lamps can be irradiated by quartz glass, but also by the above described, make the shorter-wave irradiation fractionTofilternde glasses.
  • the lamps or tubes used in the Absorb absorption of elemental chlorine can also be used for example for irradiation lamps (e.g.
  • any lines in the area below 280 nm are filtered out, for example by passing through a glass irradiated, which only permeable to light of a wavelength at and above 280 nm is.
  • Applicable glasses are described above.
  • Well suited for irradiation also lamps, e.g. Mercury high-pressure lamps due to a dopant predominantly or only in the preferred wavelength range at and above 280 nm radiate.
  • Mercury high-pressure lamps for example, have a rather intense Band in the range of 254 nm, which, as described above, for example, by Borosilicate glass can be filtered out. When doped by metal iodides Mercury high-pressure lamps, this line is strongly suppressed.
  • the molar ratio between the educt and oxygen can be in a wide Range fluctuate, however expedient one sets at least 0.4 moles of oxygen per Mol starting compound. Particularly good results are achieved when the molar ratio between the starting compound and the oxygen in the range of 1: 0.4 to 1: 1, in particular 1: 0.4 to 1: 0.6.
  • the oxygen can be said in the form of Air are used.
  • the oxygen is preferably used in the form of an O 2 / inert gas mixture, but especially as pure oxygen. In terms of product purity It is desirable that as little water as possible is present during the reaction (for example, less than 30 ppm). If desired, one can see the reactants in known manner of entrained water, e.g. by molecular sieve.
  • the advantage of the process according to the invention is the high selectivity and yield.
  • the reaction space used was a reactor made of Duran glass with a filling volume of a maximum of 580 ml, which includes a cold finger (Duran) and a lamp shaft (Quartz glass) had. Gas was introduced via a glass frit located at the reactor bottom was. The high pressure mercury vapor radiator was cooled with compressed air.
  • the compressed air cooling was turned on first and then the Lamp ignited. After about 10 minutes, the spotlight has its power (500 or 700 watts) reached.
  • the introduction of the gases has now begun. First, the introduction started by HCFC-22 (R 22), then the introduction of the chlorine, finally also the Initiate the oxygen so that all three reactants were fed to the reactor.
  • the reaction space used is a reactor made of Duran glass with a filling volume of a maximum of 580ml, which is a quartz-made cold finger and a lamp shaft (Quartz glass) had.
  • the gas was introduced via a glass frit, located at the Reactor bottom was.
  • the mercury vapor high pressure radiator was cooled with compressed air. At the beginning of the test, the compressed air cooling was turned on first and then the Lamp ignited. After about 10 minutes, the spotlight had reached its power. First HCFC-22 was introduced into the reactor and then the oxygen was switched on.
  • the two gases were now dosed in a certain ratio at the same time and passed through the reactor room.
  • the resulting product gas stream was analyzed.
  • the examples show that particularly good yield and conversion are achieved when carried out in the presence of chlorine and with light whose shorter-wave fraction ( ⁇ ⁇ 280 nm) is filtered out.
  • the isolation of the carbonyl fluoride can be carried out by customary methods, for example by cryogenic or pressure distillation.

Abstract

Producing carbonyl fluoride comprises photooxidation of chlorodifluoromethane with oxygen.

Description

Die Erfindung bezieht sich auf die Herstellung von Carbonylfluorid (Fluorphosgen) durch photochemische Oxidation.The invention relates to the preparation of carbonyl fluoride (fluorophosgene) by photochemical oxidation.

Carbonylfluorid ist als neues Ätzgas für die Reinigung von CVD-Reaktoren vorgeschlagen worden. Die technische Herstellung ist durch Erhitzen eines Monohalodifluormethans möglich, siehe EP-A-0 310255. In wissenschaftlichen Publikationen ist auch die photochemische Oxidation von Chlordifluormethan in Anwesenheit von Chlor beschrieben worden, siehe E. O. Edney und D. J. Driscoll, Int. Journal of Chemical Kinetics, Vol. 24(1992), Seiten 1067 bis 1081.Der Druck betrug 700 Torr. Ziel war es, Erkenntnisse über die troposphärische Zersetzung verschiedener Halogenkohlenwasserstoffe zu erhalten.Carbonyl fluoride is proposed as a new etching gas for the purification of CVD reactors Service. The technical preparation is by heating a monohalodifluoromethane possible, see EP-A-0 310255. In scientific publications is also the photochemical oxidation of chlorodifluoromethane in the presence of chlorine See E. O. Edney and D. J. Driscoll, Int. Journal of Chemical Kinetics, Vol. 24 (1992), pages 1067 to 1081. The pressure was 700 Torr. The goal was to learn about to obtain the tropospheric decomposition of various halogenated hydrocarbons.

Aufgabe der vorliegenden Erfindung war es, ein technisch vorteilhaft durchführbares Verfahren zur Herstellung von Carbonylfluorid, C(O)F2, anzugeben. Diese Aufgabe wird durch das Verfahren der vorliegenden Erfindung gelöst.The object of the present invention was to provide a process which can be carried out industrially advantageously for the preparation of carbonyl fluoride, C (O) F 2 . This object is achieved by the method of the present invention.

Das erfindungsgemäße Verfahren sieht die Herstellung von C(O)F2 durch Photooxidation von CHClF2 mit Sauerstoff vor. Dabei wird Licht eingestrahlt, das nicht aus einer einzigen Wellenlänge besteht, sondern einen Spektralbereich aufweist, der mindestens 50 nm umfasst (d.h. der Lichtanteil mit niedrigster Wellenlänge und der Lichtanteil mit der höchsten Wellenlänge liegen mindestens 50 nm auseinander).The process according to the invention provides for the production of C (O) F 2 by photooxidation of CHClF 2 with oxygen. In this case, light is radiated which does not consist of a single wavelength, but has a spectral range which comprises at least 50 nm (ie the light component with the lowest wavelength and the light component with the highest wavelength are at least 50 nm apart).

