EP1546053A1 - Layer system comprising a titanium-aluminium-oxide layer - Google Patents

Layer system comprising a titanium-aluminium-oxide layer

Info

Publication number
EP1546053A1
EP1546053A1 EP03750543A EP03750543A EP1546053A1 EP 1546053 A1 EP1546053 A1 EP 1546053A1 EP 03750543 A EP03750543 A EP 03750543A EP 03750543 A EP03750543 A EP 03750543A EP 1546053 A1 EP1546053 A1 EP 1546053A1
Authority
EP
European Patent Office
Prior art keywords
layer
layer system
titanium
functional
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03750543A
Other languages
German (de)
French (fr)
Inventor
Christoph MÖLLE
Lars Bewig
Frank Koppe
Thomas Küpper
Stefan Geisler
Stefan Bauer
Jürgen DZICK
Christian Henn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of EP1546053A1 publication Critical patent/EP1546053A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0073Reactive sputtering by exposing the substrates to reactive gases intermittently
    • C23C14/0078Reactive sputtering by exposing the substrates to reactive gases intermittently by moving the substrates between spatially separate sputtering and reaction stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/322Oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the invention relates to a layer system with at least one metal oxide layer, the metal oxide comprising a titanium-aluminum oxide.
  • the layer system has a high structural and. Temperature resistance, especially at operating temperatures of over 600 ° C and is particularly suitable for optical coatings, but is not limited to this.
  • Optical layer systems in particular alternating layer systems, which are made up of alternately superimposed thin high and low refractive layers have been known for many years for a large number of applications. They act as a light interference film, the optical properties of which are determined by the choice of the material for the high or low refractive index layer and thus the corresponding refractive index, by the arrangement of the individual layers and by the choice of the individual layer thicknesses. The selection is made essentially using known optical
  • Suitable starting materials for the production of such coatings for, for example, reflectors, mirrors, filters, lamps, IRC burners / lamps, etc. include Ti0 2 and Si0 2 .
  • Thin layers of these materials are usually applied using CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition) or Sol-Gel processes and are characterized by the fact that they are hard and chemically stable as well as a have a high refractive index difference.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • Sol-Gel Sol-Gel processes
  • DE 3227069 AI discloses an optical coating suitable for high temperatures, which consists of a Alternating layer system with Si0 2 as a low-refractive layer material and Ta 2 0 5 as a high-refractive layer material. This coating is resistant to high temperatures and is designed to improve the working efficiency of the coated object, in particular of halogen lamps.
  • the object of the invention is to provide a coating which is essentially structurally stable at high operating temperatures and remains low or free from haze.
  • the layer system according to the invention has at least one layer made of a metal oxide which comprises titanium-aluminum oxide.
  • the individual layers of the layer system which are required, for example, to create a specific optical design of the layer system, are referred to below as functional layers.
  • Functional layers made of titanium-aluminum oxide have a significantly higher temperature and structural stability than the known functional layers made of metal oxides. Since a functional layer comprising titanium-aluminum oxide inherently guarantees high temperature resistance, an additional interruption with an intermediate layer made of another metal oxide contributes to the fulfillment of the task in that it can be additionally stabilized, but mainly the mechanical and further improve the optical properties of functional layers comprising titanium aluminum oxide. To avoid optically undesirable influences
  • the intermediate layer either choose the thickness or the refractive index of the intermediate layer so that it is not optically effective.
  • such layers also have, for example, increased brilliance, an improvement in the desired optical parameters, such as reflectivity or transmittance, and increased scratch resistance.
  • Another layer system according to the invention likewise consists at least of one functional layer from one
  • a thickness of 50 nm remains, no crystallization behavior when exposed to high temperatures.
  • a particular effect of the invention is the adjustability of the refractive index of the layer comprising titanium-aluminum oxide by adjusting the quantitative ratio of aluminum to titanium.
  • the refractive index n can be varied in a range from 1.55 ⁇ n ⁇ 2.50. As the aluminum content increases, the refractive index n of the layer decreases. You can achieve this with only a small amount
  • the adjustability of the refractive index of the layer comprising titanium aluminum oxide can be used particularly advantageously for adapting the refractive index of the functional layer to that of the intermediate layer or vice versa.
  • Functional layers made of metal oxides with a refractive index n in the range of 1.55 n n 2,5 2.50 for example made of zirconium oxide or stabilized zirconium oxide, that by adding a stabilizer material such as Yttrium oxide etc. was stabilized, with n approx. 2.1
  • an intermediate layer made of titanium-aluminum oxide without being influenced optically.
  • the intermediate layers no longer have to have the small thicknesses, such as intermediate layers with a different refractive index, which must remain below a thickness at which they can be optically effective.
  • intermediate layers with a different refractive index which must remain below a thickness at which they can be optically effective.
  • the layer systems according to the invention can consist of a single functional layer as well as a layer system with several functional layers, preferably of an alternating layer system of high and low refractive index functional layers.
  • the high refractive index functional layer comprises a titanium-aluminum oxide. It preferably consists of Ti ⁇ l ⁇ J ⁇ y with 0 ⁇ x ⁇ 1, preferably with 0.3 ⁇ x ⁇ 1, particularly advantageously with
  • the low-index functional layer then comprises a silicon oxide, preferably silicon dioxide. Silicon dioxide is also resistant to high temperatures and has a low refractive index compared to titanium-aluminum oxide.
  • the values of the layer thicknesses d p of the functional layers for applications of the layer system according to the invention in the near IR and visible range are then preferably 5 nm d d F 200 200 nm.
  • Such layer systems for optical applications are for use in high-temperature ranges, ie at operating temperatures above 600 ° C, well suited.
  • the high-index functional layers are also characterized by low-index. Interrupted intermediate layers and vice versa, it is particularly important in the case of optical layer systems that the intermediate layers interrupting the functional layers remain below a thickness at which they could become optically effective in the overall layer system.
  • Useful thicknesses d z of the intermediate layers are then in the range of 0.3 nm ⁇ d z 10 10 nm, preferably in the range of 0.5 nm d d z 4,0 4.0 nm and particularly suitable in the range of 1.0 nm d d z 2,5 2.5 nm.
  • the use and the number of intermediate layers should preferably be chosen such that the thickness dp of the partial layers resulting from the functional layer is approximately 20 nm d dp 250 250 nm.
  • a reasonable layer thickness of functional layers to be interrupted is d p ⁇ 40 nm. It is particularly optimal for the procedural process if, in an alternating layer system made of high and low refractive index functional layers, the high refractive index functional layers are interrupted by intermediate layers made of the low refractive index layer material. There is also the possibility that the low-index functional layers are interrupted by intermediate layers made of the high-index layer material. It is not absolutely necessary to interrupt each functional layer.
  • the intermediate layer it is not essential for the intermediate layer that it has a different refractive index than the functional layer, but that it is suitable for influencing the structure formation in the functional layer, so that high temperatures cannot cause any deterioration in the optical properties of the coating. It is therefore also possible for high-index functional layers, for example made of titanium oxide, to have high-index
  • Sol-gel processes are also advantageously suitable for industrial production of the coating.
  • PVD Physical Vapor Deposition
  • the substrate materials can be very diverse and essentially depend on the area of application of the coated article. For use in the high temperature range, the associated temperature load must be taken into account. Metals, glass and glass ceramics as well as plastics come into consideration as substrate materials.
  • the layer systems are used for the coating of reflectors, in particular for the coating of glass ceramic reflectors.
  • excellent optical and mechanical properties of the reflectors can be achieved even with long and extreme temperature loads due to the structure and temperature stability of the coating.
  • the layer systems are used according to the invention for the coating of lighting fixtures, in particular IRC lamps / burners.
  • these coatings can be used to achieve excellent optical and mechanical properties of the lighting fixtures due to the structure and temperature stability of the coating under long and extreme temperature loads.
  • the invention will be explained in more detail below on the basis of the exemplary embodiments and figures.
  • Fig.l a layer system according to the invention for a reflector coating
  • Fig. 2 the reflection behavior of the reflector at temperatures of 450 ° C, 650 ° C and 750 ° C
  • Fig. 3 the diffractograms of titanium aluminum oxide layers with different refractive indices after tempering at 650 ° C and 850 ° C
  • FIG. 1 shows an optical layer system according to the invention for a reflector.
  • the reflector has a high
  • the layer system is an alternating layer system and consists of 43 functional layers.
  • the low-index functional layer is made of Si0 2 and the high-index functional layer is made of t U ⁇ O y .
  • the individual functional layers were produced using the PICVD process. With this procedure.
  • the person skilled in the art succeeds in controlling the aluminum content in a customary manner, so that the refractive index of the titanium-aluminum oxide layer could be set in a targeted manner.
  • Reflectors produced in this way were then subjected to temperature loads of 450 ° C, '650 ° C and 750 ° C. The reflectors showed no turbidity after these temperature loads.
  • FIG. 2 shows the reflection behavior of the reflectors under the various temperature loads mentioned above. Also when examining the reflection behavior of the reflector coating according to the invention, it could be shown that the high operating temperatures have a negligible effect on the reflection behavior, especially in the desired wavelength range of 370 nm ⁇ ⁇ 800 nm, the reflection behavior of the reflectors remains stable.
  • the reflector described by way of example with a structure and temperature-stable coating according to the invention can be used in digital projectors, but is also for lighting purposes in high and
  • Low voltage technology for example suitable for use in halogen lighting technology.
  • substrates made of quartz glass were coated using the PICVD method, each with a Ti ⁇ l ⁇ O y individual layer (0 ⁇ x ⁇ 1) with a layer thickness of 500 nm.
  • PICVD method PICVD method
  • different proportions of aluminum and titanium were set in the coating process.
  • the conditions in the layers were measured using EDX. The respective is from the measured proportions in at%
  • Quantity ratio can be determined. The individual values for the proportions in at% titanium and aluminum, the associated quantitative ratio of Ti: Al and the corresponding refractive indices can be found in the overview in FIG. 4.
  • the refractive index n of the layer is reduced.
  • the coated substrates were then exposed to a temperature load of 650 ° C. or 850 ° C. for 1 hour.
  • n 2.34 approaches for the formation of the anatase phase.
  • even small amounts of aluminum are sufficient to prevent crystal formation under high temperature loads.
  • both the crystallization of an amorphous layer in anatase at low temperatures and the recrystallization into the rutile phase at temperatures above 600 ° C. are prevented. All examined layers showed no signs of cloudiness.
  • substrates coated with a single functional layer according to the invention can also be used for a wide variety of applications, preferably in the high-temperature range, since they remain structurally stable even under extreme temperature loads of more than 600 ° C. and have no cloudiness.
  • the layer system consists of an alternating layer system of high and low refractive index functional layers. These interference layer systems typically consist of more than 30 functional layers.
  • the temperature of the lamp bulb or burner can, under certain circumstances, be more than 1000 ° C.
  • thermal load capacity of known alternating layer systems has hitherto been around 600 ° C., which was primarily due to the insufficient temperature stability of the highly refractive layer.
  • the temperature stability of the IRC lamps / burners can be increased significantly above 600 ° C.

