EP1550195A1 - Assembly for n consumers of electric energy, of which m consumers are simultaneously supplied with energy - Google Patents

Assembly for n consumers of electric energy, of which m consumers are simultaneously supplied with energy

Info

Publication number
EP1550195A1
EP1550195A1 EP03776843A EP03776843A EP1550195A1 EP 1550195 A1 EP1550195 A1 EP 1550195A1 EP 03776843 A EP03776843 A EP 03776843A EP 03776843 A EP03776843 A EP 03776843A EP 1550195 A1 EP1550195 A1 EP 1550195A1
Authority
EP
European Patent Office
Prior art keywords
consumers
energy
arrangement according
systems
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03776843A
Other languages
German (de)
French (fr)
Inventor
Holger Richert
Wolfgang Morbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials GmbH and Co KG
Original Assignee
Applied Films GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Films GmbH and Co KG filed Critical Applied Films GmbH and Co KG
Publication of EP1550195A1 publication Critical patent/EP1550195A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc

Definitions

  • the invention relates to an arrangement according to the preamble of patent claim 1.
  • Coating systems often consist of several sputtering devices, which are provided with different sputtering cathodes in order to apply different coatings to glass, for example.
  • Each sputtering device has its own energy supply, which can be a direct current (DC) or alternating current (AC) energy supply.
  • DC direct current
  • AC alternating current
  • the electrical powers with which the sputtering devices work are different. They can be 15 kW, but also 180 kW. For example, if you take fifteen sputtering devices with the outputs 180 kW (AC), 30 kW (DC), 75 kW (DC), 30 kW (DC), 30 kW (DC), 120 kW (DC), 120 kW (AC) , 120 kW (AC), 75 kW (DC), 120 kW (DC), 30 kW (DC), 30 kW (DC), 120 kW (DC), 120 kW (AC), 120 kW (AC) off, this results in a total AC power of 660 kW and a total DC power of 660 kW, which must be provided.
  • An electrical power supply currently costs around € 700.00 per kilowatt, which results in a total electricity supply cost of € 924,000.00.
  • the object of the invention is therefore to provide only as much electrical power as is actually required.
  • the invention thus relates to an arrangement for several consumers of electrical energy, these consumers either having the same electrical power or different electrical powers. Since usually not all consumers have to be supplied with electrical energy at the same time, e.g. B. if some are out of service due to maintenance, a modular power supply system is provided that is off consists of several interconnectable modules. As a result, each consumer can be supplied with the power that he needs from small units.
  • FIG. 1 shows a schematic diagram of a modular energy supply
  • Fig. 2 shows a two-pole connection of energy supply sources to supply lines.
  • sputtering systems 1 to 15 are shown schematically as boxes, which are arranged one behind the other, for example in a hall. Glass panes to be coated, which are provided with one or more layers, run through these sputtering systems 1 to 15.
  • the respective electrical connected load of these sputtering systems 1 to 15 is shown within a box; likewise the material of a target to be split.
  • the layer that is produced with the sputtered material on a substrate is shown to the right of sputtering systems 1 to 15.
  • each system has its own power supply, which can provide the required performance.
  • a controller 36 which links several individual energy supplies 16 to 35 to one another by means of a control line and switches 37 to 67.
  • the sputtering system 5 requires 30 kW, so that the interconnection of the individual energy supplies 19 and 23 or 18 and 19 etc. is sufficient.
  • the sputtering system 5 If the sputtering system 5 is switched on, feedback can take place via a line 70 to the controller 36, which then knows that thirty kW must be provided for the sputtering arrangement 5. You then linked z. B. by means of a control command via a line 71 and the switch 43, the two individual power supplies 19 and 23rd together. If the line 71 is designed as a control and power line, the interconnected power can be looped through the controller 36 and fed to the sputtering system 5 via the line 70.
  • each sputtering system has its own regulation, which u. a. is responsible for preventing flashovers.
  • the so-called are management thus remains assigned to each individual sputtering system 1 to 15 or its cathodes.
  • an adaptation network must be assigned to each cathode during AC operation. If the sputter cathodes are operated with pulsed direct current, each cathode is connected to a pulse generator in addition to its own are management. If double cathodes are used, a polarity reversal unit is assigned to two cathodes.
  • Fig. 2 the connection of two individual power supplies 19, 23 is shown again two-pole.
  • the two individual energy supplies 19, 23 are connected to the supply lines 84, 85 via switches 80, 81 and 82, 83.
  • the control lines 86 to 89 and supply lines 84, 85 can be guided to the controller 36 in a single cable. However, it is also possible to run both types of cable separately.
  • the are management, the adaptation networks and the circuits necessary for the pulse operation can be arranged directly at the cathodes or in their vicinity.
  • the sputtering systems 1 to 15 can of course also all have the same performance data. For example, there are many coating systems in a production hall of the same type and are some systems such. B. not in operation due to maintenance or revision, so that the actual utilization is around 80%, you can switch the required power to the systems in operation with the modular power supply 100. The systems that are at a standstill would then not be connected to the power supply.
  • the invention has been described on the basis of an exemplary embodiment which relates to sputtering systems. However, it is applicable to all coating systems and, more generally, to all power consumers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention relates to an assembly for several consumers (1-15) of electric energy, said consumers (1-15) having either the same electric output or varying electric outputs. Since, as a rule, not all consumers (1-15) need to be supplied simultaneously with electric energy, e.g. if some are not operational as a result of maintenance work, the invention provides a modular energy supply system, which consists of several interconnectable modules (16-35). Each consumer (1-15) can thus be supplied with the power it requires by small units. The consumers are sputter units.