Der Druck im Reaktor entspricht bevorzugt mindestens dem Umgebungsdruck, also 1 bar (abs.). Er kann auch darüber liegen. Der Druck liegt bevorzugt im Bereich von 1 bar (abs.) bis 11 bar (abs.). Die Temperatur liegt bevorzugt im Bereich von 20 bis 300 °C, besonders im Bereich von 30 bis 300 °C und insbesondere im Bereich von 30 bis 90 °C. Vorteilhaft wählt man die Bedingungen hinsichtlich Druck und Temperatur derart, dass das Reaktionsgemisch gasförmig bleibt.The pressure in the reactor preferably corresponds at least to the ambient pressure, ie 1 bar (abs.). He can also lie about it. The pressure is preferably in the range of 1 bar (abs.) up to 11 bar (abs.). The temperature is preferably in the range of 20 to 300 ° C, especially in the range of 30 to 300 ° C and in particular in the range of 30 to 90 ° C. Advantageously, one chooses the conditions of pressure and temperature such that the reaction mixture remains gaseous.

Ganz besonders bevorzugt arbeitet man drucklos. Der Begriff "drucklos" bedeutet im Rahmen der vorliegenden Erfindung, dass auf die Reaktionsmischung außer dem Umgebungsdruck (d.h. etwa 1 bar), dem Förderdruck des Sauerstoffgases (bzw. des sauerstoffhaltigen Gases, man kann z.B. Luft oder Sauerstoff/Inertgas-Gemische einsetzen) und des gegebenenfalls eingesetzten Chlors sowie dem sich gegebenenfalls ausbildenden Druck durch bei der Reaktion entstehendes Chlorwasserstoffgas kein zusätzlicher Druck einwirkt. Der Gesamtdruck im Reaktor ist dann zweckmäßig kleiner als 2 bar absolut, je nach Förderdruck sogar kleiner als 1,5 bar absolut, aber größer als der Umgebungsdruck.Most preferably, one works without pressure. The term "depressurized" means in Within the scope of the present invention that the reaction mixture except the Ambient pressure (i.e., about 1 bar), the discharge pressure of the oxygen gas (or the oxygen-containing gas, e.g. Air or oxygen / inert gas mixtures use) and of the optionally used chlorine and optionally forming pressure by the reaction of hydrogen chloride gas no additional Pressure acts. The total pressure in the reactor is then advantageously smaller than 2 bar absolute, depending on the delivery pressure even less than 1.5 bar absolute, but greater than that Ambient pressure.

Das Verfahren kann batchweise oder bevorzugt kontinuierlich durchgeführt werden. Vorzugsweise geht man so vor, dass man kontinuierlich Ausgangsmaterial (das entsprechende Edukt, Sauerstoff bzw. ein Sauerstoff enthaltendes Gas wie Luft oder reinen Sauerstoff und gegebenenfalls Chlor) in eine Durchflussapparatur einspeist und entsprechend der eingespeisten Menge kontinuierlich Reaktionsprodukt abzieht. Die durchschnittliche Verweilzeit im Reaktionsgefäß liegt vorteilhaft zwischen 0,01 und 30 Minuten, bevorzugt zwischen 0,1 bis 3 min, besonders bevorzugt zwischen 0,3 und 1,5 Minuten. Die optimale durchschnittliche Verweilzeit, die u.a. von der Art der Lampen, der Strahlungsleistung der Lampen und von geometrischen Parametem der Bestrahlungsapparatur abhängig ist, kann man durch einfache Handversuche und Analyse des Produktstroms, beispielsweise durch Gaschromatographie, ermitteln. Vorteilhaft kann es auch sein, die Reaktionsmischung beispielsweise durch geeignete Einbauten im Reaktor gut zu verwirbeln. Die optimale Verweilzeit bei batchweiser Durchführung kann in gleicher Weise ermittelt werden.The process can be carried out batchwise or preferably continuously. Preferably, the procedure is to continuously use starting material (the corresponding educt, oxygen or an oxygen-containing gas such as air or pure oxygen and optionally chlorine) fed into a flow-through apparatus and continuously withdraws reaction product according to the amount fed. The average residence time in the reaction vessel is advantageously between 0.01 and 30 Minutes, preferably between 0.1 to 3 minutes, more preferably between 0.3 and 1.5 Minutes. The optimum average residence time, which i.a. on the type of lamps, the Radiation power of the lamps and geometric parameters of the irradiation apparatus dependent, one can by simple hand tests and analysis of the Product flow, for example by gas chromatography, determine. It can be advantageous also be, the reaction mixture, for example, by suitable internals in the reactor good to swirl. The optimal residence time in batchwise implementation can in the same Be determined manner.

Das Verfahren kann in zwei bevorzugten Ausführungsformen durchgeführt werden.The method can be carried out in two preferred embodiments.

Eine Ausführungsform sieht die Photooxidation in Abwesenheit von Chlor oder anderen Radikalinitiatoren oder Aktivatoren vor. Beispielsweise kann die Bestrahlung durch Quarzglas hindurch vorgenommen werden; andere Bauteile des Reaktors, die nicht zwischen Lichtquelle und Reaktionsgemisch angeordnet sind, können natürlich aus beliebigen Bauteilen, z.B. auch aus Borsilikat-Glas sein, welches bestimmte Strahlungsanteile filtert (siehe unten). Als Strahler eigenen sich übliche Strahler, die beispielsweise Strahlung im Bereich von 250 bis 400 nm oder sogar bis 600 nm abgeben (das Spektrum kann auch über die untere oder obere Grenze hinausgehen).One embodiment provides for photooxidation in the absence of chlorine or others Radical initiators or activators. For example, the irradiation by Quartz glass are made through; other components of the reactor that are not between Light source and reaction mixture are arranged, of course, from any Components, e.g. also be borosilicate glass, which certain radiation levels filters (see below). As emitters are customary emitters, for example, radiation in the range of 250 to 400 nm or even to 600 nm (the spectrum can also beyond the lower or upper limit).

Eine weitere, besonders bevorzugte Ausführungsform sieht die Bestrahlung in Anwesenheit von elementarem Chlor unter Bestrahlung mit Licht einer Wellenlänge von ≥ 280 nm vor, wobei pro Gewichtsteil CHClF2 maximal 0,6 Gewichtsteile elementares Chlor im Reaktionsgemisch enthalten sind. Bevorzugt werden pro Mol CHClF2 1 bis 50 mol-% Chlor, vorzugsweise 5 bis 20 mol-% elementares Chlor eingesetzt.A further, particularly preferred embodiment provides the irradiation in the presence of elemental chlorine under irradiation with light having a wavelength of ≥ 280 nm, wherein per part by weight of CHClF 2 at most 0.6 parts by weight of elemental chlorine are contained in the reaction mixture. Preferred are preferably employed per mole of CHClF 2 1 to 50 mol% of chlorine, 5 to 20 mol% of elemental chlorine.

