EP1540987B1 - Public address system tuning method - Google Patents

Public address system tuning method Download PDF

Info

Publication number
EP1540987B1
EP1540987B1 EP03757113A EP03757113A EP1540987B1 EP 1540987 B1 EP1540987 B1 EP 1540987B1 EP 03757113 A EP03757113 A EP 03757113A EP 03757113 A EP03757113 A EP 03757113A EP 1540987 B1 EP1540987 B1 EP 1540987B1
Authority
EP
European Patent Office
Prior art keywords
sfmoy
excursion
response
impulse response
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03757113A
Other languages
German (de)
French (fr)
Other versions
EP1540987A1 (en
Inventor
Jacques Lewiner
Sylvain Javelot
Damien Lebrun
Stéphane DEBUSNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cynove SARL
Original Assignee
Cynove SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cynove SARL filed Critical Cynove SARL
Publication of EP1540987A1 publication Critical patent/EP1540987A1/en
Application granted granted Critical
Publication of EP1540987B1 publication Critical patent/EP1540987B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the present invention relates to sound reinforcement methods, including correction of acoustic speaker response.
  • amplitude can be corrected at an amplifier that powers one or more speakers, using a gain pattern of the amplifier as a function of frequency.
  • the amplification in said band is emphasized so that the emitted sound is substantially constant throughout the audible band.
  • US-A-4,458,362 it was proposed in the document US-A-4,458,362 , to develop the gain template in question from test signals emitted by the speaker.
  • the technique used in this document raises many problems of implementation in real situations and in particular in a reverberant environment. Above all, this technique does not retain the phase of electrical signals to transform into acoustic signals.
  • a second approach, widely used to correct the response of a speaker consists in.regrouping in a speaker several speakers each having good characteristics in a given spectral band and to interpose between the input of the speaker and the speakers, filters that will selectively send to each speaker the spectral components of the electrical signal best suited to the speaker.
  • This method which makes it possible to improve the overall amplitude response of the loudspeaker, has the serious drawback of introducing phase shifts at several levels in the system and thus of not allowing a faithful reproduction with regard to the phase of the signals. to reproduce.
  • Another known technique uses, from the initial impulse response of the acoustic enclosure, a series of operations based on the Fourier transform to firstly obtain the response of the speaker in the frequency domain, in amplitude and in phase and in a second step, the template of a correction filter, which, used to power the loudspeaker, is supposed to correct the phase defects while respecting in theory the amplitude of the signals.
  • the practical implementation of such a solution from signal processing processors has serious drawbacks.
  • the impulse response of loudspeakers in the frequency domain has considerable differences in the amplitude of the signals as a function of frequency: it is frequent for the amplitude response of an enclosure to exhibit peaks up and down which can reach 50 dB and whose frequency width is often low. Therefore, with the technique proposed in the document US-A-4,888,808 , the construction of the template of an effective correction filter to obtain a satisfactory correction involves considerable computing power, resulting in the use of expensive processors. Moreover even these expensive processors obviously do not have an infinite dynamic, which leads to insufficient improvements.
  • the object of the present invention is in particular to propose a method for correcting the response of an acoustic speaker which makes it possible to preserve the phase of the signals to be reproduced in a broad frequency band, while requiring a reduced computing power compatible with the dimensions. and the costs of sound reproduction devices for the general public.
  • the method according to the invention requires only a relatively low computing capacity, compatible with the moderate costs required for devices intended for the general public.
  • the inventors have found that the clipping of the signal S (f) does not affect the quality of listening, thanks to an effect called “mask effect", which makes that the human ear discerns with diminished sensitivity frequency sounds close to a given frequency where a signal is well audible.
  • the listening quality obtained with the present invention is excellent, for a moderate cost.
  • the method according to the invention makes it possible to sound a space 100 while ensuring optimal listening to a listener 102 in a target area 101 of the space 100.
  • the space to be sounded 100 may be for example a listening room equipped with at least one loudspeaker 2, comprising a number n of loudspeakers 22, 24, n being a natural integer at least equal to 1, for example equal to 2 or higher.
  • the loudspeakers 22, 24 of the enclosure 2 may for example be supplied by a common input 25 through passive filters, respectively 21, 23.
  • the input 25 receives an electrical signal P (t) from a computer 5 and amplified by an amplifier 6 (the amplifier 6 and the computer 5 can of course be included in the same housing).
  • the aforementioned filter 54 may simply be a software module loaded into the computer 5 and that the digital to analog converter could be removed using digital speakers.
  • the electrical signal X (t) is processed by the correction filter 54 of the computer 5 during the phases of sound, that is to say during normal operation of the sound system.
  • an acoustic calibration operation of the space 100 is carried out by determining the impulse response S (t) between the acoustic enclosure 2 and a calibration point 103 of the target zone 101.
  • the calibration point 103 may for example be between 50 cm and 1 m 50 above the ground.
  • the impulse response S (t) corresponds to the acoustic signal received at point 103 when the loudspeaker emits a short acoustic pulse.
  • This impulse response may preferably be measured at a time when the space 100 is not polluted by other acoustic signals than those emitted by the chamber 2, for example by causing the speaker 2 to emit a short acoustic pulse. and by measuring the acoustic signals received as a result of this pulse at the calibration point 103, by means of a microphone 11 previously arranged at the point 103.
  • the acoustic chamber 2 receives from the computer 5 the pulse signal to be transmitted.
  • the microphone 11 located at the calibration point 103 is connected to an amplifier 12 itself connected to an analog-digital converter 3, this converter can for example be connected to the computer 5, so that the signals picked up by the microphone 11 can be stored by the computer 5 for the calibration point 103.
  • the microphone 11 is disassembled with its amplifier 12 and its converter 3.
  • the computer 5 determines by a fast Fourier transform technique the frequency response S (f) of the impulse response S (t ).
  • the calculator (5) then calculates the inverse Fourier transform of I (f), namely I (t).
  • the filter template W (t) is then obtained by the computer 5 by making the convolution product S (-t) with I (t), which makes it possible to set up the filter software module 54 in the computer 5 and closes the learning step.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