Description

ANORDNUNG FÜR N VERBRAUCHER ELEKTRISCHER ENERGIE, VON DENEN M VERBRAUCHER GLEICHZEITIG MIT ENERGIE VERSORGT WERDEN Beschreibung ARRANGEMENT FOR N CONSUMERS OF ELECTRICAL ENERGY, FROM WHICH M CONSUMERS ARE SUPPLIED WITH ENERGY AT THE SAME TIME Description
Die Erfindung betrifft eine Anordnung nach dem Oberbegriff des Patentanspruchs 1.The invention relates to an arrangement according to the preamble of patent claim 1.
Bei industriellen Großanlagen werden oft mehrere elektrische Einrichtungen benötigt, von denen aber nicht alle gleichzeitig in Betrieb sind.Large electrical systems often require several electrical devices, but not all of them are in operation at the same time.
So bestehen Beschichtungsanlagen oft aus mehreren Sputtervorricritungen, die mit unter- schiedlichen Sputterkathoden versehen sind, um verschiedene Beschichtungen beispielsweise auf Glas aufzubringen. Dabei besitzt jede Sputtervorrichtung eine eigene Energieversorgung, die eine Gleichstrom (DC)- oder Wechselstrom (AC)-Energieversorgung sein kann.Coating systems often consist of several sputtering devices, which are provided with different sputtering cathodes in order to apply different coatings to glass, for example. Each sputtering device has its own energy supply, which can be a direct current (DC) or alternating current (AC) energy supply.
Die elektrischen Leistungen, mit denen die Sputtervorrichtungen arbeiten, sind unter- schiedlich. Sie können 15 kW, aber auch 180 kW betragen. Geht man beispielsweise von fünfzehn Sputtervorrichtungen mit den Leistungen 180 kW (AC), 30 kW (DC), 75 kW (DC), 30 kW (DC), 30 kW (DC), 120 kW (DC), 120 kW (AC), 120 kW (AC), 75 kW (DC), 120 kW (DC), 30 kW (DC), 30 kW (DC), 120 kW (DC), 120 kW (AC), 120 kW (AC) aus, so errechnet sich eine Gesamt- Wechselstromleistung von 660 kW und eine Gesamt-Gleichstromleistung von ebenfalls 660 kW, die bereitgestellt werden müssen. Pro Kilowatt Leistung kostet eine elektrische Stromversorgung derzeit etwa € 700,00, woraus sich Gesamt-Stromversorgungskosten in Höhe von € 924.000,00 errechnen.The electrical powers with which the sputtering devices work are different. They can be 15 kW, but also 180 kW. For example, if you take fifteen sputtering devices with the outputs 180 kW (AC), 30 kW (DC), 75 kW (DC), 30 kW (DC), 30 kW (DC), 120 kW (DC), 120 kW (AC) , 120 kW (AC), 75 kW (DC), 120 kW (DC), 30 kW (DC), 30 kW (DC), 120 kW (DC), 120 kW (AC), 120 kW (AC) off, this results in a total AC power of 660 kW and a total DC power of 660 kW, which must be provided. An electrical power supply currently costs around € 700.00 per kilowatt, which results in a total electricity supply cost of € 924,000.00.
In der Praxis werden von den insgesamt 1320 kW nur relativ wenige kW abgerufen, weil nicht alle Sputteranlagen gleichzeitig in Betrieb sind. So genügt in der Regel eine Gesamt- Gleichstromleistung von 300 kW.In practice, only a relatively small number of the 1320 kW are used because not all sputter systems are in operation at the same time. A total direct current output of 300 kW is usually sufficient.
Der Erfindung liegt deshalb die Aufgabe zugrunde, nur soviel an elektrischer Leistung bereitzustellen, wie tatsächlich benötigt wird.The object of the invention is therefore to provide only as much electrical power as is actually required.
Diese Aufgabe wird gemäß den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved in accordance with the features of patent claim 1.
