EP1554077A1 - Device for welding by means of laser radiation - Google Patents

Device for welding by means of laser radiation

Info

Publication number
EP1554077A1
EP1554077A1 EP03750344A EP03750344A EP1554077A1 EP 1554077 A1 EP1554077 A1 EP 1554077A1 EP 03750344 A EP03750344 A EP 03750344A EP 03750344 A EP03750344 A EP 03750344A EP 1554077 A1 EP1554077 A1 EP 1554077A1
Authority
EP
European Patent Office
Prior art keywords
gradient index
index lens
optical unit
joining
shaping optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03750344A
Other languages
German (de)
French (fr)
Inventor
Gabriele Eberhardt
Hans-Ulrich Zühlke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik Automatisierungstechnik GmbH
Original Assignee
Jenoptik Automatisierungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Automatisierungstechnik GmbH filed Critical Jenoptik Automatisierungstechnik GmbH
Publication of EP1554077A1 publication Critical patent/EP1554077A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics

Definitions

  • the invention relates to a device for quasi-simultaneous welding of two plastic parts along a joining contour by means of laser radiation.
  • a joining contour is to be understood as the geometry of the welding between the joining surfaces of the parts (workpiece) to be welded.
  • the joining contour can in principle be punctiform, linear or flat and lie in space or only in one plane. Depending on the parts to be welded, it can vary in size from just a few millimeters to several meters.
  • Quasi-simultaneous welding is to be understood to mean that the joining surfaces in the area of the joining contour are heated, plasticized and welded to one another with a setting path almost simultaneously by an energy beam repeatedly sweeping over the joining contour before the plastic parts to be welded are melted.
  • the devices of the same type known from the prior art are more or less well suited to welding the joining surfaces to be connected with a reasonable amount of time and machine technology.
  • Devices known from the prior art, with which extensive joining contours are to be welded comprise, in addition to a laser radiation source, a scanning device which basically consists of at least one beam-shaping optical element and one beam-deflecting optical element.
  • the beam-shaping element has the task of concentrating the beam on the workpiece surface.
  • the beam is guided in one or two dimensions over the workpiece surface via the beam-deflecting elements that are connected to a drive.
  • Conventional converging lenses or collectively acting lens arrangements are used as beam-shaping optical elements.
  • Polygon mirrors, galvanometer mirrors and prisms which are driven in a swinging or rotating manner are used in particular as beam-deflecting optical elements.
  • the scanning device is arranged at a fixed distance from the workpiece surface, only limited scanning areas can be scanned on the workpiece surface.
  • the beam-deflecting elements are also not necessary if the joining contour is a line and the light source is imaged as a line on the workpiece surface, for example by means of a cylindrical lens, in order to simultaneously weld the workpiece.
  • the beam is usually directed onto the workpiece surface via a mirror-articulated arm guided by means of a robot arm. Simultaneous or quasi-simultaneous welding of the entire joining contour is therefore not possible.
  • Combinations of mirror articulated arm and scanning device are also known.
  • the scanning movement can then be both a superimposed movement of the beam-deflecting elements of the scanning device and the robot arm, as well as an exclusive movement of the beam-deflecting elements of the device, with which scanning areas arranged next to one another are scanned, for which the device is successively positioned by the robot arm.
  • simultaneous or quasi-simultaneous welding of the entire joining contour is not possible.
  • the devices known from the prior art for quasi-simultaneous welding, consisting of beam-shaping and beam-deflecting elements are complex in terms of device technology and design and generally require a large amount of space. They are therefore not suitable for being arranged side by side in order to weld a larger joining contour quasi-simultaneously by simultaneous scanning of adjacent part joining contours.
  • Known devices for simultaneous welding are less space-consuming since they do not require a mechanism for generating a relative movement. However, they require a high adjustment effort if they are to be arranged next to one another to form a more complex device in order to weld a larger joining contour consisting of several partial joining surfaces. Adjustments mean that overlapping areas are exposed to twice the amount of radiation or that areas of the joint surface are not welded.
  • the invention has for its object to provide a device for quasi-simultaneous welding of joining contours or partial joining contours, which can be produced with little technical equipment and design, requires significantly less space and which is suitable to be arranged several times next to one another, simultaneously welding several partial joining contours that form a larger, closed joining contour.
  • the gradient index lens is moved relative to the exit surface of the optical fiber, the gradient index lens being designed such that a small deflection (displacement path) of the gradient index lens with respect to the optical fiber is sufficient to produce a large deflection (welding path) of the beam on the workpiece surface.
  • the required relative movement between the gradient index lens and the exit surface of the optical fiber can also be achieved by deflecting the optical fiber or by a combined movement of the optical fiber and the served index lens.
  • a device according to the invention is considerably smaller and easier to carry out than conventional devices for simultaneous laser welding. This has the particular advantage that several devices of this type can be arranged side by side to form a more complex device in order to be able to weld larger joining contours.
  • Fig. 1 principle arrangement for a device with a gradient index lens and a movement unit
  • Fig. 2 principle arrangement for a device with a gradient index lens and two movement units
  • Fig. 3 basic arrangement for a device with two gradient index lenses
  • FIG. 5 shows a perspective view of an assembly of a device according to FIG. 4
  • FIG. 1 shows a first exemplary embodiment of a device according to the invention.
  • it comprises a laser diode 1, an optical fiber 2, a first gradient index lens 4.1, a first piezo actuator 6.1 (also called an actuator) and a workpiece holder, not shown here, in which the parts to be welded (hereinafter referred to as workpiece) are held become.
  • the radiation emitting from the laser diode 1 is coupled directly into the optical fiber 2.
  • the exit surface 3 of the optical fiber 2 is fixed at a defined working distance 7 from the first gradient index lens 4.1.
  • the exit surface 3 and a first The flat surface of the first gradient index lens 4.1 also lies in mutually parallel planes during the relative movement.
  • the center of the surface of the exit surface 3 lies on the optical axis of the first gradient index lens 4.1.
  • the first gradient index lens 4.1 is designed such that its object plane lies in the plane of the exit surface 3, the working distance 7 being as small as possible, less than 0.3 mm, so that the circle of confusion of the beam impinging on the first plane surface is determined by the aperture of the optical fiber 2 is significantly smaller in diameter than the diameter of the first gradient index lens 4.1.
  • This size ratio determines the possible range of motion, that is to say the first gradient index lens 4.1 and the exit surface 3 can only be displaced relative to one another to the extent that the circle of confusion also completely strikes the first plane surface of the first gradient index lens 4.1.
  • the first gradient index lens 4.1 is also designed such that it maps the exit surface 3 onto the workpiece surface 5 with a large imaging scale. The larger the imaging scale is selected, the smaller the deflection path (adjustment path) by which the first gradient index lens 4.1 has to be deflected in order to bring about a large deflection (welding path) of the beam on the workpiece surface 5.
  • the first piezo actuator 6.1 In order to deflect the first gradient index lens 4.1 with respect to the exit surface 3, the latter is connected to the first piezo actuator 6.1, which moves the first gradient index lens 4.1 back and forth within its possible travel range with a frequency of up to 100 Hz. This can lead to different positions via the displacement path, ie static and dynamic positioning in the area of the entire displacement path is possible.
  • a displacement path (amplitude) of less than 500 ⁇ m is sufficient to generate lines up to a length of 20 mm, for example if an optical fiber 2 with a Diameter of 50 ⁇ m is increased by 40 times. It is particularly advantageous here in comparison with a conventional converging lens that the images which are remote from the axis do not have such a strong distortion, ie the focal spot of approx. 2 mm which arises on the workpiece surface 5 remains constant in diameter on the generated line.
  • a focal spot size of approx. 1 mm is more favorable for the energy input into the workpiece. It is achieved, for example, for an optical fiber 2 with a diameter of 50 ⁇ m with an enlargement of 20 and a displacement of approximately 1500 ⁇ m.
  • the welding path can then be up to 30 mm, i.e. the joining contour can be up to 30 mm x 30 mm.
  • a device is particularly suitable for performing spot welds along a straight line shorter than 30 mm or for performing a weld seam with a joining contour equal to a straight line shorter than 30 mm.
  • a second exemplary embodiment, not shown in the drawings, is to differ from the first by an additional adjusting device 9.
  • the workpiece distance 8 (distance between the workpiece surface 5 in the undeflected state of the first gradient index lens 4.1 and the second plane surface of the first gradient index lens 4.1) can be changed by means of the adjusting device 9 , whereby the exit surface 3 is imaged out of focus on the workpiece surface 5.
  • This actuating device 9 is also useful when the workpiece surface 5 is not a flat surface. The actuating device 9 then ensures a constant workpiece distance 8. As far as the deviations of the workpiece surface 5 from one plane However, within the depth of field range, an adjustment of the workpiece distance 8 is not necessary.
  • FIG. 2 shows a third exemplary embodiment. It should differ from the second one by adding a second piezo actuator 6.2.
  • This second piezo actuator 6.2 also acts on the first gradient index lens 4.1 and enables their deflection in the direction perpendicular to the deflection direction of the first piezo actuator 6.1. By superimposing the two deflection movements, both an arbitrarily shaped line can be generated and a surface can be scanned.
  • a first and a second gradient index lens 4.1, 4.2 are to be used.
  • the two gradient index lenses 4.1, 4.2 fulfill the same function as they were fulfilled by only one first gradient index lens 4.1 in the exemplary embodiments 1-3.
  • FIG. 4 shows a plan view of a device opened on both sides, in which, for the sake of clarity, the optical fiber 2, the electrical feeds to the piezoelectric positions 6.1, 6.2 and the laser diode 1 have not been shown.
  • Fig. 5 shows a perspective view of a boom 10, delimited by the end plate 11 and the bearing plate 12, in connection with the piezo actuators 6.1, 6.2.
  • This assembly in conjunction with the first gradient index lens 4.1, represents the core of the device.
  • On a base plate 13 three identical, prestressed piezo actuators 6.1, 6.2 are connected in parallel to one another, each with one end, while the respective second end of the Piezo actuator 6.1, 6.2 in connection with the bearing plate 12 stands, which is aligned parallel to the base plate 13 in the non-activated state.
  • the third piezo actuator 6.3 only has the function of a spacer with the same thermal expansion coefficient as the acting piezo actuators 6.1, 6.2.
  • connection of the second end of the third piezo actuator 6.3 to the bearing plate 12 is formed by a swivel joint which defines a pivot point about which the bearing plate 12 is pivoted when the piezo actuators 6.1, 6.2 are activated.
  • the deflection of the bearing plate 12 is determined by the travel of the piezo elements 6.1 and 6.2, which abut the bearing plate 12 with their second end.
  • the bearing plate 12 is an end piece of a cantilever 10.
  • the length of the cantilever 10 is determined by the desired distance from the end plate 11, which is a second 'end piece of the cantilever 10 and to which the second gradient index lens 4.2 is fixed , to the bearing plate 12 in order to translate the travel of the piezo actuators 6.1, 6.2 so that displacement paths for the first gradient index lens 4.1 result in a desired length.
  • a total length of the boom 10 of, for example, approximately 15 cm, an adjustment path of 50 ⁇ m can be translated into a displacement path of 1.5 mm.
  • the boom 10 must be a rigid, torsion-resistant and as light as possible structure.
  • FIG. 4 On the circumference of the base plate 13, two housing angles 14, which enclose the described assembly, are fastened via connecting elements 16, of which a first housing angle 14 is shown in FIG. 4.
  • the tubular housing formed by the housing angles is closed at one end immediately below the end plate 11 by a cover glass 20. The other end protrudes beyond the base plate 13 and is closed by a cover plate 21.
  • the cover plate 21, like the base plate 13, has openings through which power lines (not shown in the drawing) are led into the interior of the housing to the piezoelectric positions 6.1, 6.2.
  • a fiber coupling 17 is guided through the cover plate 21 and firmly connected to it.
  • the fiber coupling 17 serves, on the one hand, to mount the optical fiber 2, which is not shown in FIG. 4, in order to position it in relation to the housing and, on the other hand, enables the optical fiber 2 to be practically realized by two fiber pieces, namely a fiber piece running inside the housing and a fiber piece which is located outside the housing and into which the radiation from the laser diode 1 is coupled.
  • the free end of the optical fiber 2 located in the housing is held in a fiber plug 18 directly above the first gradient index lens 4.1, which is rigidly connected to the housing via a fiber plug holder 19.
  • the piezo actuators 6.1, 6.2 are activated, the first gradient index lens 4.1 is now shifted below the exit surface 3 of the optical fiber 2 (correct: pivoted).
  • a device is intended to comprise a plurality of devices, as were shown in exemplary embodiments 1-5.
  • the exemplary embodiments 1-5 have in common that a joining contour can be generated quasi-simultaneously, the extent of which is determined by the deflection area which the beam of rays can sweep over the workpiece surface 5.
  • the advantage of the invention is particularly clear. Due to the small space requirement, which is essentially determined only by the piezo actuators 6.1, 6.2, a plurality of modules can be arranged close to one another, which can functionally match one another and simultaneously generate a larger joining contour, composed of individual partial joining contours.
  • the beam-shaping optical unit consisting of one or even two gradient index lenses 4.1, 4.2, images the exit surface 3 of the optical fiber 2 on the workpiece surface 5.
  • the gradient index lenses 4.1, 4.2 can be dimensioned and arranged to the exit surface 3 such that the beam is collimated or focused on the workpiece surface 5.
  • piezo actuators 6.1, 6.2 instead of the piezo actuators 6.1, 6.2, other linear movement units known from the prior art, such as capacitive actuators or electromagnetic actuators, can also be used.
  • the device according to the invention can also be used in connection with a robot arm. Compared to conventional devices of the same type, their low weight is of particular advantage here.
  • Spot welds can also be generated simultaneously at a fixed distance from one another, positioned with one another with the same number of devices as how welding spots are to be generated. Such devices then do not require any linear movement units.
  • first housing bracket 15 screw connections for connecting the housing bracket

