EP1552196A2 - Vanne de commande - Google Patents

Vanne de commande

Info

Publication number
EP1552196A2
EP1552196A2 EP03797352A EP03797352A EP1552196A2 EP 1552196 A2 EP1552196 A2 EP 1552196A2 EP 03797352 A EP03797352 A EP 03797352A EP 03797352 A EP03797352 A EP 03797352A EP 1552196 A2 EP1552196 A2 EP 1552196A2
Authority
EP
European Patent Office
Prior art keywords
circuit
valve according
pipes
rotary member
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03797352A
Other languages
German (de)
English (en)
Inventor
Carlos Martins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermique Moteur SA
Original Assignee
Valeo Thermique Moteur SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermique Moteur SA filed Critical Valeo Thermique Moteur SA
Publication of EP1552196A2 publication Critical patent/EP1552196A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0853Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in a single plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0856Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in more than one plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/187Arrangements or mounting of liquid-to-air heat-exchangers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to the field of multi-way valves for a fluid circuit, in particular for a cooling circuit of a thermal engine of a motor vehicle. It also relates to a fluid circulation circuit, in particular a motor vehicle thermal engine cooling circuit comprising this valve.
  • the invention relates to a control valve for a fluid circulation circuit, comprising a body comprising a cylindrical side wall delimiting a cylindrical housing, at least two pipes for the entry or exit of the fluid in the body, a rotary adjusting member mounted to rotate in the cylindrical housing of the body about an axis, this adjusting member being able to assume different angular positions to control the circulation of fluid between the pipes.
  • Valves of this type are already known having a body comprising a bottom wall into which opens a fluid inlet and a cylindrical side wall into which open fluid outlets at axial heights and in angular positions chosen relative to the axis of rotation of an adjustment member capable of rotating about an axis of rotation.
  • a valve of this type has many drawbacks. Its size is important. Furthermore, it does not make it possible to connect a large number of circulation paths for the fluid.
  • the present invention specifically relates to a control valve for a fluid circulation circuit which overcomes these drawbacks.
  • a control valve according to the invention can replace several valves of the prior art. For example, two four-way valves.
  • the pipes are arranged radially relative to the cylindrical side wall.
  • This arrangement further increases the number of possible ways of the valve.
  • Tubing can be distributed on one level.
  • the tubes are distributed over several levels.
  • the tubes can be distributed over two, three or more levels.
  • This embodiment is particularly suited to the case where the valve must include a large number of channels, for example six or more than six. Thus, it is possible to keep a small diametral size of the valve, in conjunction with a small axial size.
  • the invention relates to a fluid circulation circuit, in particular a cooling circuit of a thermal engine of a motor vehicle.
  • a cooling circuit is traversed by a cooling fluid which circulates in a closed circuit under the action of a circulation pump.
  • a cooling circuit comprises several branches, including one branch which contains a radiator for cooling the engine, a branch which constitutes a derivation of the engine cooling radiator and a branch which contains a radiator, also called an air heater, used for heating the passenger compartment of the vehicle.
  • the invention relates to a fluid circuit comprising a control valve according to the invention, the pipes of which are connected to the various branches of the circuit.
  • the circuit is produced in the form of a high temperature circuit for cooling a heat engine of a motor vehicle comprising a main pump for circulating the fluid, a short-circuit pipe and a heating pipe.
  • a control valve being connected to the heat exchange module, to the high temperature circuit ture and to the low temperature circuit so as to integrate the heat exchange section attributable either to the high temperature circuit or to the low temperature circuit, depending on an engine operating parameter.
  • the rotary adjustment member comprises pockets capable of placing two or more of two tubes in communication with one another;
  • the valve has a cylindrical sealing ring arranged between the cylindrical side wall of the body and the rotary adjusting member;
  • the rotary adjustment member has a convex curved shape and the sealing ring has a concave curved shape complementary to that of the rotary adjustment member; the ring includes a stop means which makes it possible to immobilize it in rotation relative to the valve body;
  • the stop means is a protuberance which fits into a corresponding housing formed in the body;
  • a seal in particular an O-ring, is provided around at least one pocket of the rotary member in order to insulate the fluid circuits between them;
  • valve has seven pipes distributed over two levels
  • one of the levels has three tubes, while the other level has four tubes;
  • the rotary member has three pockets
  • the rotary member further comprises a through channel.
  • the valve according to the invention will have two stages, each comprising three channels, and a rotary member having pockets making it possible to place said channels in communication two by two, as a function of its angular position. All or part of said pockets will be oriented substantially parallel to the axis of rotation of said rotary member and / or will be inclined relative to the latter so as to be able to connect the channels of two different stages. According to this embodiment, a six-way valve is obtained whose space requirement, both radial and axial, is particularly advantageous.
  • Figure 1 is a perspective view of a valve control according to the present invention
  • Figure 2 is an exploded view of the valve shown in Figure 1
  • Figure 3 is a sectional view of the valve shown in Figures 1 and 2
  • Figure 4 is a sectional view along line IV-IV of the valve shown in Figure 3
  • Figure 5 is an external view of a second embodiment of a valve according to the present invention comprising pipes distributed on two levels
  • Figure 6 is a left view of the valve shown in Figure 5
  • Figure 7 is a rear view of the valve shown in Figure 5
  • Figures 8 and 9 show two perspective views of the valve of Figures 5 to 7
  • Figure 10 is an exploded view of the valve shown in Figures 5 to 9
  • Figure 11 is a sectional view along line XI -XI of the
  • Figure 6 Figure 12 is a view of a cooling circuit of a thermal engine of a motor vehicle comprising two four-way valves;
  • Figure 13 is a view of the cooling circuit shown in Figure 12, in another operating configuration;
  • Figure 14 is a view of a cooling circuit of a thermal engine of a motor vehicle comprising a control valve according to the present invention, shown in the same configuration as the circuit of Figure 12;
  • Figure 15 is a view of the cooling circuit of the
  • Figure 14 shown in the same configuration as the cooling circuit of Figure 13;
  • Figure 16 is a sectional view along line XVI -XVI of Figure 6, in a configuration corresponding to Figure 14;
  • Figure 17 is a sectional view of the two-control valve of the invention identical to Figure
  • FIG. 1 a first embodiment of a control valve according to the invention.
  • the valve comprises a body designated by the general reference 2, consisting of a cylindrical side wall 4 and a bottom 6
  • the body 2 is of general shape of revolution around an axis XX.
  • the body 2 comprises six pipes 8 which open radially into a cylindrical housing 10 with an axis
  • the tubes 12 of the pipes 8 are coplanar (Figure 3).
  • the tubes are regularly distributed at 60 ° from one another at the periphery of the lateral cylindrical wall 4. These characteristics are not imperative and the tubes 8 may not be coplanar, or else they may not be regularly distributed around the periphery of the lateral cylindrical wall 4.
  • the set of tubes 8 opens onto the cylindrical wall 4. None of them is located on the wall bottom 6 ( Figure 4).
  • a rotary adjusting member 14 Inside the cylindrical housing 10, is housed a rotary adjusting member 14 whose diameter corresponds substantially to the internal diameter of the cylindrical housing 10 ( Figures 2 to 4).
  • the adjusting member 14 is extended by a rod 16 directed along the axis XX.
  • This rod 16 passes through a central opening that has a cover 18 of circular shape which is screwed onto a flange 20 of the body 2 of the control valve by means of fixing screws 22 with interposition of a seal d '' O-ring 24 (see Figure 2).
  • the rotary adjusting member 14 is adapted to be driven in rotation about the axis XX by motorization means (not shown) which may be constituted, for example, by a motor of the stepping type capable of bringing l 'rotary member 14 in a multiplicity of different positions, either in successive increments, or continuously.
  • motorization means (not shown) which may be constituted, for example, by a motor of the stepping type capable of bringing l 'rotary member 14 in a multiplicity of different positions, either in successive increments, or continuously.
  • the rotary member 14 has pockets 26, three in the example shown, capable of putting the pipes 8 in communication with one another. These pockets are formed by recesses made in the rotary member 14 and opening at the periphery of the latter.
  • the tubes 8 are distributed in pairs. They communicate with each other via the pockets 26.
  • one of the tubes of each pair can constitute an inlet for the fluid, while the other tubing of the pair constitutes an outlet for this fluid .
  • a sealing ring 30 is interposed between the rotary member 14 and the lateral cylindrical wall 4 of the body 2 ( Figure 2).
  • the rotary member 14 has a convex curved shape and the sealing ring 30 has a concave curved shape complementary to that of the rotary member 14.
  • Self - centering allows the valve to be placed in the desired angular position.
  • This solution also has the advantage of reducing the friction surfaces to the minimum required for sealing, thus limiting the operating forces.
  • No part of the rotary member 14 is in contact with the body 2.
  • the sealing ring 30 ( Figure 2) has circular openings 32 corresponding to the inlet or outlet of the pipes 8, six in the example represented.
  • the openings 32 are provided with lip seals to ensure a seal between the ring 30 and the body 2.
  • the sealing ring 30 has an opening 34 in a non-functional part to facilitate its mounting on the rotary member 14 as well as its release.
  • the sealing ring 30 also has a protuberance 36 ( Figure 2) which is housed in a housing (not shown) of the body 2 of the valve in order to prevent the rotation of the sealing ring 30 relative to the body.
  • FIG. 5 to 11 a second embodiment of a control valve according to the present invention. This valve differs from that which has been described previously by the fact that the inlet or outlet pipes are distributed over several levels, two in the example shown.
  • the valve has a cylindrical body 2 limited by a bottom wall 6 and a cylindrical side wall 4 of axis XX.
  • the cylindrical side wall 4 delimits a cylindrical housing 10.
  • the housing is closed by a cover 18 which is fixed by screws 32 (four in the example shown) which fix the cover 18 on a flange or flange 20 forming part of the body 2
  • a seal for example an O-ring 24, is interposed between the cover 18 and the flange 20.
  • the body 2 comprises seven tubes all arranged, in accordance with an important characteristic of the invention, on the cylindrical side wall 4.
  • the tubes are distributed on two levels, namely a first level which will be called the lower level because it is closest to the bottom 6 of the body, and a second level which will be called the upper level because it is closest to the opening of the body 2 and the cover 18.
  • Four tubes were placed on the first level.
  • these pipes bear the references 50, 52, 54 and 56 respectively.
  • Three pipes have been arranged on the second or upper level. In the figures, these pipes have been designated by the references 58, 60 and 62 respectively.
  • Tubing 50 and 58 are associated with each other.
  • the tubing 50 is part of the lower level, while the tubing 58 is part of the upper level.
  • These two pipes therefore allow communication between the lower level and the upper level.
  • the pipes 60 and 62 which both belong to the upper level, are also matched to each other.
  • a rotary member is disposed inside the cylindrical housing 10 of the body 2. It is mounted rotating around the longitudinal axis XX of the body 2.
  • L organ 80 comprises a solid body 82 of generally cylindrical shape with axis XX.
  • the body 82 is extended by a rod 26 directed along the axis XX which passes through a central opening 27 which comprises the cover 18.
  • An O-ring seal 17 is interposed between the rod 26 and the opening 27.
  • the rotary member 80 is capable of being driven in rotation about the axis XX by means of motorization not shown, capable of bringing it into a multiplicity of different angular positions, either by successive increments, either continuously.