Die Erfindung betrifft somit eine Anordnung für mehrere Verbraucher elektrischer Ener- gie, wobei diese Verbraucher entweder die gleiche elektrische Leistung oder verschiedene elektrische Leistungen haben. Da in der Regel nicht alle Verbraucher gleichzeitig mit elektrischer Energie versorgt werden müssen, z. B. wenn einige wegen Wartungsarbeiten nicht im Betrieb sind, ist ein modulares Energieversorgungssystem vorgesehen, das aus mehreren zusammenschaltbaren Modulen besteht. Hierdurch kann jeder Verbraucher aus kleinen Einheiten mit derjenigen Leistung versorgt werden, die er benötigt.The invention thus relates to an arrangement for several consumers of electrical energy, these consumers either having the same electrical power or different electrical powers. Since usually not all consumers have to be supplied with electrical energy at the same time, e.g. B. if some are out of service due to maintenance, a modular power supply system is provided that is off consists of several interconnectable modules. As a result, each consumer can be supplied with the power that he needs from small units.
Der mit der Erfindung erzielte Vorteil besteht insbesondere darin, dass Kosten für teure elektrische Energieversorgungen eingespart werden. Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im Folgenden näher beschrieben. Es zeigen:The advantage achieved by the invention is, in particular, that costs for expensive electrical energy supplies are saved. An embodiment of the invention is shown in the drawings and is described in more detail below. Show it:
Fig. 1 eine Prinzipdarstellung einer modularen Energieversorgung;1 shows a schematic diagram of a modular energy supply;
Fig. 2 eine zweipolige Anschaltung von Energieversorgungsquellen an Versorgungsleitungen. In der Fig. 1 sind mehrere Sputteranlagen 1 bis 15 schematisch als Kästchen dargestellt, die beispielsweise in einer Halle hinter einander angeordnet sind. Durch diese Sputteranlagen 1 bis 15 laufen etwa zu beschichtende Glasscheiben, die mit einer oder mit mehreren Schichten versehen werden. Die jeweilige elektrische Anschlussleistung dieser Sputteranlagen 1 bis 15 ist innerhalb eines Kästchens dargestellt; desgleichen das Material eines zu splitternden Targets. Die Schicht, die mit dem gesputterten Material auf einem Substrat erzeugt wird, ist rechts neben den Sputteranlagen 1 bis 15 dargestellt.Fig. 2 shows a two-pole connection of energy supply sources to supply lines. In Fig. 1, several sputtering systems 1 to 15 are shown schematically as boxes, which are arranged one behind the other, for example in a hall. Glass panes to be coated, which are provided with one or more layers, run through these sputtering systems 1 to 15. The respective electrical connected load of these sputtering systems 1 to 15 is shown within a box; likewise the material of a target to be split. The layer that is produced with the sputtered material on a substrate is shown to the right of sputtering systems 1 to 15.
Bei herkömmlichen Sputteranlagen besitzt jede Anlage eine eigene Stromversorgung, welche die jeweils erforderlichen Leistungen erbringen kann.With conventional sputter systems, each system has its own power supply, which can provide the required performance.
Gemäß der Erfindung wird die elektrische Leistung für alle Sputteranlagen 1 bis 15 durch eine modulare Energieversorgung 100 aufgebracht, die z. B. aus zwanzig Einzelenergieversorgungen 16 bis 35 von jeweils 15 kW besteht, die im Beispiel alle DC-Stromver- sorgungen sein sollen. Hierbei geht man davon aus, dass nicht alle Sputteranlagen 1 bis 15 gleichzeitig in Betrieb sind, sondern zu einer bestimmten Zeit etwa nur die Anlagen 5, 7, 10 und 13. Diese Anlagen benötigen insgesamt 300 kW. Diese 300 kW können durch geeignetes Zusammenschalten der Einzelenergieversorgungen 16 bis 35 aufgebracht werden, denn 20 x 15 kW = 300 kW. Die Zusammenschaltung erfolgt hierbei mittels einer Steuerung 36, die mittels Steuerleitung und über Schalter 37 bis 67 mehrere Einzelenergieversorgungen 16 bis 35 miteinander verknüpft.According to the invention, the electrical power for all sputter systems 1 to 15 is applied by a modular energy supply 100, which, for. B. consists of twenty individual power