Abstract

Coated object comprises a substrate with at least one functional layer containing at least one intermediate layer which has a layer thickness of d z= 10 nm. The intermediate layer interrupts the morphology of the functional layer. An independent claim is also included for a process for the production of a coated object using a CVD or PVD process.

Description

TITAN-ALUMINIUM-OXIDSCHICHT UMFASSENDES SCHICHTSYSTEM TITANIUM ALUMINUM OXIDE LAYER COMPREHENSIVE LAYER SYSTEM
BesehreibungBesehreibung
Die Erfindung betrifft ein Schichtsystem mit mindestens einer Metalloxidschicht, wobei das Metalloxid ein Titan-Aluminium- Oxid umfasst. Das Schichtsystem weist eine hohe Struktur- und. Temperaturbeständigkeit auf, insbesondere bei Betriebstemperaturen von über 600°C und ist besonders für optische Beschichtungen geeignet, jedoch darauf nicht beschränkt .The invention relates to a layer system with at least one metal oxide layer, the metal oxide comprising a titanium-aluminum oxide. The layer system has a high structural and. Temperature resistance, especially at operating temperatures of over 600 ° C and is particularly suitable for optical coatings, but is not limited to this.
Optische SchichtSysteme, insbesondere WechselschichtSysteme, die aus wechselnd übereinander liegenden dünnen hoch- und niedrigbrechenden Schichten aufgebaut sind, sind .seit Jahren für eine Vielzahl von Anwendungen bekannt. Sie wirken dabei als Lichtinterferenzfilm, dessen optische Eigenschaften durch die Wahl des Materials für die hoch- bzw. niedrigbrechende Schicht und damit des entsprechenden Brechungsindex, durch die Anordnung der einzelnen Schichten und durch die Wahl der einzelnen Schichtdicken bestimmt sind. Die Auswahl erfolgt im wesentlichen unter Ausnutzung bekannter optischerOptical layer systems, in particular alternating layer systems, which are made up of alternately superimposed thin high and low refractive layers have been known for many years for a large number of applications. They act as a light interference film, the optical properties of which are determined by the choice of the material for the high or low refractive index layer and thus the corresponding refractive index, by the arrangement of the individual layers and by the choice of the individual layer thicknesses. The selection is made essentially using known optical
Designregeln und Deseignhilfsmittel nach Maßgabe der angestrebten optischen Eigenschaften' und der Verarbeitbarkeit . Als Ausgangsmaterialien zur Herstellung derartiger Beschichtungen für beispielsweise Reflektoren, Spiegel, Filter, Lampen, IRC-Brenner/Lämpchen etc. eignen sich unter anderen Ti02 und Si02.Design rules and design aids in accordance with the desired optical properties and processability. Suitable starting materials for the production of such coatings for, for example, reflectors, mirrors, filters, lamps, IRC burners / lamps, etc. include Ti0 2 and Si0 2 .
Dünne Schichten dieser Materialen werden üblicherweise mit CVD-Verfahren (CVD = Chemical Vapour Deposition) , PVD- Verfahren (PVD = Physical Vapour Deposition) oder Sol-Gel- Verfahren aufgebracht und zeichnen sich dadurch aus, dass sie hart und chemisch stabil sind sowie einen hohen Brechungsindexunterschied aufweisen.Thin layers of these materials are usually applied using CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition) or Sol-Gel processes and are characterized by the fact that they are hard and chemically stable as well as a have a high refractive index difference.
In Hinblick auf eine Stabilität gegenüber hohen Temperaturen sind bei Siliziumoxiden wenig Probleme zu erwarten.With regard to stability against high temperatures, little problems can be expected with silicon oxides.
Bei der Verwendung von Titanoxid als hochbrechendes Schichtmaterial treten jedoch bei hohen Betriebstemperaturen (> 600°C) , wie sie z.B. bei bestimmten Glaskeramikreflektoren oder IRC-Lämpchen erreicht werden können, Probleme auf. Bei diesen hohen Temperaturen verändert sich das Titanoxid. Das ist vor allem, wie von H.Sankur und W. Gunning in J.Appl.Phys.66 (1989) ausführlich beschrieben, auf die Phasenumwandlung des im amorphen Zustand aufgebrachten Ti02 zurückzuführen. Bei Temperaturen über 350°C kristallisiert Ti02 in die anatase Phase und bei Temperaturen um 600°C in die rutile Phase. Dadurch treten Trübungen in der Beschichtung auf und ihre über ein bestimmtes optisches Design optimierten optischen Eigenschaften verschlechtern sich.However, when using titanium oxide as a high-index coating material, problems arise at high operating temperatures (> 600 ° C.), as can be achieved, for example, with certain glass ceramic reflectors or IRC lamps. At these high temperatures, the titanium oxide changes. This is primarily due to the phase transformation of the Ti0 2 applied in the amorphous state, as described in detail by H.Sankur and W. Gunning in J.Appl.Phys.66 (1989). At temperatures above 350 ° C Ti0 2 crystallizes in the anatase phase and at temperatures around 600 ° C in the rutile phase. This causes clouding in the coating and its optical properties, which are optimized via a certain optical design, deteriorate.
In der DE 3227069 AI wird eine für hohe Temperaturen geeignete optische Beschichtung offenbart, die aus einem Wechselschichtsystem mit Si02 als niedrig brechendes Schichtmaterial und Ta205 als hoch brechendes Schichtmaterial besteht . Diese Beschichtung ist hochtemperaturbeständig und darauf ausgerichtet, den Arbeitswirkungsgrad des beschichteten Objektes, insbesondere von Halogenlampen zu verbessern.DE 3227069 AI discloses an optical coating suitable for high temperatures, which consists of a Alternating layer system with Si0 2 as a low-refractive layer material and Ta 2 0 5 as a high-refractive layer material. This coating is resistant to high temperatures and is designed to improve the working efficiency of the coated object, in particular of halogen lamps.
Eine Verbesserung des Arbeitswirkungsgrades und eine höhere Temperaturbeständigkeit gegenüber dem Einsatz von Ti02 als hochbrechende Schicht kann sicherlich erreicht werden, jedoch treten auch bei der Verwendung von Ta2Os imAn improvement in the working efficiency and a higher temperature resistance compared to the use of Ti0 2 as a high-index layer can certainly be achieved, but also occur when using Ta 2 O s
Hochtemperaturbereich erhebliche Trübungen der Schichten auf, so dass diese Beschichtungen für viele Anwendungsgebiete nicht geeignet sind.High temperature range significant cloudiness of the layers, so that these coatings are not suitable for many areas of application.
Aufgabe der Erfindung ist es, eine Beschichtung anzugeben, die bei hohen Betriebstemperaturen im wesentlichen strukturstabil ist und trübungsarm bzw. trübungsfrei bleibt.The object of the invention is to provide a coating which is essentially structurally stable at high operating temperatures and remains low or free from haze.
Erfindungsgemäß wird die Aufgabe mit einem Schichtsystem gemäß den Ansprüchen 1 bis 24 gelöst .According to the invention the object is achieved with a layer system according to claims 1 to 24.
Das erfindungsgemäße Schichtsystem weist zumindest eine Schicht aus einem Metalloxid auf, welches Titan-Aluminium- Oxid umfasst. Die einzelnen Schichten des Schichtsystems, die beispielsweise zur Erstellung eines bestimmten optischen Designs des Schichtsystems erforderlich sind, werden im weiteren Funktionsschichten genannt.The layer system according to the invention has at least one layer made of a metal oxide which comprises titanium-aluminum oxide. The individual layers of the layer system, which are required, for example, to create a specific optical design of the layer system, are referred to below as functional layers.
Funktionsschichten aus Titan-Aluminium-Oxid weisen gegenüber den bekannten Funktionsschichten aus Metalloxiden eine wesentlich höhere Temperatur- und Strukturstabilität auf. Da eine Titan-Aluminium-Oxid umfassende FunktionsSchicht von sich aus schon eine hohe Temperaturbeständigkeit gewährleistet, leistet eine zusätzliche Unterbrechung mit einer Zwischenschicht aus einem anderen Metalloxid insofern einen Beitrag zur Erfüllung der Aufgabe, als dass diese zusätzlich stabilisiert werden können, hauptsächlich jedoch die mechanischen und optischen Eigenschaften von Titan- Aluminium-Oxid umfassenden Funktionsschichten weiter verbessern. Um optisch unerwünschte Einflüsse derFunctional layers made of titanium-aluminum oxide have a significantly higher temperature and structural stability than the known functional layers made of metal oxides. Since a functional layer comprising titanium-aluminum oxide inherently guarantees high temperature resistance, an additional interruption with an intermediate layer made of another metal oxide contributes to the fulfillment of the task in that it can be additionally stabilized, but mainly the mechanical and further improve the optical properties of functional layers comprising titanium aluminum oxide. To avoid optically undesirable influences
Zwischenschicht zu vermeiden, ist entweder die Dicke oder die Brechzahl der Zwischenschicht so zu wählen, dass diese optisch nicht wirksam wird. Derartige Schichten weisen zu ihrer erhöhten Temperaturbeständigkeit beispielsweise auch eine erhöhte Brillanz, eine Verbesserung von angestrebten optischen Kennwerten wie beispielsweise Reflexions- bzw. Transmissionsvermögen sowie eine erhöhte Kratzfestigkeit auf.To avoid the intermediate layer, either choose the thickness or the refractive index of the intermediate layer so that it is not optically effective. In addition to their increased temperature resistance, such layers also have, for example, increased brilliance, an improvement in the desired optical parameters, such as reflectivity or transmittance, and increased scratch resistance.