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The invention relates to a device which enables the adjacent joining surfaces of two plastic parts (workpiece) to be welded together quasi-simultaneously by means of laser radiation, at a joining contour thereof. The bundle of rays emitted by a laser diode (1) is injected, by means of an optical fibre (2), into a first gradient index lens (4.1) which concentrates the bundle of rays onto the workpiece surface (5), the first gradient index lens (4.1) being deviated in relation to the output surface (3) of the optical fibre (2). In this way, the bundle of rays scans a joining contour on the workpiece surface (5) in order to quasi-simultaneously heat, plastify and weld the workpiece along said joining contour. A plurality of such devices can be assembled to form a more complex device, in order to simultaneously and quasi-simultaneously subject larger joining contours to radiation.

Description

Vorrichtung zum Schweißen mittels LaserstrahlungDevice for welding by means of laser radiation
Die Erfindung betrifft eine Vorrichtung zum quasisimultanen Verschweißen zweier Kunststoffteile entlang einer Fügekontur mittels Laserstrahlung. Unter einer Fügekontur soll im Sinne der Erfindung die Geometrie der Verschweißung zwischen den Fügeflächen der zu verschweißenden Teile (Werkstück) verstanden werden. Die Fügekontur kann grundsätzlich punktförmig, linienförmig oder flächig sein und im Raum oder nur in einer Ebene liegen. Abhängig von den zu verschweißenden Teilen kann sie sich in ihrer Ausdehnung im Bereich von nur wenigen Millimetern bis hin zu mehreren Metern unterscheiden.The invention relates to a device for quasi-simultaneous welding of two plastic parts along a joining contour by means of laser radiation. In the context of the invention, a joining contour is to be understood as the geometry of the welding between the joining surfaces of the parts (workpiece) to be welded. The joining contour can in principle be punctiform, linear or flat and lie in space or only in one plane. Depending on the parts to be welded, it can vary in size from just a few millimeters to several meters.
Unter einem quasisimultanen Verschweißen soll verstanden werden, dass die Fügeflächen im Bereich der Fügekontur nahezu gleichzeitig erwärmt, plastifiziert und miteinander mit Setzweg verschweißt werden, indem vor dem Verschmelzen der zu verschweißenden Kunststoffteile ein Energiestrahl die Fügekontur mehrfach überstreicht.Quasi-simultaneous welding is to be understood to mean that the joining surfaces in the area of the joining contour are heated, plasticized and welded to one another with a setting path almost simultaneously by an energy beam repeatedly sweeping over the joining contour before the plastic parts to be welded are melted.
Beim simultanen Schweißen wird die gesamte Fügekontur gleichzeitig mit Energie beaufschlagt.With simultaneous welding, the entire joining contour is subjected to energy at the same time.
Insbesondere abhängig von der Fügekontur und deren Ausdehnung sind die aus dem Stand der Technik bekannten gattungsgleichen Vorrichtungen mehr oder weniger gut geeignet, die zu verbindenden Fügeflächen mit einem angemessenen zeitlichen und maschinentechnischen Aufwand zu verschweißen.In particular, depending on the joining contour and its extent, the devices of the same type known from the prior art are more or less well suited to welding the joining surfaces to be connected with a reasonable amount of time and machine technology.
Aus dem Stand der Technik bekannte Vorrichtungen, mit denen ausgedehnte Fügekonturen geschweißt werden sollen, umfassen neben einer Laserstrahlungsquelle eine Scaneinrichtung, die grundsätzlich wenigstens aus einem strahlformenden optischen Element und einem strahlumlenkenden optischen Element bestehen. Dabei hat das strahlformende Element die Aufgabe, das Strahlenbündel auf die Werkstückoberfläche zu konzentrieren. Über die strahlumlenkenden Elemente, die mit einem Antrieb verbunden sind, wird das Strahlenbündel ein- oder zweidimensional über die Werkstückoberfläche geführt. Als strahlformende optische Elemente kommen hierfür konventionelle Sammellinsen oder sammelnd wirkende Linsenanordnungen zur Anwendung. Als strahlumlenkende optische Elemente finden insbesondere Polygonspiegel, Galvanometerspiegel und Prismen Anwendung, die schwingend oder rotierend angetrieben werden. Mit derartigen Vorrichtungen, bei denen die Scaneinrichtung in einem festen Abstand zur Werkstückoberfläche angeordnet ist, können nur begrenzte Abtastbereiche auf der Werkstückoberfläche abgetastet werden. D.h. es können nur Fügekonturen geschaffen werden, die in ihrer Ausdehnung kleiner als die Größe des Abtastbereiches sind. Ist die Fügekontur nur punktförmig, so kann grundsätzlich auf die angetriebenen strahlumlenkenden Elemente verzichtet werden. Die strahlumlenkenden Elemente sind auch dann nicht nötig, wenn die Fügekontur eine Linie ist und die Lichtquelle z.B. mittels einer Zylinderlinse als Linie auf die Werkstückoberfläche abgebildet wird, um das Werkstück simultan zu verschweißen.Devices known from the prior art, with which extensive joining contours are to be welded, comprise, in addition to a laser radiation source, a scanning device which basically consists of at least one beam-shaping optical element and one beam-deflecting optical element. The beam-shaping element has the task of concentrating the beam on the workpiece surface. The beam is guided in one or two dimensions over the workpiece surface via the beam-deflecting elements that are connected to a drive. Conventional converging lenses or collectively acting lens arrangements are used as beam-shaping optical elements. Polygon mirrors, galvanometer mirrors and prisms which are driven in a swinging or rotating manner are used in particular as beam-deflecting optical elements. With devices of this type, in which the scanning device is arranged at a fixed distance from the workpiece surface, only limited scanning areas can be scanned on the workpiece surface. This means that only joining contours can be created that are smaller in their extent than the size of the scanning area. If the joining contour is only punctiform, the driven beam-deflecting elements can in principle be dispensed with. The beam-deflecting elements are also not necessary if the joining contour is a line and the light source is imaged as a line on the workpiece surface, for example by means of a cylindrical lens, in order to simultaneously weld the workpiece.
Zur Schaffung ausgedehnterer Fügekonturen wird üblicherweise das Strahlenbündel über einen mittels Roboterarm geführten Spiegelgelenkarm auf die Werkstückoberfläche gelenkt. Eine simultane oder quasisimultane Verschweißung der gesamten Fügekontur ist damit nicht möglich.To create more extensive joining contours, the beam is usually directed onto the workpiece surface via a mirror-articulated arm guided by means of a robot arm. Simultaneous or quasi-simultaneous welding of the entire joining contour is therefore not possible.
Auch sind Kombinationen von Spiegelgelenkarm und Scaneinrichtung bekannt. Die Abtastbewegung kann dann sowohl eine überlagerte Bewegung der strahlumlenkenden Elemente der Scaneinrichtung und des Roboterarmes sein, als auch eine ausschließliche Bewegung der strahlumlenkenden Elemente der Vorrichtung, mit der nebeneinander angeordnete Abtastbereiche abgetastet werden, zu denen die Vorrichtung nacheinander durch den Roboterarm positioniert wird. Auch mit einer solchen Lösung ist eine simultane oder quasisimultane Verschweißung der gesamten Fügekontur nicht möglich. Die aus dem Stand der Technik bekannten Vorrichtungen zum quasisimultanen Verschweißen, bestehend aus strahlformenden und strahlumlenkenden Elementen, sind gerätetechnisch und konstruktiv aufwändig und erfordern in der Regel einen hohen Platzbedarf. Sie sind deshalb nicht geeignet, nebeneinander angeordnet zu werden, um durch simultanes Abtasten von jeweils benachbarten Teilfügekonturen eine größere Fügekontur quasisimultan zu schweißen.Combinations of mirror articulated arm and scanning device are also known. The scanning movement can then be both a superimposed movement of the beam-deflecting elements of the scanning device and the robot arm, as well as an exclusive movement of the beam-deflecting elements of the device, with which scanning areas arranged next to one another are scanned, for which the device is successively positioned by the robot arm. Even with such a solution, simultaneous or quasi-simultaneous welding of the entire joining contour is not possible. The devices known from the prior art for quasi-simultaneous welding, consisting of beam-shaping and beam-deflecting elements, are complex in terms of device technology and design and generally require a large amount of space. They are therefore not suitable for being arranged side by side in order to weld a larger joining contour quasi-simultaneously by simultaneous scanning of adjacent part joining contours.
