EP1541808A1 - Turbine component with a heat- and erosion resistant coating - Google Patents

Turbine component with a heat- and erosion resistant coating Download PDF

Info

Publication number
EP1541808A1
EP1541808A1 EP03028576A EP03028576A EP1541808A1 EP 1541808 A1 EP1541808 A1 EP 1541808A1 EP 03028576 A EP03028576 A EP 03028576A EP 03028576 A EP03028576 A EP 03028576A EP 1541808 A1 EP1541808 A1 EP 1541808A1
Authority
EP
European Patent Office
Prior art keywords
component according
thermal barrier
barrier coating
component
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03028576A
Other languages
German (de)
French (fr)
Inventor
Friedhelm Schmitz
Kai Dr. Wieghardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03028576A priority Critical patent/EP1541808A1/en
Priority to PCT/EP2004/013660 priority patent/WO2005061856A1/en
Priority to CN200480036878.5A priority patent/CN1890456B/en
Priority to US10/582,604 priority patent/US7758968B2/en
Priority to EP04801188A priority patent/EP1692371A1/en
Publication of EP1541808A1 publication Critical patent/EP1541808A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the invention relates to a component with a thermal barrier coating and an erosion control layer according to claim 1.
  • Thermal barrier coatings applied to components are known in the field of gas turbines, as e.g. in EP 1 029 115 are described.
  • Thermal barrier coatings allow components to be used at higher temperatures than the base material allows, or to extend service life.
  • Known base materials (substrates) for gas turbines allow operating temperatures of a maximum of 1000 ° C to 1100 ° C, whereas a coating with a thermal barrier coating allows operating temperatures of up to 1350 ° C.
  • a metallic erosion control layer is of particular advantage because it is elastically and plastically deformable due to its ductility.
  • the thermal barrier coating does not necessarily serve only the Purpose the range of service temperatures upwards but the thermal expansion due to the Temperature differences that are generated on the component or rest, is evened out in an advantageous manner and / or reduced. So can thermomechanical stresses be avoided or at least reduced.
  • FIG. 1 shows a first exemplary embodiment of a component 1 designed according to the invention.
  • the component 1 is a component of a gas or steam turbine 300, 303 (FIG. 8), in particular a steam inflow region 333, a turbine blade 342, 354, 357 (FIG. 8) or a housing part 334, 335, 366 (FIG. 8) , 9) and consists of a substrate 4 (supporting structure) and a thermal insulation layer applied thereto 7 and an outer erosion protection layer 13.
  • the erosion protection layer 13 can also act simultaneously as a thermal barrier coating, so that then physically only a single layer on the substrate 4 would be present.
  • the erosion protection layer 13 is preferably made of a metal or a metal alloy and protects the component from erosion and / or wear, as is the case in particular with steam turbines 300, 303 (FIG. 8) subject to scaling, and at the mean flow velocities from about 50m / s (ie 20m / s - 100m / s) and pressures of 350 to 400 bar.
  • the erosion protection layer 13 of a component 1 of a steam turbine 300, 303 may also consist of other materials (eg ceramic).
  • the substrate 4 is for example a steel or a other iron-based alloy (for example 1% CrMoV or 10 - 12% chromium steels or IN617) or a nickel or cobalt-based superalloy.
  • a steel or a other iron-based alloy for example 1% CrMoV or 10 - 12% chromium steels or IN617) or a nickel or cobalt-based superalloy.
  • the heat-insulating layer 7 is in particular a ceramic layer, which consists for example at least partially of zirconium oxide (partially stabilized or fully stabilized by yttrium oxide and / or magnesium oxide) and / or at least partially of titanium oxide and is for example thicker than 0.1 mm.
  • thermal barrier coatings 7 consisting of 100% of either zirconia or titanium oxide can be used.
  • the ceramic layer 7 can by means of known Coating methods such as atmospheric plasma spraying (APS), vacuum plasma spraying (VPS), low pressure plasma spraying (LPPS) as well as by chemical or physical coating methods be applied (CVD, PVD).
  • Coating methods such as atmospheric plasma spraying (APS), vacuum plasma spraying (VPS), low pressure plasma spraying (LPPS) as well as by chemical or physical coating methods be applied (CVD, PVD).
  • FIG. 2 shows a further embodiment of the component 1 designed according to the invention.
  • the intermediate protective layer 10 serves to protect against corrosion and / or oxidation of the substrate 4 and / or for better bonding of the thermal barrier coating 7 to the substrate 4. This is the case in particular if the thermal barrier coating 7 consists of ceramic and the substrate 4 consists of a metal.
  • the intermediate protective layer 10 for protecting a substrate 4 against corrosion and oxidation at a high temperature has, for example, essentially the following elements (indication of the percentages by weight): 11.5 to 20.0 wt% chromium, 0.3 to 1.5 wt% silicon, 0.0 to 1.0 wt% aluminum, 0.0 to 0.7% by weight of yttrium and / or at least one equivalent metal from the group comprising scandium and the elements of the rare earths, Remainder iron, cobalt and / or nickel as well as production-related impurities.
  • the metallic intermediate protective layer 10 is made 12.5 to 14.0 wt% Chrome, 0.5 to 1.0 wt% Silicon, 0.1 to 0.5 wt% Aluminum, 0.0 to 0.7 wt% Yttrium and / or at least an equivalent Metal from the group comprising Scandium and the elements of the rare earths, Remainder iron and / or cobalt and / or nickel as well as production-related impurities.
  • the composition of the iron-based intermediate protective layer 10 exhibits particularly good properties, so that the intermediate protective layer 10 is outstandingly suitable for application to ferritic substrates 4.
  • the coefficients of thermal expansion of substrate 4 and intermediate protective layer 10 can be matched to each other very well (up to 10% difference) or even equal, so that there is no thermally induced stress build-up between substrate 4 and intermediate protective layer 10 (thermal mismatch) could cause flaking of the intermediate protective layer 10.
  • the substrate 4 is a ferritic Base alloy, a steel or a nickel or cobalt-based superalloy, in particular a 1% CrMoV steel or a 10 to 12 percent chromium steel.
  • the thermal barrier coating 7 at least partially a certain open and / or closed porosity.
  • the wear / erosion protective layer 13 a higher density than the thermal barrier coating 7 and exists for example, based on iron alloys, Chromium, nickel and / or cobalt or, for example, NiCr 80/20 or NiCrSiB with admixtures of boron (B) and silicon (Si) or NiAl (eg: Ni: 95wt%, Al 5wt%).
  • a metallic erosion protection layer 13 used in steam turbines 300, 303, as the Operating temperatures in steam turbines at Steam inlet area 333 maximum at 450 ° C, 550 ° C, 650 ° C or 850 ° C lie. There are for such temperature ranges enough metallic layers that have a sufficiently large necessary erosion protection over the service life of the component 1 while having good oxidation resistance.
  • Metallic erosion protection layers 13 in gas turbines a ceramic thermal barrier coating 7 within the first Stage of the turbine or inside the combustion chamber are not possible because metallic erosion protection layers 13 as outer Do not coat the application temperatures of up to 1350 ° C can withstand.
  • a ceramic erosion protection layer 13 exists for example, partially or 100% chromium carbide.
  • Other materials for the erosion protection layer 13 are, for example, a mixture of tungsten carbide, chromium carbide and nickel (WC, CrC-Ni), for example, with the weight percentages 73 wt% for tungsten carbide, 20 wt% for chromium carbide and 7 wt% for nickel, also chromium carbide with the Admixing of nickel (Cr 3 C 2 -Ni), for example, with a proportion of 83 wt% chromium carbide and 17 wt% nickel and a mixture of chromium carbide and nickel chromium (Cr 3 C 2 -NiCr), for example, with a share of 75 wt% Chromium carbide and 25 wt% nickel chromium and yttrium-stabilized zirconium oxide, for example, with a weight fraction of 80 wt% zirconium oxide and 20 wt% yttrium oxide.
  • WC, CrC-Ni chromium
  • the thermal barrier coating 7 is porous, for example.
  • FIG. 5 shows a porous thermal barrier coating 7 with a gradient of porosity.
  • the layer 7 can be used in the region of greater porosity for thermal insulation and, where appropriate, for erosion protection in the area of lower porosity.
  • the substrate 4 or one, if necessary existing intermediate protective layer 10 out preferably one greater porosity than in the area of an outer surface or the contact surface with the erosion control layer 13.
  • the erosion protection layer 13 preferably has a higher Density than the thermal barrier coating 7, so they 13 a has higher strength.
  • FIGS. 7 a, 7 b show the influence of the thermal barrier coating 7 on the thermal deformation behavior of the component. 1
  • FIG. 7a shows a component without a thermal barrier coating.
  • a higher temperature T max and a lower temperature T min which gives a temperature difference dT (4).
  • the temperature difference dT (4) can be at least 200 ° C.
  • the higher temperature T max is, for example, at least 450 ° C., in particular even up to 850 ° C.
  • the substrate 4 as indicated by dashed lines, expands significantly more in the region of the higher temperature T max due to the thermal expansion than in the region of the lower temperature T min . This differential expansion causes an undesirable deformation of the component (housing).
  • a thermal barrier coating 7 is present on the substrate 4, wherein the substrate 4 and the thermal barrier coating 7 together are for example just as thick as the substrate 4 in FIG. 7a.
  • the thermal barrier coating 7 reduces the maximum temperature at the surface of the substrate 4 disproportionately to a temperature T ' max , although the external temperature T max is the same as in FIG. 7 a. This results not only from the distance of the surface of the substrate 4 to the higher temperature, but in particular by the lower thermal conductivity of the thermal barrier coating 7.
  • the erosion protection layer 13 is here for the sake of simplicity not shown.
  • FIG. 8 shows an example of a steam turbine 300, 303 one extending along a rotation axis 306 Turbine shaft 309 shown.
  • the steam turbine has a high pressure turbine part 300 and a medium-pressure turbine section 303, each with a Inner housing 312 and a surrounding this outer housing 315 on.
  • the high pressure turbine part 300 is, for example, in Pot type executed.
  • the medium-pressure turbine section 303 is double-flowed. It is also possible that the Medium-pressure turbine section 303 is designed to be single-entry.
  • Along the axis of rotation 306 is between the high pressure turbine part 300 and the medium pressure turbine section 303 a bearing 318th arranged, wherein the turbine shaft 309 in the bearing 318th has a storage area 321.
  • the turbine shaft 309 is on another camp 324 next to the high-pressure turbine section 300 superimposed.
  • this camp 324 has the High pressure turbine part 300 a shaft seal 345 on.
  • the Turbine shaft 309 is opposite to the outer housing 315 of Medium-pressure turbine section 303 by two more Shaft seals 345 sealed.
  • These High-pressure blading 354, 357 provides with the associated, not shown blades one first blading area 360.
  • the medium-pressure turbine section 303 has a central steam inflow area 333 on.
  • the Turbine shaft 309 Associated with the steam inflow region 333, the Turbine shaft 309 a radially symmetric shaft shield 363, a cover plate, on the one hand to the division of Steam flow in the two floods of the medium-pressure turbine section 303 and to prevent direct contact of the hot steam with the turbine shaft 309 on.
  • the Turbine shaft 309 points in the medium-pressure turbine section 303 a second blading area 366 with the medium pressure blades 354, 342 on.
  • the second Blading region 366 flowing hot steam flows out the medium-pressure turbine section 303 from a discharge nozzle 369th to a flow downstream, not illustrated low-pressure turbine section.
  • the turbine shaft 309 is composed of two turbine shafts 309a and 309b which are fixed in the area of the bearing 318 connected to each other.
  • the steam inflow region 333 has a Thermal insulation layer 7 and an erosion protection layer 13 on.
  • FIG. 9 shows an enlarged illustration of a region of the steam turbine 300, 303.
  • the steam turbine 300, 303 consists of an outer housing 334, against which temperatures between 250 ° and 350 ° C. are applied. Temperatures of 450 ° to 800 ° C. prevail at the inflow region 333 as part of an inner housing 335. This results in a temperature difference of at least 200 ° C.
  • the heat-insulating layer 7 is applied to the inside 336 (on the outside 337, for example, not).
  • the thermal barrier coating 7 is present locally only on the inner housing 335 (and not in the blading area 366, for example).
  • the heat input into the inner housing 335 is reduced, so that the thermal expansion behavior is influenced.
  • the entire deformation behavior of the inner housing 335 and the Dampfeinström Anlagens 333 can be controlled. This can be done by a variation of the thickness of the thermal barrier coating 7 or the application of different materials at different locations of the surface of the inner housing 335th Likewise, the porosity at different locations of the inner housing 335 may be different.
  • the thermal barrier coating 7 may be applied locally, for example in the inner housing 335 in the region of the inflow region 333. Likewise, the thermal barrier coating 7 can be applied locally only in the blading area 366 (FIG. 3). Especially in the inflow region 333, the use of an erosion protection layer 13 is required.
  • FIG. 4 shows a further exemplary embodiment of a component 1 according to the invention.
  • the thickness of the thermal barrier coating 7 in the inflow region 333 is made thicker than in the blading region 366 of the steam turbine 300, 303. Due to the locally different thickness of the thermal barrier coating 7, the heat input and thus the thermal expansion and thus the expansion behavior of the inner housing 334, consisting of the inflow region 333 and the blading region 366, controlled. Since higher temperatures prevail in the inflow region 333 than in the blading region 366, the thicker heat-insulating layer 7 in the inflow region 333 reduces the heat input into the substrate 4 more than in the blading region 366, where lower temperatures prevail. Thus, the heat input in both the inflow region 333 and subsequent blading region 366 can be kept approximately equal so that the thermal expansion is approximately equal.
  • thermal barrier coating 7 is here in the entire hot area, so applied globally.
  • FIG. 11 shows another application example for the Use of a thermal barrier coating 7.
  • the component 1, in particular a housing part, is here a valve housing 31, into which a hot steam flows through an inlet channel 46.
  • the inflow passage 46 causes a mechanical weakening of the valve housing.
  • the valve housing 31 consists for example of a cup-shaped housing part 34 and a lid 37th Within the housing part 31, a valve consisting of a valve plug 40 and a spindle 43 is present.
  • the valve housing 31 would expand axially more strongly in the region of the channel 46, so that tilting of the cover with the spindle 43 occurs, as indicated by dashed lines.
  • the valve cone 34 no longer sits properly, so that the tightness of the valve is reduced.
  • a thermal barrier coating 7 on an inner side 49 of the housing 31, a homogenization of the deformation behavior is achieved, so that both ends 52, 55 of the housing 31 and the cover 37 expand uniformly.
  • thermal barrier coating is used to Control deformation behavior and thus the tightness to ensure the valve.
  • FIG. 10 shows the influence of the application of a Thermal insulation layer 7 on a remanufactured component.
  • Refurbishment means that components 1 that were in use are reused and possibly repaired beforehand, ie that they are freed from corrosion and oxidation products and cracks are possibly detected and repaired, for example, by filling with solder or by welding. Each component 1 has a certain life until it is 100% damaged.
  • the component 1 for example a turbine blade 342, 254, 357 or an inner housing 334 is inspected at a time t s and, if necessary, worked up again, a certain percentage S s of the damage has been reached.
  • the time course of the damage of the component 1 is indicated by the reference numeral 22.
  • the damage curve would continue without reprocessing using the dashed line 25 and increase sharply, since the component despite maintenance does not have the same mechanical properties as a newly manufactured component. The remaining operating time would be relatively short.
  • the deformation behavior of components 1 is made uniform by the heat-insulating layer 7, so that, for example, less stress is generated, which could lead to damage of the component 1. This also increases the service life of the component 1. The life is thus extended by equalizing the deformation behavior of the component and / or by reducing the heat input into the component. 1