La présente invention est relative aux procédés de sonorisation, comprenant une correction de la réponse d'enceintes acoustiques.The present invention relates to sound reinforcement methods, including correction of acoustic speaker response.

Il existe un besoin en outils de correction de la réponse des enceintes acoustiques car si les supports analogiques ou numériques de représentation des données acoustiques permettent de stocker et de restituer ces grandeurs avec une dynamique élevée (par exemple 96 dB ou plus) et un bon respect de la phase, sur toute la bande acoustique audible, les haut-parleurs constituent l'élément le plus faible dans une chaîne de restitution du son.There is a need for acoustic loudspeaker response correction tools because if analog or digital acoustic data representation carriers can store and output these quantities with high dynamics (eg 96 dB or more) and good respect of the phase, over the entire acoustic audible band, the speakers are the weakest element in a sound reproduction chain.

De nombreuses techniques ont été proposées dans le passé pour tenter de résoudre ce problème.Many techniques have been proposed in the past to try to solve this problem.

Ainsi, on peut corriger l'amplitude au niveau d'un amplificateur qui alimente un ou plusieurs haut-parleurs, en utilisant un gabarit de gain de l'amplificateur en fonction de la fréquence. De cette manière, pour un haut-parleur ayant une réponse en amplitude inférieure à la moyenne dans une bande spectrale donnée, on accentue l'amplification dans ladite bande afin que le son émis soit sensiblement constant dans toute la bande audible. Pour cela, il a été proposé dans le document US-A-4 458 362 , d'élaborer le gabarit de gain en question à partir de signaux de tests émis par le haut-parleur. La technique utilisée dans ce document soulève de nombreux problèmes de mise en oeuvre en situation réelle et en particulier en milieu réverbérant. Surtout, cette technique ne conserve pas la phase des signaux électriques à transformer en signaux acoustiques.Thus, amplitude can be corrected at an amplifier that powers one or more speakers, using a gain pattern of the amplifier as a function of frequency. In this way, for a loudspeaker having a below-average amplitude response in a given spectral band, the amplification in said band is emphasized so that the emitted sound is substantially constant throughout the audible band. For that, it was proposed in the document US-A-4,458,362 , to develop the gain template in question from test signals emitted by the speaker. The technique used in this document raises many problems of implementation in real situations and in particular in a reverberant environment. Above all, this technique does not retain the phase of electrical signals to transform into acoustic signals.