Ein weiteres erfindungsgemäßes Schichtsystem besteht ebenfalls zumindest aus einer Funktionsschicht aus einemAnother layer system according to the invention likewise consists at least of one functional layer from one
Metalloxid, bei welchem zumindest eine Titan-Aluminium-Oxid umfassende Zwischenschicht zumindest eine FunktionsSchicht aus einem von der Zwischenschicht verschiedenen Metalloxid unterbricht . Dabei ist entweder die Dicke oder die Brechzahl der Zwischenschicht so zu wählen, dass diese optisch nicht wirksam wird.Metal oxide in which at least one intermediate layer comprising titanium-aluminum oxide interrupts at least one functional layer made of a metal oxide different from the intermediate layer. Either the thickness or the refractive index of the intermediate layer should be chosen so that it is not optically effective.
Mit einer Unterbrechung der Morphologie von Funktionsschichten aus Metalloxiden mittels Zwischenschichten, die Titan-Aluminium-Oxid umfassen, ist es ebenfalls möglich, die angestrebte Temperatur- und Strukturstabilität von Funktionsschichten aus Metalloxiden zu erzielen. Des weiteren können durch die Unterbrechung mit diesen Zwischenschichten die mechanischen und optischen Eigenschaften der Funktionsschichten aus einem Metalloxid wesentlich verbessert werden. Damit bietet sich ein breites Anwendungsfeld erfindungsgemäßer Schichtsysteme.By interrupting the morphology of functional layers made of metal oxides by means of intermediate layers comprising titanium-aluminum oxide, it is also possible to achieve the desired temperature and structural stability of functional layers made of metal oxides. Furthermore, by interrupting with These intermediate layers, the mechanical and optical properties of the functional layers made of a metal oxide are significantly improved. This offers a wide range of applications for layer systems according to the invention.
' Sinnvoll ist eine Unterbrechung von Funktionsschichten derart, dass Teilschichten entstehen, die bei hohen Temperaturbelastungen keine Strukturveränderungen zeigen. So zeigen beispielsweise amorphe Funktionsschichten aus Metalloxiden, deren einzelne Teilschichten unterhalb einer ' It makes sense to interrupt functional layers in such a way that sub-layers are created which show no structural changes at high temperature loads. For example, amorphous functional layers made of metal oxides show the individual sub-layers below one
Dicke von 50 nm bleiben, kein Kristallisationsverhalten unter Einwirkung hoher Temperaturen.A thickness of 50 nm remains, no crystallization behavior when exposed to high temperatures.
Ein besonderer Effekt der Erfindung ist die Eiristellbarkeit des Brechungsindex der Titan-Aluminium-Oxid umfassenden Schicht über die Einstellung des Mengenverhältnisses von Aluminium zu Titan. Die Brechzahl n kann in einem Bereich von 1,55 ≤ n ≤ 2,50 variiert werden. Mit der Erhöhung des Aluminiumgehaltes verringert sich die Brechzahl n der Schicht. Dabei erreicht man bereits mit geringenA particular effect of the invention is the adjustability of the refractive index of the layer comprising titanium-aluminum oxide by adjusting the quantitative ratio of aluminum to titanium. The refractive index n can be varied in a range from 1.55 ≤ n ≤ 2.50. As the aluminum content increases, the refractive index n of the layer decreases. You can achieve this with only a small amount
Mengenanteilen von Aluminium (AI : Ti beispielsweise ca. 1 : 3,84; mit n = 2,34) eine deutliche Verbesserung der Strukturstabilität und Temperaturbeständigkeit einer Funktionsschicht. Das macht den Einsatz dieser Schichten sehr flexibel.Quantities of aluminum (Al: Ti, for example, about 1: 3.84; with n = 2.34) significantly improve the structural stability and temperature resistance of a functional layer. This makes the use of these layers very flexible.
Besonders vorteilhaft lässt sich die Einstellbarkeit des Brechungsindex der Titan-Aluminium-Oxid umfassenden Schicht für die Anpassung des Brechungsindex der FunktionsSchicht an den der Zwischenschicht bzw. umgekehrt nutzen. Somit können Funktionsschichten aus Metalloxiden mit einem Brechungsindex n im Bereich von 1,55 ≤ n ≤ 2,50 (beispielsweise aus Zirkonoxid bzw. stabilisiertem Zirkonoxid, dass durch Zugabe eines Stabilisatormaterials wie bsp. Yttriumoxid etc. stabilisert wurde, mit n ca. 2,1) mit einer Zwischenschicht aus Titan-Aluminium-Oxid unterbrochen werden, ohne optisch dadurch beinflusst zu werden. In diesem Fall müssen die Zwischenschichten nicht mehr die geringen Dicken haben, wie Zwischenschichten mit abweichendem Brechungsindex, die unterhalb einer Dicke bleiben müssen, bei der sie optisch wirksam werden können. Analoges gilt für die Unterbrechung von Titan-Aluminum-Oxid Funktionsschichten durch Zwischenschichten aus einem Metalloxid.The adjustability of the refractive index of the layer comprising titanium aluminum oxide can be used particularly advantageously for adapting the refractive index of the functional layer to that of the intermediate layer or vice versa. Functional layers made of metal oxides with a refractive index n in the range of 1.55 n n 2,5 2.50 (for example made of zirconium oxide or stabilized zirconium oxide, that by adding a stabilizer material such as Yttrium oxide etc. was stabilized, with n approx. 2.1) with an intermediate layer made of titanium-aluminum oxide, without being influenced optically. In this case, the intermediate layers no longer have to have the small thicknesses, such as intermediate layers with a different refractive index, which must remain below a thickness at which they can be optically effective. The same applies to the interruption of titanium aluminum oxide functional layers by intermediate layers made of a metal oxide.
Die erfindungsgemäßen SchichtSysteme können sowohl aus einer einzelnen FunktionsSchicht als auch als Schichtsystem mit mehreren Funktionsschichten, vorzugsweise aus einem Wechselschichtsystem aus hoch- und niedrigbrechenden Funktionsschichten bestehen.The layer systems according to the invention can consist of a single functional layer as well as a layer system with several functional layers, preferably of an alternating layer system of high and low refractive index functional layers.
Dabei sind Wechselschichtsysteme mit Titan-Aluminium-Oxid umfassenden Funktionsschichten als hochbrechende Funktionsschichten ebenso möglich wie auch durchAlternating layer systems with functional layers comprising titanium-aluminum oxide are possible as well as through high-refractive functional layers
Zwischenschichten unterbrochene Titan-Aluminium-Oxid Funktionsschichten oder teilweise durch Titan-Aluminium-Oxid Zwischenschichten unterbrochene Funktionsschichten aus hochbrechenden Metalloxiden.Intermediate layers of interrupted titanium-aluminum oxide functional layers or functional layers of highly refractive metal oxides interrupted by titanium-aluminum oxide intermediate layers.
Bei einer bevorzugten Ausführungsform der erfindungsgemäßen SchichtSysteme als Wechselschichtsystem aus hoch- und niedrigbrechenden Funktionsschichten, umfasst die hochbrechende FunktionsSchicht ein Titan-Aluminium-Oxid. Sie besteht vorzugsweise aus Ti ^l^J^y mit 0 < x < 1, vorzugsweise mit 0,3 < x < 1, besonders vorteilhaft mitIn a preferred embodiment of the layer systems according to the invention as an alternating layer system comprising high and low refractive index functional layers, the high refractive index functional layer comprises a titanium-aluminum oxide. It preferably consists of Ti ^ l ^ J ^ y with 0 <x <1, preferably with 0.3 <x <1, particularly advantageously with
0,5 < x < 1. Je geringer der Anteil an Aluminium ist, desto höher wird der Brechungsindex der Funktionsschicht . Die niedrigbrechende Funktionsschicht umfasst dann ein Siliziumoxid, vorzugsweise Siliziumdioxid. Siliziumdioxid ist ebenfalls hochtemperaturbeständig und weist im Verhältnis zum Titan-Aluminium-Oxid einen niedrigen Brechungsindex auf.0.5 <x <1. The lower the proportion of aluminum, the higher the refractive index of the functional layer. The low-index functional layer then comprises a silicon oxide, preferably silicon dioxide. Silicon dioxide is also resistant to high temperatures and has a low refractive index compared to titanium-aluminum oxide.
In Hinblick auf das optische Design ist ein bestimmter Schichtaufbau bezüglich der Abfolge und Dicke der Funktionsschichten vorgegeben. Die entsprechenden optischen Schichtdicken n*d liegen in der Größenordnung von λ/4 (n = Brechungsindex der Schicht; λ = Designwellenlänge) bzw. darunter. Die Werte der Schichtdicken dp der Funktionsschichten für Anwendungen des erfindungsgemäßen Schichtsystems im nahen IR und sichtbaren Bereich betragen dann vorzugsweise 5 nm ≤ dF ≤ 200 nm. Derartige Schichtsysteme für optische Anwendungen sind für den Einsatz in Hochtemperaturbereichen, d.h. bei Betriebstemperaturen oberhalb von 600°C, gut geeignet.With regard to the optical design, a certain layer structure is specified with regard to the sequence and thickness of the functional layers. The corresponding optical layer thicknesses n * d are in the order of magnitude of λ / 4 (n = refractive index of the layer; λ = design wavelength) or less. The values of the layer thicknesses d p of the functional layers for applications of the layer system according to the invention in the near IR and visible range are then preferably 5 nm d d F 200 200 nm. Such layer systems for optical applications are for use in high-temperature ranges, ie at operating temperatures above 600 ° C, well suited.