Abstract

The component (1) has esp. a ceramic heat insulation layer (7), and an erosion protection layer (13), which is resistant over long periods only at temperatures up to max. 850[deg]C, esp. max. 650[deg]C. The component is a housing part of a gas or steam turbine, e.g. turbine housing, valve housing, housing part for steam intake section, or turbine blade. The component consists of a material (4) of e.g. nickel, cobalt, or esp. iron-based alloy. The heat insulation layer is at least partially, esp. completely of zirconium oxide (ZrO2) or titanium oxide (TiO2). An intermediate protective layer (10) under the heat insulation layer consists of 11,5% to 20% chromium, 0,3% to 1,5% silicon, 0% to 1% aluminum, 0% to 4% yttrium, and iron. The erosion protection layer is of metal or ceramics, or an alloy, esp. NlCr80/20.

Description

Die Erfindung betrifft ein Bauteil mit einer Wärmedämmschicht und einer Erosionsschutzschicht nach Anspruch 1.The invention relates to a component with a thermal barrier coating and an erosion control layer according to claim 1.

Wärmedämmschichten, die auf Bauteilen aufgebracht werden, sind aus dem Bereich der Gasturbinen bekannt, wie sie z.B. in der EP 1 029 115 beschrieben sind.Thermal barrier coatings applied to components are known in the field of gas turbines, as e.g. in EP 1 029 115 are described.

Wärmedämmschichten erlauben es, Bauteile bei höheren Temperaturen einzusetzen, als es der Grundwerkstoff zulässt, oder die Einsatzdauer zu verlängern.
Bekannte Grundwerkstoffe (Substrate) für Gasturbinen ermöglichen Einsatztemperaturen von maximal 1000°C bis 1100°C, wohingegen eine Beschichtung mit einer Wärmedämmschicht Einsatztemperaturen von bis zu 1350°C ermöglicht.
Thermal barrier coatings allow components to be used at higher temperatures than the base material allows, or to extend service life.
Known base materials (substrates) for gas turbines allow operating temperatures of a maximum of 1000 ° C to 1100 ° C, whereas a coating with a thermal barrier coating allows operating temperatures of up to 1350 ° C.

Die Einsatztemperaturen von Bauteilen in einer Dampfturbine sind deutlich niedriger, so dass dort solche Anforderungen nicht gestellt werden.The operating temperatures of components in a steam turbine are significantly lower, so there are such requirements not be asked.

Aus der EP 1 029 104 A ist bekannt, eine keramische Erosionsschutzschicht auf eine keramische Wärmedämmschicht einer Gasturbinenschaufel aufzubringen.From EP 1 029 104 A is known, a ceramic Erosion protection layer on a ceramic thermal barrier coating to apply a gas turbine blade.

Aus der DE 195 35 227 A1 ist bekannt, eine Wärmedämmschicht in einer Dampfturbine vorzusehen, um Werkstoffe mit schlechteren mechanischen Eigenschaften, die aber kostengünstiger sind, für das Substrat, auf das die Wärmedämmschicht aufgebracht wird, verwenden zu können.From DE 195 35 227 A1 is known, a thermal barrier coating in a steam turbine to provide materials with worse mechanical properties, however are more cost effective, for the substrate to which the Heat-insulating layer is applied to use.

Aufgrund von Verunreinigungen in einem Medium und/oder hohen Strömungsgeschwindigkeiten des strömenden Mediums, das an Bauteilen mit einer Wärmedämmschicht vorbeiströmt, kommt es zu einer starken Erosion der Wärmedämmschicht.Due to impurities in a medium and / or high Flow velocities of the flowing medium, the Components with a thermal barrier flow past, it comes to a strong erosion of the thermal barrier coating.

Daher ist es Aufgabe der Erfindung ein Bauteil aufzuzeigen, das dieses Problem überwindet.Therefore, it is an object of the invention to show a component, that overcomes this problem.

Die Aufgabe wird gelöst durch ein Bauteil für Einsatztemperaturen kleiner 850°C gemäss Anspruch 1.The problem is solved by a component for Use temperatures below 850 ° C according to claim 1.

In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Bauteile aufgelistet. Die in den Unteransprüchen aufgelisteten Maßnahmen können in vorteilhafter Art und Weise miteinander verknüpft werden.In the subclaims are further advantageous Embodiments of the components of the invention listed. The measures listed in the subclaims can be found in advantageously linked together.

Insbesondere bei Bauteilen von Turbinen, die zum Antrieb heißen Fluiden ausgesetzt sind, kommt es häufig durch Verzunderungen zu einem mechanischen Einschlag von abgelösten Zunder-Teilchen auf eine spröde keramische Schicht, was zum Ausbrechen von Material, also zur Erosion führen könnte. Obwohl die keramische Schicht dafür ausgelegt ist, Thermoschocks zu überstehen, ist sie anfällig gegenüber der lokal sehr begrenzt auftretenden mechanischen Beanspruchung, da ein Thermoschock globaler auf die gesamte Schicht einwirkt.
Daher ist eine metallische Erosionsschutzschicht von besonderem Vorteil, da sie aufgrund ihrer Duktilität elastisch und plastisch verformbar ist.
In particular, in components of turbines, which are exposed to hot fluids, it often comes through scaling to a mechanical impact of detached scale particles on a brittle ceramic layer, which could lead to breakage of material, ie erosion. Although the ceramic layer is designed to survive thermal shocks, it is susceptible to localized mechanical stress because thermal shock affects the entire layer more globally.
Therefore, a metallic erosion control layer is of particular advantage because it is elastically and plastically deformable due to its ductility.

Die Wärmedämmschicht dient nicht notwendigerweise nur dem Zweck den Bereich der Einsatztemperaturen nach oben zu verschieben, sondern die thermische Dehnung aufgrund der Temperaturunterschiede, die an dem Bauteil erzeugt werden bzw. anliegen, wird in vorteilhafter Weise vergleichmäßigt und/oder reduziert. So können thermomechanischen Spannungen vermieden bzw. zumindest reduziert werden. The thermal barrier coating does not necessarily serve only the Purpose the range of service temperatures upwards but the thermal expansion due to the Temperature differences that are generated on the component or rest, is evened out in an advantageous manner and / or reduced. So can thermomechanical stresses be avoided or at least reduced.

Ausführungsbeispiele sind in den Figuren dargestellt.Embodiments are shown in the figures.