  • the pocket 84 extends over the two levels and is able to put the pipes 50 and 58 l in communication. with each other. It is also able to communicate with the tubing 52.
  • the pocket 86 also extends over two levels. It has substantially an L shape. It is able to connect the pipes 54 and 62 (see Figure 14), as well as the pipes 54 and 56 (see Figure 15).
  • the third pocket 88 is located only at the upper level of the body of the rotary member 80, it is able to connect the pipes 60 and 62 (see Figure 15).
  • the rotary adjustment member 80 comprises a through channel 90 which, in the example shown, crosses it diametrically.
  • the channel 90 is intended to switch part of one of the circuits into another (see Figures 14 and 15). It is located at the lower level of the rotary member 80.
  • a sealing ring is interposed between the rotary member 80 and the cylindrical wall 4 of the body 2. Openings, the shape and number of which correspond to the number of pockets formed in the rotary adjusting member 80, are provided in the sealing ring 100 ( Figure 10). Since the rotary member has three pockets, the sealing ring also has three openings adapted to each of these pockets. These openings have been designated by the references 102, 104 and 106. The opening 102 corresponds to the pocket 84, the opening 104 to the pocket 86 and the opening 106 to the pocket 88. In addition, two circular openings 110 corresponding at the two ends of the channel 90 have been provided in the sealing ring 100.
  • Sealing means are provided around the periphery of each of the previously described openings. These sealing means could be constituted, for example, by lips. However, in the example shown, they consist of O-rings, such as the seal 112 ( Figure 10).
  • a fluid circulation circuit This circuit consists, on the one hand, of a high temperature cooling circuit 120 of a heat engine 121 of a motor vehicle and, on the other hand, of a low temperature cooling circuit 122 intended for the cooling of equipment 124 of the motor vehicle, for example a charge air cooler or a condenser forming part of the air conditioning circuit of the passenger compartment of the motor vehicle.
  • the high temperature cooling circuit 121 is traversed by the engine coolant 121 circulated by a main high temperature circulation pump 126, the fluid heated by the engine leaves the latter via an outlet 128 which is connected to the inlet of a three-way valve 130.
  • the valve 130 comprises three pipes which are connected to three branches of the high temperature cooling circuit, namely a branch 132 which comprises a high temperature cooling radiator which will be described later, a branch 134 which forms a bypass of the cooling radiator and a branch 136 which comprises an air heater 138 used for heating the passenger compartment of the vehicle.
  • the valve 130 makes it possible to manage the flow rates of fluid in the abovementioned branches in order to optimize the temperature of the heat engine and the heating of the passenger compartment.
  • the engine When the engine is cold started, it makes it possible to circulate the fluid in the branch branch 134 without passing through the radiator. During this start-up phase, it is possible to pass all or part of the fluid flow through the air heater 138 if heating of the passenger compartment is desired.
  • the fluid passes through the high temperature cooling radiator.
  • the low-temperature cooling circuit 122 consists of a loop in which the fluid is circulated by a low-temperature pump 140.
  • the fluid circulation circuit of Figures 12 and 13 comprises a heat exchange module consisting of two rows of heat exchange tubes.
  • the first of these rows constitutes the low-temperature cooling radiator 142 mentioned above.
  • This row of tubes is permanently integrated into the low-temperature cooling circuit 122.
  • the production of the second row of tubes is more particular in that the second row of tubes is divided into two parts, namely a part 144 constituting a section high-temperature heat exchange used for cooling the high-temperature circuit 120, and in particular the heat engine 121.
  • the section 144 is permanently integrated into the high-temperature cooling circuit 120.
  • the second row of tubes of the heat exchange module comprises an assignable heat exchange section 146.
  • This attributable section can be integrated either into the high temperature cooling circuit 120 or into the low temperature cooling circuit 122. Below a certain value of the coolant temperature, for example 105 ° C, the assignable heat exchange section 146 is part of the low temperature coolant circuit. This increases the cooling capacity of this circuit, which allows an improvement in its efficiency, for example an improvement in the efficiency of the air conditioning circuit. If the temperature of the engine coolant increases above the critical value, it is necessary to increase the cooling capacity of the heat engine 121. This is why the attributable heat exchange section 146 is then integrated into the high temperature cooling circuit, as shown in Figure 13.
  • the fluid circulation circuit comprises two four-way valves 150.
  • the two four-way valves 150 are connected in such a way that the attributable heat exchange section is crossed by the coolant which circulates in the loop 122 before it enters the row heat exchange 142 constituting a heat exchange at low temperature.
  • the heat exchange surface thus consists of the sum of the attributable section 146 and the row of tubes 142.
  • the four-way valves 150 are oriented so that the fluid in the low temperature coolant circuit 122 passes through a bypass line 152, avoiding the attributable heat exchange section 146.
  • the four-way valves 150 make it possible to direct part of the coolant from the high temperature circuit 120 to the exchange section 146 by a branch 154, as shown by the arrow 156.
  • the high temperature section 144 and the attributable heat exchange section 146 are mounted in parallel and their cooling capacities are added to cool the thermal engine of the motor vehicle 121.
  • valves 150 are necessary to ensure the interconnection of the high temperature circuit 120 and low temperature circuit 122. This results in additional cost and complexity, as well as an increase in size.
  • the control valve of the invention is particularly advantageous in an application of this type because it makes it possible to replace the two four-way valves 150 with a single valve, which results in a reduction both in cost and in 1 congestion.
  • FIG. 14 and 15 a fluid circulation circuit consisting of a high temperature cooling circuit 120 and a low temperature cooling circuit 122 similar to the circuits shown in Figures 12 and 13, in which the two four-way valves 150 have been replaced by a single control valve according to the present invention.
  • the control valve of the invention conforms to the embodiment which has been described above with reference to Figures 5 to 11. Consequently, the pipes of this valve are distributed on two levels, namely a lower level designated by the reference 160 and a higher level designated by the reference 162 ( Figures 14 and 15). For the sake of clarity of the drawing, levels 160 and 162 have been shown separated from each other. It should be understood that this is a schematic representation. In reality, these two levels are arranged one above the other, as explained in the preceding description of this embodiment of the valve of the invention.
  • Figure 14 corresponds to the configuration of the circuit shown in Figure 12, i.e. a configuration in which the temperature of the engine coolant thermal is less than a critical value, for example 105 ° C.
  • the high temperature cooling radiator consists only of the high temperature heat exchange section 144 forming part of the second row of heat exchange tubes of the heat exchange module described above. Therefore, the assignable heat exchange section 146, which completes the second row of tubes of the heat exchange module, is part of the low temperature cooling circuit 122.
  • the three-way thermostatic valve 130 is oriented in such a way that the cooling fluid is directed towards the branch 132 (arrow 133), towards the tube 50 forming part of the lower level 160 of the control valve of the invention.
  • the cooling fluid passes from the lower level 160 to the upper level 162 through the pocket 84 which, as explained above, allows these two levels to be placed in communication with one another.
  • the fluid leaves through the tube 58, which then constitutes an outlet tube, to be directed by the line 170 (arrow 172) to the high-temperature heat exchange section 144. After being cooled, the fluid conventionally returns to the motor 121 and the circulation of the fluid repeats.
  • the cooling fluid driven by the low temperature circulation pump 140 passes through the heat exchanger 124, for example an air conditioning circuit condenser, and enters via the pipe 56, which then constitutes an inlet pipe, in the lower level 160 of the control valve of the invention.
  • the fluid passes through the rotary member 80 thanks to the through channel 90 and opens into the tubing 52 forming an outlet tubing, as shown schematically by the arrow 174.
  • the fluid then enters the attributable heat exchange section 146, as shown in the arrow 176, then, after having passed through this heat exchange section, enters the upper level 162 of the control valve via the pipe 62 .
  • the rotary member 80 is angularly oriented in such a way that the pocket 86 is opposite the inlet pipe 62.
  • the pocket 86 makes it possible to pass the fluid from one level to another, in this case from the upper level 162 to the lower level 160.
  • the fluid therefore exits through the tube 54 which constitutes an outlet tube, as shown schematically by the arrows 178, to enter the 'low temperature heat exchanger 142, more precisely in the row of tubes of the heat exchange module which constitutes the low temperature cooling radiator always forming part of the circuit 122.
  • the fluid then repeats the same circuit.
  • the bundle of tubes 142 and the attributable heat exchange section 146 are thus mounted in series and successively traversed by the coolant at low temperature. Their cooling capacities add up.
  • Figure 16 is a sectional view of the control valve of the invention shown in an angular position of the rotary member 80 corresponding to Figure 14.
  • Figure 16 we can see (arrow 180) how the pocket 84 connects the tubing 50 and the tubing 52.
  • FIG. 15 shows the cooling circuit of FIG. 14 in a configuration in which the temperature of the cooling fluid is higher than the critical temperature defined above, for example 105 °.
  • the critical temperature for example 105 °.
  • the three-way thermostatic valve 130 is oriented in such a way that the fluid circulates through the branch 132 (arrow 133) towards the inlet pipe (50) forming part of the lower level (160) of the control valve of the invention .
  • the angular orientation of the adjustment member 80 is different. It is always the pocket 84 which is located opposite the pipes 50 and 58.
  • the pocket 84 communicates the inlet pipe 50 simultaneously with the pipes 58 and 54.
  • the tubing is not put in communication in pairs only, but one tubing is put simultaneously in communication with two different tubes.
  • a reverse situation could be found in which several inlet pipes would be placed in communication with a single outlet pipe.
  • a pocket of the rotary member 80 can put an inlet tube in communication with two or more of two outlet tubes.
  • the coolant emerges from the upper level 162 through the outlet manifold 58 to pass through the high temperature heat exchange section 144, as previously described.
  • part of the cooling fluid leaves through the outlet pipe 52 to pass through the attributable heat exchange section 146 which is thus placed in parallel with the high temperature heat exchange section 144.
  • This circulation exactly matches the situation which has been described with reference to Figure 13.
  • the cooling capacities 144 and 146 put in parallel with each other add up, which makes it possible to cool more vigorously the engine.
  • the cooling fluid circulated by the low temperature circulation pump 140 passes through the heat exchanger 124, then enters via the inlet pipe 56 in the lower level 160 of the control valve in the angular orientation of the rotary member 80 shown in Figure 15, the pocket 86 communicates the tubing 56 with the tubing 54, so that the fluid enters (arrows 178) in the section low temperature heat exchange (142) of the heat exchange module of the fluid circuit.
  • FIG. 17 represents a sectional view of the control valve in the angular orientation of the rotary member 80 corresponding to FIG. 15.
  • the fluid After passing through the attributable heat exchange section, the fluid enters the valve through the inlet pipe 62 located in the upper level 162, then into the pocket 88 of the member 80 and exits through the pipe 60 constituting a outlet pipe, before returning, in a conventional manner, to the high-temperature circulation pump 126 to pass again through the heat engine 121 of the vehicle. The same circulation of the fluid is then repeated.
  • valve of the invention is susceptible of numerous variant embodiments and its application is not limited to a fluid circuit of the type described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