Werden die hochbrechenden Funktionsschichten außerdem durch niedrigbrechende . Zwischenschichten unterbrochen und umgekehrt, ist es insbesondere bei optischen Schichtsystemen von Bedeutung, dass die die Funktionsschichten unterbrechenden Zwischenschichten unter einer Dicke bleiben, bei der sie optisch wirksam im GesamtschichtSystem werden könnten. Sinnvolle Dicken dz der Zwischenschichten liegen dann im Bereich von 0,3 nm ≤ dz ≤ 10 nm, vorzugsweise im Bereich von 0,5 nm ≤ dz ≤ 4,0 nm und besonders geeignet im Bereich von 1,0 nm ≤ dz ≤ 2,5 nm. Der Einsatz und die Anzahl der Zwischenschichten sollte vorzugsweise so gewählt werden, dass die Dicke dp der aus der Funktionsschicht entstehenden Teilschichten etwa 20 nm ≤ dp ≤ 250 nm beträgt. Somit liegen sinnvolle Schichtdicke von zu unterbrechenden Funktionsschichten bei dp ≥ 40 nm. Dabei ist es besonders für den verfahrenstechnischen Ablauf optimal, wenn in einem Wechselschichtsystem aus hoch- und niedrigbrechenden Funktionsschichten, die hochbrechenden Funktionsschichten von Zwischenschichten aus dem niedrigbrechenden Schichtmaterial unterbrochen werden. Weiter besteht die Möglichkeit, dass die niedrigbrechenden Funktionsschichten von Zwischenschichten aus dem hochbrechenden Schichtmaterial unterbrochen werden. Dabei ist es nicht zwangsläufig erforderlich, jede Funktionsschicht zu unterbrechen.The high-index functional layers are also characterized by low-index. Interrupted intermediate layers and vice versa, it is particularly important in the case of optical layer systems that the intermediate layers interrupting the functional layers remain below a thickness at which they could become optically effective in the overall layer system. Useful thicknesses d z of the intermediate layers are then in the range of 0.3 nm ≤ d z 10 10 nm, preferably in the range of 0.5 nm d d z 4,0 4.0 nm and particularly suitable in the range of 1.0 nm d d z 2,5 2.5 nm. The use and the number of intermediate layers should preferably be chosen such that the thickness dp of the partial layers resulting from the functional layer is approximately 20 nm d dp 250 250 nm. Thus, a reasonable layer thickness of functional layers to be interrupted is d p ≥ 40 nm. It is particularly optimal for the procedural process if, in an alternating layer system made of high and low refractive index functional layers, the high refractive index functional layers are interrupted by intermediate layers made of the low refractive index layer material. There is also the possibility that the low-index functional layers are interrupted by intermediate layers made of the high-index layer material. It is not absolutely necessary to interrupt each functional layer.
Wesentlich für die -Zwischenschicht ist jedoch nicht, dass sie einen anderen Brechungsindex als die Funktionsschicht aufweist, sondern dass sie geeignet ist, die Strukturbildung in der Funktionsschicht zu beeinflussen, so dass hohe Temperaturen keine Verschlechterung der optischen Eigenschaften der Beschichtung bewirken können. Es ist also ebenso möglich, dass hochbrechende Funktionsschichten beispielsweise aus Titan-Oxid durch hochbrechendeHowever, it is not essential for the intermediate layer that it has a different refractive index than the functional layer, but that it is suitable for influencing the structure formation in the functional layer, so that high temperatures cannot cause any deterioration in the optical properties of the coating. It is therefore also possible for high-index functional layers, for example made of titanium oxide, to have high-index
Zwischenschichten aus Titan-Aluminium-Oxid unterbrochen werden.Intermediate layers made of titanium-aluminum oxide are interrupted.
Für die Herstellung der erfindungsgemäßen Schichtsysteme eignen sich in vorteilhafter Weise chemische Gasphasen- Abscheidungsverfahren, vorzugsweise plasma-unterstützt, insbesondere das PICVD-Verfahren (PICVD = Plasma-Impulse- Chemical-Vapour-Deposition) .Chemical vapor deposition processes, preferably plasma-assisted, are particularly suitable for the production of the layer systems according to the invention, in particular the PICVD process (PICVD = Plasma Impulse Chemical Vapor Deposition).
Mit diesen Verfahren gelingt eine gleichmäßige und genaue Herstellung von Schichten, und es ist für industrielle Beschichtungsprozesse gut geeignet. Des weiteren kann das Verhältnis von Aluminiumgehalt zu Titangehalt mit diesem Verfahren besonders einfach gesteuert werden.These processes enable layers to be produced evenly and precisely, and are well suited for industrial coating processes. Furthermore, the ratio of aluminum content to titanium content can be adjusted with this Processes can be controlled particularly easily.
Ebenso eignen sich in vorteilhafter Weise Sol-Gel-Verfahren für' eine industrielle Herstellung der Beschichtung.Sol-gel processes are also advantageously suitable for industrial production of the coating.
Prinzipiell besteht aber auch die Möglichkeit, das erfindungsgemäße Schichtsystem mit PVD-Verfahren (PVD = Physical Vapour Deposition) wie zum Beispiel mit Aufdampfen, Sputtern oder anderen Verfahren herzustellen.In principle, however, there is also the possibility of producing the layer system according to the invention using PVD processes (PVD = Physical Vapor Deposition) such as, for example, vapor deposition, sputtering or other processes.
Die Substratmaterialien können sehr vielfältig sein und hängen im wesentlichen vom Einsatzgebiet des beschichteten Gegenstandes ab. Für den Einsatz im Hochtemperaturbereich ist auf die damit verbundene Temperaturbelaεtung abzustellen. Als Substratmaterialien kommen sowohl Metalle, Glas und Glaskeramiken als auch Kunststoffe in Frage.The substrate materials can be very diverse and essentially depend on the area of application of the coated article. For use in the high temperature range, the associated temperature load must be taken into account. Metals, glass and glass ceramics as well as plastics come into consideration as substrate materials.
Erfindungsgemäß finden die SchichtSysteme für die Beschichtung von Reflektoren, insbesondere für die Beschichtung von Glaskeramikreflektoren Verwendung. Mit diesen Beschichtungen können auch bei langer und extremer Temperaturbelastung hervorragende optische und mechanische Eigenschaften der Reflektoren durch die Struktur- und TemperaturStabilität der Beschichtung erreicht werden.According to the invention, the layer systems are used for the coating of reflectors, in particular for the coating of glass ceramic reflectors. With these coatings, excellent optical and mechanical properties of the reflectors can be achieved even with long and extreme temperature loads due to the structure and temperature stability of the coating.
Weiterhin finden die Schichtsysteme erfindungsgemäß für die Beschichtung von Beleuchtungskörpern, insbesondere von IRC- Lämpchen/Brennern Verwendung. Auch hier können mit diesen Beschichtungen bei langer und extremer Temperaturbelastung hervorragende optische und mechanische Eigenschaften der Beleuchtungskörper durch die Struktur- und Temperaturstabilität der Beschichtung erreicht werden. Die Erfindung soll nachfolgend an Hand der Ausführungsbeispiele und Figuren näher erläutert werden.Furthermore, the layer systems are used according to the invention for the coating of lighting fixtures, in particular IRC lamps / burners. Here, too, these coatings can be used to achieve excellent optical and mechanical properties of the lighting fixtures due to the structure and temperature stability of the coating under long and extreme temperature loads. The invention will be explained in more detail below on the basis of the exemplary embodiments and figures.
Es zeigen:Show it:
Fig.l: ein erfindungsgemäßes Schichtsystem für eine ReflektorbeSchichtungFig.l: a layer system according to the invention for a reflector coating
Fig.2: das Reflexionsverhalten des Reflektors bei Temperaturen von 450°C, 650°C und 750°CFig. 2: the reflection behavior of the reflector at temperatures of 450 ° C, 650 ° C and 750 ° C
Fig.3: die Diffraktogramme von Titan- luminium-Oxid- Schichten mit unterschiedlichen Brechungsindizes nach Temperungen bei 650°C und 850°CFig. 3: the diffractograms of titanium aluminum oxide layers with different refractive indices after tempering at 650 ° C and 850 ° C
Fig.4: eine tabellarische Übersicht der Mengenverhältnisse Al:Ti zu den in Fig. 3 dargestellten Diffraktogrammen von Titan-Aluminium-Oxid-Schichten4: a tabular overview of the quantitative ratios Al: Ti to the diffractograms of titanium-aluminum oxide layers shown in FIG. 3
In Figur 1 ist ein erfindungsgemäßes optisches Schichtsystem für einen Reflektor gezeigt. Der Reflektor weist eine hohe1 shows an optical layer system according to the invention for a reflector. The reflector has a high
Reflexion im 'Wellenlängenbereich für sichtbares Licht auf und ist deshalb für Beleuchtungszwecke gut geeignet. Durch seine hohe Transmission im nahen IR und einer daraus resultierenden geringen Wärmereflexion ist er besonders geeignet für temperaturintensive Beleuchtungen und kann beispielsweise in digitalen Projektoren eingesetzt werden. Das Schichtsystem ist ein Wechselschichtsystem und besteht aus 43 Funktionsschichten. Dabei ist die niedrigbrechende Funktionsschicht aus Si02 und die hochbrechende Funktionsschicht aus t U^Oy.Reflection in the ' wavelength range for visible light and is therefore well suited for lighting purposes. Due to its high transmission in the near IR and the resulting low heat reflection, it is particularly suitable for temperature-intensive lighting and can be used, for example, in digital projectors. The layer system is an alternating layer system and consists of 43 functional layers. The low-index functional layer is made of Si0 2 and the high-index functional layer is made of t U ^ O y .