Es zeigen

Figur 1, 2
Anordnungsmöglichkeiten einer erfindungsgemäßen Wärmedämmschicht eines Bauteils,
Figur 3, 4, 9, 11
weitere Ausführungsbeispiele eines erfindungsgemäßen ausgebildeten Bauteils,
Figur 5, 6
einen Gradienten der Porosität innerhalb der Wärmedämmschicht eines erfindungsgemäß ausgebildeten Bauteils,
Figur 7
der Einfluss eines Temperaturunterschieds auf ein Bauteil,
Figur 8
eine Dampfturbine und
Figur 10
den Einfluss einer Wärmedämmschicht auf die Lebensdauer eines wieder aufgearbeiteten Bauteils.
Show it
FIG. 1, 2
Possible arrangements of a thermal barrier coating of a component according to the invention,
3, 4, 9, 11
Further embodiments of a trained component according to the invention,
FIG. 5, 6
a gradient of porosity within the thermal barrier coating of a component designed according to the invention,
FIG. 7
the influence of a temperature difference on a component,
FIG. 8
a steam turbine and
FIG. 10
the influence of a thermal barrier coating on the life of a remanufactured component.

Figur 1 zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäß ausgebildeten Bauteils 1.
Das Bauteil 1 ist ein Bauteil einer Gas- oder einer Dampfturbine 300, 303 (Fig. 8), insbesondere ein Dampfeinströmbereich 333, eine Turbinenschaufel 342, 354, 357 (Fig. 8) oder ein Gehäuseteil 334, 335, 366 (Fig. 8, 9) und besteht aus einem Substrat 4 (Tragstruktur) und einer darauf aufgebrachten Wärmedämmschicht 7 sowie einer äußeren Erosionsschutzschicht 13. Die Erosionsschutzschutzschicht 13 kann auch gleichzeitig als Wärmedämmschicht wirken, so dass dann körperlich nur eine einzige Schicht auf dem Substrat 4 vorhanden wäre.
Die Erosionsschutzschicht 13 besteht vorzugsweise aus einem Metall oder einer Metalllegierung und schützt das Bauteil vor Erosion und/oder Verschleiß, wie es insbesondere bei Dampfturbinen 300, 303 (Fig. 8), die einer Verzunderung unterliegen, der Fall ist, und bei der mittlere Strömungsgeschwindigkeiten von etwa 50m/s (d.h. 20m/s - 100 m/s) und Drücke von 350 bis 400 bar auftreten.
Die Erosionsschutzschicht 13 eines Bauteils 1 einer Dampfturbine 300, 303 kann auch aus anderen Materialien bestehen (z.B. Keramik).
FIG. 1 shows a first exemplary embodiment of a component 1 designed according to the invention.
The component 1 is a component of a gas or steam turbine 300, 303 (FIG. 8), in particular a steam inflow region 333, a turbine blade 342, 354, 357 (FIG. 8) or a housing part 334, 335, 366 (FIG. 8) , 9) and consists of a substrate 4 (supporting structure) and a thermal insulation layer applied thereto 7 and an outer erosion protection layer 13. The erosion protection layer 13 can also act simultaneously as a thermal barrier coating, so that then physically only a single layer on the substrate 4 would be present.
The erosion protection layer 13 is preferably made of a metal or a metal alloy and protects the component from erosion and / or wear, as is the case in particular with steam turbines 300, 303 (FIG. 8) subject to scaling, and at the mean flow velocities from about 50m / s (ie 20m / s - 100m / s) and pressures of 350 to 400 bar.
The erosion protection layer 13 of a component 1 of a steam turbine 300, 303 may also consist of other materials (eg ceramic).

Das Substrat 4 ist beispielsweise eine Stahl- oder eine sonstige eisenbasierte Legierung (beispielsweise 1%CrMoV oder 10 - 12% Chromstähle oder IN617) oder eine nickel- oder kobaltbasierte Superlegierung.The substrate 4 is for example a steel or a other iron-based alloy (for example 1% CrMoV or 10 - 12% chromium steels or IN617) or a nickel or cobalt-based superalloy.

Die Wärmedämmschicht 7 ist insbesondere eine keramische Schicht, die beispielsweise zumindest teilweise aus Zirkonoxid (teilstabilisiert oder vollstabilisiert durch Yttriumoxid und/oder Magnesiumoxid) und/oder zumindest teilweise aus Titanoxid besteht und beispielsweise dicker als 0.1 mm ist.
So können Wärmedämmschichten 7, die zu 100% entweder aus Zirkonoxid oder Titanoxid bestehen, verwendet werden.
The heat-insulating layer 7 is in particular a ceramic layer, which consists for example at least partially of zirconium oxide (partially stabilized or fully stabilized by yttrium oxide and / or magnesium oxide) and / or at least partially of titanium oxide and is for example thicker than 0.1 mm.
Thus, thermal barrier coatings 7 consisting of 100% of either zirconia or titanium oxide can be used.

Die keramische Schicht 7 kann mittels bekannter Beschichtungsverfahren wie atmosphärisches Plasmaspritzen (APS), Vakuumplasmaspritzen (VPS), Niedrigdruckplasmaspritzen (LPPS) sowie durch chemische oder physikalische Beschichtungsmethoden aufgebracht werden (CVD, PVD).The ceramic layer 7 can by means of known Coating methods such as atmospheric plasma spraying (APS), vacuum plasma spraying (VPS), low pressure plasma spraying (LPPS) as well as by chemical or physical coating methods be applied (CVD, PVD).

Figur 2 zeigt eine weitere Ausgestaltung des erfindungsgemäß ausgebildeten Bauteils 1.
Zwischen dem Substrat 4 und der Wärmedämmschicht 7 ist zumindest eine weitere Zwischenschutzschicht 10 angeordnet. Die Zwischenschutzschicht 10 dient zum Schutz vor Korrosion und/oder Oxidation des Substrats 4 und/oder zur besseren Anbindung der Wärmedämmschicht 7 an das Substrat 4. Dies ist insbesondere der Fall, wenn die Wärmedämmschicht 7 aus Keramik und das Substrat 4 aus einem Metall besteht.
FIG. 2 shows a further embodiment of the component 1 designed according to the invention.
Between the substrate 4 and the thermal barrier coating 7 at least one further intermediate protective layer 10 is arranged. The intermediate protective layer 10 serves to protect against corrosion and / or oxidation of the substrate 4 and / or for better bonding of the thermal barrier coating 7 to the substrate 4. This is the case in particular if the thermal barrier coating 7 consists of ceramic and the substrate 4 consists of a metal.

Die Zwischenschutzschicht 10 zum Schutz eines Substrats 4 gegen Korrosion und Oxidation bei einer hohen Temperatur weist beispielsweise im wesentlichen folgende Elemente auf (Angabe der Anteile in Gewichtsprozent): 11,5 bis 20,0 wt% Chrom, 0,3 bis 1,5 wt% Silizium, 0,0 bis 1,0 wt% Aluminium, 0,0 bis 0,7 wt% Yttrium und/oder zumindest ein äquivalentes Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden,
Rest Eisen, Kobalt und/oder Nickel sowie herstellungsbedingte Verunreinigungen.
The intermediate protective layer 10 for protecting a substrate 4 against corrosion and oxidation at a high temperature has, for example, essentially the following elements (indication of the percentages by weight): 11.5 to 20.0 wt% chromium, 0.3 to 1.5 wt% silicon, 0.0 to 1.0 wt% aluminum, 0.0 to 0.7% by weight of yttrium and / or at least one equivalent metal from the group comprising scandium and the elements of the rare earths,
Remainder iron, cobalt and / or nickel as well as production-related impurities.

Insbesondere besteht die metallische Zwischenschutzschicht 10 aus 12,5 bis 14,0 wt% Chrom, 0,5 bis 1,0 wt% Silizium, 0,1 bis 0,5 wt% Aluminium, 0,0 bis 0,7 wt% Yttrium und/oder zumindest ein äquivalentes
Metall aus der Gruppe umfassend Scandium und die Elemente der Seltenen Erden,
Rest Eisen und/oder Kobalt und/oder Nickel sowie herstellungsbedingte Verunreinigungen.
In particular, the metallic intermediate protective layer 10 is made 12.5 to 14.0 wt% Chrome, 0.5 to 1.0 wt% Silicon, 0.1 to 0.5 wt% Aluminum, 0.0 to 0.7 wt% Yttrium and / or at least an equivalent
Metal from the group comprising Scandium and the elements of the rare earths,
Remainder iron and / or cobalt and / or nickel as well as production-related impurities.

Bevorzugt ist dabei, wenn der Rest nur Eisen ist.It is preferred if the remainder is only iron.

Die Zusammensetzung der Zwischenschutzschicht 10 auf Eisenbasis zeigt besonders gute Eigenschaften, so dass die Zwischenschutzschicht 10 hervorragend zur Aufbringung auf ferritischen Substraten 4 geeignet ist.
Dabei können die thermischen Ausdehnungskoeffizienten von Substrat 4 und Zwischenschutzschicht 10 sehr gut aneinander angeglichen werden (bis zu 10% Unterschied) oder sogar gleich sein, so dass es zu keinem thermisch verursachten Spannungsaufbau zwischen Substrat 4 und Zwischenschutzschicht 10 kommt (thermal mismatch), der ein Abplatzen der Zwischenschutzschicht 10 verursachen könnte.
The composition of the iron-based intermediate protective layer 10 exhibits particularly good properties, so that the intermediate protective layer 10 is outstandingly suitable for application to ferritic substrates 4.
The coefficients of thermal expansion of substrate 4 and intermediate protective layer 10 can be matched to each other very well (up to 10% difference) or even equal, so that there is no thermally induced stress build-up between substrate 4 and intermediate protective layer 10 (thermal mismatch) Could cause flaking of the intermediate protective layer 10.

Dies ist besonders wichtig, da bei ferritischen Werkstoffen oft keine Wärmebehandlung zur Diffusionsanbindung durchgeführt wird, sondern die Zwischenschutzschicht 10 (ferritisch) größtenteils oder nur durch Adhäsion auf dem Substrat 4 haftet.This is especially important because of ferritic materials often no heat treatment for diffusion bonding is performed, but the intermediate protective layer 10th (ferritic) mostly or only by adhesion on the Substrate 4 adheres.

Insbesondere ist das Substrat 4 eine ferritische Basislegierung, ein Stahl- oder eine Nickel- oder kobaltbasierte Superlegierung, insbesondere ein 1%CrMoV-Stahl oder ein 10 bis 12prozentiger Chromstahl.In particular, the substrate 4 is a ferritic Base alloy, a steel or a nickel or cobalt-based superalloy, in particular a 1% CrMoV steel or a 10 to 12 percent chromium steel.

Weitere vorteilhafte ferritische Substrate 4 des Schichtsystems 1 bestehen aus einem

  • 1% bis 2%Cr Stahl für Wellen (309, Fig. 8):
    wie z.B. 30CrMoNiV5-11 oder 23CrMoNiWV8-8,
  • 1% bis 2%Cr Stahl für Gehäuse (Fig. 8, bspw. 335):
    G17CrMoV5-10 oder G17CrMo9-10,
  • 10% Cr-Stahl für Wellen(309, Fig. 8):
    X12CrMoWVNbN10-1-1 ,
  • 10% Cr-Stahl für Gehäuse (Fig. 8, bspw. 335):
    GX12CrMoWVNbN10-1-1 oder GX12CrMoVNbN9-1.
  • Further advantageous ferritic substrates 4 of the layer system 1 consist of a
  • 1% to 2% Cr Steel for Shafts (309, Fig. 8):
    such as 30CrMoNiV5-11 or 23CrMoNiWV8-8,
  • 1% to 2% Cr steel for housing (Fig. 8, eg 335):
    G17CrMoV5-10 or G17CrMo9-10,
  • 10% Cr steel for shafts (309, Fig. 8):
    X12CrMoWVNbN10-1-1,
  • 10% Cr-steel for housing (Fig. 8, eg 335):
    GX12CrMoWVNbN10-1-1 or GX12CrMoVNbN9-1.
  • Für eine möglichst gute Wirkungsweise der Wärmedämmschicht 7 weist die Wärmedämmschicht 7 zumindest teilweise eine gewisse offene und/oder geschlossene Porosität auf.For the best possible mode of action of the thermal barrier coating 7 the thermal barrier coating 7 at least partially a certain open and / or closed porosity.