Bekannte Vorrichtungen zum simultanen Schweißen sind weniger platzaufwändig, da sie keinen Mechanismus zur Erzeugung einer Relativbewegung benötigen. Sie erfordern jedoch einen hohen Justieraufwand, wenn sie nebeneinander angeordnet zu einer komplexeren Vorrichtung zusammengesetzt werden sollen, um eine aus mehreren Teilfügeflächen bestehende größere Fügekontur zu schweißen. Dejustierungen führen dazu, dass überlappende Bereiche mit der doppelten Strahlungsmenge beaufschlagt werden bzw. dass Bereiche der Fügefläche nicht verschweißt werden.Known devices for simultaneous welding are less space-consuming since they do not require a mechanism for generating a relative movement. However, they require a high adjustment effort if they are to be arranged next to one another to form a more complex device in order to weld a larger joining contour consisting of several partial joining surfaces. Adjustments mean that overlapping areas are exposed to twice the amount of radiation or that areas of the joint surface are not welded.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum quasisimultanen Schweißen von Fügekonturen oder Teilfügekonturen zu schaffen, die mit geringem gerätetechnischen und konstruktiven Aufwand herstellbar ist, einen deutlich geringeren Platzbedarf erfordert und die geeignet ist, mehrfach nebeneinander angeordnet, simultan mehrere Teilfügekonturen zu schweißen, die eine größere geschlossene Fügekontur bilden.The invention has for its object to provide a device for quasi-simultaneous welding of joining contours or partial joining contours, which can be produced with little technical equipment and design, requires significantly less space and which is suitable to be arranged several times next to one another, simultaneously welding several partial joining contours that form a larger, closed joining contour.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst.This object is achieved with the features of claim 1.
Vorteilhafte Ausführungen sind in den Unteransprüchen beschrieben.Advantageous designs are described in the subclaims.
Es ist ein wesentlicher Gedanke der Erfindung, als strahlformendes optisches Element eine Gradienten-Index-Linse zu verwenden, wie sie in vielen Bereichen der Technik als Faserkopplung Verwendung findet. Anstelle von strahlumlenkenden Elementen, wie sie im Stand der Technik verwendet werden, um das Strahlenbündel über die Werkstückoberfläche zu führen, wird die Gradienten-Index-Linse gegenüber der Austrittsfläche der Lichtleitfaser bewegt, wobei die Gradienten-Index-Linse so ausgeführt ist, dass bereits eine geringe Auslenkung (Verschiebeweg) der Gradienten- Index-Linse gegenüber der Lichtleitfaser ausreicht, um auf der Werkstückoberfläche eine große Auslenkung (Schweißweg) des Strahlenbündels zu erzeugen. Anstelle durch die Gradienten-Index-Linse kann die erforderliche Relativbewegung zwischen der Gradienten-Index-Linse und der Austrittsfläche der Lichtleitfaser auch durch die Auslenkung der Lichtleitfaser oder durch eine kombinierte Bewegung der Lichtleitfaser und der Gedienten-Index-Linse realisiert werden.It is an essential concept of the invention to use a gradient index lens as the beam-shaping optical element, as is used in many areas of technology as fiber coupling. Instead of beam-deflecting elements, as are used in the prior art to guide the beam over the workpiece surface, the gradient index lens is moved relative to the exit surface of the optical fiber, the gradient index lens being designed such that a small deflection (displacement path) of the gradient index lens with respect to the optical fiber is sufficient to produce a large deflection (welding path) of the beam on the workpiece surface. Instead of by means of the gradient index lens, the required relative movement between the gradient index lens and the exit surface of the optical fiber can also be achieved by deflecting the optical fiber or by a combined movement of the optical fiber and the served index lens.
Eine erfindungsgemäße Vorrichtung, deren Maße und äußere Abmessungen im Wesentlichen durch die Bewegungseinheit vorgegeben ist, ist im Verhältnis zu herkömmlichen Vorrichtungen zum simultanen Schweißen mittels Laser wesentlich kleiner und leichter ausführbar. Das hat insbesondere den Vorteil, dass mehrere derartige Vorrichtungen nebeneinander geordnet zu einer komplexeren Vorrichtung zusammengestellt werden können, um größere Fügekonturen schweißen zu können.A device according to the invention, the dimensions and external dimensions of which are essentially predetermined by the movement unit, is considerably smaller and easier to carry out than conventional devices for simultaneous laser welding. This has the particular advantage that several devices of this type can be arranged side by side to form a more complex device in order to be able to weld larger joining contours.
Die Erfindung soll nachfolgend an einigen Ausführungsbeispielen an Hand der Zeichnungen näher erläutert werden. Hierzu zeigen:The invention will be explained in more detail in the following with the aid of the drawings. Show:
Fig. 1 Prinzipanordnung für eine Vorrichtung mit einer Gradienten-Index-Linse und einer BewegungseinheitFig. 1 principle arrangement for a device with a gradient index lens and a movement unit
Fig. 2 Prinzipanordnung für eine Vorrichtung mit einer Gradienten-Index-Linse und zwei BewegungseinheitenFig. 2 principle arrangement for a device with a gradient index lens and two movement units
Fig. 3 Prinzipanordnung für eine Vorrichtung mit zwei Gradienten-Index-LinsenFig. 3 basic arrangement for a device with two gradient index lenses
Fig. 4 konstruktive Darstellung einer geöffneten VorrichtungFig. 4 constructive representation of an open device
Fig. 5 perspektivische Ansicht einer Baugruppe einer Vorrichtung nach Fig. 45 shows a perspective view of an assembly of a device according to FIG. 4
In Fig. 1 ist ein erstes Ausführungsbeispiel für eine erfindungsgemäße Vorrichtung gezeigt. Sie umfasst als technische Mittel eine Laserdiode 1 , eine Lichtleitfaser 2, eine erste Gradienten-Index-Linse 4.1 , einen ersten Piezosteller 6.1 (auch Aktor genannt) und eine hier nicht dargestellte Werkstückhalterung, in der die zu verschweißenden Teile (nachfolgend Werkstück genannt) gehalten werden. Die aus der Laserdiode 1 emittierende Strahlung wird unmittelbar in die Lichtleitfaser 2 eingekoppelt. Die Austrittsfläche 3 der Lichtleitfaser 2 ist in einem definierten Arbeitsabstand 7 zur ersten Gradienten-Index-Linse 4.1 fixiert. Die Austrittsfläche 3 und eine erste Planfläche der ersten Gradienten-Index-Linse 4.1 liegen auch während der Relativbewegung zueinander in zueinander parallelen Ebenen. In nicht ausgelenkter Lage liegt der Flächenmittelpunkt der Austrittsfläche 3 auf der optischen Achse der ersten Gradienten-Index-Linse 4.1. Die erste Gradienten-Indexlinse 4.1 ist so ausgeführt, dass ihre Objektebene in der Ebene der Austrittsfläche 3 liegt, wobei der Arbeitsabstand 7 möglichst klein, kleiner 0,3 mm, gewählt ist, damit der Zerstreuungskreis des auf die erste Planfläche auftreffenden Strahlenbündels, bestimmt durch die Apertur der Lichtleitfaser 2, im Durchmesser deutlich kleiner ist als der Durchmesser der ersten Gradienten-Index-Linse 4.1. Dieses Größenverhältnis bestimmt den möglichen Bewegungsbereich, das heißt die erste Gradienten-Index- Linse 4.1 und die Austrittsfläche 3 können nur soweit zueinander verschoben werden, wie der Zerstreuungskreis auch noch vollständig auf die erste Planfläche der ersten Gradienten-Index-Linse 4.1 auftrifft. Daraus ergibt sich das Bestreben eine Lichtleitfaser 2 möglichst kleinen Querschnitts zu verwenden, was allerdings wiederum durch die Strahlungsleistung, die zum Schweißen mindestens benötigt wird, begrenzt ist. Geeignete Faserdurchmesser liegen derzeit im Bereich zwischen 50 und 1000 μm. Der Durchmesser der Gradienten-Index-Linsen 