Das Mengenverhältnis von Aluminium zu Titan beträgt Al:Ti = 1:2,09. Bei diesem Mengenverhältnis hat die Ti^ l^Oy-Schicht einen Brechungsindex n = 2,26. Die genaue Anordnung und die einzelnen Schichtdicken sind der Tabelle in Figur 1 zu entnehmen.The ratio of aluminum to titanium is Al: Ti = 1: 2.09. With this ratio, the Ti ^ l ^ O y layer has a refractive index n = 2.26. The exact arrangement and the individual layer thicknesses can be found in the table in FIG. 1.
Die einzelnen Funktionsschichten wurden mittels PICVD- Verfahren hergestellt. Mit diesem Verfahren. gelingt es dem Fachmann, den Aluminiumgehalt auf gebräuchliche Weise zu steuern, so dass der Brechungsindex der Titan-Aluminium-Oxid- Schicht gezielt eingestellt werden konnte.The individual functional layers were produced using the PICVD process. With this procedure. The person skilled in the art succeeds in controlling the aluminum content in a customary manner, so that the refractive index of the titanium-aluminum oxide layer could be set in a targeted manner.
Derart hergestellte Reflektoren wurden anschließend Temperaturbelastungen von 450°C,' 650°C und 750°C ausgesetzt. Die Reflektoren zeigten nach diesen Temperaturbelastungen keinerlei Trübungen.Reflectors produced in this way were then subjected to temperature loads of 450 ° C, '650 ° C and 750 ° C. The reflectors showed no turbidity after these temperature loads.
Figur 2 zeigt das Reflexionsverhalten der Reflektoren unter den vor genannten verschiedenen Temperaturbelastungen. Auch bei der Untersuchung des Reflexionsverhaltens der erfindungsgemäßen Reflektorbeschichtung konnte gezeigt werden, dass die hohen Betriebstemperaturen sich kaum merklich auf das Reflexionsverhalten auswirken, vor allem im gewünschten Wellenlängenbereich von 370 nm < λ < 800 nm bleibt das Reflexionsverhalten der Reflektoren stabil.FIG. 2 shows the reflection behavior of the reflectors under the various temperature loads mentioned above. Also when examining the reflection behavior of the reflector coating according to the invention, it could be shown that the high operating temperatures have a negligible effect on the reflection behavior, especially in the desired wavelength range of 370 nm <λ <800 nm, the reflection behavior of the reflectors remains stable.
Gleichzeitig bleibt die hohe Transmission der Reflektoren im nahen IR erhalten. Der beispielhaft beschriebene Reflektor mit einer erfindungsgemäßen Struktur- und temperaturstabilen Beschichtung kann in digitalen Projektoren eingesetzt werden, ist aber auch für Beleuchtungszwecke in Hoch- undAt the same time, the high transmission of the reflectors in the near IR is maintained. The reflector described by way of example with a structure and temperature-stable coating according to the invention can be used in digital projectors, but is also for lighting purposes in high and
Niedervolttechnik, beispielsweise für den Einsatz in der Halogen-Beleuchtungstechnik geeignet.Low voltage technology, for example suitable for use in halogen lighting technology.
Des weiteren wurden die Eigenschaften einer erfindungsgemäßen Einzelschicht untersucht .The properties of a single layer according to the invention were also investigated.
Dazu wurden Substrate aus Quarzglas mittels PICVD-Verfahren mit jeweils einer Ti^l^Oy-Einzelschichten (0 < x < 1 ) mit einer Schichtdicke von 500 nm beschichtet. Zur Variation des Brechungsindex zwischen den minimal und maximal möglichen Werten von 1,55 ≤ n ≤ 2,50 wurden unterschiedliche Mengenanteile von Aluminium und Titan im Beschichtungsprozess eingestellt. Die sich in den Schichten einstellenden Verhältnisse wurden mittels EDX vermessen. Aus den gemessenen Anteilen in at% ist das jeweiligeFor this purpose, substrates made of quartz glass were coated using the PICVD method, each with a Ti ^ l ^ O y individual layer (0 <x <1) with a layer thickness of 500 nm. To vary the refractive index between the minimum and maximum possible values of 1.55 ≤ n ≤ 2.50, different proportions of aluminum and titanium were set in the coating process. The conditions in the layers were measured using EDX. The respective is from the measured proportions in at%
Mengenverhältnis bestimmbar. Die einzelnen Werte für die Mengenanteile in at% Titan und Aluminium, das zugehörige Mengenverhältnis von Ti:Al sowie die entsprechenden Brechzahlen sind der Übersicht in Figur 4 zu entnehmen.Quantity ratio can be determined. The individual values for the proportions in at% titanium and aluminum, the associated quantitative ratio of Ti: Al and the corresponding refractive indices can be found in the overview in FIG. 4.
Mit der Steigerung des Aluminiumgehaltes wird die Brechzahl n der Schicht verringert .As the aluminum content increases, the refractive index n of the layer is reduced.
Anschließend wurden die beschichteten Substrate für 1 Stunde einer Temperaturbelastung von 650°C bzw. 850°C ausgesetzt. Die in Figur 3 dargestellten Röntgenuntersuchungen der einzelnen Proben nach der Temperung mit 650°C bzw. mit 850°C zeigen, dass lediglich die jeweils aluminiumärmste Schicht mit n = 2,34 Ansätze für die Ausbildung der Anatas-Phase zeigt. Es reichen jedoch schon geringe Mengen von Aluminium aus, um eine Kristallbildung bei Hochtemperaturbelastungen zu verhindern. Im. Vergleich zu reinem Titandioxid wird sowohl die Kristallisation einer amorphen Schicht in Anatas bei niedrigen Temperaturen als auch die Umkristallisation in die Rutil-Phase bei Temperaturen oberhalb 600°C unterbunden. Alle untersuchten Schichten zeigten keinerlei Trübungserscheinungen.The coated substrates were then exposed to a temperature load of 650 ° C. or 850 ° C. for 1 hour. The X-ray examinations of the individual samples shown in FIG. 3 after annealing at 650 ° C. or at 850 ° C. show that only the layer with the lowest aluminum content in each case with n = 2.34 approaches for the formation of the anatase phase. However, even small amounts of aluminum are sufficient to prevent crystal formation under high temperature loads. In comparison to pure titanium dioxide, both the crystallization of an amorphous layer in anatase at low temperatures and the recrystallization into the rutile phase at temperatures above 600 ° C. are prevented. All examined layers showed no signs of cloudiness.
Damit können auch mit einer erfindungsgemäßen einzelnen Funktionsschicht beschichtete Substrate für unterschiedlichste Anwendungen, vorzugsweise im Hochtemperaturbereich eingesetzt werden, da sie auch unter extremen Temperaturbelastungen von mehr als 600°C strukturstabil bleiben und keine Trübungen aufweisen.This means that substrates coated with a single functional layer according to the invention can also be used for a wide variety of applications, preferably in the high-temperature range, since they remain structurally stable even under extreme temperature loads of more than 600 ° C. and have no cloudiness.
Ein weiteres mögliches Anwendungsbeispiel stellt die Verwendung eines erfindungsgemäßen Schichtsystems auf IRC- Lämpchen/Brennern dar. Das Schichtsystem besteht dabei aus einem Wechselschichtsystem aus hoch- und niedrigbrechenden Funktionsschichten. Typischerweise bestehen diese Interferenzschichtsysteme aus mehr als 30 Funktionsschichten.Another possible application example is the use of a layer system according to the invention on IRC lamps / burners. The layer system consists of an alternating layer system of high and low refractive index functional layers. These interference layer systems typically consist of more than 30 functional layers.
Die Designs von Wechselschichtsystemen für derartige Lämpchen bzw. Brenner sind hinlänglich bekannt. Sie sind derart ausgebildet, dass das von der Lampe im sichtbaren Wellenlängenbereich erzeugte Licht transmittiert wird und die gleichzeitig erzeugte IR-Strahlung in den lichterzeugenden Körper reflektiert wird (IRC-System = „Infrared-reflective coating) . Die reflektierte Strahlung stellt einen signifikanten Beitrag zur Erreichung der Betriebstemperatur des Leuchtkörpers dar. Dabei kann die Temperatur des Lampenkolbens bzw. Brenners unter Umständen mehr als 1000°C betragen.The designs of alternating layer systems for such lamps or burners are well known. They are designed such that the light generated by the lamp in the visible wavelength range is transmitted and the IR radiation generated at the same time is reflected in the light-generating body (IRC system = “infrared reflective coating). The reflected radiation makes a significant contribution to reaching the operating temperature of the luminous element. The temperature of the lamp bulb or burner can, under certain circumstances, be more than 1000 ° C.
Die thermische Belastbarkeit bekannter Wechselschichtsysteme lag bisher bei etwa 600°C, was vor allem auf die ungenügende Temperaturstabilität der hochbrechenden Schicht zurückzuführen war.The thermal load capacity of known alternating layer systems has hitherto been around 600 ° C., which was primarily due to the insufficient temperature stability of the highly refractive layer.
Mit dem Einsatz von geeigneten hochbrechenden Funktionsschichten aus Aluminium-Titan-Oxid und/oder von Metalloxid-Funktionsschichten mit unterbrechenden Zwischenschichten in der Beschichtung kann die Temperaturstabilität der IRC-Lämpchen/Brenner deutlich über 600°C gesteigert werden. With the use of suitable high-index functional layers made of aluminum-titanium oxide and / or of metal oxide functional layers with interrupting intermediate layers in the coating, the temperature stability of the IRC lamps / burners can be increased significantly above 600 ° C.