    Vorzugsweise weist die Verschleiß/Erosionsschutzschicht 13 eine höhere Dichte als die Wärmedämmschicht 7 auf und besteht beispielsweise aus Legierungen auf der Basis von Eisen, Chrom, Nickel und/oder Kobalt oder beispielsweise NiCr 80/20 oder NiCrSiB mit Beimengungen von Bor (B) und Silizium (Si) oder NiAl (bspw.: Ni: 95wt%, Al 5wt%). Preferably, the wear / erosion protective layer 13 a higher density than the thermal barrier coating 7 and exists for example, based on iron alloys, Chromium, nickel and / or cobalt or, for example, NiCr 80/20 or NiCrSiB with admixtures of boron (B) and silicon (Si) or NiAl (eg: Ni: 95wt%, Al 5wt%).

    Insbesondere kann eine metallische Erosionsschutzschicht 13 bei Dampfturbinen 300, 303 eingesetzt werden, da die Einsatztemperaturen in Dampfturbinen beim Dampfeinströmbereich 333 maximal bei 450°C, 550°C , 650°C oder 850°C liegen. Für solche Temperaturbereiche gibt es genügend metallische Schichten, die einen hinreichend großen notwendigen Erosionsschutz über die Einsatzdauer des Bauteils 1 bei gleichzeitiger guter Oxidationsbeständigkeit aufweisen.In particular, a metallic erosion protection layer 13 used in steam turbines 300, 303, as the Operating temperatures in steam turbines at Steam inlet area 333 maximum at 450 ° C, 550 ° C, 650 ° C or 850 ° C lie. There are for such temperature ranges enough metallic layers that have a sufficiently large necessary erosion protection over the service life of the component 1 while having good oxidation resistance.

    Metallische Erosionsschutzschichten 13 in Gasturbinen auf einer keramischen Wärmedämmschicht 7 innerhalb der ersten Stufe der Turbine oder innerhalb der Brennkammer sind nicht möglich, da metallische Erosionsschutzschichten 13 als äußere Schicht die Einsatztemperaturen von bis zu 1350°C nicht aushalten können.Metallic erosion protection layers 13 in gas turbines a ceramic thermal barrier coating 7 within the first Stage of the turbine or inside the combustion chamber are not possible because metallic erosion protection layers 13 as outer Do not coat the application temperatures of up to 1350 ° C can withstand.

    Eine keramische Erosionsschutzschicht 13 besteht beispielsweise teilweise oder zu 100% aus Chromkarbid.A ceramic erosion protection layer 13 exists for example, partially or 100% chromium carbide.

    Weitere Materialien für die Erosionsschutzschicht 13 sind beispielsweise eine Mischung aus Wolframkarbid, Chromkarbid und Nickel (WC, CrC-Ni) bspw. mit den Gewichtsanteilen 73 wt% für Wolframkarbid, 20 wt% für Chromkarbid und 7 wt% für Nickel, ferner Chromkarbid mit der Beimischung von Nickel (Cr3C2-Ni) bspw. mit einem Anteil von 83 wt% Chromkarbid und 17 wt% Nickel sowie eine Mischung aus Chromkarbid und Nickelchrom (Cr3C2-NiCr) bspw. mit einem Anteil von 75 wt% Chromkarbid und 25 wt% Nickelchrom sowie Yttrium-stabilisiertes Zirkonoxid bspw. mit einem Gewichtsanteil von 80 wt% Zirkonoxid und 20 wt% Yttriumoxid.Other materials for the erosion protection layer 13 are, for example, a mixture of tungsten carbide, chromium carbide and nickel (WC, CrC-Ni), for example, with the weight percentages 73 wt% for tungsten carbide, 20 wt% for chromium carbide and 7 wt% for nickel, also chromium carbide with the Admixing of nickel (Cr 3 C 2 -Ni), for example, with a proportion of 83 wt% chromium carbide and 17 wt% nickel and a mixture of chromium carbide and nickel chromium (Cr 3 C 2 -NiCr), for example, with a share of 75 wt% Chromium carbide and 25 wt% nickel chromium and yttrium-stabilized zirconium oxide, for example, with a weight fraction of 80 wt% zirconium oxide and 20 wt% yttrium oxide.

    Die Wärmedämmschicht 7 ist beispielsweise porös.
    Figur 5 zeigt eine poröse Wärmedämmschicht 7 mit einem Gradienten der Porosität.
    The thermal barrier coating 7 is porous, for example.
    FIG. 5 shows a porous thermal barrier coating 7 with a gradient of porosity.

    In der Wärmedämmschicht 7 sind Poren 16 vorhanden. In Richtung einer äußeren Oberfläche nimmt die Dichte ρ der Wärmedämmschicht 7 zu.
    So kann die Schicht 7 im Bereich der größeren Porosität zur Wärmedämmung und im Bereich der geringeren Porosität gegebenenfalls auch zum Erosionsschutz verwendet werden.
    In the thermal barrier coating 7 pores 16 are present. In the direction of an outer surface, the density ρ of the thermal barrier coating 7 increases.
    Thus, the layer 7 can be used in the region of greater porosity for thermal insulation and, where appropriate, for erosion protection in the area of lower porosity.

    Somit besteht zum Substrat 4 oder zu einer gegebenenfalls vorhandenen Zwischenschutzschicht 10 hin vorzugsweise eine größere Porosität als im Bereich einer äußeren Oberfläche oder der Kontaktfläche zu der Erosionsschutzschicht 13.Thus, there is the substrate 4 or one, if necessary existing intermediate protective layer 10 out preferably one greater porosity than in the area of an outer surface or the contact surface with the erosion control layer 13.

    In Figur 6 verläuft der Gradient in der Dichte p der Wärmedämmschicht 7 entgegengesetzt zu dem in Figur 5.In FIG. 6, the gradient runs in the density p of FIG Thermal insulation layer 7 opposite to that in Figure 5.

    Die Erosionsschutzschicht 13 weist vorzugsweise eine höhere Dichte als die Wärmedämmschicht 7 auf, damit sie 13 eine höhere Festigkeit aufweist.The erosion protection layer 13 preferably has a higher Density than the thermal barrier coating 7, so they 13 a has higher strength.

    Die Figuren 7a, 7b zeigen den Einfluss der Wärmedämmschicht 7 auf das thermische Verformungsverhalten des Bauteils 1.FIGS. 7 a, 7 b show the influence of the thermal barrier coating 7 on the thermal deformation behavior of the component. 1

    Figur 7a zeigt ein Bauteil ohne Wärmedämmschicht.
    An zwei gegenüberliegenden Seiten des Substrats 4 herrschen zwei verschiedene Temperaturen, eine höhere Temperatur Tmax und eine niedrigere Temperatur Tmin, wodurch ein Temperaturunterschied dT(4) gegeben ist.
    Der Temperaturunterschied dT(4) kann mindestens 200°C betragen.
    Die höhere Temperatur Tmax beträgt beispielsweise mindestes 450°C, insbesondere sogar bis 850°C.
    Somit dehnt sich das Substrat 4, wie es gestrichelt angedeutet ist, im Bereich der höheren Temperatur Tmax aufgrund der thermischen Ausdehnung deutlich stärker aus als im Bereich der kleineren Temperatur Tmin. Diese unterschiedliche Ausdehnung verursacht eine unerwünschte Verformung des Bauteils (Gehäuse).
    FIG. 7a shows a component without a thermal barrier coating.
    On two opposite sides of the substrate 4 there are two different temperatures, a higher temperature T max and a lower temperature T min , which gives a temperature difference dT (4).
    The temperature difference dT (4) can be at least 200 ° C.
    The higher temperature T max is, for example, at least 450 ° C., in particular even up to 850 ° C.
    Thus, the substrate 4, as indicated by dashed lines, expands significantly more in the region of the higher temperature T max due to the thermal expansion than in the region of the lower temperature T min . This differential expansion causes an undesirable deformation of the component (housing).

    Hingegen ist bei der Figur 7b auf dem Substrat 4 eine Wärmedämmschicht 7 vorhanden, wobei das Substrat 4 und die Wärmedämmschicht 7 zusammen beispielsweise genauso dick sind wie das Substrat 4 in Figur 7a.
    Die Wärmedämmschicht 7 reduziert die maximale Temperatur an der Oberfläche des Substrats 4 überproportional auf eine Temperatur T'max, obwohl die äußere Temperatur Tmax genauso hoch ist wie in Figur 7a. Dies ergibt sich nicht nur aus dem Abstand der Oberfläche des Substrats 4 zur höheren Temperatur, sondern insbesondere durch die geringere thermische Leitfähigkeit der Wärmedämmschicht 7. Dort ist ein sehr viel größerer Temperaturgradient vorhanden als im metallischen Substrat 4.
    Dadurch wird der Temperaturunterschied dT(4,7) (= T'max - Tmin) kleiner als der Temperaturunterschied gemäß Figur 7a (dT(4) = dT(7) + dT(4,7)).
    Dadurch findet eine geringere oder kaum unterschiedliche thermische Ausdehnung des Substrats 4 statt, wie es gestrichelt angedeutet ist, so dass lokal unterschiedliche Ausdehnungen zumindest vergleichmäßigt werden.
    Das Substrat 4 in Figur 7b kann auch genauso dick sein wie das in Figur 7a.
    On the other hand, in the case of FIG. 7b, a thermal barrier coating 7 is present on the substrate 4, wherein the substrate 4 and the thermal barrier coating 7 together are for example just as thick as the substrate 4 in FIG. 7a.
    The thermal barrier coating 7 reduces the maximum temperature at the surface of the substrate 4 disproportionately to a temperature T ' max , although the external temperature T max is the same as in FIG. 7 a. This results not only from the distance of the surface of the substrate 4 to the higher temperature, but in particular by the lower thermal conductivity of the thermal barrier coating 7. There is a much larger temperature gradient than in the metallic substrate 4th
    (= T 'max - T min), characterized the temperature difference dT (4,7) becomes smaller than the temperature difference according to Figure 7a (dT (4) = dT (7) + dT (4,7)).
    As a result, there is less or hardly any difference in thermal expansion of the substrate 4, as indicated by dashed lines, so that at least locally different expansions are at least made uniform.
    The substrate 4 in Figure 7b may also be as thick as that in Figure 7a.

    Die Erosionsschutzschicht 13 ist hier der Vereinfachung wegen nicht dargestellt.The erosion protection layer 13 is here for the sake of simplicity not shown.