supplies 16 to 35 of 15 kW each, which in the example are supposed to be all DC power supplies. It is assumed that not all sputter systems 1 to 15 are in operation at the same time, but only systems 5, 7, 10 and 13 at a certain time. These systems require a total of 300 kW. These 300 kW can be applied by suitably interconnecting the individual energy supplies 16 to 35, because 20 x 15 kW = 300 kW. The interconnection takes place here by means of a controller 36, which links several individual energy supplies 16 to 35 to one another by means of a control line and switches 37 to 67.
Die Sputteranlage 5 benötigt 30 kW, sodass die Zusammenschaltung etwa der Einzel- energieversorgungen 19 und 23 oder 18 und 19 etc. genügt.The sputtering system 5 requires 30 kW, so that the interconnection of the individual energy supplies 19 and 23 or 18 and 19 etc. is sufficient.
Wird die Sputteranlage 5 eingeschaltet, kann eine Rückmeldung über eine Leitung 70 auf die Steuerung 36 erfolgen, die dann weiß, dass für die Sputteranordnung 5 dreißig kW bereitgestellt werden müssen. Sie verknüpft dann z. B. mittels eines Steuerbefehls über eine Leitung 71 und über den Schalter 43 die beiden Einzelenergieversorgungen 19 und 23 miteinander. Ist die Leitung 71 als Steuer- und Energieleitung ausgebildet, kann die zusammengeschaltete Leistung durch die Steuerung 36 geschleift und über die Leitung 70 der Sputteranlage 5 zugeführt werden.If the sputtering system 5 is switched on, feedback can take place via a line 70 to the controller 36, which then knows that thirty kW must be provided for the sputtering arrangement 5. You then linked z. B. by means of a control command via a line 71 and the switch 43, the two individual power supplies 19 and 23rd together. If the line 71 is designed as a control and power line, the interconnected power can be looped through the controller 36 and fed to the sputtering system 5 via the line 70.
Die Regelung der Sputterspannungen erfolgt bei der Anordnung nach Fig. 1 nach wie vor dezentral, d. h. jede Sputteranlage hat ihre eigene Regelung, die u. a. für die Verhinderung von Überschlägen verantwortlich ist. Das so genannte Are-Management bleibt somit jeder einzelnen Sputteranlage 1 bis 15 bzw. deren Kathoden zugeordnet. Ebenso muss jeder Kathode beim Wechselstrombetrieb ein Anpassungsnetzwerk zugeordnet werden. Werden die Sputterkathoden mit gepulstem Gleichstrom betrieben, wird jede Kathode außer mit einem eigenen Are-Management auch noch mit einem Impulsgenerator verbunden. Bei Verwendung von Doppelkathoden wird jeweils zwei Kathoden eine Umpoleinheit zugeordnet.The regulation of the sputtering voltages is still decentralized in the arrangement according to FIG. 1, i. H. each sputtering system has its own regulation, which u. a. is responsible for preventing flashovers. The so-called are management thus remains assigned to each individual sputtering system 1 to 15 or its cathodes. Likewise, an adaptation network must be assigned to each cathode during AC operation. If the sputter cathodes are operated with pulsed direct current, each cathode is connected to a pulse generator in addition to its own are management. If double cathodes are used, a polarity reversal unit is assigned to two cathodes.
In der Fig. 2 ist die Anschaltung von zwei Einzelenergieversorgungen 19, 23 noch einmal zweipolig dargestellt. Man erkennt hierbei wieder die Sputteranlage 5, die mit 30 kW versorgt werden muss. Hierzu werden die beiden Einzelenergieversorgungen 19, 23 über Schalter 80, 81 bzw. 82, 83 an die Versorgungsleitungen 84, 85 angeschlossen. Die Steuerleitungen 86 bis 89 und Versorgungsleitungen 84, 85 können dabei in einem einzigen Kabel zur Steuerung 36 geführt sein. Es ist jedoch auch möglich, beide Leitungsarten getrennt zu führen. Das Are-Management, die Anpassungsnetzwerke und die für den Pulsbetrieb