La vanne de commande pour un circuit de circulation de fluide comprend un corps (2) comportant une paroi latérale cylindrique (4) délimitant un logement cylindrique. Des tubulures (50, 52, 60, 62, 58) permettant l'entrée ou la sortie du fluide dans le corps (2). Un organe rotatif (80) de réglage monté tournant autour d'un axe (XX) dans le corps (2) est propre à prendre différentes positions pour contrôler la circulation du fluide entre les tubulures. Toutes les tubulures débouchent dans la paroi latérale cylindrique (4) du corps (2).

Description

Vanne de commande pour un circuit de fluide et circuit comportant cette vanne
L'invention se rapporte au domaine des vannes multivoies pour un circuit de fluide, notamment pour un circuit de refroidissement de moteur thermique de véhicule automobile. Elle concerne également un circuit de circulation de fluide, notamment un circuit de refroidissement de moteur thermique de véhicule automobile comportant cette vanne.
Plus précisément, l'invention concerne une vanne de commande pour un circuit de circulation de fluide, comprenant un corps comportant une paroi latérale cylindrique délimitant un logement cylindrique, au moins deux tubulures pour l'entrée ou la sortie du fluide dans le corps, un organe rotatif de réglage monté tournant dans le logement cylindrique du corps autour d'un axe, cet organe de réglage étant propre à prendre différentes positions angulaires pour contrôler la circulation de fluide entre les tubulures.
On connaît déjà des vannes de ce type ayant un corps comprenant une paroi de fond dans laquelle débouche une entrée de fluide et une paroi latérale cylindrique dans laquelle débouchent des sorties de fluide à des hauteurs axiales et en des positions angulaires choisies par rapport à l'axe de rotation d'un organe de réglage propre à tourner autour d'un axe de rotation.
Une vanne de ce type présente de nombreux inconvénients. Son encombrement est important. Par ailleurs, elle ne permet pas de raccorder un nombre important de voies de circulation pour le fluide.
La présente invention a précisément pour objet une vanne de commande pour un circuit de circulation de fluide qui remédie à ces inconvénients. Ces buts sont atteints conformément à l'invention par le fait que toutes les tubulures débouchent dans la paroi latérale cylindrique du corps.
Grâce à cette caractéristique, l'encombrement, en particulier l'encombrement axial de la vanne, est diminué. D'autre part, il est possible de raccorder un nombre important de voies à la périphérie cylindrique. Ainsi, une vanne de commande conforme à l'invention peut remplacer plusieurs vannes de l'art antérieur. Par exemple, deux vannes à quatre voies.
Dans une réalisation préférée, les tubulures sont disposées radialement par rapport à la paroi latérale cylindrique.
Cette disposition permet d'augmenter encore le nombre de voies possible de la vanne.
Les tubulures peuvent être réparties sur un seul niveau.
Toutefois, dans une réalisation particulière, les tubulures sont réparties sur plusieurs niveaux.
Ainsi, les tubulures peuvent être réparties sur deux, trois ou davantage de niveaux. Cette réalisation s'adapte particulièrement au cas où la vanne doit comporter un nombre important de voies, par exemple six ou plus de six. Ainsi, on peut conserver un encombrement diamétral de la vanne peu important, en conjugaison avec un faible encombrement axial.
Par ailleurs, l'invention concerne un circuit de circulation de fluide, en particulier un circuit de refroidissement d'un moteur thermique de véhicule automobile. Un tel circuit est parcouru par un fluide de refroidissement qui circule en circuit fermé sous l'action d'une pompe de circulation. Un tel circuit de refroidissement comprend plusieurs branches, dont une branche qui contient un radiateur de refroidissement du moteur, une branche qui constitue une dérivation du radiateur de refroidissement du moteur et une branche qui contient un radiateur, encore appelé aérotherme, servant au chauffage de l'habitacle du véhicule.
L'invention concerne un circuit de fluide comprenant une vanne de commande conforme à l'invention dont les tubulures sont reliées aux différentes branches du circuit. Selon une réalisation particulière, le circuit est réalisé sous la forme d'un circuit à haute température de refroidissement d'un moteur thermique de véhicule automobile comprenant une pompe principale pour faire circuler le fluide, une canalisation de court-circuit et une canalisation de chauffage comportant un aérotherme, un circuit à basse température comprenant une pompe à basse température, un module d'échange de chaleur constitué d'une section d'échange de chaleur à haute température intégrée en permanence au circuit de refroidissement à haute température, d'une section d'échange de chaleur à basse température intégrée en permanence au circuit de refroidissement à basse température, d'une section attribuable qui peut être intégrée soit au circuit d'échange de chaleur à haute température, soit au circuit d'échange de chaleur à basse température, la vanne de commande étant raccordée au module d'échange de chaleur, au circuit à haute température et au circuit à basse température de manière à intégrer la section d'échange de chaleur attribuable soit au circuit à haute température, soit au circuit à basse température, en fonction d'un paramètre de fonctionnement du moteur.
D'autres caractéristiques de l'invention complémentaires et/ou alternatives sont énumérées ci -après :
- l'organe rotatif de réglage comporte des poches aptes à mettre deux ou plus de deux tubulures en communication l'une avec l'autre ;
- la vanne comporte une bague d' étanchéité cylindrique disposée entre la paroi latérale cylindrique du corps et l'organe rotatif de réglage ;
- l'organe rotatif de réglage possède une forme galbée convexe et la bague d'étanchéité possède une forme galbée concave complémentaire de celle de l'organe de réglage rotatif ; la bague comporte un moyen d'arrêt qui permet de l'immobiliser en rotation par rapport au corps de la vanne ;
- le moyen d'arrêt est une protubérance qui s'adapte dans un logement correspondant formé dans le corps ; - un joint d'étanchéité, notamment un joint torique, est prévu autour d'au moins une poche de l'organe rotatif afin d'assurer l'isolement des circuits de fluide entre eux ;
- la vanne comporte sept tubulures réparties sur deux niveaux ;
- l'un des niveaux comporte trois tubulures, tandis que l'autre niveau comporte quatre tubulures ;
- l'organe rotatif comporte trois poches ;
- l'organe rotatif comporte, en outre, un canal traversant.
En particulier, la vanne conforme à l'invention présentera deux étages, comportant chacun trois voies, et un organe rotatif présentant des poches permettant de mettre en communication deux à deux lesdites voies, en fonction de sa position angulaire. Tout ou partie desdites poches seront orientées sensiblement parallèlement à l'axe de rotation dudit organe rotatif et/ou seront inclinées par rapport à celui-ci de manière à pouvoir mettre en communication les voies de deux étages différents. Selon ce mode de réalisation, on obtient une vanne à six voies dont l'encombrement à la fois radial et axial est particulièrement avantageux.
D'autres caractéristiques et avantages de la présente invention apparaîtront encore à la lecture de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées. Sur ces figures :
la Figure 1 est une vue en perspective d'une vanne de commande conforme à la présente invention ; la Figure 2 est une vue éclatée de la vanne représentée sur la Figure 1 ; la Figure 3 est une vue en coupe de la vanne représentée sur les Figures 1 et 2 ; la Figure 4 est une vue en coupe selon la ligne IV- IV de la vanne représentée sur la Figure 3 ; la Figure 5 est une vue extérieure d'un second mode de réalisation d'une vanne conforme à la présente invention comportant des tubulures réparties sur deux niveaux ; la Figure 6 est une vue de gauche de la vanne représentée sur la Figure 5 ; la Figure 7 est une vue arrière de la vanne représentée sur la Figure 5 ; les Figures 8 et 9 représentent deux vues en perspective de la vanne des Figures 5 à 7 ; la Figure 10 est une vue éclatée de la vanne représentée sur les Figures 5 à 9 ; la Figure 11 est une vue en coupe selon la ligne XI -XI de la
Figure 6 ; la Figure 12 est une vue d'un circuit de refroidissement d'un moteur thermique de véhicule automobile comportant deux vannes à quatre voies ; la Figure 13 est une vue du circuit de refroidissement représenté sur la Figure 12, dans une autre configuration de fonctionnement ; la Figure 14 est une vue d'un circuit de refroidissement d'un moteur thermique de véhicule automobile comportant une vanne de commande conforme à la présente invention, représentée dans la même configuration que le circuit de la Figure 12 ; la Figure 15 est une vue du circuit de refroidissement de la
Figure 14, représentée dans la même configuration que le circuit de refroidissement de la Figure 13 ; la Figure 16 est une vue en coupe selon la ligne XVI -XVI de la Figure 6, dans une configuration correspondant à la Figure 14 ; et la Figure 17 est une vue en coupe de la vanne a deux commandes de l'invention identique à la Figure
16, représentée dans la configuration correspondant au circuit de la Figure 15.
On a représenté sur les Figures 1 à 4 un premier mode de réalisation d'une vanne de commande conforme à l'invention. La vanne comporte un corps désigné par la référence générale 2, constitué d'une paroi latérale cylindrique 4 et d'un fond 6
(Figure 4) . Le corps 2 est de forme générale de révolution autour d'un axe XX. Le corps 2 comporte six tubulures 8 qui débouchent radialement dans un logement cylindrique 10 d'axe
XX (Figure 2) . Dans le mode de réalisation représenté, les axes
12 des tubulures 8 sont coplanaires (Figure 3) . En outre, les tubulures sont régulièrement réparties à 60° l'une de l'autre à la périphérie de la paroi cylindrique latérale 4. Ces caractéristiques ne sont pas imperatives et les tubulures 8 pourraient ne pas être coplanaires, ou bien elles pourraient ne pas être régulièrement réparties à la périphérie de la paroi cylindrique latérale 4. Toutefois, conformément à une caractéristique importante de l'invention, l'ensemble des tubulures 8 débouche sur la paroi cylindrique 4. Aucune d'entre elles n'est située sur la paroi de fond 6 (Figure 4) .
A l'intérieur du logement cylindrique 10, est logé un organe rotatif 14 de réglage dont le diamètre correspond sensiblement au diamètre interne du logement cylindrique 10 (Figures 2 à 4) . L'organe de réglage 14 se prolonge par une tige 16 dirigée suivant l'axe XX. Cette tige 16 passe au travers d'une ouverture centrale que comporte un couvercle 18 de forme circulaire qui est vissé sur une bride 20 du corps 2 de la vanne de commande par l'intermédiaire de vis de fixation 22 avec interposition d'un joint d'étanchéité torique 24 (voir Figure 2) . L'organe rotatif 14 de réglage est propre à être entraîné en rotation autour de l'axe XX par des moyens de motorisation (non représentés) qui peuvent être constitués, par exemple, par un moteur du type pas à pas susceptible d'amener l'organe rotatif 14 dans une multiplicité de positions différentes, soit par incréments successifs, soit de manière continue .