    In Figur 8 ist beispielhaft eine Dampfturbine 300, 303 mit einer sich entlang einer Rotationsachse 306 erstreckenden Turbinenwelle 309 dargestellt.FIG. 8 shows an example of a steam turbine 300, 303 one extending along a rotation axis 306 Turbine shaft 309 shown.

    Die Dampfturbine weist eine Hochdruck-Teilturbine 300 und eine Mitteldruck-Teilturbine 303 mit jeweils einem Innengehäuse 312 und einem dieses umschließendes Außengehäuse 315 auf. Die Hochdruck-Teilturbine 300 ist beispielsweise in Topfbauart ausgeführt. Die Mitteldruck-Teilturbine 303 ist zweiflutig ausgeführt. Es ist ebenfalls möglich, dass die Mitteldruck-Teilturbine 303 einflutig ausgeführt ist. Entlang der Rotationsachse 306 ist zwischen der Hochdruck-Teilturbine 300 und der Mitteldruck-Teilturbine 303 ein Lager 318 angeordnet, wobei die Turbinenwelle 309 in dem Lager 318 einen Lagerbereich 321 aufweist. Die Turbinenwelle 309 ist auf einem weiteren Lager 324 neben der Hochdruck-Teilturbine 300 aufgelagert. Im Bereich dieses Lagers 324 weist die Hochdruck-Teilturbine 300 eine Wellendichtung 345 auf. Die Turbinenwelle 309 ist gegenüber dem Außengehäuse 315 der Mitteldruck-Teilturbine 303 durch zwei weitere Wellendichtungen 345 abgedichtet. Zwischen einem Hochdruck-Dampfeinströmbereich 348 und einem Dampfaustrittsbereich 351 weist die Turbinenwelle 309 in der Hochdruck-Teilturbine 300 die Hochdruck-Laufbeschaufelung 354, 357 auf. Diese Hochdruck-Laufbeschaufelung 354, 357 stellt mit den zugehörigen, nicht näher dargestellten Laufschaufeln einen ersten Beschaufelungsbereich 360 dar. Die Mitteldruck-Teilturbine 303 weist einen zentralen Dampfeinströmbereich 333 auf. Dem Dampfeinströmbereich 333 zugeordnet weist die Turbinenwelle 309 eine radialsymmetrische Wellenabschirmung 363, eine Abdeckplatte, einerseits zur Teilung des Dampfstromes in die beiden Fluten der Mitteldruck-Teilturbine 303 sowie zur Verhinderung eines direkten Kontaktes des heißen Dampfes mit der Turbinenwelle 309 auf. Die Turbinenwelle 309 weist in der Mitteldruck-Teilturbine 303 einen zweiten Beschaufelungsbereich 366 mit den Mitteldruck-Laufschaufeln 354, 342 auf. Der durch den zweiten Beschaufelungsbereich 366 strömende heiße Dampf strömt aus der Mitteldruck-Teilturbine 303 aus einem Abströmstutzen 369 zu einer strömungstechnisch nachgeschalteten, nicht dargestellten Niederdruck-Teilturbine. The steam turbine has a high pressure turbine part 300 and a medium-pressure turbine section 303, each with a Inner housing 312 and a surrounding this outer housing 315 on. The high pressure turbine part 300 is, for example, in Pot type executed. The medium-pressure turbine section 303 is double-flowed. It is also possible that the Medium-pressure turbine section 303 is designed to be single-entry. Along the axis of rotation 306 is between the high pressure turbine part 300 and the medium pressure turbine section 303 a bearing 318th arranged, wherein the turbine shaft 309 in the bearing 318th has a storage area 321. The turbine shaft 309 is on another camp 324 next to the high-pressure turbine section 300 superimposed. In the area of this camp 324 has the High pressure turbine part 300 a shaft seal 345 on. The Turbine shaft 309 is opposite to the outer housing 315 of Medium-pressure turbine section 303 by two more Shaft seals 345 sealed. Between a high pressure steam inlet 348 and a steam outlet area 351 indicates the turbine shaft 309 in the high pressure turbine part 300 the high pressure run blading 354, 357 on. These High-pressure blading 354, 357 provides with the associated, not shown blades one first blading area 360. The medium-pressure turbine section 303 has a central steam inflow area 333 on. Associated with the steam inflow region 333, the Turbine shaft 309 a radially symmetric shaft shield 363, a cover plate, on the one hand to the division of Steam flow in the two floods of the medium-pressure turbine section 303 and to prevent direct contact of the hot steam with the turbine shaft 309 on. The Turbine shaft 309 points in the medium-pressure turbine section 303 a second blading area 366 with the medium pressure blades 354, 342 on. The second Blading region 366 flowing hot steam flows out the medium-pressure turbine section 303 from a discharge nozzle 369th to a flow downstream, not illustrated low-pressure turbine section.

    Die Turbinenwelle 309 ist aus zwei Teilturbinenwellen 309a und 309b zusammengesetzt, die im Bereich des Lagers 318 fest miteinander verbunden sind.The turbine shaft 309 is composed of two turbine shafts 309a and 309b which are fixed in the area of the bearing 318 connected to each other.

    Insbesondere weist der Dampfeinströmbereich 333 eine Wärmedämmschicht 7 und eine Erosionsschutzschicht 13 auf.In particular, the steam inflow region 333 has a Thermal insulation layer 7 and an erosion protection layer 13 on.

    Figur 9 zeigt eine vergrößerte Darstellung eines Bereichs der Dampfturbine 300, 303.
    Die Dampfturbine 300, 303 besteht im Bereich des Einströmbereichs 333 aus einem äußeren Gehäuse 334, an dem Temperaturen zwischen 250° bis 350°C anliegen.
    An dem Einströmbereich 333 als Teil eines Innengehäuses 335 herrschen Temperaturen von 450° bis 800°C.
    Somit ergibt sich eine Temperaturdifferenz von mindestens 200°C.
    Auf das Innengehäuse 335, an dem die hohen Temperaturen anliegen, wird die Wärmedämmschicht 7 auf der Innenseite 336 aufgebracht (auf der Außenseite 337 beispielsweise nicht).
    Die Wärmedämmschicht 7 ist lokal nur an dem Innengehäuse 335 vorhanden (und beispielsweise nicht im Beschaufelungsbereich 366).
    Durch die Aufbringung einer Wärmedämmschicht 7 wird der Wärmeeintrag in das Innengehäuses 335 verringert, so dass das thermische Ausdehnungsverhalten beeinflusst wird. Dadurch kann das gesamte Verformungsverhalten des Innengehäuses 335 und des Dampfeinströmbereichs 333 kontrolliert eingestellt werden.
    Dies kann erfolgen durch eine Variation der Dicke der Wärmedämmschicht 7 oder die Aufbringung von verschiedenen Materialien an verschiedenen Stellen der Oberfläche des Innengehäuses 335.
    Ebenso kann die Porosität an verschiedenen Stellen des Innengehäuses 335 verschieden sein.
    FIG. 9 shows an enlarged illustration of a region of the steam turbine 300, 303.
    In the region of the inflow region 333, the steam turbine 300, 303 consists of an outer housing 334, against which temperatures between 250 ° and 350 ° C. are applied.
    Temperatures of 450 ° to 800 ° C. prevail at the inflow region 333 as part of an inner housing 335.
    This results in a temperature difference of at least 200 ° C.
    On the inner housing 335, which abut the high temperatures, the heat-insulating layer 7 is applied to the inside 336 (on the outside 337, for example, not).
    The thermal barrier coating 7 is present locally only on the inner housing 335 (and not in the blading area 366, for example).
    By applying a thermal barrier coating 7, the heat input into the inner housing 335 is reduced, so that the thermal expansion behavior is influenced. As a result, the entire deformation behavior of the inner housing 335 and the Dampfeinströmbereichs 333 can be controlled.
    This can be done by a variation of the thickness of the thermal barrier coating 7 or the application of different materials at different locations of the surface of the inner housing 335th
    Likewise, the porosity at different locations of the inner housing 335 may be different.

    Die Wärmedämmschicht 7 kann lokal, beispielsweise im Innengehäuse 335 im Bereich des Einströmbereichs 333 aufgebracht sein.
    Ebenso kann die Wärmedämmschicht 7 nur im Beschaufelungsbereich 366 lokal aufgebracht sein (Fig. 3). Besonderes im Einströmbereich 333 ist der Einsatz einer Erosionsschutzschicht 13 gefordert.
    The thermal barrier coating 7 may be applied locally, for example in the inner housing 335 in the region of the inflow region 333.
    Likewise, the thermal barrier coating 7 can be applied locally only in the blading area 366 (FIG. 3). Especially in the inflow region 333, the use of an erosion protection layer 13 is required.

    Figur 4 zeigt eine weiteres Ausführungsbeispiel eines erfindungsgemäßen Bauteils 1.
    Hier ist die Dicke der Wärmedämmschicht 7 im Einströmbereich 333 dicker ausgeführt als im Beschaufelungsbereich 366 der Dampfturbine 300, 303.
    Durch die lokal unterschiedliche Dicke der Wärmedämmschicht 7 wird der Wärmeeintrag und damit die thermische Ausdehnung und somit das Ausdehnungsverhalten des Innengehäuses 334, bestehend aus dem Einströmbereich 333 und dem Beschaufelungsbereich 366, kontrolliert eingestellt.
    Da im Einströmbereich 333 höhere Temperaturen herrschen als im Beschaufelungsbereich 366 wird durch die dickere Wärmedämmschicht 7 im Einströmbereich 333 der Wärmeeintrag in das Substrat 4 stärker reduziert als im Beschaufelungsbereich 366, wo geringere Temperaturen herrschen. Somit kann der Wärmeeintrag sowohl im Einströmbereich 333 und anschließendem Beschaufelungsbereich 366 ungefähr gleich gehalten werden, so dass die thermische Ausdehnung ungefähr gleich ist.
    FIG. 4 shows a further exemplary embodiment of a component 1 according to the invention.
    Here, the thickness of the thermal barrier coating 7 in the inflow region 333 is made thicker than in the blading region 366 of the steam turbine 300, 303.
    Due to the locally different thickness of the thermal barrier coating 7, the heat input and thus the thermal expansion and thus the expansion behavior of the inner housing 334, consisting of the inflow region 333 and the blading region 366, controlled.
    Since higher temperatures prevail in the inflow region 333 than in the blading region 366, the thicker heat-insulating layer 7 in the inflow region 333 reduces the heat input into the substrate 4 more than in the blading region 366, where lower temperatures prevail. Thus, the heat input in both the inflow region 333 and subsequent blading region 366 can be kept approximately equal so that the thermal expansion is approximately equal.

    Ebenso kann im Bereich des Einströmbereichs 333 ein anderes Material vorhanden sein als im Beschaufelungsbereich 366.
    Die Wärmedämmschicht 7 ist hier im gesamten heißen Bereich, also global, aufgebracht.
    Likewise, in the region of the inflow region 333, a different material may be present than in the blading region 366.
    The thermal barrier coating 7 is here in the entire hot area, so applied globally.

    Figur 11 zeigt ein weiteres Anwendungsbeispiel für die Verwendung einer Wärmedämmschicht 7. FIG. 11 shows another application example for the Use of a thermal barrier coating 7.