notwendigen Schaltungen können direkt bei den Kathoden oder in deren Nähe angeordnet sein.In Fig. 2 the connection of two individual power supplies 19, 23 is shown again two-pole. Here you can see the sputtering system 5, which has to be supplied with 30 kW. For this purpose, the two individual energy supplies 19, 23 are connected to the supply lines 84, 85 via switches 80, 81 and 82, 83. The control lines 86 to 89 and supply lines 84, 85 can be guided to the controller 36 in a single cable. However, it is also possible to run both types of cable separately. The are management, the adaptation networks and the circuits necessary for the pulse operation can be arranged directly at the cathodes or in their vicinity.
Mit der vorliegenden Erfindung sind erhebliche Kosteneinsparungen möglich. Da nur 300 kW Gesamtleistung bereitgestellt wird, betragen die Kosten für die Stromversorgung nur noch € 210.000,00 statt € 924.000,00. Die Verknüpfungsschaltung zwischen den einzelnen Energiemodulen ist kostengünstig herzustellen, sodass die Gesamtkosten erheblich reduziert werden. Dadurch, dass bei Sputteranlagen jeder Kathode immer noch eine separate Regelungs- und/oder Anpassungseinheit zugeordnet werden muss; liegt die Gesamteinsparung der Stromversorgung gegenüber der herkömmlichen Technik bei etwa 30 % bis 40 %. Mit der Erfindung können viele Kathoden einer Vakuumanlage mit den Stromversorgungen 16 bis 35 auf die beschriebene Weise verbunden werden. Es ist jedoch auch möglich, mehrere Vakuumanlagen, die nur eine oder wenige Kathoden haben, mit der modularen Energieversorgung 100 zu verbinden.Considerable cost savings are possible with the present invention. Since only 300 kW of total power is provided, the cost of the power supply is only € 210,000.00 instead of € 924,000.00. The connection circuit between the individual energy modules is inexpensive to manufacture, so that the total costs are considerably reduced. Because in sputter systems each cathode still has to be assigned a separate control and / or adaptation unit ; the total saving of power supply compared to conventional technology is around 30% to 40%. With the invention, many cathodes of a vacuum system can be connected to the power supplies 16 to 35 in the manner described. However, it is also possible to connect a plurality of vacuum systems which have only one or a few cathodes to the modular energy supply 100.
Die Sputteranlagen 1 bis 15 können selbstverständlich auch alle die gleichen Leistungs- daten haben. Stehen beispielsweise in einer Produktionshalle viele Beschichtungsanlagen des gleichen Typs und sind einige Anlagen z. B. wegen Wartung oder Revision nicht in Betrieb, sodass die tatsächliche Auslastung etwa bei 80 % liegt, kann man mit der modular aufgebauten Stromversorgung 100 die benötigte Leistung auf die im Betrieb befindlichen Anlagen schalten. Die im Stillstand befindlichen Anlagen wären dann nicht mit der Stromversorgung verbunden.The sputtering systems 1 to 15 can of course also all have the same performance data. For example, there are many coating systems in a production hall of the same type and are some systems such. B. not in operation due to maintenance or revision, so that the actual utilization is around 80%, you can switch the required power to the systems in operation with the modular power supply 100. The systems that are at a standstill would then not be connected to the power supply.
Die Erfindung wurde anhand eines Ausführungsbeispiels beschrieben, das sich auf Sputteranlagen bezieht. Sie ist indessen auf alle Beschichtungsanlagen und, noch allgemeiner, auf alle Leistungsverbraucher anwendbar. The invention has been described on the basis of an exemplary embodiment which relates to sputtering systems. However, it is applicable to all coating systems and, more generally, to all power consumers.