Umsatzrate, Ausbeute und Selektivität sind besonders hoch, wenn man in Anwesenheit von elementarem Chlor umsetzt und eine aktivierende Bestrahlung mit Licht einer Wellenlänge λ ≥ 280 nm vornimmt. Frequenzen einer Wellenlänge unterhalb von 280 nm sind dann im Wesentlichen aus dem Frequenzspektrum ausgeblendet. Dies kann man dadurch bewirken, dass man Bestrahlungslampen verwendet, die nur Licht einer Wellenlänge oberhalb oder bei 280 nm abstrahlen, und/oder man verwendet Mittel, die die entsprechenden Frequenzen aus dem abgestrahlten Licht ausblenden. Beispielsweise kann man durch Glas bestrahlen, welches nur für Licht einer Wellenlänge von 280 nm oder darüber durchlässig ist, also den kürzerwelligeren Strahlungsanteil herausfiltert. Gut geeignet dafür sind beispielsweise Borosilikat-Gläser. Geeignete Gläser enthalten beispielsweise 7 bis 13 % B2O3, 70 bis 80 % SiO2, ferner 2 bis 7 % Al2O3 und 4 bis 8 % Na2O + K2O sowie 0 bis 5% Erdalkalimetalloxide (jeweils Gew.-%). Bekannte Marken für Borosilikat-Gläser sind Duran, Pyrex und Solidex.Rate of conversion, yield and selectivity are particularly high when reacted in the presence of elemental chlorine and activating irradiation with light of wavelength λ ≥ 280 nm. Frequencies of a wavelength below 280 nm are then masked out substantially from the frequency spectrum. This can be achieved by using radiation lamps that emit only light of a wavelength above or at 280 nm, and / or using means that hide the corresponding frequencies from the emitted light. For example, it is possible to irradiate through glass which is permeable only to light having a wavelength of 280 nm or above, that is to say it filters out the shorter-wave radiation fraction. Well suited for this purpose are, for example, borosilicate glasses. Suitable glasses contain, for example, 7 to 13% B 2 O 3 , 70 to 80% SiO 2 , further 2 to 7% Al 2 O 3 and 4 to 8% Na 2 O + K 2 O and 0 to 5% alkaline earth metal oxides (in each case wt .-%). Well-known brands of borosilicate glasses are Duran, Pyrex and Solidex.

Zur Bestrahlung sind besonders gut Bestrahlungslampen geeignet, die nur (UV)Licht einer Wellenlänge oberhalb von oder bei 280 nm abstrahlen. Insbesondere Leuchtstoff-Röhren (z.B. von der Firma Philips) sind sehr gut geeignet. Mit derartigen Lampen kann man die Bestrahlung durch Quarzglas, aber auch durch die vorstehend beschriebenen, den kürzerwelligen Bestrahlungsanteil herausfilternde Gläser vornehmen. Voraussetzung ist natürlich, dass die verwendeten Lampen oder Röhren auch im Absorptionsbereich des elementaren Chlors emittieren. Neben den besonders gut geeigneten Leuchtstoffröhren kann man auch beispielsweise Bestrahlungslampen (z.B. Quecksilber-Mittel- oder Hochdruckstrahler) verwenden; etwaige Linien im Bereich unterhalb von 280 nm werden herausgefiltert, beispielsweise indem man durch ein Glas bestrahlt, das nur für Licht einer Wellenlänge bei und oberhalb von 280 nm durchlässig ist. Verwendbare Gläser sind weiter oben beschrieben. Gut geeignet zur Bestrahlung sind auch Lampen, z.B. Quecksilber-Hochdrucklampen, die aufgrund eines Dotierungsmittels überwiegend oder nur im bevorzugten Wellenbereich bei und oberhalb von 280 nm abstrahlen. Quecksilber-Hochdruckstrahler beispielsweise weisen eine recht intensive Bande im Bereich von 254 nm auf, die, wie oben beschrieben wird, beispielsweise durch Borosilikat-Glas herausgefiltert werden kann. Bei durch Metalljodide dotierten Quecksilber-Hochdruckstrahlern ist diese Linie stark unterdrückt. Überraschend ist die oft überproportionale Erhöhung der Umsatzrate bei Verwendung solcher dotierten Strahler. Besonders gut geeignet sind Quecksilber-Hochdruckstrahler, die mit Galliumjodid, insbesondere Thalliumjodid oder Cadmiumjodid dotiert sind. Auch bei Verwendung solcher dotierter Strahlungslampen filtert man vorteilhaft den kürzerwelligen Strahlungsanteil mit λ < 280 nm heraus, beispielsweise indem man in Borosilikat-Glas arbeitet.For irradiation are particularly suitable irradiation lamps, the only (UV) radiate light of a wavelength above or at 280 nm. Especially Fluorescent tubes (e.g., from Philips) are very well suited. With such Lamps can be irradiated by quartz glass, but also by the above described, make the shorter-wave irradiation fraction herausfilternde glasses. Condition is, of course, that the lamps or tubes used in the Absorb absorption of elemental chlorine. In addition to the especially good suitable fluorescent tubes can also be used for example for irradiation lamps (e.g. Use mercury medium or high pressure lamps); any lines in the area below 280 nm are filtered out, for example by passing through a glass irradiated, which only permeable to light of a wavelength at and above 280 nm is. Applicable glasses are described above. Well suited for irradiation also lamps, e.g. Mercury high-pressure lamps due to a dopant predominantly or only in the preferred wavelength range at and above 280 nm radiate. Mercury high-pressure lamps, for example, have a rather intense Band in the range of 254 nm, which, as described above, for example, by Borosilicate glass can be filtered out. When doped by metal iodides Mercury high-pressure lamps, this line is strongly suppressed. It's often surprising disproportionate increase in the conversion rate when using such doped radiators. Particularly suitable are mercury high-pressure lamps, with gallium iodide, in particular thallium iodide or cadmium iodide are doped. Also when using such doped radiation lamps are advantageously filtered the shorter wavelength Radiation fraction with λ <280 nm out, for example, by borosilicate glass is working.