Une deuxième approche, très utilisée pour corriger la réponse d'une enceinte, consiste à.regrouper dans une enceinte plusieurs haut-parleurs ayant chacun de bonnes caractéristiques dans une bande spectrale donnée et d'interposer entre l'entrée de l'enceinte et les haut-parleurs, des filtres qui vont sélectivement envoyer vers chaque haut-parleur les composantes spectrales du signal électrique les mieux adaptées à ce haut-parleur. Ce procédé, qui permet d'améliorer la réponse en amplitude globale de l'enceinte, présente le grave inconvénient d'introduire des déphasages à plusieurs niveaux dans le système et ainsi de ne pas permettre une reproduction fidèle en ce qui concerne la phase des signaux à reproduire.A second approach, widely used to correct the response of a speaker, consists in.regrouping in a speaker several speakers each having good characteristics in a given spectral band and to interpose between the input of the speaker and the speakers, filters that will selectively send to each speaker the spectral components of the electrical signal best suited to the speaker. This method, which makes it possible to improve the overall amplitude response of the loudspeaker, has the serious drawback of introducing phase shifts at several levels in the system and thus of not allowing a faithful reproduction with regard to the phase of the signals. to reproduce.

Or, dans beaucoup de cas, pour assurer une bonne qualité d'écoute, il est plus important de respecter la phase que l'amplitude.However, in many cases, to ensure a good quality of listening, it is more important to respect the phase than the amplitude.

Il a été également proposé, dans le document US-A-5 815 580 , d'utiliser un filtre correcteur ayant un gabarit apte à corriger les seuls déphasages introduits par les filtres passifs présents dans l'enceinte acoustique. Une telle solution présente de graves inconvénients ; en particulier, elle ne compense pas les déphasages introduits par les haut-parleurs eux-mêmes et elle ne prend pas en compte l'environnement de l'enceinte, de sorte que la correction de phase effectuée par le filtre correcteur proposé dans ce document est inefficace. De plus, elle nécessite :

  • soit l'accès aux filtres passifs par l'utilisateur, ce qui requiert un démontage de l'enceinte qui n'est évidemment pas souhaitable,
  • soit la mise en place dans l'enceinte, lors de sa fabrication, de moyens de déconnexion des haut-parleurs des filtres et d'accès électriques à la sortie desdits filtres, ce qui introduit des surcoûts et entraîne des risques de parasites électriques.
It was also proposed in the document US-A-5,815,580 , to use a correction filter having a template adapted to correct the only phase shifts introduced by the passive filters present in the acoustic enclosure. Such a solution has serious disadvantages; in particular, it does not compensate for the phase shifts introduced by the loudspeakers themselves and it does not take into account the environment of the enclosure, so that the phase correction performed by the correction filter proposed in this document is ineffective. In addition, it requires:
  • access to the passive filters by the user, which requires disassembly of the enclosure which is obviously not desirable,
  • or the establishment in the enclosure, during its manufacture, means for disconnecting the speakers filters and electrical access to the output of said filters, which introduces additional costs and entails the risk of electrical noise.