Claims

Patentansprüche claims
1. Anordnung für n Verbraucher elektrischer Energie, von denen m Verbraucher gleichzeitig mit Energie versorgt werden, wobei m < n, gekennzeichnet durch a) eine modulare Energieversorgung (100), die aus k Energiemodulen (16 bis 35) besteht, b) eine Steuerung (36), welche so viele modulare Energieversorgungen (16 bis 35) mit jeweils einem Verbraucher (1 bis 15) verbindet, dass dieser Verbraucher (1 bis 15) die von ihm benötigte Leistung erhält.1. Arrangement for n consumers of electrical energy, of which m consumers are simultaneously supplied with energy, where m <n, characterized by a) a modular energy supply (100) consisting of k energy modules (16 to 35), b) a controller (36), which connects so many modular energy supplies (16 to 35) to one consumer (1 to 15) that this consumer (1 to 15) receives the power it needs.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Verbraucher (1 bis 15) Sputteranlagen sind, wobei jede Kathode einer Sputteranlage ein eigenes Are-Management besitzt.2. Arrangement according to claim 1, characterized in that the consumers (1 to 15) are sputtering systems, each cathode of a sputtering system having its own are management.
3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die elektrische Energie durch Gleichstrom realisiert wird.3. Arrangement according to claim 1, characterized in that the electrical energy is realized by direct current.
4. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die elektrische Energie durch Wechselstrom realisiert ist. 4. Arrangement according to claim 1, characterized in that the electrical energy is realized by alternating current.
5. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die elektrische Energie durch gepulsten Gleichstrom realisiert ist.5. Arrangement according to claim 1, characterized in that the electrical energy is realized by pulsed direct current.
6. Anordnung nach den Ansprüchen 1, 2 und 4, dadurch gekennzeichnet, dass jede Kathode mit einem eigenen Anpassungsnetzwerk versehen ist.6. Arrangement according to claims 1, 2 and 4, characterized in that each cathode is provided with its own matching network.
7. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Verbraucher (1 bis 15) Sputteranlagen sind, wobei jede Anlage zwei Kathoden besitzt, denen eine Umpoleinheit zugeordnet ist.7. Arrangement according to claim 1, characterized in that the consumers (1 to 15) are sputter systems, each system having two cathodes, which is assigned a polarity reversal unit.
8. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Verbraucher (1 bis 15) Sputteranlagen sind, wobei jede Anlage zwei Kathoden besitzt, von denen die eine Kathode an einen Pol einer Wechselspannung und die andere Kathode an den anderen Pol dieser Wechselspannung angeschlossen ist.8. Arrangement according to claim 1, characterized in that the consumers (1 to 15) are sputtering systems, each system having two cathodes, one of which is connected to one pole of an AC voltage and the other cathode to the other pole of this AC voltage ,
9. Anordnung nach Anspruch 5, dadurch gekennzeichnet, dass jeder Kathode ein Pulsgenerator zugeordnet ist. 9. Arrangement according to claim 5, characterized in that a pulse generator is assigned to each cathode.
EP03776843A 2003-09-10 2003-11-10 Assembly for n consumers of electric energy, of which m consumers are simultaneously supplied with energy Withdrawn EP1550195A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2003141717 DE10341717A1 (en) 2003-09-10 2003-09-10 Arrangement for n consumers of electrical energy, from which m consumers are supplied with energy at the same time
DE10341717 2003-09-10
PCT/DE2003/003714 WO2005027299A1 (en) 2003-09-10 2003-11-10 Assembly for n consumers of electric energy, of which m consumers are simultaneously supplied with energy