L'organe rotatif 14 comporte des poches 26, trois dans l'exemple représenté, aptes à mettre les tubulures 8 en communication l'une avec l'autre. Ces poches sont formées par des évidements réalisés dans l'organe rotatif 14 et débouchant à la périphérie de ce dernier. Ainsi, comme on peut le voir sur la Figure 3, les tubulures 8 sont réparties par paire. Elles communiquent l'une avec l'autre par l'intermédiaire des poches 26. Ainsi, l'une des tubulures de chaque paire peut constituer une entrée pour le fluide, tandis que l'autre tubulure de la paire constitue une sortie pour ce fluide. Par une rotation de l'organe rotatif d'un angle de 60° dans un sens ou dans l'autre, on peut mettre en communication deux tubulures adjacentes différentes.
Une bague d'étanchéité 30 est interposée entre l'organe rotatif 14 et la paroi cylindrique latérale 4 du corps 2 (Figure 2) . Avantageusement, l'organe rotatif 14 possède une forme galbée convexe et la bague d'étanchéité 30 possède une forme galbée concave complémentaire de celle de l'organe rotatif 14. Il y a ainsi un autocentrage de l'organe rotatif 14 par rapport au corps 2 de la vanne. L' autocentrage permet de placer la vanne dans la position angulaire souhaitée. Cette solution a également pour avantage de réduire les surfaces de frottement au minimum requis pour l' étanchéité, limitant ainsi les efforts de manoeuvre. Aucune partie de l'organe rotatif 14 n'est en contact avec le corps 2. La bague d'étanchéité 30 (Figure 2) comporte des ouvertures circulaires 32 correspondant à l'entrée ou la sortie des tubulures 8, six dans l'exemple représenté. Les ouvertures 32 sont munies de joints à lèvres pour assurer une étanchéité entre la bague 30 et le corps 2. En outre, la bague d'étanchéité 30 comporte une ouverture 34 dans une partie non fonctionnelle pour faciliter son montage sur l'organe rotatif 14 ainsi que son démoulage. La bague d'étanchéité 30 comporte également une protubérance 36 (Figure 2) qui vient se loger dans un logement (non représenté) du corps 2 de la vanne afin d'empêcher la rotation de la bague d'étanchéité 30 par rapport au corps .
On a représenté sur les Figures 5 à 11 un second mode de réalisation d'une vanne de commande conforme à la présente invention. Cette vanne se distingue de celle qui a été décrite précédemment par le fait que les tubulures d'entrée ou de sortie sont réparties sur plusieurs niveaux, deux dans l'exemple représenté.
Comme pour le premier mode de réalisation, la vanne comporte un corps cylindrique 2 limité par une paroi de fond 6 et une paroi latérale cylindrique 4 d'axe XX. La paroi latérale cylindrique 4 délimite un logement cylindrique 10. Le logement est fermé par un couvercle 18 qui est fixé par des vis 32 (quatre dans l'exemple représenté) qui fixent le couvercle 18 sur une bride ou collerette 20 faisant partie du corps 2. Un joint d'étanchéité, par exemple un joint torique 24, est interposé entre le couvercle 18 et la bride 20.
Le corps 2 comporte sept tubulures toutes disposées, conformément à une caractéristique importante de l'invention, sur la paroi latérale cylindrique 4. Dans ce mode de réalisation, les tubulures sont réparties sur deux niveaux, à savoir un premier niveau qui sera appelé niveau inférieur parce qu'il est le plus proche du fond 6 du corps, et un second niveau qui sera appelé niveau supérieur parce qu'il est le plus proche de l'ouverture du corps 2 et du couvercle 18. Quatre tubulures ont été disposées au premier niveau. Sur les figures, ces tubulures portent respectivement les références 50, 52, 54 et 56. Trois tubulures ont été disposées sur le second niveau ou niveau supérieur. Sur les figures, ces tubulures ont été désignées respectivement par les références 58, 60 et 62.
Les tubulures 50 et 58 sont associées l'une à l'autre. La tubulure 50 fait partie du niveau inférieur, tandis que la tubulure 58 fait partie du niveau supérieur. Ces deux tubulures permettent donc une communication entre le niveau inférieur et le niveau supérieur. En outre, les tubulures 60 et 62, qui toutes deux appartiennent au niveau supérieur, sont également appariées l'une à l'autre.
Un organe rotatif, désigné dans son ensemble par la référence générale 80 (Figures 10 et 11), est disposé à l'intérieur du logement cylindrique 10 du corps 2. Il est monté tournant autour de l'axe longitudinal XX du corps 2. L'organe 80 comprend un corps massif 82 de forme générale cylindrique d'axe XX. Le corps 82 se prolonge par une tige 26 dirigée suivant l'axe XX qui passe au travers d'une ouverture centrale 27 que comporte le couvercle 18. Un joint d'étanchéité torique 17 (voir Figure 10) est interposé entre la tige 26 et l'ouverture 27. Comme décrit précédemment, l'organe rotatif 80 est apte à être entraîné en rotation autour de l'axe XX par des moyens de motorisation non représentés, susceptibles de l'amener dans une multiplicité de positions angulaires différentes, soit par incréments successifs, soit de manière continue.
Trois poches sont formées à l'intérieur du corps cylindrique 82. Ces poches sont désignées par les références 84, 86 et 88. La poche 84 s'étend sur les deux niveaux et elle est apte à mettre en communication les tubulures 50 et 58 l'une avec l'autre. Elle est également apte à communiquer avec la tubulure 52. La poche 86 s'étend également sur deux niveaux. Elle présente sensiblement une forme de L. Elle est apte à mettre en communication les tubulures 54 et 62 (voir Figure 14) , ainsi que les tubulures 54 et 56 (voir Figure 15) .
La troisième poche 88 est située uniquement au niveau supérieur du corps de l'organe rotatif 80, elle est apte à mettre en communication les tubulures 60 et 62 (voir Figure 15) .
Enfin, l'organe rotatif de réglage 80 comporte un canal traversant 90 qui, dans l'exemple représenté, le traverse diamétralement. Le canal 90 est destiné à faire basculer une partie de l'un des circuits dans un autre (voir Figures 14 et 15). Il est situé au niveau inférieur de l'organe rotatif 80.
Une bague d'étanchéité, désignée dans son ensemble par la référence 100, est interposée entre l'organe rotatif 80 et la paroi cylindrique 4 du corps 2. Des ouvertures, dont la forme et le nombre correspondent au nombre des poches formées dans l'organe de réglage rotatif 80, sont prévues dans la bague d'étanchéité 100 (Figure 10). Etant donné que l'organe rotatif comporte trois poches, la bague d'étanchéité comporte également trois ouvertures adaptées à chacune de ces poches. Ces ouvertures ont été désignées par les références 102, 104 et 106. L'ouverture 102 correspond à la poche 84, l'ouverture 104 à la poche 86 et l'ouverture 106 à la poche 88. En outre, deux ouvertures circulaires 110 correspondant aux deux extrémités du canal 90 ont été prévues dans la bague d'étanchéité 100.
Des moyens d'étanchéité sont prévus sur le pourtour de chacune des ouvertures précédemment décrites. Ces moyens d'étanchéité pourraient être constitués, par exemple, par des lèvres. Toutefois, dans l'exemple représenté, ils sont constitués par des joints toriques, tels que le joint 112 (Figure 10) . On a représenté sur les Figures 12 et 13 un circuit de circulation de fluide. Ce circuit est constitué, d'une part, d'un circuit de refroidissement à haute température 120 d'un moteur thermique 121 de véhicule automobile et, d'autre part, d'un circuit de refroidissement à basse température 122 destiné au refroidissement d'équipements 124 du véhicule automobile, par exemple un refroidisseur d'air de suralimentation ou un condenseur faisant partie du circuit de climatisation de l'habitacle du véhicule automobile.
Le circuit de refroidissement à haute température 121 est parcouru par le fluide de refroidissement du moteur 121 mis en circulation par une pompe de circulation principale à haute température 126, le fluide chauffé par le moteur quitte ce dernier par une sortie 128 qui est reliée à l'entrée d'une vanne à trois voies 130. La vanne 130 comporte trois tubulures qui sont reliées à trois branches du circuit de refroidissement à haute température, à savoir une branche 132 qui comprend un radiateur de refroidissement à haute température qui sera décrit ultérieurement, une branche 134 qui forme une dérivation du radiateur de refroidissement et une branche 136 qui comprend un aérotherme 138 servant au chauffage de l'habitacle du véhicule .
La vanne 130 permet de gérer les débits de fluide dans les branches précitées afin d'optimiser la température du moteur thermique et le chauffage de l'habitacle. Lors du démarrage à froid du moteur, elle permet de faire circuler le fluide dans la branche de dérivation 134 sans passer par le radiateur. Pendant cette phase de démarrage, il est possible de faire passer la totalité ou une partie du débit de fluide dans 1' aérotherme 138 si un chauffage de l'habitacle est désiré. Lorsque la température du fluide a atteint ou dépassé un seuil donné, le fluide passe dans le radiateur de refroidissement à haute température. Le circuit de refroidissement à basse température 122 est constitué par une boucle dans laquelle le fluide est mis en circulation par une pompe à basse température 140. Il traverse un échangeur thermique 124, mentionné précédemment, par exemple un refroidisseur d'air de suralimentation ou un condenseur faisant partie d'un circuit de climatisation de l'habitacle du véhicule automobile. Il est ensuite refroidi dans un échangeur à basse température 142. Le circuit de circulation de fluide des Figures 12 et 13 comporte un module d'échange de chaleur constitué de deux rangs de tubes d'échange de chaleur.
Le premier de ces rangs constitue le radiateur de refroidissement à basse température 142 mentionné précédemment. Ce rang de tubes est intégré en permanence au circuit de refroidissement à basse température 122. La réalisation du second rang de tubes est plus particulière en ce sens que le second rang de tubes est divisé en deux parties, à savoir une partie 144 constituant une section d'échange de chaleur à haute température utilisée pour le refroidissement du circuit à haute température 120, et tout particulièrement du moteur thermique 121. La section 144 est intégrée en permanence au circuit de refroidissement à haute température 120.
Par ailleurs, le second rang de tubes du module d'échange de chaleur comprend une section d'échange de chaleur attribuable 146. Cette section attribuable peut être intégrée soit au circuit de refroidissement à haute température 120, soit au circuit de refroidissement à basse température 122. En dessous d'une certaine valeur de la température du liquide de refroidissement, par exemple 105°C, la section d'échange de chaleur attribuable 146 fait partie du circuit de refroidissement à basse température. On augmente ainsi la capacité de refroidissement de ce circuit, ce qui permet une amélioration de son rendement, par exemple une amélioration du rendement du circuit de climatisation. Si la température du fluide de refroidissement du moteur augmente au-dessus de la valeur critique, il est nécessaire d'augmenter la capacité de refroidissement du moteur thermique 121. C'est pourquoi la section d'échange de chaleur attribuable 146 est alors intégrée au circuit de refroidissement à haute température, comme représenté sur la Figure 13. A cet effet, le circuit de circulation de fluide comporte deux vannes a quatre voies 150.