4.1 , 4.2 liegt zwischen 0,5 und 2 mm. Die erste Gradienten-Index-Linse 4.1 ist des Weiteren so ausgeführt, dass sie die Austrittsfläche 3 auf die Werkstückoberfläche 5 mit einem großen Abbildungsmaßstab abbildet. Je größer der Abbildungsmaßstab gewählt wird, desto geringer ist der Auslenkweg (Verstellweg), um den die erste Gradienten-Index-Linse 4.1 ausgelenkt werden muss, um eine große Auslenkung (Schweißweg) des Strahlenbündels auf der Werkstückoberfläche 5 zu bewirken. Um die erste Gradienten-Index-Linse 4.1 gegenüber der Austrittsfläche 3 auszulenken, ist diese mit dem ersten Piezosteller 6.1 verbunden, der die erste Gradienten-Index-Linse 4.1 innerhalb seines möglichen Stellweges mit einer Frequenz bis zu 100 Hz hin und her bewegt bzw. diese über den Verschiebeweg in verschiedene Positionen führen kann, d.h. es sind statische und dynamische Positionierungen im Bereich des gesamten Verschiebeweges möglich.1 shows a first exemplary embodiment of a device according to the invention. As technical means, it comprises a laser diode 1, an optical fiber 2, a first gradient index lens 4.1, a first piezo actuator 6.1 (also called an actuator) and a workpiece holder, not shown here, in which the parts to be welded (hereinafter referred to as workpiece) are held become. The radiation emitting from the laser diode 1 is coupled directly into the optical fiber 2. The exit surface 3 of the optical fiber 2 is fixed at a defined working distance 7 from the first gradient index lens 4.1. The exit surface 3 and a first The flat surface of the first gradient index lens 4.1 also lies in mutually parallel planes during the relative movement. In the non-deflected position, the center of the surface of the exit surface 3 lies on the optical axis of the first gradient index lens 4.1. The first gradient index lens 4.1 is designed such that its object plane lies in the plane of the exit surface 3, the working distance 7 being as small as possible, less than 0.3 mm, so that the circle of confusion of the beam impinging on the first plane surface is determined by the aperture of the optical fiber 2 is significantly smaller in diameter than the diameter of the first gradient index lens 4.1. This size ratio determines the possible range of motion, that is to say the first gradient index lens 4.1 and the exit surface 3 can only be displaced relative to one another to the extent that the circle of confusion also completely strikes the first plane surface of the first gradient index lens 4.1. This results in the endeavor to use an optical fiber 2 with the smallest possible cross-section, which in turn is limited by the radiation power that is at least required for welding. Suitable fiber diameters are currently in the range between 50 and 1000 μm. The diameter of the gradient index lenses 4.1, 4.2 is between 0.5 and 2 mm. The first gradient index lens 4.1 is also designed such that it maps the exit surface 3 onto the workpiece surface 5 with a large imaging scale. The larger the imaging scale is selected, the smaller the deflection path (adjustment path) by which the first gradient index lens 4.1 has to be deflected in order to bring about a large deflection (welding path) of the beam on the workpiece surface 5. In order to deflect the first gradient index lens 4.1 with respect to the exit surface 3, the latter is connected to the first piezo actuator 6.1, which moves the first gradient index lens 4.1 back and forth within its possible travel range with a frequency of up to 100 Hz. this can lead to different positions via the displacement path, ie static and dynamic positioning in the area of the entire displacement path is possible.
Ein Verschiebeweg (Amplitude) von kleiner 500 μm reicht aus, um Linien bis zu einer Länge von 20 mm zu generieren, wenn z.B. eine Lichtleitfaser 2 mit einem Durchmesser von 50 μm um das 40-fache vergrößert wird. Besonders vorteilhaft ist hier gegenüber einer konventionellen Sammellinse, dass die entstehenden achsfernen Abbildungen keine so starke Verzeichnung aufweisen, d.h. der auf der Werkstückoberfläche 5 entstehende Brennfleck von ca. 2 mm bleibt auf der generierten Linie im Durchmesser konstant.A displacement path (amplitude) of less than 500 μm is sufficient to generate lines up to a length of 20 mm, for example if an optical fiber 2 with a Diameter of 50 μm is increased by 40 times. It is particularly advantageous here in comparison with a conventional converging lens that the images which are remote from the axis do not have such a strong distortion, ie the focal spot of approx. 2 mm which arises on the workpiece surface 5 remains constant in diameter on the generated line.
Günstiger für den Energieeintrag in das Werkstück ist eine Brennfleckgröße von ca. 1 mm. Sie wird beispielsweise für eine Lichtleitfaser 2 mit einem Durchmesser von 50 μm bei einer Vergrößerung von 20 und einem Verschiebeweg von ca. 1500 μm erreicht. Der Schweißweg kann dann bis zu 30 mm betragen, d.h. die Fügekontur kann bis zu 30 mm x 30 mm sein.A focal spot size of approx. 1 mm is more favorable for the energy input into the workpiece. It is achieved, for example, for an optical fiber 2 with a diameter of 50 μm with an enlargement of 20 and a displacement of approximately 1500 μm. The welding path can then be up to 30 mm, i.e. the joining contour can be up to 30 mm x 30 mm.
Eine Vorrichtung gemäß dem ersten Ausführungsbeispiel ist insbesondere geeignet zur Ausführung von Punktschweißungen entlang einer Geraden kürzer 30 mm oder zur Ausführung einer Schweißnaht mit einer Fügekontur gleich einer Geraden kürzer 30 mm.A device according to the first exemplary embodiment is particularly suitable for performing spot welds along a straight line shorter than 30 mm or for performing a weld seam with a joining contour equal to a straight line shorter than 30 mm.
Ein zweites Ausführungsbeispiel, nicht dargestellt in den Zeichnungen, soll sich gegenüber dem ersten durch eine zusätzliche Stelleinrichtung 9 unterscheiden. Um den Brennfleck in seinem Durchmesser variieren zu können, kann mittels der Stelleinrichtung 9 der Werkstückabstand 8 (Abstand zwischen der Werkstückoberfläche 5 im nicht ausgelenkten Zustand der ersten Gradienten-Index- Linse 4.1 und der zweiten Planfläche der ersten Gradienten-Index-Linse 4.1 verändert werden, wodurch die Austrittsfläche 3 unscharf auf der Werkstückoberfläche 5 abgebildet wird. Diese Stelleinrichtung 9 ist auch dann nützlich, wenn die Werkstückoberfläche 5 keine ebene Fläche ist. Die Stelleinrichtung 9 sorgt dann für einen konstanten Werkstückabstand 8. Soweit die Abweichungen der Werkstückoberfläche 5 von einer Ebene allerdings innerhalb des Schärfentiefenbereiches liegen, ist eine Nachstellung des Werkstückabstandes 8 nicht notwendig.A second exemplary embodiment, not shown in the drawings, is to differ from the first by an additional adjusting device 9. In order to be able to vary the diameter of the focal spot, the workpiece distance 8 (distance between the workpiece surface 5 in the undeflected state of the first gradient index lens 4.1 and the second plane surface of the first gradient index lens 4.1) can be changed by means of the adjusting device 9 , whereby the exit surface 3 is imaged out of focus on the workpiece surface 5. This actuating device 9 is also useful when the workpiece surface 5 is not a flat surface. The actuating device 9 then ensures a constant workpiece distance 8. As far as the deviations of the workpiece surface 5 from one plane However, within the depth of field range, an adjustment of the workpiece distance 8 is not necessary.
In Fig. 2 ist ein drittes Ausführungsbeispiel dargestellt. Es soll sich gegenüber dem zweiten durch Ergänzung mit einem zweiten Piezosteller 6.2 unterscheiden. Dieser zweite Piezosteller 6.2 greift ebenfalls an der ersten Gradienten-Index-Linse 4.1 an und ermöglicht deren Auslenkung in senkrechter Richtung zur Auslenkungsrichtung des ersten Piezostellers 6.1. Durch Überlagerung der beiden Auslenkbewegungen kann sowohl eine willkürlich geformte Linie generiert werden, als auch eine Fläche abgescannt werden.2 shows a third exemplary embodiment. It should differ from the second one by adding a second piezo actuator 6.2. This second piezo actuator 6.2 also acts on the first gradient index lens 4.1 and enables their deflection in the direction perpendicular to the deflection direction of the first piezo actuator 6.1. By superimposing the two deflection movements, both an arbitrarily shaped line can be generated and a surface can be scanned.