Une autre technique connue, divulguée notamment dans le document US-A-4 888 808 , utilise, à partir de la réponse impulsionnelle initiale de l'enceinte acoustique, une suite d'opérations fondées sur la transformation de Fourier pour obtenir dans un premier temps, la réponse de l'enceinte dans le domaine fréquentiel, en amplitude et en phase et dans un second temps, le gabarit d'un filtre correcteur, qui, utilisé pour alimenter l'enceinte acoustique, est censé corriger les défauts de phase tout en respectant en théorie l'amplitude des signaux. La mise en oeuvre pratique d'une telle solution à partir de processeurs de traitement du signal présente de graves inconvénients. En effet, la réponse impulsionnelle d'enceintes acoustiques dans le domaine fréquentiel, particulièrement en milieu réverbérant, présente des écarts considérables dans l'amplitude des signaux en fonction de la fréquence : il est fréquent que la réponse en amplitude d'une enceinte présente des pics vers le haut et vers le bas qui peuvent atteindre 50 dB et dont la largeur en fréquence est souvent faible. Par conséquent, avec la technique proposée dans le document US-A-4 888 808 , la construction du gabarit d'un filtre correcteur efficace pour obtenir une correction satisfaisante implique des puissances de calcul considérables, ce qui entraîne l'utilisation de processeurs coûteux. De plus même ces processeurs coûteux n'ont bien évidemment pas une dynamique infinie, ce qui conduit à des améliorations insuffisantes.Another known technique, disclosed in particular in the document US-A-4,888,808 , uses, from the initial impulse response of the acoustic enclosure, a series of operations based on the Fourier transform to firstly obtain the response of the speaker in the frequency domain, in amplitude and in phase and in a second step, the template of a correction filter, which, used to power the loudspeaker, is supposed to correct the phase defects while respecting in theory the amplitude of the signals. The practical implementation of such a solution from signal processing processors has serious drawbacks. Indeed, the impulse response of loudspeakers in the frequency domain, particularly in a reverberant medium, has considerable differences in the amplitude of the signals as a function of frequency: it is frequent for the amplitude response of an enclosure to exhibit peaks up and down which can reach 50 dB and whose frequency width is often low. Therefore, with the technique proposed in the document US-A-4,888,808 , the construction of the template of an effective correction filter to obtain a satisfactory correction involves considerable computing power, resulting in the use of expensive processors. Moreover even these expensive processors obviously do not have an infinite dynamic, which leads to insufficient improvements.

Une approche de correction des caractéristiques acoustiques d'un système de reproduction en utilisant des convolutions est connu du document EP1017166 .An approach for correcting the acoustic characteristics of a reproduction system using convolutions is known from the document EP1017166 .

La présente invention a notamment pour but de proposer un procédé de correction de la réponse d'une enceinte acoustique qui permette de conserver la phase des signaux à reproduire dans une large bande de fréquences, tout en nécessitant une puissance de calcul réduite compatible avec les dimensions et les coûts d'appareils de reproduction des sons destinés au grand public.The object of the present invention is in particular to propose a method for correcting the response of an acoustic speaker which makes it possible to preserve the phase of the signals to be reproduced in a broad frequency band, while requiring a reduced computing power compatible with the dimensions. and the costs of sound reproduction devices for the general public.

A cet effet, la présente invention propose un procédé de sonorisation d'un espace afin de transmettre dans cet espace des informations sous forme d'ondes acoustiques représentatives d'un signal X(t), au moyen d'au moins une enceinte acoustique comportant une entrée commandant un nombre n de haut-parleurs, n étant un entier naturel au moins égal à 1, ce procédé comprenant au moins une étape de sonorisation au cours de laquelle on applique à l'entrée de l'enceinte acoustique un signal électrique P(t) = W(t)⊗X(t), où :