Comme on peut le constater sur la Figure 12, les deux vannes à quatre voies 150 sont connectées de telle manière que la section d'échange de chaleur attribuable soit traversée par le fluide de refroidissement qui circule dans la boucle 122 avant son entrée dans le rang d'échange de chaleur 142 constituant un échange de chaleur à basse température. La surface d'échange de chaleur est ainsi constituée de la somme de la section attribuable 146 et du rang de tubes 142.
Au contraire, dans la configuration de la Figure 13, qui correspond au fonctionnement au-dessus d'une température critique du fluide de refroidissement, les vannes à quatre voies 150 sont orientées de telle manière que le fluide du circuit de refroidissement à basse température 122 transite par une canalisation de dérivation 152, en évitant la section d'échange de chaleur attribuable 146. Par ailleurs, les vannes à quatre voies 150 permettent de diriger une partie du fluide de refroidissement du circuit à haute température 120 sur la section d'échange de chaleur 146 par une branche 154, comme schématisé par la flèche 156. Ainsi, la section à haute température 144 et la section d'échange de chaleur attribuable 146 sont montées en parallèle et leurs capacités de refroidissement s'additionnent pour refroidir le moteur thermique du véhicule automobile 121.
Toutefois, comme on le constate, dans cette réalisation, deux vannes 150 sont nécessaires pour assurer l'interconnexion du circuit à haute température 120 et du circuit à basse température 122. Il en résulte un coût et une complexité supplémentaires, ainsi qu'une augmentation de l'encombrement. La vanne de commande de l'invention est particulièrement avantageuse dans une application de ce type parce qu'elle permet de remplacer les deux vannes à quatre voies 150 par une vanne unique, ce qui se traduit par une réduction à la fois du coût et de 1 ' encombrement .
On a représenté sur les Figures 14 et 15 un circuit de circulation de fluide constitué d'un circuit de refroidissement à haute température 120 et d'un circuit de refroidissement à basse température 122 analogues aux circuits représentés sur les Figures 12 et 13, dans lequel les deux vannes à quatre voies 150 ont été remplacées par une vanne de commande unique conforme à la présente invention.
Sur les Figures 12 à 15, les parties identiques du circuit de circulation de fluide présentent les mêmes références.
La vanne de commande de l'invention est conforme au mode de réalisation qui a été décrit précédemment en référence aux Figures 5 à 11. En conséquence, les tubulures de cette vanne sont réparties sur deux niveaux, à savoir un niveau inférieur désigné par la référence 160 et un niveau supérieur désigné par la référence 162 (Figures 14 et 15) . Dans un souci de clarté du dessin, les niveaux 160 et 162 ont été représentés séparés l'un de l'autre. Il doit être entendu qu'il s'agit là d'une représentation schématique. Dans la réalité, ces deux niveaux sont disposés l'un au-dessus de l'autre, comme on 1 ' a expliqué dans la description qui précède de ce mode de réalisation de la vanne de l'invention.
La Figure 14 correspond à la configuration du circuit représenté sur la Figure 12, à savoir une configuration dans laquelle la température du fluide de refroidissement du moteur thermique est inférieure à une valeur critique, par exemple 105°C. Dans cette configuration, le radiateur de refroidissement à haute température est constitué uniquement par la section d'échange de chaleur à haute température 144 faisant partie du second rang de tubes d'échange de chaleur du module d'échange de chaleur décrit précédemment. Par conséquent, la section d'échange de chaleur attribuable 146, qui complète le second rang de tubes du module d'échange de chaleur, fait partie du circuit de refroidissement à basse température 122.
La vanne thermostatique à trois voies 130 est orientée de telle manière que le fluide de refroidissement est dirigé vers la branche 132 (flèche 133) , vers la tubulure 50 faisant partie du niveau inférieur 160 de la vanne de commande de l'invention. Le fluide de refroidissement passe du niveau inférieur 160 au niveau supérieur 162 par la poche 84 qui, comme on l'a exposé précédemment, permet de mettre ces deux niveaux en communication l'un avec l'autre. Le fluide ressort par la tubulure 58, qui constitue alors une tubulure de sortie, pour être dirigé par la canalisation 170 (flèche 172) vers la section d'échange de chaleur à haute température 144. Après avoir été refroidi, le fluide regagne classiquement le moteur 121 et la circulation du fluide se répète.
En ce qui concerne le circuit de refroidissement à basse température 122, le fluide de refroidissement mû par la pompe de circulation à basse température 140 traverse l' échangeur thermique 124, par exemple un condenseur de circuit de climatisation, et pénètre par la tubulure 56, qui constitue alors une tubulure d'entrée, dans le niveau inférieur 160 de la vanne de commande de l'invention. Le fluide traverse l'organe rotatif 80 grâce au canal traversant 90 et débouche dans la tubulure 52 formant une tubulure de sortie, comme schématisé par la flèche 174. Le fluide pénètre alors dans la section d'échange de chaleur attribuable 146, comme schématisé par la flèche 176, puis, après avoir traversé cette section d'échange de chaleur, pénètre dans le niveau supérieur 162 de la vanne de commande par la tubulure 62.
Dans cette configuration du circuit de refroidissement, l'organe rotatif 80 est orienté angulairement de telle manière que la poche 86 se trouve en regard de la tubulure d'entrée 62. Comme on l'a expliqué précédemment, la poche 86 permet de faire passer le fluide d'un niveau à l'autre, en l'occurrence du niveau supérieur 162 au niveau inférieur 160. Le fluide ressort donc par la tubulure 54 qui constitue une tubulure de sortie, comme schématisé par les flèches 178, pour pénétrer dans l' échangeur de chaleur à basse température 142, plus précisément dans le rang de tubes du module d'échange de chaleur qui constitue le radiateur de refroidissement à basse température faisant toujours partie du circuit 122. Le fluide répète alors le même circuit. Comme on le constate, de manière à ce qui a été décrit en référence à la Figure 12, le faisceau de tubes 142 et la section d'échange de chaleur attribuable 146 sont ainsi montés en série et traversés successivement par le fluide de refroidissement à basse température. Leurs capacités de refroidissement s'additionnent.
La Figure 16 est une vue en coupe de la vanne de commande de l'invention représentée dans une position angulaire de l'organe rotatif 80 correspondant à la Figure 14. Sur la Figure 16, on peut voir (flèche 180) comment la poche 84 met en communication la tubulure 50 et la tubulure 52.
On a représenté sur la Figure 15 le circuit de refroidissement de la Figure 14 dans une configuration dans laquelle la température du fluide de refroidissement est supérieure à la température critique définie précédemment, par exemple 105°. Dans cette configuration, il est nécessaire de refroidir plus énergiquement le moteur thermique 121 du véhicule automobile. A cet effet, il est nécessaire de transférer la capacité de refroidissement attribuable 146 du circuit de refroidissement à basse température 122 au circuit de refroidissement à haute température 120.
La vanne thermostatique 130 à trois voies est orientée de telle manière que le fluide circule par la branche 132 (flèche 133) vers la tubulure d'entrée (50) faisant partie du niveau inférieur (160) de la vanne de commande de l'invention. Toutefois, dans cette configuration, l'orientation angulaire de l'organe 80 de réglage est différente. C'est toujours la poche 84 qui se trouve en regard des tubulures 50 et 58. Toutefois, dans cette configuration, la poche 84 met en communication la tubulure d'entrée 50 simultanément avec les tubulures 58 et 54. Il y a donc une tubulure d'entrée, à savoir la tubulure 50, et deux tubulures de sortie, à savoir les tubulures 54 et 56. Dans cet exemple, les tubulures ne sont pas mises en communication deux à deux exclusivement, mais une tubulure est mise simultanément en communication avec deux tubulures différentes.
Dans d'autres exemples de réalisation, on pourrait trouver une situation inverse dans laquelle plusieurs tubulures d'entrée seraient mises en communication avec une tubulure de sortie unique. De manière générale, une poche de l'organe rotatif 80 peut mettre une tubulure d'entrée en communication avec deux ou plus de deux tubulures de sortie. En conséquence, le fluide de refroidissement ressort du niveau supérieur 162 par la tubulure de sortie 58 pour traverser la section d'échange de chaleur à haute température 144, comme décrit précédemment. Mais, en outre, une partie du fluide de refroidissement ressort par la tubulure de sortie 52 pour traverser la section d'échange de chaleur attribuable 146 qui est ainsi mise en parallèle avec la section d'échange de chaleur à haute température 144. Cette circulation correspond exactement à la situation qui a été décrite en référence à la Figure 13. Ainsi, comme on l'a dit, les capacités de refroidissement 144 et 146 mises en parallèle l'une avec l'autre s'additionnent, ce qui permet de refroidir plus énergiquement le moteur.
En ce qui concerne le circuit de refroidissement à basse température 122, le fluide de refroidissement mis en circulation par la pompe de circulation à basse température 140 traverse l' échangeur thermique 124, puis pénètre par la tubulure d'entrée 56 dans le niveau inférieur 160 de la vanne de commande dans l'orientation angulaire de l'organe rotatif 80 représenté sur la Figure 15, la poche 86 met en communication la tubulure 56 avec la tubulure 54, de telle sorte que le fluide pénètre (flèches 178) dans la section d'échange de chaleur à basse température (142) du module d'échange de chaleur du circuit de fluide.
La Figure 17 représente une vue en coupe de la vanne de commande dans l'orientation angulaire de l'organe rotatif 80 correspondant à la Figure 15.
Après avoir traversé la section d'échange de chaleur attribuable, le fluide pénètre dans la vanne par la tubulure d'entrée 62 située dans le niveau supérieur 162, puis dans la poche 88 de l'organe 80 et ressort par la tubulure 60 constituant une tubulure de sortie, avant de revenir, de manière classique, vers la pompe de circulation à haute température 126 pour traverser à nouveau le moteur thermique 121 du véhicule. La même circulation du fluide se répète alors.
La vanne de l ' invention est susceptible de nombreuses variantes de réalisation et son application n' est pas limitée à un circuit de fluide du type décrit précédemment .