In einem vierten Ausführungsbeispiel, gezeigt in Fig. 3, soll anstelle nur einer ersten Gradienten-Index-Linse 4.1 eine erste und eine zweite Gradienten-Index-Linse 4.1 , 4.2 verwendet werden. Optisch erfüllen die beiden Gradienten-Index-Linsen 4.1 , 4.2 die gleiche Funktion, wie sie in den Ausführungsbeispielen 1 -3 von nur einer ersten Gradienten-Index-Linse 4.1 erfüllt wurden. Rein konstruktiv kann es jedoch einfacher sein, wenn nicht zwei Piezosteller 6.1 , 6.2 an einer ersten Gradienten-Index-Linse 4.1 angreifen, was sich aufgrund deren kleinen Abmessungen als schwierig erweist. Auch müssen zusätzliche Maßnahmen getroffen werden, damit der erste Piezosteller 6.1 einer Auslenkung folgen kann, die vom zweiten Piezosteller 6.2 bewirkt wird und umgekehrt. Demgegenüber müssen bei der Verwendung von zwei Gradienten-Index- Linsen 4.1 , 4.2 diese so ausgeführt werden, dass das die erste Gradienten-Index-Linse 4.1 verlassende und in die zweite Gradienten-Index-Linse 4.2 eintretende Strahlenbündel in keiner der möglichen Positionen der beiden Gradienten-Index- Linsen 4.1 , 4.2 zueinander abgeschattet wird.In a fourth exemplary embodiment, shown in FIG. 3, instead of only a first gradient index lens 4.1, a first and a second gradient index lens 4.1, 4.2 are to be used. Visually, the two gradient index lenses 4.1, 4.2 fulfill the same function as they were fulfilled by only one first gradient index lens 4.1 in the exemplary embodiments 1-3. In terms of construction, however, it can be simpler if two piezo actuators 6.1, 6.2 do not engage a first gradient index lens 4.1, which proves to be difficult due to their small dimensions. Additional measures must also be taken so that the first piezo actuator 6.1 can follow a deflection caused by the second piezo actuator 6.2 and vice versa. In contrast, when using two gradient index lenses 4.1, 4.2, these have to be designed such that the radiation beam leaving the first gradient index lens 4.1 and entering the second gradient index lens 4.2 does not occur in any of the possible positions of the two Gradient index lenses 4.1, 4.2 is shadowed from each other.
In einem fünften Ausführungsbeispiel soll eine konkrete konstruktive Ausführung für eine erfindungsgemäße Vorrichtung beschrieben werden. Fig. 4 zeigt hierzu eine Draufsicht auf eine zweiseitig geöffnete Vorrichtung, in der der Übersichtlichkeit halber die Lichtleitfaser 2, die elektrischen Zuführungen zu den Piezostellem 6.1 , 6.2 und die Laserdiode 1 nicht dargestellt wurden.In a fifth exemplary embodiment, a concrete design for a device according to the invention will be described. 4 shows a plan view of a device opened on both sides, in which, for the sake of clarity, the optical fiber 2, the electrical feeds to the piezoelectric positions 6.1, 6.2 and the laser diode 1 have not been shown.
Fig. 5 zeigt eine perspektivische Ansicht eines Auslegers 10, begrenzt durch die Endplatte 1 1 und die Lagerplatte 12, in Verbindung mit den Piezostellem 6.1 , 6.2. Diese Baugruppe stellt in Verbindung mit der ersten Gradienten-Index-Linse 4.1 das Kernstück der Vorrichtung dar. An einer Basisplatte 13 sind parallel zueinander drei baugleiche, unter Vorspannung stehende Piezosteller 6.1 , 6.2 mit jeweils einem Ende fest verbunden, während das jeweils zweite Ende der Piezosteller 6.1 , 6.2 mit der Lagerplatte 12 in Verbindung steht, die im nicht aktivierten Zustand parallel zur Basisplatte 13 ausgerichtet ist. Der dritte Piezosteller 6.3 hat nur die Funktion eines Abstandshalters mit einem gleichen thermischen Ausdehnungskoeffizient wie die agierenden Piezosteller 6.1 , 6.2. Die Verbindung des zweiten Endes des dritten Piezostellers 6.3 mit der Lagerplatte 12 wird durch ein Drehgelenk gebildet, das einen Drehpunkt definiert, um den die Lagerplatte 12 bei Aktivierung der Piezosteller 6.1 , 6.2 geschwenkt wird. Die Auslenkung der Lagerplatte 12 wird durch den Stellweg der Piezoelemente 6.1 und 6.2 bestimmt, die mit ihrem zweiten Ende an der Lagerplatte 12 anliegen. Die Lagerplatte 12 ist ein Abschlussstück eines Auslegers 10. Die Länge des Auslegers 10 ist bestimmt von dem gewünschten Abstand, den die Endplatte 1 1 , die ein zweites ' Abschlussstück des Auslegers 10 darstellt und an der die zweite Gradienten-Index- Linse 4.2 fixiert ist, zur Lagerplatte 12 haben muss, um den Stellweg der Piezosteller 6.1 , 6.2 so zu übersetzen, dass sich Verschiebewege für die erste Gradienten-Index- Linse 4.1 mit einer gewünschten Länge ergeben. Bei einer Gesamtlänge des Auslegers 10 zum Beispiel von ca. 15 cm kann ein Stellweg von 50 μm in einen Verschiebeweg von 1 ,5 mm übersetzt werden. Der Ausleger 10 muss ein in sich starres, torsionsfestes und möglichst leichtes Gebilde sein.Fig. 5 shows a perspective view of a boom 10, delimited by the end plate 11 and the bearing plate 12, in connection with the piezo actuators 6.1, 6.2. This assembly, in conjunction with the first gradient index lens 4.1, represents the core of the device. On a base plate 13, three identical, prestressed piezo actuators 6.1, 6.2 are connected in parallel to one another, each with one end, while the respective second end of the Piezo actuator 6.1, 6.2 in connection with the bearing plate 12 stands, which is aligned parallel to the base plate 13 in the non-activated state. The third piezo actuator 6.3 only has the function of a spacer with the same thermal expansion coefficient as the acting piezo actuators 6.1, 6.2. The connection of the second end of the third piezo actuator 6.3 to the bearing plate 12 is formed by a swivel joint which defines a pivot point about which the bearing plate 12 is pivoted when the piezo actuators 6.1, 6.2 are activated. The deflection of the bearing plate 12 is determined by the travel of the piezo elements 6.1 and 6.2, which abut the bearing plate 12 with their second end. The bearing plate 12 is an end piece of a cantilever 10. The length of the cantilever 10 is determined by the desired distance from the end plate 11, which is a second 'end piece of the cantilever 10 and to which the second gradient index lens 4.2 is fixed , to the bearing plate 12 in order to translate the travel of the piezo actuators 6.1, 6.2 so that displacement paths for the first gradient index lens 4.1 result in a desired length. With a total length of the boom 10 of, for example, approximately 15 cm, an adjustment path of 50 μm can be translated into a displacement path of 1.5 mm. The boom 10 must be a rigid, torsion-resistant and as light as possible structure.
Am Umfang der Basisplatte 13 sind über Verbindungselemente 16 zwei, die beschriebene Baugruppe umhüllende Gehäusewinkel 14, befestigt, von denen in Fig. 4 ein erster Gehäusewinkel 14 dargestellt ist. Auf die Darstellung des zweiten Gehäusewinkels , der mit dem ersten Gehäusewinkel 14 über Verschraubungen 15 verbunden ist, wurde verzichtet, um die innenliegenden Bauteile zu zeigen. Das durch die Gehäusewinkel, gebildete rohrförmige Gehäuse ist an einem Ende unmittelbar unterhalb der Endplatte 11 durch ein Abschlussglas 20 verschlossen. Das andere Ende ragt über die Basisplatte 13 hinaus und ist durch eine Abdeckplatte 21 verschlossen. Die Abdeckplatte 21 weist ebenso wie die Basisplatte 13 Durchbrüche auf, durch welche in der Zeichnung nicht dargestellte Stromleitungen in das Gehäuseinnere zu den Piezostellem 6.1 , 6.2 geführt sind. Außerdem ist durch die Abdeckplatte 21 eine Faserkupplung 17 geführt und mit dieser fest verbunden. Die Faserkupplung 17 dient zum einen zur Fassung der in Fig. 4 nicht dargestellten Lichtleitfaser 2, um sie zum Gehäuse zu positionieren und ermöglicht zum anderen, dass die Lichtleitfaser 2 praktisch durch zwei Faserstücke realisiert wird, nämlich einem innerhalb des Gehäuses verlaufenden Faserstückes und einem Faserstück, welches sich außerhalb des Gehäuses befindet und in welches die Strahlung der Laserdiode 1 eingekoppelt wird. Das im Gehäuse befindliche freie Ende der Lichtleitfaser 2 ist in einem Faserstecker 18 unmittelbar oberhalb der ersten Gradienten-Index-Linse 4.1 gefasst, der über einen Fasersteckerhalter 19 starr mit dem Gehäuse verbunden ist. Bei Aktivierung der Piezosteller 6.1 , 6.2 wird nun die erste Gradienten-Index-Linse 4.1 unterhalb der Austrittsfläche 3 der Lichtleitfaser 2 verschoben (korrekt: geschwenkt). Bei einer Lichtleitfaser 2 mit einem Durchmesser von 100 μm, einem Arbeitsabstand 7 zwischen