    Das Bauteil 1, insbesondere ein Gehäuseteil, ist hier ein Ventilgehäuse 31, in das durch einen Einströmkanal 46 ein heißer Dampf einströmt.
    Der Einströmkanal 46 bewirkt eine mechanische Schwächung des Ventilgehäuses.
    Das Ventilgehäuse 31 besteht beispielsweise aus einem topfförmigen Gehäuseteil 34 und einem Deckel 37.
    Innerhalb des Gehäuseteils 31 ist ein Ventil bestehend aus einem Ventilkegel 40 und einer Spindel 43 vorhanden.
    Infolge Bauteil-Kriechens kommt es zu einer ungleichförmigen axialen Verformung des Gehäuses 31 und Deckels 37. Das Ventilgehäuse 31 würde sich im Bereich des Kanals 46 axial stärker ausdehnen, so dass es zu einer Verkippung des Deckels mit der Spindel 43 kommt, wie gestrichelt angedeutet. Dadurch sitzt der Ventilkegel 34 nicht mehr richtig auf, so dass die Dichtheit des Ventils reduziert wird.
    Durch die Aufbringung einer Wärmedämmschicht 7 auf eine Innenseite 49 des Gehäuses 31 wird eine Vergleichmäßigung des Verformungsverhaltens erreicht, so dass sich beide Enden 52, 55 des Gehäuses 31 und des Deckels 37 gleichmäßig ausdehnen.
    The component 1, in particular a housing part, is here a valve housing 31, into which a hot steam flows through an inlet channel 46.
    The inflow passage 46 causes a mechanical weakening of the valve housing.
    The valve housing 31 consists for example of a cup-shaped housing part 34 and a lid 37th
    Within the housing part 31, a valve consisting of a valve plug 40 and a spindle 43 is present.
    As a result of component creeping, non-uniform axial deformation of the housing 31 and cover 37 occurs. The valve housing 31 would expand axially more strongly in the region of the channel 46, so that tilting of the cover with the spindle 43 occurs, as indicated by dashed lines. As a result, the valve cone 34 no longer sits properly, so that the tightness of the valve is reduced.
    By applying a thermal barrier coating 7 on an inner side 49 of the housing 31, a homogenization of the deformation behavior is achieved, so that both ends 52, 55 of the housing 31 and the cover 37 expand uniformly.

    Insgesamt dient das Aufbringen der Wärmedämmschicht dazu, das Verformungsverhalten zu kontrollieren und damit die Dichtheit des Ventils zu gewährleisten.Overall, the application of the thermal barrier coating is used to Control deformation behavior and thus the tightness to ensure the valve.

    Figur 10 zeigt den Einfluss der Aufbringung einer Wärmedämmschicht 7 auf ein wiederaufgearbeitetes Bauteil 1.FIG. 10 shows the influence of the application of a Thermal insulation layer 7 on a remanufactured component. 1

    Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 1, die im Einsatz waren, wiederverwendet und vorher ggf. repariert werden, d.h. dass sie von Korrosions- und Oxidationsprodukten befreit werden sowie Risse ggf. detektiert und beispielsweise durch Auffüllen mit Lot oder durch Schweißen repariert werden.
    Jedes Bauteil 1 hat eine bestimmte Lebensdauer bis es zu 100% geschädigt ist.
    Refurbishment means that components 1 that were in use are reused and possibly repaired beforehand, ie that they are freed from corrosion and oxidation products and cracks are possibly detected and repaired, for example, by filling with solder or by welding.
    Each component 1 has a certain life until it is 100% damaged.

    Wenn das Bauteil 1, beispielsweise eine Turbinenschaufel 342, 254, 357 oder ein Innengehäuse 334 zu einem Zeitpunkt ts inspiziert und ggf. wieder aufgearbeitet wird, ist ein bestimmter Prozentsatz Ss der Schädigung erreicht. Der zeitliche Verlauf der Schädigung des Bauteil 1 ist mit dem Bezugszeichen 22 gekennzeichnet.
    Nach dem Servicezeitpunkt ts würde die Schädigungskurve ohne eine Wiederaufarbeitung anhand der gestrichelten Linie 25 weiter verlaufen und stark ansteigen, da das Bauteil trotz Wartung nicht die gleichen mechanischen Eigenschaften aufweist wie ein neu hergestelltes Bauteil.
    Die restliche Betriebsdauer wäre dadurch relativ kurz.
    Durch die Aufbringung einer Wärmedämmschicht 7 und/oder Erosionsschutzschicht 13 auf das vorgeschädigte oder mikrostrukturell veränderte Bauteil 1 wird die Einsatzdauer des Bauteils 1 erheblich verlängert.
    Durch die Wärmedämmschicht 7 wird der Wärmeeintrag und die Schädigung von Bauteilen verringert, so dass der Lebensdauerverlauf anhand der Kurve 28 weiter verläuft.
    If the component 1, for example a turbine blade 342, 254, 357 or an inner housing 334 is inspected at a time t s and, if necessary, worked up again, a certain percentage S s of the damage has been reached. The time course of the damage of the component 1 is indicated by the reference numeral 22.
    After the service time t s , the damage curve would continue without reprocessing using the dashed line 25 and increase sharply, since the component despite maintenance does not have the same mechanical properties as a newly manufactured component.
    The remaining operating time would be relatively short.
    By applying a thermal barrier coating 7 and / or erosion protection layer 13 on the pre-damaged or microstructured component 1, the service life of the component 1 is considerably extended.
    By the thermal barrier coating 7, the heat input and the damage of components is reduced, so that the life course of the curve 28 continues.

    Ebenso wird das Verformungsverhalten von Bauteilen 1 durch die Wärmedämmschicht 7 vergleichmäßigt, so dass beispielsweise weniger Spannungen entstehen, die zur Schädigung des Bauteils 1 führen könnten.
    Auch dadurch wird die Lebensdauer des Bauteils 1 erhöht.
    Die Lebensdauer wird also verlängert durch Vergleichmäßigung des Verformungsverhaltens des Bauteils und/oder durch die Reduzierung des Wärmeeintrags in das Bauteil 1.
    Likewise, the deformation behavior of components 1 is made uniform by the heat-insulating layer 7, so that, for example, less stress is generated, which could lead to damage of the component 1.
    This also increases the service life of the component 1.
    The life is thus extended by equalizing the deformation behavior of the component and / or by reducing the heat input into the component. 1

    Der Verlauf der Kurve eines Bauteils 1 mit Wärmedämmschicht 7 ist gegenüber dem Kurvenverlauf 25 deutlich abgeflacht, so dass ein solches beschichtetes Bauteil 1 mindestens noch einmal so lange eingesetzt werden kann.The course of the curve of a component 1 with thermal barrier coating. 7 is significantly flattened compared to the curve 25, so that such a coated component 1 at least still once used for so long.

    Claims (33)