Claims

Revendications
1. Vanne de commande, pour un circuit de circulation de fluide, comprenant un corps (2) comportant une paroi latérale cylindrique (4) délimitant un logement cylindrique (10) , au moins deux tubulures (8, 50-62) pour l'entrée ou la sortie du fluide dans le corps (2) , un organe rotatif (14, 80) de réglage monté tournant autour d'un axe (XX) dans le logement cylindrique (10) du corps (2), cet organe rotatif (14, 80) étant propre à prendre différentes positions angulaires pour contrôler la circulation du fluide entre les tubulures, caractérisée en ce que toutes les tubulures débouchent dans la paroi latérale cylindrique (4) .
2. Vanne selon la revendication 1, caractérisée en ce que les tubulures sont disposées radialement par rapport à la paroi cylindrique (4) .
3. Vanne selon l'une des revendications 1 ou 2 , caractérisée en ce que les tubulures sont réparties sur un seul niveau.
4. Vanne selon l'une des revendications 1 ou 2 , caractérisée en ce que les tubulures sont réparties sur plusieurs niveaux (160, 162) .
5. Vanne selon l'une des revendications 1 à 4, caractérisée en ce que l'organe rotatif (14, 80) de réglage comporte des poches (26, 84, 86, 88) aptes à mettre deux ou plus de deux tubulures en communication l'une avec l'autre.
6. Vanne selon l'une des revendications 1 à 5, caractérisée en ce qu'elle comporte une bague d'étanchéité (30, 100) disposée entre la paroi latérale cylindrique (4) du corps et l'organe rotatif (14, 80) .
7. Vanne selon la revendication 6, caractérisée en ce que l'organe rotatif (14, 80) possède une forme galbée convexe et en ce que la bague d'étanchéité (30, 100) possède une forme galbée concave complémentaire de celle de l'organe rotatif (14, 80) .
8. Vanne selon la revendication 6 ou 7 , caractérisée en ce que la bague d'étanchéité (30, 100) comporte un moyen d'arrêt
(36) qui permet d'immobiliser en rotation par rapport au corps
(2) .
9. Vanne selon la revendication 8, caractérisée en ce que le moyen d'arrêt est constitué par une protubérance (36) qui s'adapte dans un logement correspondant du corps (2) .
10. Vanne selon l'une des revendications 1 à 9, caractérisée en ce qu'un joint d'étanchéité (112), notamment un joint d'étanchéité torique, est prévu autour d'au moins une poche de l'organe rotatif (14, 80) afin d'assurer l'isolement des circuits entre eux.
11. Vanne selon l'une des revendications 1 à 10, caractérisée en ce qu'elle comporte sept tubulures (50, 52, 54, 56, 58, 60 et 62) réparties sur deux niveaux (160, 162) .
12. Vanne selon la revendication 11, caractérisée en ce que l'un des niveaux (160) comporte quatre tubulures (50, 52, 54, 56), tandis que l'autre niveau (162) comporte trois tubulures (58, 60, 62) .
13. Vanne selon l'une des revendications 11 ou 12, caractérisée en ce que l'organe rotatif (80) comporte trois poches (84, 86, 88) .
14. Vanne selon l'une des revendications 11 à 13, caractérisée en ce que l'organe rotatif (80) comporte en outre un canal traversant (90) .
15. Circuit de fluide, caractérisé en ce qu'il comporte une vanne de commande selon l'une des revendications 1 à 14 dont les tubulures sont reliées à différentes branches de ce circuit .
16. Circuit selon la revendication 15, caractérisé en ce qu'il est réalisé sous la forme d'un circuit de refroidissement à haute température (160) pour un moteur (121) de véhicule automobile, comprenant une pompe à haute température (126) , une canalisation de court-circuit (134) et une canalisation de chauffage (136) comportant un aérotherme (138) , un circuit de refroidissement à basse température (122) comprenant une pompe à basse température (122), un module d'échange de chaleur constitué d'une section d'échange de chaleur à haute température (144) intégrée en permanence au circuit de refroidissement à haute température (120), d'une section d'échange de chaleur à basse température (142) intégrée en permanence au circuit de refroidissement à basse température
(122), d'une section attribuable (146) qui peut être intégrée soit au circuit d'échange de chaleur à haute température (120), soit au circuit d'échange de chaleur à basse température (122), la vanne étant raccordée au module d'échange de chaleur et au circuit de refroidissement à haute température (120) et au circuit de refroidissement à basse température (122), de manière à intégrer la surface d'échange de chaleur attribuable soit au circuit à haute température (120) , soit au circuit à basse température (122), en fonction d'un paramètre de fonctionnement du moteur thermique (121) du véhicule automobile .
EP03797352A 2002-09-18 2003-09-18 Vanne de commande Withdrawn EP1552196A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0211563A FR2844571B1 (fr) 2002-09-18 2002-09-18 Vanne de commande pour un circuit de fluide et circuit comportant cette vanne
FR0211563 2002-09-18
PCT/FR2003/002761 WO2004027269A2 (fr) 2002-09-18 2003-09-18 Vanne de commande