der Austrittsfläche 3 und der Eintrittsfläche der ersten Gradienten-Index- Linse 4.1 von ebenfalls 100 μm, einem Linsendurchmesser von 1 ,8 mm und einer Vergrößerung der Linse von 14 können Schweißwege von 20 mm realisiert werden, d.h. es kann eine Fügekontur von 20 mm x 20 mm quasisimultan verschweißt werden. Es ist von besonderem Vorteil, dass die Vorrichtung parallel zur Werkstückoberfläche 5 nicht über die Abmessungen der schweißbaren Fügekontur hinausgeht, sodass sie problemlos aneinander gereiht werden können, um geschlossene größere Fügekonturen simultan schweißen zu können.On the circumference of the base plate 13, two housing angles 14, which enclose the described assembly, are fastened via connecting elements 16, of which a first housing angle 14 is shown in FIG. 4. The representation of the second housing angle, which is connected to the first housing angle 14 via screw connections 15, has been omitted in order to show the internal components. The tubular housing formed by the housing angles is closed at one end immediately below the end plate 11 by a cover glass 20. The other end protrudes beyond the base plate 13 and is closed by a cover plate 21. The cover plate 21, like the base plate 13, has openings through which power lines (not shown in the drawing) are led into the interior of the housing to the piezoelectric positions 6.1, 6.2. In addition, a fiber coupling 17 is guided through the cover plate 21 and firmly connected to it. The fiber coupling 17 serves, on the one hand, to mount the optical fiber 2, which is not shown in FIG. 4, in order to position it in relation to the housing and, on the other hand, enables the optical fiber 2 to be practically realized by two fiber pieces, namely a fiber piece running inside the housing and a fiber piece which is located outside the housing and into which the radiation from the laser diode 1 is coupled. The free end of the optical fiber 2 located in the housing is held in a fiber plug 18 directly above the first gradient index lens 4.1, which is rigidly connected to the housing via a fiber plug holder 19. When the piezo actuators 6.1, 6.2 are activated, the first gradient index lens 4.1 is now shifted below the exit surface 3 of the optical fiber 2 (correct: pivoted). With an optical fiber 2 with a diameter of 100 μm, a working distance 7 between the exit surface 3 and the entry surface of the first gradient index lens 4.1 of likewise 100 μm, a lens diameter of 1.8 mm and an enlargement of the lens of 14, welding paths can be created of 20 mm can be realized, ie a joining contour of 20 mm x 20 mm can be welded quasi-simultaneously. It is particularly advantageous that the device does not go beyond the dimensions of the weldable joining contour parallel to the workpiece surface 5, so that they can be lined up with one another without problems in order to be able to simultaneously weld closed larger joining contours.
In einem sechsten Ausführungsbeispiel, nicht dargestellt in der Zeichnung, soll eine Vorrichtung mehrere Vorrichtungen umfassen, wie sie in den Ausführungsbeispielen 1 -5 aufgezeigt wurden. Die Ausführungsbeispiele 1 -5 haben gemeinsam, dass eine Fügekontur quasisimultan erzeugt werden kann, die in ihrer Ausdehnung durch den Auslenkungsbereich, den das Strahlenbündel auf der Werkstückoberfläche 5 überstreichen kann, bestimmt ist. Hier wird nun der Vorteil der Erfindung besonders deutlich. Durch den geringen Platzbedarf, der im Wesentlichen nur durch die Piezosteller 6.1 , 6.2 bestimmt wird, können dicht zueinander mehrere Module angeordnet werden, die funktionell aufeinander abgestimmt gemeinsam eine größere Fügekontur, zusammengesetzt aus einzelnen Teilfügekonturen, simultan erzeugen können. Indem alle Module jeweils simultan eine Teilfügekontur quasisimultan überstreichen, wird die gesamte Fügekontur mit der Strahlung beaufschlagt. D.h. das Werkstück, bestehend aus zwei Teilen, dessen Fügeflächen aneinander liegen, wird im Bereich der ' Fügekontur simultan und quasisimultan erwärmt, plastifiziert und verschweißt.In a sixth exemplary embodiment, not shown in the drawing, a device is intended to comprise a plurality of devices, as were shown in exemplary embodiments 1-5. The exemplary embodiments 1-5 have in common that a joining contour can be generated quasi-simultaneously, the extent of which is determined by the deflection area which the beam of rays can sweep over the workpiece surface 5. Here the advantage of the invention is particularly clear. Due to the small space requirement, which is essentially determined only by the piezo actuators 6.1, 6.2, a plurality of modules can be arranged close to one another, which can functionally match one another and simultaneously generate a larger joining contour, composed of individual partial joining contours. Since all modules simultaneously simultaneously cover a partial joining contour quasi-simultaneously, the entire joining contour is exposed to the radiation. Ie the workpiece, consisting of two parts, the joining surfaces lying against each other, is heated, plasticized and welded simultaneously and quasi-simultaneously in the area of the joining contour.
In allen beschriebenen Ausführungsbeispielen wurde davon ausgegangen, dass die strahlformende optische Einheit, bestehend aus einer oder auch zwei Gradienten- Index-Linsen 4.1 , 4.2, die Austrittsfläche 3 der Lichtleitfaser 2 auf die Werkstückoberfläche 5 abbildet. Ebenso können die Gradienten-Index-Linsen 4.1 , 4.2 so dimensioniert und zur Austrittsfläche 3 angeordnet sein, dass das Strahlenbündel kollimiert bzw. auf die Werkstückoberfläche 5 fokussiert wird.In all of the exemplary embodiments described, it was assumed that the beam-shaping optical unit, consisting of one or even two gradient index lenses 4.1, 4.2, images the exit surface 3 of the optical fiber 2 on the workpiece surface 5. Likewise, the gradient index lenses 4.1, 4.2 can be dimensioned and arranged to the exit surface 3 such that the beam is collimated or focused on the workpiece surface 5.
Anstelle der Piezosteller 6.1 , 6.2 können auch andere aus dem Stand der Technik bekannte lineare Bewegungseinheiten, wie kapazitive Steller oder elektromagnetische Steller verwendet werden.Instead of the piezo actuators 6.1, 6.2, other linear movement units known from the prior art, such as capacitive actuators or electromagnetic actuators, can also be used.
Es liegt auf der Hand, dass die erfindungsgemäße Vorrichtung auch in Verbindung mit einem Roboterarm angewendet werden kann. Gegenüber herkömmlichen artgleichen Vorrichtungen ist hier vor allem ihr geringes Gewicht von Vorteil.It is obvious that the device according to the invention can also be used in connection with a robot arm. Compared to conventional devices of the same type, their low weight is of particular advantage here.
Auch können Punktschweißungen simultan in einem festen Abstand zueinander erzeugt werden, mit einer gleichen Anzahl von Vorrichtungen zueinander positioniert, wie Schweißpunkte erzeugt werden sollen. Derartige Vorrichtungen bedürfen dann keinen linearen Bewegungseinheiten. Spot welds can also be generated simultaneously at a fixed distance from one another, positioned with one another with the same number of devices as how welding spots are to be generated. Such devices then do not require any linear movement units.
Aufstellung der verwendeten BezugszeichenList of the reference numerals used
1 Laserdiode1 laser diode
2 Lichtleitfaser 3 Austrittsfläche2 optical fiber 3 exit surface
4.1 erste Gradienten-Index-Linse4.1 first gradient index lens
4.2 zweite Gradienten-Index-Linse 5 Werkstückoberfläche4.2 second gradient index lens 5 workpiece surface
6.1 erster Piezosteller 6.2 zweiter Piezosteller6.1 first piezo actuator 6.2 second piezo actuator
6.3 dritter Piezosteller6.3 third piezo actuator
7 Arbeitsabstand7 working distance
8 Werkstückabstand8 workpiece spacing
9 Stelleinrichtung 10 Ausleger9 actuator 10 extension arm
1 1 Endplatte des Auslegers1 1 end plate of the boom
12 Lagerplatte des Auslegers12 Boom bearing plate
13 Basisplatte13 base plate
14 erster Gehäusewinkel 15 Verschraubungen zum Verbinden der Gehäusewinkel14 first housing bracket 15 screw connections for connecting the housing bracket
16 Verbindungselemente16 fasteners
17 Faserkupplung17 fiber coupling
18 Faserstecker18 fiber connectors
19 Fasersteckerhalter 20 Abschlussglas19 fiber connector holder 20 cover glass
21 Abdeckplatte 21 cover plate