Claims

Patentansprüche claims
1. Schichtsystem mit mindestens einer Funktionsschicht aus einem Metalloxid, dadurch gekennzeichnet, dass zumindest eine Funktionsschicht aus einem Metalloxid Titan-Aluminium-Oxid umfasst.1. Layer system with at least one functional layer made of a metal oxide, characterized in that at least one functional layer made of a metal oxide comprises titanium-aluminum oxide.
2. Schichtsystem nach Anspruch 1 dadurch gekennzeichnet, dass zumindest eine Titan-Aluminium-Oxid umfassende Funktionsschicht mindestens eine sie unterbrechende Zwischenschicht aus einem von der Funktionsschicht verschiedenen Metalloxid aufweist, wobei die Zwischenschicht optisch nicht wirksam ist.2nd layer system according to claim 1, characterized in that at least one titanium-aluminum-oxide layer comprising a function it has at least interrupting intermediate layer of a different metal of the functional layer, wherein the intermediate layer is not effective optically.
3. Schichtsystem nach Anspruch 2, dadurch gekennzeichnet, dass die Zwischenschicht unter einer Dicke bleibt, bei der sie optisch wirksam werden kann.3. Layer system according to claim 2, characterized in that the intermediate layer remains below a thickness at which it can be optically effective.
4. Schichtsystem nach Anspruch 3, dadurch gekennzeichnet, dass die Schichtdicke dz der Zwischenschichten 0,3 bis 10 nm, vorzugsweise 0,5. bis 4 nm, besonders bevorzugt 1,0 bis '2,5 nm beträgt.4. Layer system according to claim 3, characterized in that the layer thickness d z of the intermediate layers 0.3 to 10 nm, preferably 0.5. to 4 nm, particularly preferably 1.0 to 2.5 nm.
5. Schichtsystem nach Anspruch 3 oder 4 , dadurch gekennzeichnet, dass die Zwischenschicht Siliziumoxid umfasst . 5. Layer system according to claim 3 or 4, characterized in that the intermediate layer comprises silicon oxide.
6. Schichtsystem nach Anspruch 2, durch gekennzeichnet, dass die Zwischenschicht die gleiche Brechzahl aufweist wie die Titan-Aluminium-Oxid umfassende Funktionsschicht, so dass die Zwischenschicht optisch nicht wirksam werden kann.6. Layer system according to claim 2, characterized in that the intermediate layer has the same refractive index as the functional layer comprising titanium aluminum oxide, so that the intermediate layer cannot be optically effective.
7. Schichtsystem nach Anspruch 6, dadurch gekennzeichnet, dass die Zwischenschicht Zirkonoxid umfasst.7. Layer system according to claim 6, characterized in that the intermediate layer comprises zirconium oxide.
8. Schichtsystem mit mindestens einer Funktionsschicht aus einem Metalloxid, dadurch gekennzeichnet, dass zumindest eine Titan-Aluminium-Oxid umfassende Zwischenschicht zumindest eine Funktionsschicht aus einem von der Zwischenschicht verschiedenen Metalloxid unterbricht, wobei die Zwischenschicht optisch nicht wirksam ist.8. Layer system with at least one functional layer made of a metal oxide, characterized in that at least one intermediate layer comprising titanium-aluminum oxide interrupts at least one functional layer made of a metal oxide different from the intermediate layer, the intermediate layer not being optically effective.
9. Schichtsystem nach Anspruch 8, dadurch gekennzeichnet, dass die Titan-Aluminium-Oxid umfassende Zwischenschicht unter einer Dicke bleibt, bei der sie optisch wirksam werden kann.9. Layer system according to claim 8, characterized in that the intermediate layer comprising titanium-aluminum oxide remains below a thickness at which it can be optically effective.
10. Schichtsystem nach Anspruch 9, dadurch gekennzeichnet, dass die Schichtdicke dz der Zwischenschichten 0,3 bis 10 nm, vorzugsweise 0,5 bis 4 nm, besonders bevorzugt 1,0 bis 2,5 nm beträgt.10. Layer system according to claim 9, characterized in that the layer thickness d z of the intermediate layers is 0.3 to 10 nm, preferably 0.5 to 4 nm, particularly preferably 1.0 to 2.5 nm.
11. Schichtsystem nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Funktionsschicht Siliziumoxid umfasst .11. Layer system according to claim 9 or 10, characterized in that the functional layer comprises silicon oxide.
12. Schichtsystem nach Anspruch 8, dadurch gekennzeichnet, dass die Funktionsschicht die gleiche Brechzahl aufweist wie die Titan-Aluminium-Oxid umfassende Zwischenschicht, so dass die Zwischenschicht optisch nicht wirksam werden kann.12. Layer system according to claim 8, characterized in that the functional layer has the same refractive index as the intermediate layer comprising titanium-aluminum oxide, so that the intermediate layer cannot be optically effective.
13. Schichtsystem nach Anspruch 12, dadurch gekennzeichnet, dass die Funktionsschicht Zirkonoxid umfasst.13. Layer system according to claim 12, characterized in that the functional layer comprises zirconium oxide.
14. Schichtsystem nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die ein Titan-Aluminium-Oxid umfassende Schicht aus mit 0 < x < 1 besteht .14. Layer system according to one of claims 1 to 13, characterized in that the layer comprising a titanium-aluminum oxide with 0 <x <1.
15. Schichtsystem nach Anspruch 14, dadurch gekennzeichnet, dass die* Brechzahl n der Titan-Aluminium-Oxid umfassenden Schicht über das Mengenverhältnis Titan zu Aluminium mit 1,55 ≤ n ≤ 2,50 einstellbar ist.15. Layer system according to claim 14, characterized in that the * refractive index n of the layer comprising titanium-aluminum oxide can be set via the quantitative ratio titanium to aluminum with 1.55 n n 2,5 2.50.
16. Schichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Schichtsystem aus mehreren Funktionsschichten, vorzugsweise aus einem Wechselschichtsystem mit hoch- und niedrigbrechenden Funktionsschichten aus Metalloxiden besteht.16. Layer system according to one of the preceding claims, characterized in that the layer system consists of several functional layers, preferably of an alternating layer system with high and low refractive index functional layers made of metal oxides.
17. Schichtsystem nach Anspruch 16, dadurch gekennzeichnet, dass die hochbrechenden Funktionsschichten Titan- Aluminium-Oxid umfassen.17. Layer system according to claim 16, characterized in that the highly refractive functional layers comprise titanium-aluminum oxide.
18. Schichtsystem nach Anspruch 17, dadurch gekennzeichnet, dass die niedrigbrechenden Funktionsschichten Siliziumoxid umfassen.18. Layer system according to claim 17, characterized in that the low-index functional layers comprise silicon oxide.
19. Schichtsystem nach Anspruch 18, dadurch gekennzeichnet, dass hochbrechende Titan-Aluminium-Oxid umfassende Funktionsschichten durch niedrigbrechende Siliziumoxid umfassende Zwischenschichten und/oder niedrigbrechende Siliziumoxid umfassende Funktionsschichten durch hochbrechende Titan-Aluminium-Oxid umfassende Zwischenschichten unterbrochen werden.19. Layer system according to claim 18, characterized in that high refractive index titanium-aluminum oxide functional layers by low refractive index silicon oxide intermediate layers and / or low refractive index Functional layers comprising silicon oxide are interrupted by intermediate layers comprising highly refractive titanium-aluminum oxide.
20. Schichtsystem nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Schichten mittels chemischer. Gasphasen-Abscheidungsverfahren, vorzugsweise plasma-unterstützt, insbesondere mittels gepulsten plasma-unterstützten CVD-Verfahren hergestellt sind.20. Layer system according to one of claims 1 to 19, characterized in that the layers by means of chemical. Gas phase deposition processes, preferably plasma-supported, in particular by means of pulsed plasma-supported CVD processes.
21. Schichtsystem nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Schichten mittels PVD- Verfahren hergestellt sind.21. Layer system according to one of claims 1 to 19, characterized in that the layers are produced by means of PVD processes.
22. Schichtsystem nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Schichten mittels Sol- Gel-Verfahren hergestellt sind.22. Layer system according to one of claims 1 to 19, characterized in that the layers are produced by means of the sol-gel process.
23. Beleuchtungskörpern, gekennzeichnet durch eine Beschichtung mit einem Schichtsystem gemäß einem der Ansprüche 1 bis 22.23. Lighting fixtures, characterized by a coating with a layer system according to one of claims 1 to 22.
24. Beleuchtungskörper nach Anspruch 23, dadurch gekennzeichnet, dass dieser ein IRC-Lämpchen oder IRC- Brenner ist .24. Lighting fixture according to claim 23, characterized in that it is an IRC lamp or IRC burner.
25. Reflektor, gekennzeichnet durch eine Beschichtung mit einem Schichtsystem gemäß einem der Ansprüche 1 bis 22.25. reflector, characterized by a coating with a layer system according to one of claims 1 to 22.
26. Reflektor nach Anspruch 25, dadurch gekennzeichnet, dass dieser ein Glaskeramik-Reflektor ist. 26. The reflector according to claim 25, characterized in that it is a glass ceramic reflector.
EP03750543A 2002-09-14 2003-09-13 Layer system comprising a titanium-aluminium-oxide layer Withdrawn EP1546053A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10242848 2002-09-14
DE10242848 2002-09-14
PCT/EP2003/010219 WO2004026782A1 (en) 2002-09-14 2003-09-13 Layer system comprising a titanium-aluminium-oxide layer

Publications (1)

Publication Number Publication Date
EP1546053A1 true EP1546053A1 (en) 2005-06-29

Family

ID=32009831

Family Applications (5)