Publications (1)

Publication Number Publication Date
EP1550195A1 true EP1550195A1 (en) 2005-07-06

Family

ID=34223521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03776843A Withdrawn EP1550195A1 (en) 2003-09-10 2003-11-10 Assembly for n consumers of electric energy, of which m consumers are simultaneously supplied with energy

Country Status (10)

Country Link
US (1) US7479712B2 (en)
EP (1) EP1550195A1 (en)
JP (1) JP2006514527A (en)
KR (1) KR100679618B1 (en)
CN (1) CN100349350C (en)
AU (1) AU2003286122A1 (en)
DE (1) DE10341717A1 (en)
PL (1) PL377149A1 (en)
TW (1) TWI265665B (en)
WO (1) WO2005027299A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083334A1 (en) * 2009-01-14 2010-07-22 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
US8706650B2 (en) * 2009-01-14 2014-04-22 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
JP5722875B2 (en) * 2009-04-10 2015-05-27 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Dynamically reconfigurable structure for large battery systems
US9118213B2 (en) 2010-11-24 2015-08-25 Kohler Co. Portal for harvesting energy from distributed electrical power sources
JP5701730B2 (en) 2011-09-30 2015-04-15 株式会社東芝 Charge / discharge determination device, charge / discharge determination method, and charge / discharge determination program
JP5731941B2 (en) * 2011-09-30 2015-06-10 株式会社東芝 Charge / discharge instruction apparatus, charge / discharge instruction method, and charge / discharge instruction program
US10510575B2 (en) * 2017-09-20 2019-12-17 Applied Materials, Inc. Substrate support with multiple embedded electrodes
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
WO2020154310A1 (en) 2019-01-22 2020-07-30 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811942C2 (en) 1977-03-23 1986-09-18 Vide et Traitement S.A., Neuilly-en-Thelle Furnace for the ionic nitriding treatment of metallic workpieces
JPS583976A (en) 1981-06-29 1983-01-10 Hitachi Ltd Method and device for formation of film by sputtering
JPS62158863A (en) 1985-12-30 1987-07-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Film forming apparatus
JP2613201B2 (en) * 1987-01-23 1997-05-21 株式会社日立製作所 Spaghetti method
US4788449A (en) * 1987-04-24 1988-11-29 The Foxboro Company Redundant power distribution
DE4305748A1 (en) * 1993-02-25 1994-09-01 Leybold Ag Appliance for deposition onto, and/or etching of, substrates in a vacuum chamber
US5444333A (en) * 1993-05-26 1995-08-22 Lights Of America, Inc. Electronic ballast circuit for a fluorescent light
ATE167007T1 (en) * 1994-09-21 1998-06-15 Inventio Ag METHOD AND DEVICE FOR VARIABLE ALLOCATION OF INVERTERS IN OPERATION TO AT LEAST ONE LOAD
AUPN422295A0 (en) * 1995-07-18 1995-08-10 Bytecraft Research Pty. Ltd. Control system
JPH0956064A (en) 1995-08-21 1997-02-25 Matsushita Electric Ind Co Ltd Power source controller
US5584974A (en) * 1995-10-20 1996-12-17 Eni Arc control and switching element protection for pulsed dc cathode sputtering power supply
DE19540255A1 (en) 1995-10-28 1997-04-30 Leybold Ag Apparatus for film coating a substrate
JPH09204240A (en) 1996-01-24 1997-08-05 Fujitsu Ltd Power supplying device
US5914585A (en) * 1996-02-20 1999-06-22 Norand Corporation Power sharing in computing systems with a plurality of electronic devices
DE19610012B4 (en) * 1996-03-14 2005-02-10 Unaxis Deutschland Holding Gmbh A method for stabilizing a working point in reactive sputtering in an oxygen-containing atmosphere
DE19651811B4 (en) * 1996-12-13 2006-08-31 Unaxis Deutschland Holding Gmbh Device for covering a substrate with thin layers
DE19848636C2 (en) * 1998-10-22 2001-07-26 Fraunhofer Ges Forschung Method for monitoring an AC voltage discharge on a double electrode
US6625736B1 (en) * 1999-07-29 2003-09-23 International Business Machines Corporation System for automatically determining a number of power supplies are required by managing changes of the power requirements in a power consuming system
DE19937859C2 (en) 1999-08-13 2003-06-18 Huettinger Elektronik Gmbh Electrical supply unit for plasma systems
US6448672B1 (en) * 2000-02-29 2002-09-10 3Com Corporation Intelligent power supply control for electronic systems requiring multiple voltages
JP2002004033A (en) 2000-06-19 2002-01-09 Sony Corp Apparatus and method for film deposition
US6524455B1 (en) * 2000-10-04 2003-02-25 Eni Technology, Inc. Sputtering apparatus using passive arc control system and method
EP1263108A1 (en) 2001-06-01 2002-12-04 Roke Manor Research Limited Community energy comsumption management
JP4614578B2 (en) 2001-06-01 2011-01-19 キヤノンアネルバ株式会社 Plasma processing equipment for sputter deposition applications
KR101102116B1 (en) 2001-10-11 2012-01-02 디노보 리서치, 엘엘씨 Digital battery
US7112896B2 (en) * 2002-03-07 2006-09-26 Sun Microsystems, Inc. Power system with load matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005027299A1 *