Publications (1)

Publication Number Publication Date
EP1552196A2 true EP1552196A2 (fr) 2005-07-13

Family

ID=31897484

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03797352A Withdrawn EP1552196A2 (fr) 2002-09-18 2003-09-18 Vanne de commande

Country Status (6)

Country Link
US (1) US20060118066A1 (fr)
EP (1) EP1552196A2 (fr)
JP (1) JP2006512540A (fr)
AU (1) AU2003276358A1 (fr)
FR (1) FR2844571B1 (fr)
WO (1) WO2004027269A2 (fr)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50310335D1 (de) * 2003-12-05 2008-09-25 Renk Ag Kühleinrichtung für elektrische leistungseinheiten von elektrisch betriebenen fahrzeugen
GB0421634D0 (en) * 2004-09-29 2004-10-27 Microgen Energy Ltd A splitter valve
CN101370599B (zh) * 2006-01-12 2010-11-03 武藏工业株式会社 液体材料排出装置
US8443765B2 (en) * 2006-05-15 2013-05-21 Thomas J. Hollis Digital rotary control valve
US20080223464A1 (en) * 2007-03-15 2008-09-18 Merrell Douglas E Flow Diverters for Valves, Valves, and In-Floor Pool Cleaning Systems
FR2940396B1 (fr) * 2008-12-22 2013-01-18 Valeo Systemes Thermiques Vanne d'alimentation en fluide d'une charge, echangeur de chaleur alimente par la vanne et moteur thermique a combustion interne comportant la vanne
US9371921B2 (en) * 2009-06-23 2016-06-21 Nordson Corporation Multi-port valve
CN102667276B (zh) * 2009-10-22 2014-03-12 大金工业株式会社 空调机
US10711930B2 (en) 2009-12-09 2020-07-14 Nordson Corporation Releasable connection assembly
US9388929B2 (en) 2009-12-09 2016-07-12 Nordson Corporation Male bayonet connector
USD783815S1 (en) 2009-12-09 2017-04-11 General Electric Company Male dual lumen bayonet connector
SG181932A1 (en) 2009-12-23 2012-07-30 Nordson Corp Button latch with integrally molded cantilever springs
SG181936A1 (en) 2009-12-23 2012-08-30 Nordson Corp Fluid connector latches with profile lead-ins
JP5677775B2 (ja) * 2010-07-15 2015-02-25 株式会社不二工機 バタフライバルブ
JP5880863B2 (ja) * 2012-02-02 2016-03-09 株式会社デンソー 車両用熱管理システム
WO2013120514A1 (fr) * 2012-02-14 2013-08-22 Pierburg Pump Technology Gmbh Pompe mécanique à liquide de refroidissement
KR101180309B1 (ko) * 2012-03-27 2012-09-06 (주)서일퍼시픽 방향 전환 밸브 유닛 및 이를 이용한 기침 보조 장치
US8919378B2 (en) * 2012-04-04 2014-12-30 GM Global Technology Operations LLC Compact electrically controlled four-way valve with port mixing
JP5914176B2 (ja) 2012-05-31 2016-05-11 株式会社ミクニ ロータリ式バルブ
JP6015184B2 (ja) * 2012-07-18 2016-10-26 株式会社デンソー 車両用熱管理システム
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
JP2014211291A (ja) * 2013-04-19 2014-11-13 ダイキン工業株式会社 冷媒流路切換弁
US9897217B2 (en) 2013-05-17 2018-02-20 Magna Powertrain Inc. Low-drag sealing method for thermal management valve
US9382833B2 (en) * 2013-07-25 2016-07-05 Schaeffler Technologies AG & Co. KG Actuation system for multi-chamber thermal management valve module
US9500299B2 (en) * 2013-07-25 2016-11-22 Schaeffler Technologies AG & Co. KG Thermal management valve module with isolated flow chambers
US9995511B2 (en) * 2013-12-17 2018-06-12 Astronautics Corporation Of America Magnetic refrigeration system with improved flow efficiency
KR101646128B1 (ko) * 2014-12-03 2016-08-05 현대자동차 주식회사 냉각수 제어밸브를 갖는 엔진시스템
EP3073161B1 (fr) * 2015-03-25 2018-08-01 Magna Powertrain Inc. Soupape multiport avec rotor modulaire
US10344877B2 (en) * 2015-12-01 2019-07-09 Tesla Motors, Inc. Multi-port valve with multiple operation modes
DE102016110318B3 (de) * 2016-06-03 2017-06-29 Pierburg Gmbh Drehschieberventil zur unabhängigen Regelung einer Kühlmittelströmung eines Motorblocks einer Verbrennungskraftmaschine
DE202016103160U1 (de) * 2016-06-15 2017-09-19 Woco Industrietechnik Gmbh Mehrwegeregelventil mit Dichtungsträger
KR101864641B1 (ko) * 2016-07-29 2018-06-05 인지컨트롤스 주식회사 다방향 전환 밸브장치 및 그 제작 방법
USD838366S1 (en) 2016-10-31 2019-01-15 Nordson Corporation Blood pressure connector
EP3550189B1 (fr) 2016-11-29 2024-05-01 Zhejiang Sanhua Intelligent Controls Co., Ltd. Dispositif de régulation de débit
CN108119672B (zh) * 2016-11-29 2020-05-19 杭州三花研究院有限公司 流量控制装置
US11655905B2 (en) * 2017-04-07 2023-05-23 Robertshaw Controls Company Multi-port valve
US10711903B2 (en) 2017-06-08 2020-07-14 Hamilton Sundstrand Corporation Transfer valves
US20190041145A1 (en) * 2017-08-01 2019-02-07 Hamilton Sundstrand Corporation Three-way modulating valve for temperature control
CN110700933B (zh) * 2018-07-10 2021-02-26 长城汽车股份有限公司 用于车辆热管理***的阀体及车辆
CN109114252B (zh) * 2018-09-30 2019-08-06 安徽江淮汽车集团股份有限公司 一种流量调节阀芯和具有该阀芯的阀座
CN111169325B (zh) * 2018-11-12 2024-07-12 伊利诺斯工具制品有限公司 温度调节***和多通道阀
KR20200067008A (ko) * 2018-12-03 2020-06-11 현대자동차주식회사 6웨이 밸브 및 이를 포함한 차량용 열관리시스템
DE102018009680A1 (de) * 2018-12-13 2020-06-18 Voss Automotive Gmbh Massenstromsteuerungseinheit sowie Kühlmittelsystem mit zumindest einer solchen Massenstromsteuerungseinheit
US11255450B2 (en) 2018-12-19 2022-02-22 Robertshaw Controls Company Multi-port multi-plane valve
WO2020210343A1 (fr) * 2019-04-09 2020-10-15 Nxstage Medical, Inc. Dispositif et système médicaux jetables de régulation d'écoulement
DE102020201190A1 (de) * 2019-10-14 2021-04-15 Vitesco Technologies GmbH Fluidventil
US11156300B2 (en) 2019-10-30 2021-10-26 Robertshaw Controls Company Multi-port valve with partial circumferential seal arrangement
DE102020130486A1 (de) * 2019-12-16 2021-06-17 ECO Holding 1 GmbH Vorrichtung zur Handhabung von Fluid innerhalb eines zumindest teilweise elektrisch angetriebenen Fahrzeugs
WO2021121922A1 (fr) * 2019-12-19 2021-06-24 HELLA GmbH & Co. KGaA Vanne multivoies
CN114829818B (zh) * 2019-12-19 2024-05-31 海拉有限双合股份公司 阀***
DE102019135041A1 (de) * 2019-12-19 2021-06-24 HELLA GmbH & Co. KGaA Mehrwegeventil
US11773990B2 (en) * 2020-06-05 2023-10-03 Robertshaw Controls Company Multi-port multi-mode valve
US11698140B2 (en) 2020-06-05 2023-07-11 Illinois Tool Works Inc. Ball valve with multi-angular sealing for coolant control regulator
US11280414B2 (en) * 2020-07-27 2022-03-22 Hanon Systems Plug valve hard seals on cylinder wall
US11572961B2 (en) * 2020-07-27 2023-02-07 Hanon Systems Stackable pump and valve coolant modules
KR20220033184A (ko) * 2020-09-09 2022-03-16 현대자동차주식회사 다유로 냉각수 밸브
US20220134839A1 (en) * 2020-10-29 2022-05-05 Rivian Ip Holdings, Llc Integrated thermal management system for a vehicle
KR102663081B1 (ko) * 2020-12-30 2024-05-07 한온시스템 주식회사 밸브 조립체
DE102021100075A1 (de) * 2021-01-05 2022-07-07 Woco Industrietechnik Gmbh KFZ-Wegeventil zum Einstellen einer Fluidströmung
US20220235870A1 (en) * 2021-01-26 2022-07-28 Dan Knapper Six Port Valve
DE102021102023A1 (de) * 2021-01-29 2022-08-04 HELLA GmbH & Co. KGaA Ventil und Flüssigkeitstank für ein Flüssigkeitssystem, Flüssigkeitssystem für ein Fahrzeug und Fahrzeug
US11796073B2 (en) * 2021-02-03 2023-10-24 Robertshaw Controls Company Six port valve
US11913370B2 (en) 2021-02-10 2024-02-27 Illinois Tool Works Inc. Valve assembly failsafe
DE102021202181A1 (de) * 2021-03-05 2022-09-08 Mack & Schneider Gmbh Ventileinrichtung
DE102021110941A1 (de) * 2021-04-28 2022-11-03 HELLA GmbH & Co. KGaA Ventil und Flüssigkeitstank für ein Flüssigkeitssystem, sowie Flüssigkeitssystem für ein Fahrzeug
US11781662B2 (en) * 2021-05-28 2023-10-10 Hanon Systems Efp Deutschland Gmbh Multi-port rotary actuated valve assembly
FR3123703B1 (fr) * 2021-06-04 2023-04-21 Psa Automobiles Sa Systeme de distribution de fluide de refroidissement pour vehicule
WO2022262929A1 (fr) * 2021-06-14 2022-12-22 HELLA GmbH & Co. KGaA Vanne à voies multiples pour un véhicule électrique, système de gestion thermique et procédé de fonctionnement d'un système de gestion thermique
US11454330B1 (en) 2021-06-25 2022-09-27 Robert Bosch Llc Multi-level rotary plug valve
KR20230032228A (ko) * 2021-08-30 2023-03-07 현대자동차주식회사 다유로 냉각수 밸브 및 이를 구비한 히트펌프 시스템
EP4191105A1 (fr) * 2021-12-03 2023-06-07 Airbus Operations, S.L.U. Soupape pour diviser un circuit hydraulique et circuit hydraulique comprenant ladite soupape
WO2023144079A1 (fr) * 2022-01-25 2023-08-03 FutureE GmbH Dispositif d'actionnement hydraulique
WO2023169651A1 (fr) * 2022-03-07 2023-09-14 Johnson Electric International AG Soupape à orifices multiples à fonction d'écoulement proportionnel
WO2023169648A1 (fr) * 2022-03-07 2023-09-14 Johnson Electric International AG Soupape à orifices multiples à fonction d'écoulement proportionnel
US20230359230A1 (en) * 2022-05-03 2023-11-09 Electra Aero, Inc. Systems and Methods For Controlling Fluid Flow
DE102022115697A1 (de) 2022-06-23 2023-12-28 Woco Industrietechnik Gmbh Ventilgehäuse mit Dichtungsaufnahmetaschen eines KFZ-Wegeventils zum Einstellen einer Fluidströmung
KR102564037B1 (ko) * 2022-10-19 2023-08-07 디와이오토 주식회사 다중 유로가 구비된 밸브 장치
FR3142522A1 (fr) 2022-11-28 2024-05-31 Valeo Systemes Thermiques Vanne multivoie
WO2024135992A1 (fr) * 2022-12-22 2024-06-27 한온시스템 주식회사 Ensemble soupape de commande de fluide