  • ⊗ est l'opérateur mathématique produit de convolution et
  • W(t) représente un gabarit de filtre préalablement déterminé et mémorisé,
    ledit procédé comprenant une étape d'apprentissage au cours de laquelle on détermine le gabarit de filtre W(t) comme suit : W t = S - t I t ,
    Figure imgb0001
    où :
  • S(-t) est la retournée temporelle de la réponse impulsionnelle S(t) entre l'enceinte et une zone cible appartenant à l'espace à sonoriser, t représentant le temps,
  • et I(t) est la réponse temporelle du produit e-2iπƒ10.Sc(ƒ) , où f représente la fréquence, t0 est un coefficient de décalage temporel et Sc(f)=1/(S1(f))α, α étant un nombre positif non nul et S1(f) étant une fonction réelle obtenue par écrêtage du module |S(f)| de la réponse en fréquence S(f) de la réponse impulsionnelle S(t).
For this purpose, the present invention proposes a method of sounding a space in order to transmit in this space information in the form of acoustic waves representative of a signal X (t), by means of at least one loudspeaker having an input controlling a number n of loudspeakers, n being a natural integer at least equal to 1, this method comprising at least one sound stage during which is applied to the input of the speaker acoustic an electrical signal P ( t ) = W ( t ) ⊗ X ( t ) , where:
  • ⊗ is the mathematical operator product of convolution and
  • W (t) represents a previously determined and stored filter mask,
    said method comprising a learning step in which the filter template W (t) is determined as follows: W t = S - t I t ,
    Figure imgb0001
    or :
  • S (-t) is the time reversal of the impulse response S (t) between the speaker and a target zone belonging to the space to be sounded, t representing the time,
  • and I (t) is the time response of the product e -2iπƒ10 .Sc (ƒ), where f is the frequency, t0 is a time shift coefficient and Sc (f) = 1 / (S1 (f)) α , α being a non-zero positive number and S1 (f) being a real function obtained by clipping the module | S (f) | the frequency response S (f) of the impulse response S (t).

Grâce à ces dispositions, qui permettent une compensation des déphasages introduits par l'enceinte acoustique, les informations transmises sous forme d'ondes acoustiques sont reçues parfaitement en phase dans la zone cible.Thanks to these arrangements, which make it possible to compensate for the phase shifts introduced by the acoustic enclosure, the information transmitted in the form of acoustic waves is received perfectly in phase in the target zone.

De plus, grâce à l'écrêtage du signal S(f), le procédé selon l'invention ne nécessite qu'une capacité de calcul relativement faible, compatible avec les coûts modérés exigés pour des appareils destinés au grand public.In addition, thanks to the clipping of the signal S (f), the method according to the invention requires only a relatively low computing capacity, compatible with the moderate costs required for devices intended for the general public.

Enfin, les inventeurs ont pu constater que l'écrêtage du signal S(f) ne nuit pas à la qualité de l'écoute, grâce à un effet dit "effet de masque", qui fait que l'oreille humaine discerne avec une sensibilité diminuée les sons de fréquence voisine d'une fréquence donnée où un signal est bien audible.Finally, the inventors have found that the clipping of the signal S (f) does not affect the quality of listening, thanks to an effect called "mask effect", which makes that the human ear discerns with diminished sensitivity frequency sounds close to a given frequency where a signal is well audible.

La qualité d'écoute obtenue grâce à la présente invention est donc excellente, pour un coût modéré.The listening quality obtained with the present invention is excellent, for a moderate cost.

Dans des modes de réalisation préférés de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou l'autre des dispositions suivante :