Claims

Patentansprüche claims
1. Vorrichtung zum Schweißen einer Fügekontur mittels Laserstrahlung mit einer Laserdiode (1 ), einer in deren Strahlungsrichtung vorgeordneten Lichtleitfaser (2), in deren Eintrittsfläche das emittierende Strahlenbündel der Laserdiode (1 ) eingekoppelt wird und deren Austrittsfläche (3) in Strahlungsrichtung vor einer strahlformenden optischen Einheit angeordnet ist, so dass das Strahlenbündel über die strahlformende optische Einheit auf einer der strahlformenden optischen Einheit nachgeordneten Werkstückoberfläche (5) einen Brennfleck abbildet, dadurch gekennzeichnet, dass die strahlformende optische Einheit aus wenigstens einer Gradienten-Index- Linse (4.1 , 4.2) besteht, die mit wenigstens einer linearen Bewegungseinheit verbunden ist, mittels der die Gradienten-Index-Linse (4.1 , 4.2) radial zur Austrittsfläche (3) um einen Verschiebeweg ausgelenkt wird, um eine Auslenkung des Strahlenbündels zu erzeugen, wodurch der Brennfleck auf der1.Device for welding a joining contour by means of laser radiation with a laser diode (1), an optical fiber (2) arranged upstream in its radiation direction, into the entrance surface of which the emitting beam of the laser diode (1) is coupled and the exit surface (3) in the radiation direction in front of a beam-shaping one optical unit is arranged so that the beam of rays forms a focal spot on the workpiece surface (5) downstream of the beam-shaping optical unit via the beam-shaping optical unit, characterized in that the beam-shaping optical unit consists of at least one gradient index lens (4.1, 4.2) exists, which is connected to at least one linear movement unit, by means of which the gradient index lens (4.1, 4.2) is deflected radially to the exit surface (3) by a displacement path in order to generate a deflection of the beam, thereby causing the focal spot on the
Werkstückoberfläche (5) eine Fügekontur abtastet.Workpiece surface (5) scans a joining contour.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die strahlformende optische Einheit aus genau einer (der ersten) Gradienten- Index-Linse (4.1) besteht, die mit zwei linearen Bewegungseinheiten verbunden ist, die einen ersten und einen zweiten Piezosteller 6.1 , 6.2 darstellen, die eine Auslenkung der ersten Gradienten-Index-Linse (4.1 ) in zueinander senkrechte Richtungen bewirken.2. Device according to claim 1, characterized in that the beam-shaping optical unit consists of exactly one (the first) gradient index lens (4.1) which is connected to two linear movement units which have a first and a second piezo actuator 6.1, 6.2 represent, which cause a deflection of the first gradient index lens (4.1) in mutually perpendicular directions.
3. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die strahlformende optische Einheit aus genau zwei Gradienten-Index-Linsen (4.1 , 4.2) besteht, die in Strahlungsrichtung hintereinander angeordnet sind und mit jeweils einer linearen Bewegungseinheit verbunden sind, die einen ersten und einen zweiten Piezosteller 6.1 , 6.2 darstellen, um gegenüber der Austrittsfläche (3) in zueinander senkrechte Richtungen ausgelenkt zu werden. 3. Device according to claim 1, characterized in that the beam-shaping optical unit consists of exactly two gradient index lenses (4.1, 4.2), which are arranged one behind the other in the radiation direction and are each connected to a linear movement unit, the first and one Represent second piezo actuator 6.1, 6.2 in order to be deflected in mutually perpendicular directions relative to the exit surface (3).
4. Vorrichtung nach einem der Ansprüche 1 -3, dadurch gekennzeichnet, dass die strahlformende optische Einheit so ausgeführt ist, dass die Austrittsfläche (3) in einem Abstand kleiner 0,3 mm vor der ersten optischen Fläche und die Werkstückoberfläche (5) in einem Abstand größer 10 mm hinter der letzten optischen Fläche der strahlformenden optischen Einheit angeordnet sind und die strahlformende optische Einheit einen Abbildungsmaßstab größer 30 aufweist.4. Device according to one of claims 1 -3, characterized in that the beam-shaping optical unit is designed such that the exit surface (3) at a distance of less than 0.3 mm in front of the first optical surface and the workpiece surface (5) in one A distance greater than 10 mm is arranged behind the last optical surface of the beam-shaping optical unit and the beam-shaping optical unit has an imaging scale greater than 30.
5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die strahlformende optische Einheit so ausgeführt ist, dass die Austrittsfläche (3) in deren Objektebene und die Werkstückoberfläche (5) im nicht ausgelenkten5. The device according to claim 2, characterized in that the beam-shaping optical unit is designed such that the exit surface (3) in its object plane and the workpiece surface (5) in the non-deflected
Zustand in deren Bildebene liegt und die strahlformende Einheit einen Tiefenschärfebereich aufweist, der größer ist als eine maximale Abstandsänderung, die eine unebene Werkstückoberfläche (5) über den Bereich der Auslenkung gegenüber der letzten optischen Fläche der strahlformenden optischen Einheit (4) hat.State in the image plane and the beam-shaping unit has a depth of field that is greater than a maximum change in distance that an uneven workpiece surface (5) has over the area of the deflection relative to the last optical surface of the beam-shaping optical unit (4).
6. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der erste und der zweite Piezosteller (6.1 , 6.2) mit der ersten Gradienten- Index-Linse (4.1) mittelbar über einen Ausleger (10) verbunden sind, der die Stellwege der Piezosteller (6.1 , 6.2) in die Verschiebewege der ersten Gradienten-6. The device according to claim 2, characterized in that the first and the second piezo actuator (6.1, 6.2) with the first gradient index lens (4.1) are connected indirectly via an extension arm (10) which the travel of the piezo actuator (6.1 , 6.2) into the displacement paths of the first gradient
Index-Linse (4.1) übersetzt.Index lens (4.1) translated.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Piezosteller (6.1 , 6.2) jeweils mit einem Ende fest an einer Basisplatte (13) befestigt sind und mit ihrem freien Ende an einer Lagerplatte (12) des Auslegers7. The device according to claim 6, characterized in that the piezo actuators (6.1, 6.2) are each fixed at one end to a base plate (13) and with their free end to a bearing plate (12) of the boom
(10) anliegen und die Lagerplatte (12) um einen zur Basisplatte (13) fixen Drehpunkt schwenkbar ist, sodass die Lagerplatte (12) und damit der Ausleger (10) bei Aktivierung der Piezosteller (6.1 , 6.2) entsprechend deren Stellwege um den Drehpunkt geschwenkt wird. (10) and the bearing plate (12) can be pivoted about a pivot point fixed to the base plate (13), so that the bearing plate (12) and thus the extension arm (10) when the piezo actuators (6.1, 6.2) are activated, corresponding to their travel ranges around the pivot point is pivoted.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Drehpunkt durch ein Drehgelenk definiert wird, welches sich an einem Ende eines dritten Piezostellers (6.3) befindet, der parallel zu den Piezostellem (6.1 , 6.2) den Abstand des Drehpunktes zur Basisplatte (13) bestimmt.8. The device according to claim 7, characterized in that the pivot point is defined by a pivot joint which is located at one end of a third piezo actuator (6.3) which, parallel to the piezo actuator (6.1, 6.2), the distance of the pivot point from the base plate (13 ) certainly.
9. Vorrichtung zum Schweißen einer Fügekontur mittels Laserstrahlung, dadurch gekennzeichnet, dass sie mehrere Vorrichtungen gemäß einem der Ansprüche 1 -8 umfasst, die so zueinander angeordnet sind, dass die jeweils abgetasteten Fügekonturen Teilfügekonturen entsprechen, die gemeinsam eine größere geschlossene9. Device for welding a joining contour by means of laser radiation, characterized in that it comprises a plurality of devices according to one of claims 1 to 8, which are arranged relative to one another in such a way that the joining contours which are respectively scanned correspond to partial joining contours which together form a larger, closed one
Fügekontur ohne Überlappungen der Teilfügekonturen bilden. Form the joining contour without overlapping the partial joining contours.
EP03750344A 2002-10-01 2003-09-10 Device for welding by means of laser radiation Withdrawn EP1554077A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10246198A DE10246198A1 (en) 2002-10-01 2002-10-01 Arrangement for welding using laser radiation
DE10246198 2002-10-01
PCT/DE2003/003026 WO2004030857A1 (en) 2002-10-01 2003-09-10 Device for welding by means of laser radiation