Das Molverhältnis zwischen dem Edukt und Sauerstoff kann in einem weiten Bereich schwanken, zweckmäßig setzt man jedoch mindestens 0,4 Mol Sauerstoff pro Mol Ausgangsverbindung ein. Besonders gute Ergebnisse werden erzielt, wenn das Molverhältnis zwischen der Ausgangsverbindung und dem Sauerstoff im Bereich von 1:0,4 bis 1:1, insbesondere 1:0,4 bis 1:0,6 liegt. Der Sauerstoff kann wie gesagt in Form von Luft eingesetzt werden. Bevorzugt setzt man den Sauerstoff in Form eines O2/Inertgas-Gemisches, insbesondere aber als reinen Sauerstoff ein. In Bezug auf die Produktreinheit ist es wünschenswert, dass möglichst wenig Wasser bei der Umsetzung vorhanden ist (beispielsweise weniger als 30 ppm). Gewünschtenfalls kann man die Reaktanten in bekannter Weise von mitgeschlepptem Wasser befreien, z.B. mittels Molekularsieb.The molar ratio between the educt and oxygen can be in a wide Range fluctuate, however expedient one sets at least 0.4 moles of oxygen per Mol starting compound. Particularly good results are achieved when the molar ratio between the starting compound and the oxygen in the range of 1: 0.4 to 1: 1, in particular 1: 0.4 to 1: 0.6. The oxygen can be said in the form of Air are used. The oxygen is preferably used in the form of an O 2 / inert gas mixture, but especially as pure oxygen. In terms of product purity It is desirable that as little water as possible is present during the reaction (for example, less than 30 ppm). If desired, one can see the reactants in known manner of entrained water, e.g. by molecular sieve.

Der Vorteil des erfindungsgemäßen Verfahrens ist die hohe Selektivität und Ausbeute.The advantage of the process according to the invention is the high selectivity and yield.

Die folgenden Beispiele erläutern die Erfindung, ohne sie einzuschränken.The following examples illustrate the invention without limiting it.

Beispiel 1: Herstellung von Fluorphosgen (COF2) durch photochemische ReaktionExample 1: Production of fluorophosgene (COF 2 ) by photochemical reaction

  • Reaktionsgleichung:Reaction: CF2HCl + ½ O2 → COF2 + HClCF 2 HCl + ½ O 2 → COF 2 + HCl
  • Ansatzgröße:   siehe jeweiliger Versuch Batch size: see respective experiment
  • Versuchsdurchführung und Aufbau:Experimental procedure and structure:

    Als Reaktionsraum diente ein aus Duran-Glas gefertigter Reaktor mit einem Füllvolumen von maximal 580 ml, welcher einen Kühlfinger (Duran) und einen Lampenschacht (Quarzglas) aufwies. Die Gaseinleitung erfolgte über eine Glasfritte, die sich am Reaktorboden befand. Der Quecksilberdampf-Hochdruckstrahler wurde mit Pressluft gekühlt.The reaction space used was a reactor made of Duran glass with a filling volume of a maximum of 580 ml, which includes a cold finger (Duran) and a lamp shaft (Quartz glass) had. Gas was introduced via a glass frit located at the reactor bottom was. The high pressure mercury vapor radiator was cooled with compressed air.

    Zu Versuchsbeginn wurde zuerst die Pressluftkühlung aufgedreht und dann die Lampe gezündet. Nach ca. 10 min hat der Strahler seine Leistung (500 oder 700Watt) erreicht. Es wurde jetzt die Einleitung der Gase begonnen. Zunächst wurde die Einleitung von HCFC-22 (R 22) gestartet, dann die Einleitung des Chlors, schließlich auch noch die Einleitung des Sauerstoffs, so dass alle drei Reaktanten in den Reaktor eingespeist wurden.At the beginning of the test, the compressed air cooling was turned on first and then the Lamp ignited. After about 10 minutes, the spotlight has its power (500 or 700 watts) reached. The introduction of the gases has now begun. First, the introduction started by HCFC-22 (R 22), then the introduction of the chlorine, finally also the Initiate the oxygen so that all three reactants were fed to the reactor.

    Alle Gase wurden dann in einem bestimmten Verhältnis zugleich dosiert und durch den Reaktorraum geleitet. Der entstehende Produktgasstrom wurde durch eine Waschflasche (gefüllt mit ca. 5%iger H2O2- Lösung) geleitet, um das überschüssige Chlor aufzufangen und in HCl umzuwandeln. Die Proben des Produktgasstroms wurden vor der Waschflasche entnommen.All gases were then metered in a certain ratio at the same time and passed through the reactor space. The resulting product gas stream was passed through a wash bottle (filled with approximately 5% H 2 O 2 solution) to collect the excess chlorine and convert it to HCl. The samples of the product gas stream were taken before the bubbler.

    Versuch 1:Trial 1:

    Ansatzapproach 0,5 mol R22/h0.5 mol R22 / h 0,5 mol O2/h0.5 mol of O 2 / h wenig Cl2 little Cl 2 Durchführungexecution Lampenleistung bei 700 WattLamp power at 700 watts Probenahme und Uhrzeit (Beginn 7:10)Sampling and time (start 7:10) R22 (in g)R22 (in g) R22 mol/hR22 mol / h Cl2 (in g)Cl2 (in g) Cl2 mol/hCl2 mol / h O2 (in g)O2 (in g) O2 mol/hO 2 mol / h Verweilzeit im Reaktor (in min)Residence time in the reactor (in min) 07:3007:30 17,217.2 0,60.6 22 0,080.08 4,84.8 0,50.5 1,231.23 07:4507:45 37,737.7 0,90.9 2,72.7 0,040.04 9,69.6 0,60.6 0,940.94 08:1008:10 54,654.6 0,50.5 4,84.8 0,070.07 14,614.6 0,40.4 1,491.49

    Analysenauswertung der Gasproben (alle Analysen ohne Luft berechnet): Analysis analysis of gas samples (all analyzes calculated without air):

    Probennahme:Sampling: um 7.45 Uhrat 7.45 45,1% COF2 45.1% COF 2 um 8.10 Uhrat 8.10 clock 24,5% COF2 24.5% COF 2 44,2% HCl44.2% HCl 23,7% HCl23.7% HCl 8,6% CO2 8.6% CO 2 10,9% CO2 10.9% CO 2 1,8% R121.8% R12 3,9% R123.9% R12 0,3% H2O0.3% H 2 O 37,0% R2237.0% R22

    Versuch 2:Trial 2:

    Ansatzapproach 0,5 mol R22/h0.5 mol R22 / h 0,5 mol O2/h0.5 mol of O 2 / h wenig Cl2 little Cl 2 Durchführungexecution Lampenleistung bei 500 WattLamp power at 500 watts Probenahme und Uhrzeit Beginn 7:30Sampling and time start 7:30 R22 (in g)R22 (in g) R22 mol/hR22 mol / h Cl2 (in g)Cl2 (in g) Cl2 mol/hCl2 mol / h O2 (in g)O2 (in g) O2 mol/hO 2 mol / h Verweilzeit im Reaktor (in min)Residence time in the reactor (in min) 07:5007:50 20,720.7 0,70.7 1,81.8 0,080.08 5,85.8 0,50.5 1,131.13 08:4508:45 8080 0,60.6 3,83.8 0,030.03 21,721.7 0,50.5 1,281.28 09:4509:45 130,8130.8 0,60.6 11,311.3 0,10.1 38,938.9 0,50.5 1,211.21 11:1511:15 220,3220.3 0,70.7 14,214.2 0,030.03 56,956.9 0,40.4 1,281.28 12:0012:00 264,5264.5 0,70.7 18,318.3 0,080.08 75,875.8 0,80.8 0,920.92 13:0013:00 303,7303.7 0,50.5 22,022.0 0,10.1 84,484.4 0,30.3 1,711.71 13:3013:30 342,9342.9 0,90.9 00 00 97,997.9 0,80.8 0,850.85

    Analysenauswertung: (alle Analysen ohne Luft berechnet, ausgenommen die Probe um 13.30 Uhr): Analysis evaluation : (all analyzes calculated without air, except the sample at 1.30 pm):

    Probennahme:Sampling: um 7.50 Uhrat 7.50 32,9% COF2 32.9% COF 2 8.45 Uhr8.45 clock 43,1% COF2 43.1% COF 2 34,3% HCl34.3% HCl 42,7% HCl42.7% HCl 5,5% CO2 5.5% CO 2 6,1 % CO2 6.1% CO 2 8,6% R128.6% R12 6,5% R126.5% R12 0,3% H2O0.3% H 2 O 0,8% R220.8% R22 18,4% R2218.4% R22 um 9.45 Uhrat 9.45 44,6% COF2 44.6% COF 2 11.15 Uhr11:15 45,6% COF2 45.6% COF 2 41,6% HCl41.6% HCl 43,9% HCl 43.9% HCl 3,1% CO2 3.1% CO 2 5,7% CO2 5.7% CO 2 6,8% R126.8% R12 3,6% R123.6% R12 4,0% R224.0% R22 1,3% R221.3% R22 um 12.00 Uhrat 12.00 44,9% COF2 44.9% COF 2 um 13.00 Uhrat 13:00 42,0% COF2 42.0% COF 2 40,3% HCl40.3% HCl 41,8% HCl41.8% HCl 11,8% CO2 11.8% CO 2 13,9% CO2 13.9% CO 2 2,6% R122.6% R12 1,7% R121.7% R12 0,3% R220.3% R22 0,5% H2O0.5% H 2 O um 13.30 Uhrat 13.30 o clock 49,3% Luft (O2)49.3% air (O 2 ) 44,0% R2244.0% R22 2,2% HCl2.2% HCl 2,2% CO2 2.2% CO 2 2,0%COF2 2.0% COF 2 0,2% H2O0.2% H 2 O

    Versuch 3:Trial 3:

    Ansatzapproach 0,5 mol R22/h0.5 mol R22 / h 0,5 mol O2/h0.5 mol of O 2 / h wenig Cl2 little Cl 2 Durchführungexecution Lampenleistung bei 500 WattLamp power at 500 watts Probenahme und Uhrzeit (Beginn 7:45)Sampling and time (start 7:45) R22 (in g)R22 (in g) R22 mol/hR22 mol / h Cl2 (in g)Cl2 (in g) Cl2 mol/hCl2 mol / h O2 (in g)O2 (in g) O2 mol/hO 2 mol / h Verweilzeit im Reaktor (in min)Residence time in the reactor (in min) 08:4508:45 61,961.9 0,70.7 4,74.7 0,070.07 16,316.3 0,50.5 1,141.14 09:4509:45 118,8118.8 0,70.7 8,68.6 0,060.06 3333 0,50.5 1,151.15 11:1511:15 205,7205.7 0,70.7 12,512.5 0,040.04 58,858.8 0,50.5 1,171.17 11:4511:45 242,6242.6 0,90.9 12,712.7 0,0060,006 65,665.6 0,40.4 1,111.11

    Analysenauswertung (alle Analysen ohne Luft berechnet): Analysis analysis (all analyzes calculated without air):

    Probennahme:Sampling: um 8.45 Uhr:at 8.45 am: 43,6% COF2 43.6% COF 2 um 9.45 Uhr:at 9.45 am: 46,0% COF2 46.0% COF 2 42,3% HCl42.3% HCl 43,2% HCl43.2% HCl 10,7% CO2 10.7% CO 2 6,9% CO2 6.9% CO 2 1,7% R121.7% R12 1,2% R121.2% R12 1,0% R221.0% R22 2,2% R222.2% R22 0,6% H2O0.6% H 2 O 0,6% H2O0.6% H 2 O um 11.15 Uhrat 11.15 36,7% COF2 36.7% COF 2 um 11.45 Uhrat 11.45 41,7% COF2 41.7% COF 2 38,4% HCl38.4% HCl 40,7% HCl40.7% HCl 8,4% CO2 8.4% CO 2 7,2% CO2 7.2% CO 2 0,9% R120.9% R12 0,9% R120.9% R12 15,4% R2215.4% R22 9,3% R229.3% R22 0,2% H2O0.2% H 2 O 0,3% H2O0.3% H 2 O

    Beispiel 2: Herstellung von Fluorphosgen (COF 2 ) durch photochemische Reaktion (mit Quarzglaskühlfinger und ohne Cl2) Example 2 Production of Fluorophosgene (COF 2 ) by Photochemical Reaction (with Quartz Glass Cooling Finger and Without Cl 2 ) Versuchsdurchführung und Aufbau:Experimental procedure and structure:

    Als Reaktionsraum dient ein aus Duran-Glas gefertigter Reaktor mit einem Füllvolumen von maximal 580ml, welcher einen aus Quarz gefertigten Kühlfinger und einen Lampenschacht (Quarzglas) aufwies. Die Gaseinleitung erfolgte über eine Glasfritte, die sich am Reaktorboden befand. Der Quecksilberdampf- Hochdruckstrahler wurde mit Pressluft gekühlt. Zu Versuchsbeginn wurde zuerst die Pressluftkühlung aufgedreht und dann die Lampe gezündet. Nach ca. 10 min hatte der Strahler seine Leistung erreicht. Zunächst wurde HCFC-22 in den Reaktor eingeleitet und dann der Sauerstoff zugeschaltet.The reaction space used is a reactor made of Duran glass with a filling volume of a maximum of 580ml, which is a quartz-made cold finger and a lamp shaft (Quartz glass) had. The gas was introduced via a glass frit, located at the Reactor bottom was. The mercury vapor high pressure radiator was cooled with compressed air. At the beginning of the test, the compressed air cooling was turned on first and then the Lamp ignited. After about 10 minutes, the spotlight had reached its power. First HCFC-22 was introduced into the reactor and then the oxygen was switched on.

    Die beiden Gase wurden nun in einem bestimmten Verhältnis zugleich dosiert und durch den Reaktorraum geleitet. Der entstehende Produktgasstrom wurde analysiert. The two gases were now dosed in a certain ratio at the same time and passed through the reactor room. The resulting product gas stream was analyzed.

    Versuch 2.1:Experiment 2.1:

    Ansatzapproach 0,5 mol R22/h0.5 mol R22 / h 0,4 mol O2/h0.4 mol of O 2 / h Durchführungexecution Lampenleistung bei 500 WattLamp power at 500 watts Probenahme und Uhrzeit (Beginn 9:00)Sampling and time (start 9:00) R22 (in g)R22 (in g) R22 mol/hR22 mol / h O2 (in g)O2 (in g) O2 mol/hO 2 mol / h Verweilzeit im Reaktor (in min)Residence time in the reactor (in min) 09:3009:30 29,529.5 0,680.68 11,511.5 0,700.70 1,051.05 10:0010:00 43,843.8 0,510.51 19,019.0 0,590.59 1,321.32 10:3010:30 62,562.5 0,430.43 26,026.0 0,440.44 1,671.67 11:0011:00 83,683.6 0,490.49 35,035.0 0,560.56 1,381.38 11:3011:30 102,3102.3 0,430.43 40,040.0 0,310.31 1,961.96 12:0012:00 120,2120.2 0,410.41 45,545.5 0,340.34 1,931.93 13:0013:00 157,1157.1 0,430.43 55,555.5 0,310.31 1,961.96 13:3013:30 176,3176.3 0,440.44 61,061.0 0,340.34 1,861.86

    Analysenauswertung:Analysis Analysis:

    Probennahme:Sampling: um 9.30 Uhrat 9.30 56,2% O2 56.2% O 2 10.00 Uhr10:00 38,8% COF2 38.8% COF 2 15,6% COF2 15.6% COF 2 34,7% HCl34.7% HCl 9,7% HCl9.7% HCl 7,7% CO2 7.7% CO 2 1,3% CO2 1.3% CO 2 14,2% R2214.2% R22 16,6% R2216.6% R22 0,4% H2O0.4% H 2 O 0,4% H2O0.4% H 2 O 3,7% COFCI3.7% COFCI 0,24% COFCI0.24% COFCI 0,6% R120.6% R12 0,04% COCl2 0.04% COCl 2 Um 10.30 Uhrat 10.30 am 35,9% COF2 35.9% COF 2 um 11.00 Uhrat 11.00 35,4% COF2 35.4% COF 2 31,3% HCl31.3% HCl 32,3% HCl32.3% HCl 6,1% CO2 6.1% CO 2 7,1% CO2 7.1% CO 2 21,4% R2221.4% R22 18,6% R2218.6% R22 0,2% H2O0.2% H 2 O 5,7% COFCI5.7% COFCI 4,5% COFCI4.5% COFCI 0,8% R120.8% R12 0,6% R120.6% R12 0,07% COCl2 0.07% COCl 2 0,05% COCl2 0.05% COCl 2 um 11.30 Uhrat 11.30 33,6% COF2 33.6% COF 2 um 12.00 Uhrat 12.00 31,2% COF2 31.2% COF 2 33,7% HCl33.7% HCl 29,9% HCl29.9% HCl 8,1% CO2 8.1% CO 2 7,9% CO2 7.9% CO 2 18,6% R2218.6% R22 24,4% R2224.4% R22 5,7% COFCI5.7% COFCI 5,7% COFCI5.7% COFCI 0,7% R120.7% R12 0,9% R120.9% R12 0,1% COCl2 0.1% COCl 2 0,1% COCl2 0.1% COCl 2 um 13.00 Uhrat 13:00 30,9% COF2 30.9% COF 2 um 13.30 Uhrat 13.30 o clock 27,1% COF2 27.1% COF 2 28,0% HCl28.0% HCl 30,4% HCl30.4% HCl 6,8% CO2 6.8% CO 2 11,5% CO2 11.5% CO 2 27,3% R2227.3% R22 23,5% R2223.5% R22 0,2% H2O0.2% H 2 O 6,4% COFCI6.4% COFCI 5,9% COFCI5.9% COFCI 1,0% R121.0% R12 0,7% R120.7% R12 0,2% COCl2 0.2% COCl 2 0,1% COCl2 0.1% COCl 2

    Die Beispiele belegen, dass besonders gute Ausbeute und Umsatz bei der Durchführung in Anwesenheit von Chlor und mit Licht erreicht werden, dessen kürzerwelliger Anteil (λ<280 nm) herausgefiltert ist.
    die Isolierung des Carbonylfluorids kann nach üblichen Methoden erfolgen, beispielsweise durch Tieftemperatur- oder Druckdestillation.
    The examples show that particularly good yield and conversion are achieved when carried out in the presence of chlorine and with light whose shorter-wave fraction (λ <280 nm) is filtered out.
    the isolation of the carbonyl fluoride can be carried out by customary methods, for example by cryogenic or pressure distillation.