  • au cours de l'étape d'apprentissage, on détermine la fonction Sc(f) comme suit :
    • pour Sfmoy.R2<|S(f)|<Sf moy.R1, Sc(f) = 1/|S(f) |α, R1 et R2 étant deux nombres positifs, R1 étant supérieur à R2 et Sfmoy étant la valeur moyenne de |S(f)|,
    • pour |S(f)| ≤ Sfmoy.R2, Sc (f) = 1/ (Sfmoy.R2)α,
    • pour |S(f)| ≥ Sfmoy.R1, Sc(f) = 1/ (Sfmoy.R1)α ;
  • le coefficient de décalage temporel t0 est compris entre 0 et Tmax, Tmax étant la durée d'enregistrement de la réponse S(t) ;
  • I(t) est obtenu en utilisant la partie réelle de la transformée de Fourier inverse du produit e -2iπfi0 .Sc(ƒ);
  • la réponse impulsionnelle S(t) est mémorisée sur un nombre 2k d'échantillons et S(f) est calculée à partir de S(t), en utilisant une technique de transformée de Fourier rapide de S(t) ;
  • la réponse impulsionnelle S(t) est mémorisée sur un nombre 2K d'échantillons et I(t) est calculée à partir du produit e-2iπƒi0.Sc(f) en utilisant une technique de transformée de Fourier rapide inverse ;
  • α vaut 1 ;
  • les coefficients R1 et R2 sont choisis de façon à obtenir une excursion d'amplitude d'environ 24 dB (notamment lorsque le procédé est mis en oeuvre par des processeurs traitant des données sur 16 bits) ;
  • les coefficients R1 et R2 sont choisis de façon à obtenir une excursion d'amplitude d'environ 12 dB (notamment lorsque le procédé est mis en oeuvre par des processeurs traitant des données sur 16 bits) ;
  • les coefficients R1 et R2 sont choisis de façon à obtenir une excursion d'amplitude d'environ 36 dB (notamment lorsque le procédé est mis en oeuvre par des processeurs traitant des données sur plus de 16 bits) ;
  • les coefficients R1 et R2 sont choisis de façon à obtenir une excursion d'amplitude d'environ 48 dB (notamment lorsque le procédé est mis en oeuvre par des processeurs traitant des données sur plus de 16 bits) ;
  • la valeur Sfmoy est calculée pour une bande de fréquences fb ne représentant qu'une partie des fréquences audibles.
In preferred embodiments of the invention, one or more of the following provisions may also be used:
  • during the learning step, the function Sc (f) is determined as follows:
    • for Sfmoy.R2 <| S (f) | <Sf mean R1, Sc (f) = 1 / | S (f) | α , R1 and R2 being two positive numbers, R1 being greater than R2 and Sfmoy being the average value of | S (f) |,
    • for | S (f) | ≤ Sfmoy.R2, Sc (f) = 1 / (Sfmoy.R2) α ,
    • for | S (f) | ≥ Sfmoy.R1, Sc (f) = 1 / (Sfmoy.R1) α ;
  • the time offset coefficient t0 is between 0 and Tmax, where Tmax is the recording time of the response S (t);
  • I (t) is obtained by using the real part of the Fourier inverse transform of the product e -2iπfi 0 BSc (ƒ);
  • the impulse response S (t) is stored on a 2 k of samples and S (f) is calculated from S (t), using a fast Fourier transform technique of S (t);
  • the impulse response S (t) is stored on a number 2 K of samples and I (t) is calculated from the product e -2iπƒi0 .Sc (f) using a technique of inverse fast Fourier transform;
  • α is 1;
  • the coefficients R1 and R2 are chosen so as to obtain an amplitude excursion of approximately 24 dB (especially when the method is implemented by processors processing 16-bit data);
  • the coefficients R1 and R2 are chosen so to obtain an amplitude excursion of about 12 dB (especially when the process is implemented by processors processing 16-bit data);
  • the coefficients R1 and R2 are chosen so as to obtain an amplitude excursion of approximately 36 dB (in particular when the method is implemented by processors processing data on more than 16 bits);
  • the coefficients R1 and R2 are chosen so as to obtain an amplitude excursion of approximately 48 dB (in particular when the method is implemented by processors processing data on more than 16 bits);
  • the Sfmoy value is calculated for a frequency band fb representing only a part of the audible frequencies.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description détaillée suivante d'une de ses formes de réalisation, donnée à titre d'exemple non limitatif, en regard des dessins joints.Other features and advantages of the invention will become apparent from the following detailed description of one of its embodiments, given by way of non-limiting example, with reference to the accompanying drawings.

Sur les dessins :

  • la figure 1 est un schéma de principe montrant un exemple de dispositif pouvant mettre en oeuvre le procédé selon l'invention, en fonctionnement normal, c'est à dire pendant la phase de sonorisation susmentionnée,
  • et la figure 2 est un schéma similaire à la figure 1, montrant le dispositif pendant la phase initiale d'apprentissage.
On the drawings:
  • the figure 1 is a block diagram showing an example of a device that can implement the method according to the invention, in normal operation, ie during the above-mentioned sound phase,
  • and the figure 2 is a diagram similar to the figure 1 , showing the device during the initial learning phase.