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1327252A (en) * 1918-03-26 1920-01-06 Andrew J Paulson Controlling-valve for multiple fuel-supply pipes
DE1116005B (de) * 1957-01-02 1961-10-26 Boulton Aircraft Ltd Entlastetes Ventil fuer die Druckregelung in hydraulischen Anlagen
US2907349A (en) * 1958-07-15 1959-10-06 Howard T White Balanced rotary four way valve
GB983143A (en) * 1960-07-01 1965-02-10 Atomic Energy Authority Uk Fluid flow control valves
US3139907A (en) * 1960-08-05 1964-07-07 Jones Samuel Austin Quarter turn hydrant line to pumper line valve
FR1352784A (fr) * 1962-04-17 1964-02-14 Duriron Co Robinet à clef
FR1394096A (fr) * 1964-01-17 1965-04-02 Robinet à plusieurs voies
GB1549100A (en) * 1977-04-19 1979-07-25 Northern Eng Ind Rotary control valve
US4655252A (en) * 1980-03-24 1987-04-07 Krumhansl Mark U Valves
US5152321A (en) * 1991-10-07 1992-10-06 Ecowater Systems, Inc. Bypass valve
US5172725A (en) * 1992-01-17 1992-12-22 Isao Kitagawa Device for switching the flow direction of fluid
JP3422036B2 (ja) * 1992-07-13 2003-06-30 株式会社デンソー 車両用冷却装置
DE4416039C1 (de) * 1994-05-06 1995-08-31 Freudenberg Carl Fa Regelventil
JPH07324844A (ja) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd 6方向切替弁及びそれを用いた冷凍装置
GB2338056B (en) * 1998-04-14 2002-08-28 Gec Alsthom Diesels Ltd Fluid circuit arrangement
US6539899B1 (en) * 2002-02-11 2003-04-01 Visteon Global Technologies, Inc. Rotary valve for single-point coolant diversion in engine cooling system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004027269A2 *

Also Published As

Publication number Publication date
AU2003276358A8 (en) 2004-04-08
AU2003276358A1 (en) 2004-04-08
JP2006512540A (ja) 2006-04-13
WO2004027269A3 (fr) 2004-05-27
FR2844571B1 (fr) 2008-02-29
FR2844571A1 (fr) 2004-03-19
US20060118066A1 (en) 2006-06-08
WO2004027269A2 (fr) 2004-04-01

Similar Documents

Publication Publication Date Title
EP1552196A2 (fr) Vanne de commande
EP1444426B1 (fr) Systeme de gestion de l'energie thermique developpee par un moteur thermique de vehicule automobile
EP1404995B1 (fr) Vanne de commande pour un circuit de refroidissement
EP1404996B1 (fr) Vanne de commande pour un circuit de refroidissement d'un moteur
EP1579132B1 (fr) Vanne de commande a etancheite amelioree pour circuit de circulation de fluide
EP1943447B1 (fr) Vanne de commande à étanchéité améliorée pour circuit de circulation de fluide
EP1819952B1 (fr) Vanne de commande pour un circuit de circulation de fluide
EP0501854A1 (fr) Radiateur de véhicule automobile muni d'un dispositif de commande de circulation de fluide
FR2790073A1 (fr) Echangeur thermique a plaques, a vanne integree
WO2003006859A1 (fr) Vanne de commande a etancheite amelioree et son procede de fabrication
FR2827357A1 (fr) Vanne de commande pour un circuit de circulation de fluide, en particulier pour un circuit de refroidissement d'un moteur
FR2908155A1 (fr) Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile
FR2979691A1 (fr) Dispositif de chauffage electrique pour vehicule automobile, et appareil de chauffage et/ou de climatisation associe
FR2849673A1 (fr) Actionneur a barillet pour moteur a refroidissement separe
FR2850726A1 (fr) Vanne de commande pour circuit de circulation de fluide, notamment de vehicule automobile
EP1669570A2 (fr) Système de refroidissement pour chaine de traction hybride de vehicule automobile
FR2827356A1 (fr) Vanne de commande a disques pour circuit de circulation fluide
WO2004040226A1 (fr) Echangeur de chaleur a regulation de flux, en particulier pour vehicules automobiles
WO1998051927A1 (fr) Bloc de prechauffage du liquide de refroidissement pour vehicule a moteur thermique
FR3066538A1 (fr) Dispositif de controle de la distribution d'huile pour un moteur thermique
WO2019141953A1 (fr) Cadre de support d'une hélice pour dispositif de ventilation, comportant un échangeur de chaleur
EP3080524B1 (fr) Répartiteur de fluide, dispositif de conditionnement thermique de fluide pour véhicule automobile et appareil de chauffage et/ou de climatisation correspondant
WO2015091773A1 (fr) Vanne de commande avec segment d'etancheite en escalier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060811