Also Published As

Publication number Publication date
AU2003286122A1 (en) 2005-04-06
KR100679618B1 (en) 2007-02-06
US20050052803A1 (en) 2005-03-10
WO2005027299A1 (en) 2005-03-24
TW200511684A (en) 2005-03-16
JP2006514527A (en) 2006-04-27
DE10341717A1 (en) 2005-05-25
KR20050067176A (en) 2005-06-30
CN1711666A (en) 2005-12-21
PL377149A1 (en) 2006-01-23
CN100349350C (en) 2007-11-14
US7479712B2 (en) 2009-01-20
TWI265665B (en) 2006-11-01

Similar Documents

Publication Publication Date Title
EP1550195A1 (en) Assembly for n consumers of electric energy, of which m consumers are simultaneously supplied with energy
EP0511344B1 (en) Method and device for connecting frequency converters in parallel
DE102007028078B4 (en) Device for feeding electrical energy into a power supply network and DC-DC converter for such a device
EP1927175B1 (en) Device for redundantly supplying power to at least one load
EP0703652B1 (en) Method and device for variable allocation of an operating inverter to at least one load
EP2614573B1 (en) Method for stabilizing an electric grid
EP2924839B1 (en) Single-phase emergency operation of a three-phase inverter and corresponding inverter
EP1466398A2 (en) Power inverter
WO2010049185A1 (en) Phase-fired control arrangement and method
DE202006001063U1 (en) Inverter for feeding electrical energy from a photovoltaic unit to a three phase mains has a DC converter with maximum power point tracking control and bridge circuit
EP2928060A1 (en) Modular frequency converter circuit with submodules having different switching capacities
EP2478420B1 (en) Circuit assembly having a converter device comprising a central control unit
WO2003041248A2 (en) Voltage converter
EP2983286A1 (en) Sub-module for a modular power converter
EP3363091B1 (en) Device and method for controlling a load flow in an alternating-voltage network
EP3095178A1 (en) Modular converter circuit having sub-modules, which are operated in linear operation
EP4150753A1 (en) 3-phase pv inverter with 2-phase isolated operation in the event of a network fault
EP3331118B1 (en) System for transmitting electric power
EP3639352B1 (en) Converter assembly with the capability to disconnect a residual current and method for disconnecting a residual current in a converter assembly of this type
DE102018121632A1 (en) Charging station for charging electric vehicles with a higher-level control of power electronics modules
EP3168949B1 (en) Method and device for the decentral regulation of low voltage and medium voltage networks
EP2756590A1 (en) Converter circuit
EP3741023A1 (en) Device and method for controlling a load flow in an alternating-voltage network
CH682531A5 (en) parallel frequency converter network connection method
EP3379679A1 (en) Electrical energy supply system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050624

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APPLIED MATERIALS GMBH & CO. KG

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20050624

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20110407