Comme représenté sur la figure 1, le procédé selon l'invention permet de sonoriser un espace 100 en assurant une écoute optimale à un auditeur 102 dans une zone cible 101 de l'espace 100.As shown on the figure 1 , the method according to the invention makes it possible to sound a space 100 while ensuring optimal listening to a listener 102 in a target area 101 of the space 100.

L'espace à sonoriser 100 peut être par exemple une salle d'écoute équipée d'au moins une enceinte acoustique 2, comprenant un nombre n de haut-parleurs 22, 24, n étant un entier naturel au moins égal à 1, par exemple égal à 2 ou supérieur.The space to be sounded 100 may be for example a listening room equipped with at least one loudspeaker 2, comprising a number n of loudspeakers 22, 24, n being a natural integer at least equal to 1, for example equal to 2 or higher.

Les hauts-parleurs 22, 24 de l'enceinte 2 peuvent par exemple être alimentés par une entrée commune 25 à travers des filtres passifs, respectivement 21, 23.The loudspeakers 22, 24 of the enclosure 2 may for example be supplied by a common input 25 through passive filters, respectively 21, 23.

L'entrée 25 reçoit un signal électrique P(t) issu d'un calculateur 5 et amplifié par un amplificateur 6 (l'amplificateur 6 et le calculateur 5 peuvent bien entendu être compris dans un même boîtier).The input 25 receives an electrical signal P (t) from a computer 5 and amplified by an amplifier 6 (the amplifier 6 and the computer 5 can of course be included in the same housing).

Le calculateur 5 peut comporter par exemple :

  • une unité de calcul 51 qui reçoit un signal électrique X(t) à reproduire sous forme sonore dans l'espace 100 (t représente le temps),
  • un filtre correcteur 54 de gabarit W(t) recevant les signaux issus de l'unité de calcul 51,
  • et un convertisseur numérique-analogique 52 qui reçoit les signaux numériques issus du filtre 52 et envoie des signaux analogiques correspondants à l'amplificateur 6.
The calculator 5 may comprise for example:
  • a calculation unit 51 which receives an electrical signal X (t) to be reproduced in sound form in the space 100 (t represents the time),
  • a correction filter 54 of template W (t) receiving the signals coming from the calculation unit 51,
  • and a digital-to-analog converter 52 which receives the digital signals from the filter 52 and sends corresponding analog signals to the amplifier 6.

On notera que le filtre 54 susmentionné peut être simplement un module logiciel chargé dans le calculateur 5 et que le convertisseur numérique-analogique pourrait être supprimé en utilisant des haut-parleurs numériques.Note that the aforementioned filter 54 may simply be a software module loaded into the computer 5 and that the digital to analog converter could be removed using digital speakers.

Le procédé selon l'invention permet notamment d'éviter les déphasages que subissaient habituellement les ondes sonores à leur arrivée au niveau de l'auditeur 102, avec les systèmes de l'art antérieur. Ces déphasages ont plusieurs origines, en particulier :

  • les filtres passifs 21 et 23 présents dans l'enceinte 2 sont différents et par conséquent ils introduisent des déphasages différents,
  • de la même façon, les n haut-parleurs 22, 24 sont différents et introduisent des déphasages différents, etc.
The method according to the invention makes it possible in particular to avoid the phase shifts which the sound waves on arrival at the level of the listener 102 usually undergo with the systems of the prior art. These phase shifts have several origins, in particular:
  • the passive filters 21 and 23 present in the chamber 2 are different and therefore they introduce different phase shifts,
  • in the same way, the n loudspeakers 22, 24 are different and introduce different phase shifts, etc.

A cet effet, selon l'invention, le signal électrique X (t) est traité par le filtre correcteur 54 du calculateur 5 lors des phases de sonorisation, c'est à dire pendant le fonctionnement normal du dispositif de sonorisation. Lors de ce traitement, le filtre 54 calcule P(t) en effectuant le produit de convolution suivant : P t = W t X t .