    Claims (8)

    Verfahren zur Herstellung von C(O)F2 durch Photooxidation von CHClF2 mit Sauerstoff.Process for the preparation of C (O) F 2 by photooxidation of CHClF 2 with oxygen. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Bestrahlung in Abwesenheit von Chlor vornimmt und Licht einstrahlt, das auch Wellenlängen < 280 nm aufweist, oder dass man die Bestrahlung in Anwesenheit von elementarem Chlor mit Licht einer Wellenlänge von ≥ 280 nm, wobei pro Mol CHClF2 maximal 50 Mol.-% elementares Chlor im Reaktionsgemisch enthalten sind.A method according to claim 1, characterized in that one carries out the irradiation in the absence of chlorine and irradiates light which also has wavelengths <280 nm, or that the irradiation in the presence of elemental chlorine with light having a wavelength of ≥ 280 nm, wherein per Mol CHClF 2 contains at most 50 mol .-% of elemental chlorine in the reaction mixture. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass pro Mol CHClF2 5 bis 20 mol.-% elementares Chlor enthalten sind.A method according to claim 1, characterized in that per mole of CHClF 2 5 to 20 mol .-% elemental chlorine are contained. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Bestrahlung bei einer Temperatur von 20 bis 300°C, vorzugsweise 30 bis 300 °C, insbesondere 50 bis 90 °C durchführt.A method according to claim 1, characterized in that one carries out the irradiation at a temperature of 20 to 300 ° C, preferably 30 to 300 ° C, in particular 50 to 90 ° C. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Bestrahlung bei einem Druck von 1 bis 11 bar (abs.) durchführt.A method according to claim 1, characterized in that one carries out the irradiation at a pressure of 1 to 11 bar (abs.). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Reaktanden gasförmig vorliegen.A method according to claim 1, characterized in that the reactants are in gaseous form. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Umsetzung kontinuierlich durchgeführt wird.A method according to claim 1, characterized in that the reaction is carried out continuously. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die durchschnittliche Verweilzeit im Reaktor zwischen 0,1 und 3 Minuten liegt.A method according to claim 7, characterized in that the average residence time in the reactor is between 0.1 and 3 minutes.
    EP04005421A 2004-03-08 2004-03-08 Preparation of carbonyl difluoride Withdrawn EP1574478A1 (en)

    Priority Applications (9)

    Application Number Priority Date Filing Date Title
    EP04005421A EP1574478A1 (en) 2004-03-08 2004-03-08 Preparation of carbonyl difluoride
    KR1020067018250A KR101300815B1 (en) 2004-03-08 2005-02-09 Production of carbonyl fluoride
    JP2007502213A JP5007220B2 (en) 2004-03-08 2005-02-09 Preparation of carbonyl fluoride
    CA2557973A CA2557973C (en) 2004-03-08 2005-02-09 Preparation of carbonyl fluoride
    CN2005800074131A CN1930081B (en) 2004-03-08 2005-02-09 Production of carbonyl fluoride
    US10/591,783 US7880039B2 (en) 2004-03-08 2005-02-09 Production of carbonyl fluoride
    EP05707275A EP1723075B8 (en) 2004-03-08 2005-02-09 Production of carbonyl fluoride
    PCT/EP2005/001281 WO2005085129A2 (en) 2004-03-08 2005-02-09 Production of carbonyl fluoride
    TW094105759A TWI361795B (en) 2004-03-08 2005-02-25 Herstellung von carbonylfluorid

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP04005421A EP1574478A1 (en) 2004-03-08 2004-03-08 Preparation of carbonyl difluoride

    Publications (1)

    Publication Number Publication Date
    EP1574478A1 true EP1574478A1 (en) 2005-09-14

    Family

    ID=34814253

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP04005421A Withdrawn EP1574478A1 (en) 2004-03-08 2004-03-08 Preparation of carbonyl difluoride
    EP05707275A Not-in-force EP1723075B8 (en) 2004-03-08 2005-02-09 Production of carbonyl fluoride

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP05707275A Not-in-force EP1723075B8 (en) 2004-03-08 2005-02-09 Production of carbonyl fluoride

    Country Status (8)

    Country Link
    US (1) US7880039B2 (en)
    EP (2) EP1574478A1 (en)
    JP (1) JP5007220B2 (en)
    KR (1) KR101300815B1 (en)
    CN (1) CN1930081B (en)
    CA (1) CA2557973C (en)
    TW (1) TWI361795B (en)
    WO (1) WO2005085129A2 (en)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1652814A1 (en) 2004-10-27 2006-05-03 Solvay Fluor GmbH Process for separating gases
    TW200808656A (en) * 2006-04-27 2008-02-16 Solvay Fluor Gmbh Reversible water-free process for the separation of acid-containing gas mixtures
    JP2010533678A (en) * 2007-07-20 2010-10-28 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for obtaining purified hydrofluoroalkanes
    WO2010041601A1 (en) * 2008-10-06 2010-04-15 昭和電工株式会社 Process for producing carbonyl difluoride
    CN101735034B (en) * 2009-12-18 2013-01-16 杭州原正化学工程技术装备有限公司 Method for preparing trifluoroacetyl chloride
    UY34094A (en) 2011-05-27 2013-01-03 Novartis Ag DERIVATIVES OF PIPERIDINE 3-ESPIROCYCLIC AS AGRONISTS OF GHRELINE RECEPTORS
    PE20142443A1 (en) 2012-05-03 2015-01-28 Novartis Ag SALT OF L-MALATE OF DERIVATIVES OF 2,7-DIAZA-SPIRO [4,5] DEC-7-ILO AND CRYSTALLINE FORMS OF THE SAME AS AGONISTS OF THE GRELIN RECEPTOR
    EP2705893A1 (en) 2012-09-05 2014-03-12 Solvay SA Process for separating acid-containing gas mixtures
    WO2021045105A1 (en) * 2019-09-05 2021-03-11 国立大学法人神戸大学 Method for producing carbonyl halide
    EP4292708A1 (en) * 2021-02-12 2023-12-20 National University Corporation Kobe University Method for producing carbonyl halide
    JPWO2022172745A1 (en) * 2021-02-12 2022-08-18

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0310255A1 (en) 1987-09-14 1989-04-05 STAUFFER MANAGEMENT COMPANY c/o ICI AMERICAS INC. Production of carbonyl difluoride
    DE19650212A1 (en) * 1996-12-04 1998-06-18 Solvay Fluor & Derivate Manufacture of carboxylic acid fluorides
    US6051682A (en) 1996-12-23 2000-04-18 E. I. Du Pont De Nemours And Company Polymerization of fluoropolymers in carbon dioxide
    PL356095A1 (en) 1999-11-12 2004-06-14 North Carolina State University Continuous process for making polymers in carbon dioxide