Application Number Title Priority Date Filing Date
EP03750543A Withdrawn EP1546053A1 (en) 2002-09-14 2003-09-13 Layer system comprising a titanium-aluminium-oxide layer
EP03757837A Withdrawn EP1537056A1 (en) 2002-09-14 2003-09-13 Protective layer, method and arrangement for the production of protective layers
EP03757836A Ceased EP1537055A1 (en) 2002-09-14 2003-09-13 Coated object
EP10004380A Ceased EP2243751A3 (en) 2002-09-14 2003-09-13 Coated object
EP03757838A Expired - Lifetime EP1537057B1 (en) 2002-09-14 2003-09-13 Method for producing layers and layer systems and coated substrate

Family Applications After (4)

Application Number Title Priority Date Filing Date
EP03757837A Withdrawn EP1537056A1 (en) 2002-09-14 2003-09-13 Protective layer, method and arrangement for the production of protective layers
EP03757836A Ceased EP1537055A1 (en) 2002-09-14 2003-09-13 Coated object
EP10004380A Ceased EP2243751A3 (en) 2002-09-14 2003-09-13 Coated object
EP03757838A Expired - Lifetime EP1537057B1 (en) 2002-09-14 2003-09-13 Method for producing layers and layer systems and coated substrate

Country Status (9)

Country Link
US (4) US7713638B2 (en)
EP (5) EP1546053A1 (en)
JP (4) JP2005538255A (en)
KR (3) KR100909905B1 (en)
CN (3) CN100465116C (en)
AT (1) ATE394353T1 (en)
AU (4) AU2003270193A1 (en)
DE (1) DE50309800D1 (en)
WO (4) WO2004026785A1 (en)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465116C (en) * 2002-09-14 2009-03-04 肖特股份公司 Method for manufacturing layers and layer systems, and coating substrates
TWI352071B (en) * 2003-01-28 2011-11-11 Koninkl Philips Electronics Nv Transparent titanium oxide-aluminum and/or aluminu
DE10342398B4 (en) * 2003-09-13 2008-05-29 Schott Ag Protective layer for a body, and methods of making and using protective layers
DE10342397B4 (en) * 2003-09-13 2008-04-03 Schott Ag Transparent protective layer for a body and its use
JP4630574B2 (en) * 2004-05-31 2011-02-09 キヤノン株式会社 Optical element, mirror and antireflection film
DE102004041007B4 (en) * 2004-08-16 2013-10-17 E.G.O. Elektro-Gerätebau GmbH Hob and hob with a hob plate
DE502005009449D1 (en) * 2004-10-07 2010-06-02 Auer Lighting Gmbh Metal reflector and method for its production
DE102004049134A1 (en) * 2004-10-07 2006-04-13 Schott Ag Method for manufacturing high precision reflector e.g. for automobile headlamp, use reflector geometry for removing material during fabrication
US20090258222A1 (en) * 2004-11-08 2009-10-15 Agc Flat Glass Europe S.A. Glazing panel
DE102004058426A1 (en) * 2004-12-03 2006-06-08 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co.Kg High temperature resistant coating made of TiOx
DE102004060670B4 (en) * 2004-12-15 2010-07-01 Von Ardenne Anlagentechnik Gmbh Method and arrangement for producing high-temperature-resistant scratch-resistant coatings with low surface roughness
DE102004061464B4 (en) * 2004-12-17 2008-12-11 Schott Ag Substrate with fine laminar barrier protective layer and method for its production
FI117728B (en) * 2004-12-21 2007-01-31 Planar Systems Oy Multilayer structure and process for its preparation
US8814861B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US7147634B2 (en) 2005-05-12 2006-12-12 Orion Industries, Ltd. Electrosurgical electrode and method of manufacturing same
TWI275135B (en) * 2005-07-08 2007-03-01 Univ Tsinghua Fabrication method of epitaxial substrate having single-crystal Sc2O3 junction film
US7968426B1 (en) * 2005-10-24 2011-06-28 Microwave Bonding Instruments, Inc. Systems and methods for bonding semiconductor substrates to metal substrates using microwave energy
US7595271B2 (en) * 2005-12-01 2009-09-29 Asm America, Inc. Polymer coating for vapor deposition tool
JP5135753B2 (en) * 2006-02-01 2013-02-06 セイコーエプソン株式会社 Optical article
US7892662B2 (en) * 2006-04-27 2011-02-22 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
TW200830034A (en) * 2006-10-13 2008-07-16 Asahi Glass Co Ltd Method of smoothing surface of substrate for EUV mask blank, and EUV mask blank obtained by the method
FR2907112B1 (en) 2006-10-16 2009-10-02 Eurokera S N C Sa VITROCERAMIC PLATE AND METHOD FOR MANUFACTURING THE SAME
DE102007023803B4 (en) * 2007-05-21 2009-11-05 Schott Ag Process for the production of layer systems with intermediate layers and article with layer system with intermediate layers
US20090297703A1 (en) * 2008-05-29 2009-12-03 Motorola, Inc. Induced phase composite transparent hard coating
ES2513866T3 (en) 2009-05-13 2014-10-27 Sio2 Medical Products, Inc. Container coating and inspection
US9545360B2 (en) 2009-05-13 2017-01-17 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US8035285B2 (en) * 2009-07-08 2011-10-11 General Electric Company Hybrid interference coatings, lamps, and methods
EP2336811B1 (en) * 2009-12-21 2016-09-07 ALANOD GmbH & Co. KG Composite material
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
CN102333426A (en) * 2010-07-12 2012-01-25 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method thereof
CN102465267A (en) * 2010-11-08 2012-05-23 鸿富锦精密工业(深圳)有限公司 Preparation method of plated film member and plated film member prepared by method thereof
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US8574728B2 (en) 2011-03-15 2013-11-05 Kennametal Inc. Aluminum oxynitride coated article and method of making the same
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
CN102732846A (en) * 2011-04-07 2012-10-17 鸿富锦精密工业(深圳)有限公司 Covering member and manufacture method thereof
KR101927559B1 (en) * 2011-08-30 2018-12-10 에베 그룹 에. 탈너 게엠베하 Method for permanently bonding wafers by a connecting layer by means of solid-state diffusion or phase transformation
DE102011085799B4 (en) * 2011-11-04 2014-07-24 Von Ardenne Anlagentechnik Gmbh Process for protecting a substrate treatment plant from overheating
JP6095678B2 (en) 2011-11-11 2017-03-15 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド Passivation, pH protection or slippery coatings for pharmaceutical packages, coating processes and equipment
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
ES2583766T3 (en) * 2011-12-15 2016-09-22 Council Of Scientific & Industrial Research Improved selective solar coating with high thermal stability and preparation process
KR101444188B1 (en) * 2012-07-04 2014-10-02 영남대학교 산학협력단 Apparatus for making the photovoltaic absorber layer
TWI606986B (en) 2012-10-03 2017-12-01 康寧公司 Physical vapor deposited layers for protection of glass surfaces
WO2014071061A1 (en) 2012-11-01 2014-05-08 Sio2 Medical Products, Inc. Coating inspection method
EP2920567B1 (en) 2012-11-16 2020-08-19 SiO2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
EP2925903B1 (en) 2012-11-30 2022-04-13 Si02 Medical Products, Inc. Controlling the uniformity of pecvd deposition on medical syringes, cartridges, and the like
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9138864B2 (en) 2013-01-25 2015-09-22 Kennametal Inc. Green colored refractory coatings for cutting tools
US9017809B2 (en) 2013-01-25 2015-04-28 Kennametal Inc. Coatings for cutting tools
EP2961858B1 (en) 2013-03-01 2022-09-07 Si02 Medical Products, Inc. Coated syringe.
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
EP2971228B1 (en) 2013-03-11 2023-06-21 Si02 Medical Products, Inc. Coated packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9427808B2 (en) 2013-08-30 2016-08-30 Kennametal Inc. Refractory coatings for cutting tools
JP6511474B2 (en) * 2014-03-07 2019-05-15 ユニヴァーシティ・オブ・サウス・オーストラリア Decorative coatings for plastic substrates
EP3693493A1 (en) 2014-03-28 2020-08-12 SiO2 Medical Products, Inc. Antistatic coatings for plastic vessels
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9650290B2 (en) * 2014-05-27 2017-05-16 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique (C.R.V.C.) Sarl IG window unit for preventing bird collisions
KR101467889B1 (en) * 2014-06-12 2014-12-03 주식회사 엠코드 Manufacturing apparatus of non-reflective filter and manufacturing method using the same
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
CN116982977A (en) 2015-08-18 2023-11-03 Sio2医药产品公司 Medicaments and other packages with low oxygen transmission rate
TWI744249B (en) 2015-09-14 2021-11-01 美商康寧公司 High light transmission and scratch-resistant anti-reflective articles
US10816703B2 (en) 2015-09-28 2020-10-27 Tru Vue, Inc. Near infrared reflective coatings
KR102396179B1 (en) 2016-04-19 2022-05-09 어포지 엔터프라이지즈, 인크. Coated Glass Surfaces and Methods of Coating Glass Substrates
JP7014353B2 (en) * 2017-03-31 2022-02-01 株式会社Flosfia Crystalline laminated structure
CN106945490B (en) * 2017-04-27 2021-01-15 上海蔚来汽车有限公司 Head-up display device, windshield, and electric vehicle
AU2018261218B2 (en) 2017-05-04 2023-05-18 Apogee Enterprises, Inc. Low emissivity coatings, glass surfaces including the same, and methods for making the same
WO2019027909A1 (en) * 2017-07-31 2019-02-07 Corning Incorporated Coatings having controlled roughness and microstructure
US10650935B2 (en) * 2017-08-04 2020-05-12 Vitro Flat Glass Llc Transparent conductive oxide having an embedded film
CN114085038A (en) 2018-08-17 2022-02-25 康宁股份有限公司 Inorganic oxide articles with thin durable antireflective structures
CN109336630B (en) * 2018-08-29 2021-06-11 宁波华源精特金属制品有限公司 Support and preparation method thereof
CN110879435B (en) * 2019-11-18 2021-08-06 中国科学院上海技术物理研究所 Medium-long wave infrared wide spectrum color separation sheet with zinc selenide crystal as substrate
CN112526663A (en) * 2020-11-04 2021-03-19 浙江大学 Atomic layer deposition-based absorption film and manufacturing method thereof
TW202300959A (en) * 2021-03-11 2023-01-01 美商應用材料股份有限公司 Titanium oxide optical device films deposited by physical vapor deposition
CN113473657B (en) * 2021-09-03 2021-11-30 中熵科技(北京)有限公司 Semiconductor heating film capable of directionally transferring heat and preparation method thereof
WO2023064122A1 (en) * 2021-10-13 2023-04-20 Applied Materials, Inc. Rutile phase deposition with preferred crystal orientations