    Bauteil (1, 31, 334, 335, 342, 354, 357, 366) insbesondere für eine Dampfturbine (300, 303),
    mit einer Wärmedämmschicht (7),
    insbesondere einer keramischen Wärmedämmschicht (7), und
    mit einer Erosionsschutzschicht (13), die nur
    bei Einsatztemperaturen bis max. 850°C,
    insbesondere bis max. 650°C für einen längeren Einsatz beständig ist.
    Component (1, 31, 334, 335, 342, 354, 357, 366), in particular for a steam turbine (300, 303),
    with a thermal barrier coating (7),
    in particular a ceramic thermal barrier coating (7), and
    with an erosion control layer (13), which only
    at operating temperatures up to max. 850 ° C,
    especially up to max. 650 ° C is stable for prolonged use.
    Bauteil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Bauteil (1) ein Gehäuseteil (31, 334, 335, 366) einer Gas- oder Dampfturbine (300, 303) ist.
    Component according to claim 1,
    characterized in that
    the component (1) is a housing part (31, 334, 335, 366) of a gas or steam turbine (300, 303).
    Bauteil nach Anspruch 2,
    dadurch gekennzeichnet, dass
    das Gehäuseteil ein Turbinengehäuse (366) ist.
    Component according to claim 2,
    characterized in that
    the housing part is a turbine housing (366).
    Bauteil nach Anspruch 2,
    dadurch gekennzeichnet, dass
    das Gehäuseteil ein Ventilgehäuse (31) ist.
    Component according to claim 2,
    characterized in that
    the housing part is a valve housing (31).
    Bauteil nach Anspruch 2,
    dadurch gekennzeichnet, dass
    das Gehäuseteil ein Gehäuseteil (334, 335) eines Dampfeinströmbereichs (333) ist.
    Component according to claim 2,
    characterized in that
    the housing part is a housing part (334, 335) of a steam inflow region (333).
    Bauteil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Bauteil (1) eine Turbinenschaufel (342, 354, 357) ist.
    Component according to claim 1,
    characterized in that
    the component (1) is a turbine blade (342, 354, 357).
    Bauteil nach Anspruch 1 bis 6,
    dadurch gekennzeichnet, dass das Bauteil (1) aus einem Substrat (4) besteht,
    auf dem (4) die Wärmedämmschicht (7) vorhanden ist, und das Substrat (4) aus einer nickel-, kobalt- oder insbesondere eisenbasierten Legierung gebildet ist..
    Component according to claim 1 to 6,
    characterized in that the component (1) consists of a substrate (4),
    on which (4) the thermal barrier coating (7) is present, and the substrate (4) is formed of a nickel-, cobalt- or in particular iron-based alloy.
    Bauteil nach Anspruch 1 oder 7,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) zumindest teilweise, insbesondere ganz aus Zirkonoxid (ZrO2) besteht.
    Component according to claim 1 or 7,
    characterized in that
    the thermal barrier coating (7) consists at least partially, in particular entirely of zirconium oxide (ZrO 2 ).
    Bauteil nach Anspruch 1, 7 oder 8,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) zumindest teilweise, insbesondere ganz aus Titanoxid (TiO2 besteht.
    Component according to claim 1, 7 or 8,
    characterized in that
    the thermal barrier coating (7) consists at least partially, in particular entirely of titanium oxide (TiO 2) .
    Bauteil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    unterhalb der Wärmedämmschicht (7) eine Zwischenschutzschicht (10),
    insbesondere eine MCrAIX-Schicht,
    angeordnet ist,
    wobei M für zumindest ein Element der Gruppe Nickel, Kobalt und insbesondere Eisen steht
    sowie X Yttrium und/oder Silizium und/oder zumindest ein Element der Seltenen Erden ist.
    Component according to claim 1,
    characterized in that
    below the thermal barrier coating (7) an intermediate protective layer (10),
    in particular an MCrAIX layer,
    is arranged
    where M represents at least one element of the group nickel, cobalt and in particular iron
    and X is yttrium and / or silicon and / or at least one element of the rare earths.
    Bauteil nach Anspruch 1 bis 5,
    dadurch gekennzeichnet, dass
    das Bauteil (1) angelegt ist auf eine Temperaturdifferenz im Betrieb,
    insbesondere eine Temperaturdifferenz von mindestens 200°C,
    gegeben durch eine höhere Temperatur auf der einen Seite (336) des Bauteils (1) und eine niedrigere Temperatur auf der anderen Seite (337) des Bauteils (1, 334),
    wobei die Wärmedämmschicht (7) auf der Seite (336) des Bauteils (1, 334) aufgebracht ist,
    die der höheren Temperatur ausgesetzt ist,
    um das Verformungsverhalten des Bauteils (1) aufgrund des Temperaturunterschiedes zu vergleichmäßigen.
    Component according to claim 1 to 5,
    characterized in that
    the component (1) is applied to a temperature difference during operation,
    in particular a temperature difference of at least 200 ° C,
    given by a higher temperature on the one side (336) of the component (1) and a lower temperature on the other side (337) of the component (1, 334),
    wherein the thermal barrier coating (7) is applied to the side (336) of the component (1, 334),
    which is exposed to the higher temperature,
    to even out the deformation behavior of the component (1) due to the temperature difference.
    Bauteil nach Anspruch 11,
    dadurch gekennzeichnet, dass
    die höhere Temperatur mindestens 400°C,
    insbesondere bis zu 800°C beträgt.
    Component according to claim 11,
    characterized in that
    the higher temperature at least 400 ° C,
    in particular up to 800 ° C.
    Bauteil nach Anspruch 10,
    dadurch gekennzeichnet, dass
    die Zwischenschutzschicht (10) aus
    11,5 wt% bis 20 wt% Chrom,
    0,3 wt% bis 1,5 wt% Silizium,
    0 wt% bis 1 wt% Aluminium,
    0 bis 4 wt% Yttrium, sowie
    Rest Eisen besteht.
    Component according to claim 10,
    characterized in that
    the intermediate protective layer (10)
    11.5 wt% to 20 wt% chromium,
    0.3 wt% to 1.5 wt% silicon,
    0 wt% to 1 wt% aluminum,
    0 to 4 wt% yttrium, as well
    Rest iron exists.
    Bauteil nach Anspruch 13,
    dadurch gekennzeichnet, dass
    die Zwischenschutzschicht (10) aus
    12,5 wt% bis 14 wt% Chrom,
    0,5 wt% bis 1,0 wt% Silizium,
    0,1 wt% bis 0,5 wt% Aluminium,
    0 bis 4 wt% Yttrium, sowie
    Rest Eisen besteht.
    Component according to claim 13,
    characterized in that
    the intermediate protective layer (10)
    12.5 wt% to 14 wt% chromium,
    0.5 wt% to 1.0 wt% silicon,
    0.1 wt% to 0.5 wt% aluminum,
    0 to 4 wt% yttrium, as well
    Rest iron exists.
    Bauteil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) metallisch ist.
    Component according to claim 1,
    characterized in that
    the erosion control layer (13) is metallic.
    Bauteil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) keramisch ist.
    Component according to claim 1,
    characterized in that
    the erosion control layer (13) is ceramic.
    Bauteil nach Anspruch 1 oder 15,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) eine eisen-, nickel-, chrom- oder kobaltbasierte Legierung,
    insbesondere NiCr80/20, ist.
    Component according to claim 1 or 15,
    characterized in that
    the erosion control layer (13) is an iron, nickel, chromium or cobalt-based alloy,
    especially NiCr80 / 20.
    Bauteil nach Anspruch 1 oder 16,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) zumindest teilweise, insbesondere zu 100% aus Chromkarbid besteht.
    Component according to claim 1 or 16,
    characterized in that
    the erosion protection layer (13) at least partially, in particular consists of 100% chromium carbide.
    Bauteil nach Anspruch 1, 15 oder 17,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) aus Nickel-Chrom mit Beimengungen von Silizium (Si) und Bor (B) (NiCrSiB) besteht.
    Component according to claim 1, 15 or 17,
    characterized in that
    the anti-erosion layer (13) consists of nickel-chromium with admixtures of silicon (Si) and boron (B) (NiCrSiB).
    Bauteil nach Anspruch 1, 15 oder 17,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) aus Nickel-Aluminium besteht.
    Component according to claim 1, 15 or 17,
    characterized in that
    the erosion protection layer (13) consists of nickel-aluminum.
    Bauteil nach Anspruch 1, 15 oder 16,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) ausgewählt wird aus der Gruppe oder einem Gemisch aus der Gruppe Wolframkarbid, Chromkarbid und Nickel (WC-CrC-Ni), insbesondere mit den Gewichtsanteilen 73 wt% für Wolframkarbid, 20 wt% für Chromkarbid und 7 wt% für Nickel, und/oder
    Chromkarbid mit der Beimischung von Nickel (Cr3C2-Ni), insbesondere mit einem Anteil von 83 wt% Chromkarbid und 17 wt% Nickel, und/oder
    einer Mischung aus Chromkarbid und Nickelchrom (Cr3C2-NiCr),
    insbesondere mit einem Anteil von 75 wt% Chromkarbid und 25 wt% Nickelchrom, und/oder
    Yttrium-stabilisiertes Zirkonoxid,
    insbesondere mit einem Gewichtsanteil von 80 wt% Zirkonoxid und 20 wt% Yttriumoxid.
    Component according to claim 1, 15 or 16,
    characterized in that
    the anti-erosion layer (13) is selected from the group or a mixture from the group tungsten carbide, chromium carbide and nickel (WC-CrC-Ni), in particular with the proportions by weight 73 wt% for tungsten carbide, 20 wt% for chromium carbide and 7 wt% for nickel , and or
    Chromium carbide with the admixture of nickel (Cr 3 C 2 -Ni), in particular with a share of 83 wt% chromium carbide and 17 wt% nickel, and / or
    a mixture of chromium carbide and nickel chromium (Cr 3 C 2 -NiCr),
    in particular with a proportion of 75 wt% chromium carbide and 25 wt% nickel chromium, and / or
    Yttrium-stabilized zirconia,
    in particular with a weight fraction of 80 wt% zirconium oxide and 20 wt% yttrium oxide.
    Bauteil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Erosionsschutzschicht (13) eine geringere Porosität als die Wärmedämmschicht (7) aufweist.
    Component according to claim 1,
    characterized in that
    the erosion protection layer (13) has a lower porosity than the thermal barrier coating (7).
    Bauteil nach Anspruch 1, 8, 9 oder 10,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) zumindest teilweise porös ist.
    Component according to claim 1, 8, 9 or 10,
    characterized in that
    the thermal barrier coating (7) is at least partially porous.
    Bauteil nach Anspruch 1 oder 22,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) einen Gradienten in der Porosität aufweist.
    Component according to claim 1 or 22,
    characterized in that
    the thermal barrier coating (7) has a gradient in porosity.
    Bauteil nach Anspruch 24,
    dadurch gekennzeichnet, dass
    die Porosität der Wärmedämmschicht (7) an einer äußeren Fläche am größten ist.
    Component according to claim 24,
    characterized in that
    the porosity of the thermal barrier coating (7) is greatest on an outer surface.
    Bauteil nach Anspruch 24,
    dadurch gekennzeichnet, dass
    die Porosität der Wärmedämmschicht (7) im äußeren Bereich der Wärmedämmschicht (7) am kleinsten ist.
    Component according to claim 24,
    characterized in that
    the porosity of the thermal barrier coating (7) in the outer region of the thermal barrier coating (7) is the smallest.
    Bauteil nach Anspruch 1 oder 11,
    dadurch gekennzeichnet, dass
    die Dicke der Wärmedämmschicht (7) auf dem Bauteil (1) lokal (335, 366) unterschiedlich ist.
    Component according to claim 1 or 11,
    characterized in that
    the thickness of the thermal barrier coating (7) on the component (1) is different locally (335, 366).
    Bauteil nach Anspruch 1, 8, 9 oder 11,
    dadurch gekennzeichnet, dass
    verschiedene Materialien für die Wärmedämmschicht (7) an verschiedenen Stellen (335, 366) des Bauteils (1, 335, 366) verwendet werden.
    Component according to claim 1, 8, 9 or 11,
    characterized in that
    various materials for the thermal barrier coating (7) at different points (335, 366) of the component (1, 335, 366) are used.
    Bauteil nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) im Einströmbereich (333) und im Beschaufelungsbereich (366) einer Dampfturbine (300, 303) aufgebracht ist.
    Component according to claim 1 or 2,
    characterized in that
    the thermal barrier coating (7) is applied in the inflow region (333) and in the blading region (366) of a steam turbine (300, 303).
    Bauteil nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) nur im Einströmbereich (333) einer Dampfturbine (300, 303) aufgebracht ist.
    Component according to claim 1 or 2,
    characterized in that
    the thermal barrier coating (7) is applied only in the inflow region (333) of a steam turbine (300, 303).
    Bauteil nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) nur im Beschaufelungsbereich (366) einer Dampfturbine (300, 303) aufgebracht ist.
    Component according to claim 1 or 2,
    characterized in that
    the thermal barrier coating (7) is applied only in the blading region (366) of a steam turbine (300, 303).
    Bauteil nach Anspruch 1 oder 27,
    dadurch gekennzeichnet, dass
    die Dicke der Wärmedämmschicht (7) im Einströmbereich (333) dicker ist als im Beschaufelungsbereich (366).
    Component according to claim 1 or 27,
    characterized in that
    the thickness of the thermal barrier coating (7) in the inflow region (333) is thicker than in the blading region (366).
    Bauteil nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Wärmedämmschicht (7) mit Erosionsschutzschicht (13) bei wieder aufgearbeiteten Bauteilen (1) aufgebracht ist.
    Component according to claim 1,
    characterized in that
    the thermal barrier coating (7) with erosion protection layer (13) is applied to refurbished components (1).
    EP03028576A 2003-12-11 2003-12-11 Turbine component with a heat- and erosion resistant coating Withdrawn EP1541808A1 (en)

    Priority Applications (5)

    Application Number Priority Date Filing Date Title
    EP03028576A EP1541808A1 (en) 2003-12-11 2003-12-11 Turbine component with a heat- and erosion resistant coating
    PCT/EP2004/013660 WO2005061856A1 (en) 2003-12-11 2004-12-01 Turbine component comprising a thermal insulation layer and an anti-erosion layer
    CN200480036878.5A CN1890456B (en) 2003-12-11 2004-12-01 Component comprising a thermal insulation layer and an anti-erosion layer
    US10/582,604 US7758968B2 (en) 2003-12-11 2004-12-01 Component with thermal barrier coating and erosion-resistant layer
    EP04801188A EP1692371A1 (en) 2003-12-11 2004-12-01 Turbine component comprising a thermal insulation layer and an anti-erosion layer

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP03028576A EP1541808A1 (en) 2003-12-11 2003-12-11 Turbine component with a heat- and erosion resistant coating

    Publications (1)

    Publication Number Publication Date
    EP1541808A1 true EP1541808A1 (en) 2005-06-15

    Family

    ID=34486194

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP03028576A Withdrawn EP1541808A1 (en) 2003-12-11 2003-12-11 Turbine component with a heat- and erosion resistant coating
    EP04801188A Withdrawn EP1692371A1 (en) 2003-12-11 2004-12-01 Turbine component comprising a thermal insulation layer and an anti-erosion layer

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP04801188A Withdrawn EP1692371A1 (en) 2003-12-11 2004-12-01 Turbine component comprising a thermal insulation layer and an anti-erosion layer

    Country Status (4)

    Country Link
    US (1) US7758968B2 (en)
    EP (2) EP1541808A1 (en)
    CN (1) CN1890456B (en)
    WO (1) WO2005061856A1 (en)