Publications (1)

Publication Number Publication Date
EP1554077A1 true EP1554077A1 (en) 2005-07-20

Family

ID=32038236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03750344A Withdrawn EP1554077A1 (en) 2002-10-01 2003-09-10 Device for welding by means of laser radiation

Country Status (5)

Country Link
US (1) US20060032839A1 (en)
EP (1) EP1554077A1 (en)
AU (1) AU2003269704A1 (en)
DE (2) DE10246198A1 (en)
WO (1) WO2004030857A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878185B1 (en) 2004-11-22 2008-11-07 Sidel Sas PROCESS FOR MANUFACTURING CONTAINERS COMPRISING A HEATING STEP BY MEANS OF A COHERENT ELECTROMAGNETIC RADIATION BEAM
DE102004056782A1 (en) * 2004-11-24 2006-06-01 Lpkf Laser & Electronics Ag Laser welding process for joining two components, in particular made of thermoplastic plastic, has beam area making circular or elliptical movement as it follows co-ordinate path relating to entire welding seam
JP2007245189A (en) * 2006-03-16 2007-09-27 Tdk Corp Joining apparatus, and its nozzle unit
DE102006058997A1 (en) * 2006-12-14 2008-06-19 Bayerische Motoren Werke Ag Laser butt-welding equipment with scanner, for joining plastic components used in automobile industry, also includes travel system moving scanner
FR2913210B1 (en) 2007-03-02 2009-05-29 Sidel Participations IMPROVEMENTS IN THE HEATING OF PLASTIC MATERIALS BY INFRARED RADIATION
FR2917005B1 (en) 2007-06-11 2009-08-28 Sidel Participations HEATING FACILITY FOR PREFORMING BODIES FOR BLOWING CONTAINERS
CN104166234A (en) * 2014-08-13 2014-11-26 合肥鑫晟光电科技有限公司 Laser sintering equipment and laser scanning head used for same
EP3517241A1 (en) * 2018-01-29 2019-07-31 Bystronic Laser AG Optical device for shaping an electromagnetic wave beam and use thereof, beam treatment device and use thereof, and beam treatment method
CN113118682B (en) * 2019-12-30 2023-04-14 中核北方核燃料元件有限公司 Split rod bundle clamp for automatic end plate welding

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612815A (en) * 1970-01-16 1971-10-12 Smith Corp A O Electron beam apparatus
US4914272A (en) * 1987-09-14 1990-04-03 Sony Corporation Laser beam soldering apparatus and soldering method using the same
JP2663560B2 (en) * 1988-10-12 1997-10-15 日本電気株式会社 Laser processing equipment
JP2843083B2 (en) * 1990-01-11 1999-01-06 株式会社アマダ Laser welding method
EP0483385B1 (en) * 1990-05-23 1997-12-10 Shin Meiwa Industry Co., Ltd. Laser robot and its control method, optical beam deflection apparatus and apparatus for generating its control signal
US5229571A (en) * 1991-07-08 1993-07-20 Armco Steel Co., L.P. High production laser welding assembly and method
DE4234342C2 (en) * 1992-10-12 1998-05-14 Fraunhofer Ges Forschung Process for material processing with laser radiation
DE19603111C2 (en) * 1996-01-29 2002-08-14 Deutsch Zentr Luft & Raumfahrt laser system
FR2762244B1 (en) * 1997-04-21 1999-07-16 Peugeot APPARATUS FOR LASER TREATMENT OF THE CYLINDER WALL OF AN INTERNAL COMBUSTION ENGINE
DE19832168A1 (en) * 1998-07-17 2000-01-20 Lisa Laser Products Ohg Fuhrbe Laser butt-welding of diverse transparent thermoplastics employs flexible optical conductor of convenient length and conventional optics
JP3395142B2 (en) * 1998-08-31 2003-04-07 住友重機械工業株式会社 Optical system drive
DE19949198B4 (en) * 1999-10-13 2005-04-14 Myos My Optical Systems Gmbh Device having at least one light source comprising a plurality of individual light sources
EP1219381A1 (en) * 2000-12-27 2002-07-03 Siemens Aktiengesellschaft Method of laser welding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004030857A1 *

Also Published As

Publication number Publication date
AU2003269704A1 (en) 2004-04-23
US20060032839A1 (en) 2006-02-16
DE10393890D2 (en) 2005-08-25
DE10246198A1 (en) 2004-04-22
WO2004030857A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
DE10193737B4 (en) Laser processing device
DE19823934A1 (en) Device for coupling a light source to an optical fiber
DE102014210486A1 (en) Method and apparatus for welding two joining partners made of thermoplastic materials along a weld by means of laser
DE102007018400A1 (en) Optical system for laser processing head has collimation unit in front of first optical unit and at least one axicon after collimation unit
DE10027148A1 (en) Laser machining device has focused laser, movably adjustable scanner mirror in beam path; adaptive focusing mirror, deflection mirror, adjustable mirror can be placed before scanner mirror
DE102017010055A1 (en) Laser beam welding of geometric figures with OCT seam guide
WO2004030857A1 (en) Device for welding by means of laser radiation
DE202017101590U9 (en) Device for guiding a laser beam onto a workpiece
EP2699379A2 (en) Laser beam welding device and laser beam welding method
DE19623270A1 (en) Adaptive optical laser imaging apparatus for information recording
DE102016008184B4 (en) Measuring device and method for monitoring a machining process for machining a workpiece under synchronous control of a machining scanner and a reference arm scanner and system for processing and monitoring a workpiece with a measuring device
DE102019204032B4 (en) Device for generating a spatially modulatable power density distribution from laser radiation
EP1647370B1 (en) Articulated robot with a laser beam guiding system comprising a telescope
DE102015200795B3 (en) Arrangement for irradiating an object surface with a plurality of partial beams of ultrashort pulsed laser radiation
EP2599574B1 (en) Laser lens with passive seam tracking
DE102019108681A1 (en) Device and method for generating a double or multiple spot in laser material processing
WO2019020532A1 (en) Lidar device and method with improved deflecting device
DE102014012456A1 (en) Optical beam guiding unit and material processing device with an optical beam guiding unit
DE19829982A1 (en) Fine-focusing table, especially for laser scanning microscope
DE102010049771A1 (en) Beam combining device for superimposing laser beam with different spectrums to form individual beam, has set of Risley- prism pairs assigned to each input beam path, and deflecting input beam along adjustable direction
WO2007121863A1 (en) Laser scanning microscope and procedure for the operation of a laser scanning microscope
DE102010027540B4 (en) Beam combiner
DE4135459A1 (en) Optical ancillary guide for laser - produces line of variable length and width and is connected to point laser with collector and diffusor lens
DE102022107324B4 (en) Laser processing head with deflection devices
DE102019212818B4 (en) Scanning module for two-dimensional scanning of a target plane with several laser beams

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100401