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321311A (en) 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
CA1177704A (en) 1981-07-20 1984-11-13 James D. Rancourt Optical coatings for high temperature applications
JPS58147556A (en) 1982-02-26 1983-09-02 Hitachi Ltd Manufacture of thin aluminum film
JP2589291B2 (en) * 1984-05-14 1997-03-12 ロイ ジエラルド ゴ−ドン Iris suppression method
AT380910B (en) 1984-05-23 1986-07-25 Nedoma Olga CEILING FOR WORK SPACES
US4643951A (en) * 1984-07-02 1987-02-17 Ovonic Synthetic Materials Company, Inc. Multilayer protective coating and method
US4920014A (en) * 1987-02-27 1990-04-24 Sumitomo Metal Mining Co., Ltd. Zirconia film and process for preparing it
JPH06102558B2 (en) * 1987-05-29 1994-12-14 セントラル硝子株式会社 Colored glass plates
JP2964513B2 (en) 1988-12-27 1999-10-18 東芝ライテック株式会社 High heat resistant high refractive index composite oxide thin film, composition for forming the same, and incandescent lamp
ES2082164T3 (en) * 1990-07-05 1996-03-16 Saint Gobain Vitrage PROCEDURE FOR THE FORMATION OF A LAYER OF ALUMINUM AND TITANIUM OXIDES ON GLASS, CRYSTAL INCLUDING GLASS AND SEMICONDUCTIVE LAYER.
DE4031489A1 (en) 1990-10-05 1992-04-09 Ver Glaswerke Gmbh METHOD FOR COATING GLASS DISCS BY A THERMAL SPRAYING METHOD
GB2252333B (en) 1991-01-29 1995-07-19 Spectra Physics Scanning Syst Improved scanner window
EP0678483B1 (en) * 1991-04-30 1998-12-23 Saint-Gobain Vitrage Glass substrate with a thin multilayer coating for solar protection
ATE147890T1 (en) 1991-05-31 1997-02-15 Deposition Sciences Inc SPUTTER SYSTEM
EP0548972B1 (en) * 1991-12-26 1997-04-23 Asahi Glass Company Ltd. A transparent film-coated substrate
DE4208376A1 (en) * 1992-03-16 1993-09-23 Asea Brown Boveri High performance irradiator esp. for ultraviolet light - comprising discharge chamber, filled with filling gas, with dielectrics on its walls to protect against corrosion and erosion
FR2698093B1 (en) * 1992-11-17 1995-01-27 Saint Gobain Vitrage Int Glazing with transmission properties varying with incidence.
JPH06256929A (en) * 1993-03-04 1994-09-13 Mitsubishi Shindoh Co Ltd Golden color vapor deposited product
JPH07138048A (en) * 1993-10-26 1995-05-30 Nissan Motor Co Ltd Ultraviolet light heat screening glass
DE4438359C2 (en) * 1994-10-27 2001-10-04 Schott Glas Plastic container with a barrier coating
US5513040B1 (en) * 1994-11-01 1998-02-03 Deposition Technology Inc Optical device having low visual light transmission and low visual light reflection
WO1997008357A1 (en) * 1995-08-30 1997-03-06 Nashua Corporation Anti-reflective coating
JP3761273B2 (en) * 1996-02-20 2006-03-29 フクビ化学工業株式会社 Anti-reflection coating
US5944964A (en) * 1997-02-13 1999-08-31 Optical Coating Laboratory, Inc. Methods and apparatus for preparing low net stress multilayer thin film coatings
JPH11149063A (en) 1997-09-09 1999-06-02 Asahi Optical Co Ltd Spectacle lens with antireflection film
JPH11305014A (en) * 1998-04-22 1999-11-05 Asahi Optical Co Ltd Multilayer film mirror and production of the multilayer film mirror
US5914817A (en) * 1998-05-15 1999-06-22 Optical Coating Laboratory, Inc. Thin film dichroic color separation filters for color splitters in liquid crystal display systems
US6797388B1 (en) * 1999-03-18 2004-09-28 Ppg Industries Ohio, Inc. Methods of making low haze coatings and the coatings and coated articles made thereby
JP2002014203A (en) * 2000-06-30 2002-01-18 Canon Inc Antireflection film and optical member using the same
JP2002243906A (en) * 2001-02-21 2002-08-28 Toppan Printing Co Ltd Antireflection laminate and method for manufacturing the same
DE20106167U1 (en) * 2001-04-07 2001-06-21 Schott Glas Hob with a glass ceramic plate as the cooking surface
US6579590B2 (en) * 2001-11-16 2003-06-17 Hitachi Global Storage Technologies Netherlands B.V. Thermally-assisted magnetic recording disk with multilayered thermal barrier
CN100465116C (en) * 2002-09-14 2009-03-04 肖特股份公司 Method for manufacturing layers and layer systems, and coating substrates
DE10342397B4 (en) * 2003-09-13 2008-04-03 Schott Ag Transparent protective layer for a body and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004026782A1 *

Also Published As

Publication number Publication date
CN100575290C (en) 2009-12-30
EP1537055A1 (en) 2005-06-08
CN100465116C (en) 2009-03-04
KR20050057312A (en) 2005-06-16
KR100885083B1 (en) 2009-02-25
CN1681743A (en) 2005-10-12
CN1323045C (en) 2007-06-27
US7713638B2 (en) 2010-05-11
EP1537056A1 (en) 2005-06-08
US20060093840A1 (en) 2006-05-04
JP2005538028A (en) 2005-12-15
KR20050057328A (en) 2005-06-16
KR20070087259A (en) 2007-08-27
EP1537057B1 (en) 2008-05-07
WO2004026785A1 (en) 2004-04-01
AU2003273874A1 (en) 2004-04-08
US20060246321A1 (en) 2006-11-02
WO2004026782A1 (en) 2004-04-01
ATE394353T1 (en) 2008-05-15
KR100890258B1 (en) 2009-03-24
EP1537057A1 (en) 2005-06-08
US20040258947A1 (en) 2004-12-23
US7641773B2 (en) 2010-01-05
AU2003270193A1 (en) 2004-04-08
EP2243751A3 (en) 2011-11-02
JP2005538255A (en) 2005-12-15
US7381469B2 (en) 2008-06-03
AU2003273872A1 (en) 2004-04-08
JP4268938B2 (en) 2009-05-27
JP2005538871A (en) 2005-12-22
WO2004026787A1 (en) 2004-04-01
CN1681744A (en) 2005-10-12
DE50309800D1 (en) 2008-06-19
AU2003273873A1 (en) 2004-04-08
CN1681745A (en) 2005-10-12
US20060127699A1 (en) 2006-06-15
JP2005538256A (en) 2005-12-15
EP2243751A2 (en) 2010-10-27
KR100909905B1 (en) 2009-07-30
WO2004026786A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
EP1546053A1 (en) Layer system comprising a titanium-aluminium-oxide layer
EP0300579B1 (en) Optical interference filter
DE102014104798B4 (en) Hard anti-reflective coatings as well as their manufacture and use
DE60121007T2 (en) SUBSTRATE WITH A PHOTOCATALYTIC COATING
DE602004012968T2 (en) GLAZING WASHING A COATING STACK
DE102007025577B4 (en) Process for the preparation of titanium oxide layers with high photocatalytic activity
DE102012002927A1 (en) An article with reflection-reducing coating and process for its production
EP0561289B1 (en) Material for vapour deposition for the production of high refractive optical layers
DE10241847B4 (en) Coating with photoinduced hydrophilicity and their use
DE102009017547A1 (en) Infrared radiation reflecting glass or glass ceramic pane
DE102006037912B4 (en) Temperable solar control layer system and method for its production
DE69930921T2 (en) ELECTRIC LAMP
WO2017032807A2 (en) Reflective composite material comprising an aluminum substrate and a silver reflective layer
DE602005004798T2 (en) ELECTRIC LAMP AND INTERFERENCE COATING
EP1219724B1 (en) Material for vapour deposition of high refractive optical layers
EP1472195A1 (en) Method for coating the quartz burner of an hid lamp
EP1955098A1 (en) Temperature-resistant layered system
WO2016171620A1 (en) A multilayer coating
DE102004025646A1 (en) Highly reflective dielectric mirror and method for its production
WO2010049012A1 (en) Hafnium oxide or zirconium oxide coating
DE102014111190B4 (en) Highly transmissive and scratch-resistant layer system reflecting infrared radiation and method for its production
DE102022117697A1 (en) Glazing pane and method for producing such a glazing pane
DE102016125042A1 (en) Infrared mirror with a thermally stable layer
EP1666428A1 (en) High temperature resistant TiOx coating
DE202023103564U1 (en) Glass-ceramic article and process environment with a glass-ceramic article

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENN, CHRISTIAN

Inventor name: DZICK, JUERGEN

Inventor name: BAUER, STEFAN

Inventor name: GEISLER, STEFAN

Inventor name: KUEPPER, THOMAS

Inventor name: KOPPE, FRANK

Inventor name: BEWIG, LARS

Inventor name: MOELLE, CHRISTOPH

17Q First examination report despatched

Effective date: 20080227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150728