    Non-Patent Citations (9)

    * Cited by examiner, † Cited by third party
    Title
    ATKINSON R ET AL: "TROPHOSPHERIC AND STRATOSPHERIC SINKS FOR HALOCARBONS: PHOTOOXIDATION, O(1D) ATOM, AND OH RADICAL REACTIONS", JOURNAL OF GEOGRAPHICAL RESEARCH, RICHMOND, VA, US, vol. 81, no. 33, 20 November 1976 (1976-11-20), pages 5765 - 5770, XP008032999, ISSN: 0148-0227 *
    BROWNSWORD RICHARD A ET AL: "Photodissociation dynamics of CHF2Cl after photoexcitation at the Lyman-alpha wavelength (121.6 nm)", J PHYS CHEM A; JOURNAL OF PHYSICAL CHEMISTRY A MOLECULES FEB 6 1997 ACS, WASHINGTON, DC, USA, vol. 101, no. 6, 6 February 1997 (1997-02-06), pages 995 - 999, XP002296380 *
    DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KOMAROV, V. S. ET AL: "Reaction of ozone with halogen-substituted saturated hydrocarbons", XP002296383, retrieved from STN Database accession no. 93:132037 *
    DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KUZ'MENKO, V. A.: "Reactions of carbon difluoride and oxygen. Chlorinecatalysis", XP002296381, retrieved from STN Database accession no. 112:14054 *
    DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ZHONG, JINXIAN ET AL: "The photolysis characteristics of HCFC-22 in presence of hydrogen peroxide", XP002296382, retrieved from STN Database accession no. 126:218375 *
    EDNEY E O ET AL: "CHLORINE INITIATED PHOTOOXIDATION STUDIES OF HYDROCHLOROFLUOROCARBONS (HCFCS) AND HYDROFLUOROCARBONS (HFCS): RESULTS FOR HCFC-22 (CHCLF2); HFC-41 (CH3F); HCFC-124 NCCIFHCF3); HFC-125 (CF3CHF2); HFC-134A (CF3CH2F); HCFC-142B (CCLF2CH3); AND HFC-152A (CHF2", INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, WILEY, NEW YORK, NY, US, vol. 24, no. 12, 1992, pages 1067 - 1081, XP008032981, ISSN: 0538-8066 *
    HUANJING KEXUE , 17(3), 54-56 CODEN: HCKHDV; ISSN: 0250-3301, 1996 *
    KINETIKA I KATALIZ , 21(2), 519-20 CODEN: KNKTA4; ISSN: 0453-8811, 1980 *
    ZHURNAL FIZICHESKOI KHIMII , 63(7), 1911-12 CODEN: ZFKHA9; ISSN: 0044-4537, 1989 *

    Also Published As

    Publication number Publication date
    EP1723075B1 (en) 2012-10-17
    EP1723075B8 (en) 2013-01-16
    JP2007527841A (en) 2007-10-04
    JP5007220B2 (en) 2012-08-22
    TW200540108A (en) 2005-12-16
    US20070197826A1 (en) 2007-08-23
    KR101300815B1 (en) 2013-08-26
    CN1930081A (en) 2007-03-14
    CA2557973A1 (en) 2005-09-15
    CA2557973C (en) 2012-07-24
    WO2005085129A3 (en) 2006-02-02
    EP1723075A2 (en) 2006-11-22
    KR20070018884A (en) 2007-02-14
    TWI361795B (en) 2012-04-11
    US7880039B2 (en) 2011-02-01
    CN1930081B (en) 2011-12-07
    WO2005085129A2 (en) 2005-09-15

    Similar Documents

    Publication Publication Date Title
    EP1723075B1 (en) Production of carbonyl fluoride
    EP1189856B1 (en) Uv-activated chlorination
    DE60212176T2 (en) PHOTOCHLORATION OF 1,1,1,3,3-PENTAFLUORO PROPANE
    DE102012007230B4 (en) Process for the plasma-technical production of acetylene
    DE112013000676T5 (en) Bis (1,1-dichloro-3,3,3-trifluoropropyl) ether and processes for the preparation thereof
    EP0659729A1 (en) Process for preparing chlorides of polyfluorochloro- and perfluoro carboxylic acids in the presence of chlorine
    DE3522474A1 (en) METHOD FOR PRODUCING 1,2-DICHLORETHANE BY OXICHLORATION OF ETHYLENE ON CARRIER CONTAINERS CONTAINING COPPER
    DE2413358B2 (en) PROCESS FOR DECHLORINATION OF CARBON DIOXIDE AND GAS MIXTURES CONTAINING CHLORINE
    EP0027554A1 (en) Process for the production of olefinic double bonds by splitting off hydrogen halide
    EP0942898B1 (en) Production of trifluoroacetylfluoride
    EP0039471A1 (en) Process for the preparation of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane
    EP0833810B1 (en) Difluorochloracetyl chloride and dichloracetyl chloride preparation
    EP0037003B1 (en) 2,3-dichloro-2-trifluoromethyl-1,1,1,3,4,4,5,5,5-nonafluoropentane and process for its preparation
    CH629167A5 (en) METHOD FOR PRODUCING BROMIC FLUOROCOLATES.
    DE3435299A1 (en) METHOD FOR PRODUCING 1,1,1,3,3,3-HEXAFLUORPROPAN-2-OL BY HYDROGENOLYSIS OF HEXAFLUORACETONE HYDRODATE
    DE2530094B1 (en) Process for the continuous production of mono- or di- (trichloromethyl) benzenes
    DE1793051A1 (en) Process for the production of ethylene dichloride
    DE3320020C2 (en)
    EP1914199A1 (en) Chlorine production method
    EP0470598A1 (en) Photochemical preparation of halogenated compounds
    EP1127056A1 (en) Method for producing monohalogenated 2-oxo-1,3-dioxolanes
    DE2722310C2 (en) Photochemical isotope separation process
    DE2364093C3 (en) Process for converting trichlorethylene contained in 1,2-dichloroethane
    DE3008848A1 (en) Prepn. of cpds. contg. olefinic double bond(s) - by splitting off hydrogen halide from a satd. cpd. by irradiation in the gas phase with pulsed (in)coherent light
    Miller et al. The Importance of Xenon Fluorides in the Xenon-Photosensitized Reactions of the Perfluoroalkanes

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    AKX Designation fees paid
    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20060315

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566