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1734145A1 (en) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
    US20090130424A1 (en) * 2007-05-30 2009-05-21 Tholen Susan M Closed pore ceramic composite article
    EP2112252A1 (en) * 2008-04-25 2009-10-28 Zircotec Limited A thermal barrier, an article with a thermal barrier, and a method of applying a thermal barrier to a surface
    EP2128306A1 (en) * 2008-05-26 2009-12-02 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
    US9222163B2 (en) 2009-05-26 2015-12-29 Siemens Aktiengesellschaft Layered coating system with a MCrAlX layer and a chromium rich layer and a method to produce it
    CN109162774A (en) * 2018-08-30 2019-01-08 江苏华强新能源科技有限公司 A kind of inside holding plate for combustion turbine exhaustion diffuser

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2007087081A2 (en) * 2005-11-04 2007-08-02 Zolo Technologies, Inc. Method and apparatus for spectroscopic measurements in the combustion zone of a gas turbine engine
    WO2008049081A1 (en) * 2006-10-18 2008-04-24 Inframat Corporation Casting molds coated for surface enhancement and methods of making them
    US8530050B2 (en) * 2007-05-22 2013-09-10 United Technologies Corporation Wear resistant coating
    EP2090825A1 (en) * 2008-02-14 2009-08-19 Siemens Aktiengesellschaft Burner element and burner with corrosion-resistant insert
    US7914904B2 (en) * 2008-03-25 2011-03-29 General Electric Company Component in a combustion system, and process for preventing slag, ash, and char buildup
    KR101716917B1 (en) 2009-08-10 2017-03-15 졸로 테크놀러지스, 아이엔씨. Mitigation of optical signal noise using a multimode transmit fiber
    US9267218B2 (en) * 2011-09-02 2016-02-23 General Electric Company Protective coating for titanium last stage buckets
    US9366621B2 (en) 2012-04-19 2016-06-14 Zolo Technologies, Inc. In-furnace retro-reflectors with steerable tunable diode laser absorption spectrometer
    EP2767616A1 (en) * 2013-02-15 2014-08-20 Alstom Technology Ltd Turbomachine component with an erosion and corrosion resistant coating system and method for manufacturing such a component
    US9102015B2 (en) 2013-03-14 2015-08-11 Siemens Energy, Inc Method and apparatus for fabrication and repair of thermal barriers
    DE102013108154A1 (en) * 2013-07-30 2015-02-05 Abb Technology Ag breakers
    JP2017110248A (en) * 2015-12-15 2017-06-22 株式会社神戸製鋼所 Hard film and metal mold
    JP6908973B2 (en) * 2016-06-08 2021-07-28 三菱重工業株式会社 Manufacturing methods for thermal barrier coatings, turbine components, gas turbines, and thermal barrier coatings
    JP6607837B2 (en) * 2016-10-06 2019-11-20 三菱重工業株式会社 Thermal barrier coating film, turbine member and thermal barrier coating method
    CN108598350A (en) * 2018-04-13 2018-09-28 辽宁泰盛恒新能源科技有限公司 A kind of preparation method of the thermal cell lead with thermal Sperayed Ceramic Coatings
    RU2710761C1 (en) * 2018-12-29 2020-01-13 Акционерное общество "Дальневосточная генерирующая компания" Method of applying an erosion-resistant coating onto the surface of a steel blade of a steam turbine
    CN110643925A (en) * 2019-09-19 2020-01-03 成都正恒动力股份有限公司 Multilayer inner hole coating and spraying method thereof
    EP3967846B1 (en) * 2020-09-10 2024-04-03 General Electric Technology GmbH Nozzle segment, steam turbine with diaphragm of multiple nozzle segments and method for assembly thereof

    Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5273712A (en) * 1989-08-10 1993-12-28 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
    US5350599A (en) * 1992-10-27 1994-09-27 General Electric Company Erosion-resistant thermal barrier coating
    EP0783043A1 (en) * 1996-01-02 1997-07-09 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
    US5683226A (en) * 1996-05-17 1997-11-04 Clark; Eugene V. Steam turbine components with differentially coated surfaces
    US5740515A (en) * 1995-04-06 1998-04-14 Siemens Aktiengesellschaft Erosion/corrosion protective coating for high-temperature components
    WO2000070190A1 (en) * 1999-05-14 2000-11-23 Siemens Aktiengesellschaft Component and method for producing a protective coating on a component
    US20030035892A1 (en) * 2000-04-24 2003-02-20 Ramgopal Darolia Nickel-base superalloy article with rhenium-containing protective layer, and its preparation
    US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4248940A (en) * 1977-06-30 1981-02-03 United Technologies Corporation Thermal barrier coating for nickel and cobalt base super alloys
    DE3018620C2 (en) * 1980-05-16 1982-08-26 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Thermally insulating and sealing lining for a thermal turbo machine
    US4446199A (en) * 1982-07-30 1984-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Overlay metallic-cermet alloy coating systems
    US4761346A (en) * 1984-11-19 1988-08-02 Avco Corporation Erosion-resistant coating system
    US5190598A (en) * 1990-02-26 1993-03-02 Westinghouse Electric Corp. Steam turbine components having duplex coatings for improved erosion resistance
    US5401307A (en) 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
    DE4038852A1 (en) * 1990-12-03 1992-06-04 Bergmann Borsig Gmbh Turbine blade protection from erosion - by laser beam hardening with carburising gas
    DE4238369C2 (en) * 1992-11-13 1996-09-26 Mtu Muenchen Gmbh Component made of a metallic base substrate with a ceramic coating
    DE19535227A1 (en) 1995-09-22 1997-03-27 Asea Brown Boveri Casing for high pressure steam turbine
    US6924040B2 (en) * 1996-12-12 2005-08-02 United Technologies Corporation Thermal barrier coating systems and materials
    JP2001521990A (en) 1997-11-03 2001-11-13 シーメンス アクチエンゲゼルシヤフト Gas jet PVD method for producing MoSi2 containing layer
    US6302318B1 (en) * 1999-06-29 2001-10-16 General Electric Company Method of providing wear-resistant coatings, and related articles
    CH695689A5 (en) 2001-05-23 2006-07-31 Sulzer Metco Ag A method for generating a thermally insulating layer system on a metallic substrate.
    GB0117110D0 (en) * 2001-07-13 2001-09-05 Siemens Ag Coolable segment for a turbomachinery and combustion turbine
    US6558814B2 (en) 2001-08-03 2003-05-06 General Electric Company Low thermal conductivity thermal barrier coating system and method therefor

    Patent Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5273712A (en) * 1989-08-10 1993-12-28 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
    US5350599A (en) * 1992-10-27 1994-09-27 General Electric Company Erosion-resistant thermal barrier coating
    US5740515A (en) * 1995-04-06 1998-04-14 Siemens Aktiengesellschaft Erosion/corrosion protective coating for high-temperature components
    EP0783043A1 (en) * 1996-01-02 1997-07-09 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
    US5683226A (en) * 1996-05-17 1997-11-04 Clark; Eugene V. Steam turbine components with differentially coated surfaces
    WO2000070190A1 (en) * 1999-05-14 2000-11-23 Siemens Aktiengesellschaft Component and method for producing a protective coating on a component
    US20030035892A1 (en) * 2000-04-24 2003-02-20 Ramgopal Darolia Nickel-base superalloy article with rhenium-containing protective layer, and its preparation
    US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same

    Cited By (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2006133980A1 (en) * 2005-06-13 2006-12-21 Siemens Aktiengesellschaft Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine
    US8047775B2 (en) 2005-06-13 2011-11-01 Siemens Aktiengesellschaft Layer system for a component comprising a thermal barrier coating and metallic erosion-resistant layer, production process and method for operating a steam turbine
    EP1734145A1 (en) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
    US9447503B2 (en) * 2007-05-30 2016-09-20 United Technologies Corporation Closed pore ceramic composite article
    US20090130424A1 (en) * 2007-05-30 2009-05-21 Tholen Susan M Closed pore ceramic composite article
    US10669213B2 (en) 2007-05-30 2020-06-02 Raytheon Technologies Corporation Method for closed pore ceramic
    EP2112252A1 (en) * 2008-04-25 2009-10-28 Zircotec Limited A thermal barrier, an article with a thermal barrier, and a method of applying a thermal barrier to a surface
    EP2385155A1 (en) * 2008-05-26 2011-11-09 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
    US9567664B2 (en) 2008-05-26 2017-02-14 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
    EP2128306A1 (en) * 2008-05-26 2009-12-02 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
    US9222163B2 (en) 2009-05-26 2015-12-29 Siemens Aktiengesellschaft Layered coating system with a MCrAlX layer and a chromium rich layer and a method to produce it
    CN109162774A (en) * 2018-08-30 2019-01-08 江苏华强新能源科技有限公司 A kind of inside holding plate for combustion turbine exhaustion diffuser
    CN109162774B (en) * 2018-08-30 2021-05-18 江苏华强新能源科技有限公司 Internal insulation board for exhaust diffusion section of gas turbine

    Also Published As

    Publication number Publication date
    EP1692371A1 (en) 2006-08-23
    WO2005061856A1 (en) 2005-07-07
    US7758968B2 (en) 2010-07-20
    CN1890456B (en) 2011-12-21
    CN1890456A (en) 2007-01-03
    US20070148478A1 (en) 2007-06-28

    Similar Documents

    Publication Publication Date Title
    EP1541808A1 (en) Turbine component with a heat- and erosion resistant coating
    EP1734145A1 (en) Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
    EP1541810A1 (en) Use of a thermal barrier coating for a part of a steam turbine and a steam turbine
    EP1082216B1 (en) Product with an anticorrosion protective layer and a method for producing an anticorrosion protective layer
    EP2458025B1 (en) Alloy, protective coating and component
    EP1902160B1 (en) Ceramic heat insulating layer
    DE102005060243A1 (en) Process for coating hollow internally cooled gas turbine blades with adhesive-, zirconium oxide ceramic- and Cr diffusion layers useful in gas turbine engine technology has adhesive layer applied by plasma or high rate spraying method
    EP1637622A1 (en) Process for application of a protective coating
    DE10126896A1 (en) Protective coating used for turbines comprises a mono- or multi-layer sealing layer made from an amorphous material
    EP2132350A1 (en) Turbine component with thermal insulation layer
    EP2783078B1 (en) Method for manufacturing a turbomachine component with a parting joint, and a steam turbine comprising said turbomachine component
    EP3205746B1 (en) Thermal barrier coating system with high corrosion resistance
    EP1382707A1 (en) Layer system
    EP1806418A1 (en) Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
    EP1181437A1 (en) Component and method for producing a protective coating on a component
    DE4325346C2 (en) Turbine casing of a turbocharger
    EP1892311B1 (en) Turbine Blade with a coating system
    EP1854898A1 (en) Alloy, protective layer and component
    EP1783236A1 (en) Alloy, protecting coating for a component protection against corrosion and oxidation at high temperature and component
    EP1692322B1 (en) Metal protective coating
    EP3423752B1 (en) Flow element and method for coating a flow element
    EP2807288B1 (en) Turbomachine component with a functional coating
    EP4155431A1 (en) Method for producing and correspondingly produced component made of a nickel-based superalloy for the hot gas channel of a turbo engine
    EP2913425A1 (en) Thermal barrier coating with iridium - rhodium - alloy
    EP2134505A1 (en) Method for repairing a component

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    AKX Designation fees paid
    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20051216

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566