Figure imgb0002
For this purpose, according to the invention, the electrical signal X (t) is processed by the correction filter 54 of the computer 5 during the phases of sound, that is to say during normal operation of the sound system. During this treatment, the filter 54 calculates P (t) by carrying out the following convolution product: P t = W t X t .
Figure imgb0002

Pour déterminer le gabarit W(t) au cours d'une étape initiale d'apprentissage, comme représenté sur la figure 2, on procède tout d'abord à une opération de calibration acoustique de l'espace 100 en déterminant la réponse impulsionnelle S(t) entre l'enceinte acoustique 2 et un point de calibration 103 de la zone cible 101.To determine the template W (t) during an initial learning step, as shown in FIG. figure 2 firstly, an acoustic calibration operation of the space 100 is carried out by determining the impulse response S (t) between the acoustic enclosure 2 and a calibration point 103 of the target zone 101.

Le point de calibration 103 peut être par exemple situé entre 50 cm et 1 m 50 au-dessus du sol.The calibration point 103 may for example be between 50 cm and 1 m 50 above the ground.

La réponse impulsionnelle S(t) correspond au signal acoustique reçu au point 103 lorsque l'enceinte acoustique émet une impulsion acoustique de courte durée.The impulse response S (t) corresponds to the acoustic signal received at point 103 when the loudspeaker emits a short acoustic pulse.

Cette réponse impulsionnelle peut être mesurée de préférence à un moment où l'espace 100 n'est pas pollué par d'autres signaux acoustiques que ceux émis par l'enceinte 2, par exemple en faisant émettre par l'enceinte 2 une courte impulsion acoustique et en mesurant les signaux acoustiques reçus à la suite de cette impulsion au niveau du point de calibration 103, au moyen d'un microphone 11 préalablement disposé au point 103.This impulse response may preferably be measured at a time when the space 100 is not polluted by other acoustic signals than those emitted by the chamber 2, for example by causing the speaker 2 to emit a short acoustic pulse. and by measuring the acoustic signals received as a result of this pulse at the calibration point 103, by means of a microphone 11 previously arranged at the point 103.

Dans l'exemple particulier représenté sur la figure 2, l'enceinte acoustique 2 reçoit du calculateur 5 le signal impulsionnel à émettre.In the particular example shown on the figure 2 , the acoustic chamber 2 receives from the computer 5 the pulse signal to be transmitted.

Par ailleurs, le microphone 11 situé au point de calibration 103 est relié à un amplificateur 12 lui-même relié à un convertisseur analogique-numérique 3, ce convertisseur pouvant par exemple être relié au calculateur 5, de façon que les signaux captés par le microphone 11 puissent être mémorisés par le calculateur 5 pour le point de calibration 103.Furthermore, the microphone 11 located at the calibration point 103 is connected to an amplifier 12 itself connected to an analog-digital converter 3, this converter can for example be connected to the computer 5, so that the signals picked up by the microphone 11 can be stored by the computer 5 for the calibration point 103.

La réponse impulsionnelle S(t) ainsi mémorisée par le calculateur 5 est ensuite inversée temporellement par ce calculateur 5, qui mémorise finalement l'inversée temporelle de la réponse impulsionnelle, S(-t).The impulse response S (t) thus stored by the computer 5 is then inverted temporally by this calculator 5, which finally stores the time inverted of the impulse response, S (-t).

Une fois l'opération de calibration terminée, on démonte le microphone 11 avec son amplificateur 12 et son convertisseur 3.Once the calibration operation is complete, the microphone 11 is disassembled with its amplifier 12 and its converter 3.

Par la suite, si l'on a enregistré S(t) sur un nombre 2K d'échantillons, le calculateur 5 détermine par une technique de transformée de Fourier rapide la réponse en fréquence S(f) de la réponse impulsionnelle S(t).Subsequently, if S (t) has been recorded on a 2 K number of samples, the computer 5 determines by a fast Fourier transform technique the frequency response S (f) of the impulse response S (t ).

On rappelle que pour un vecteur d'entrée S(t) comportant 2K, échantillons, S(f) est un vecteur de 2K échantillons avec : S f = m = 1 2 κ S m . e - 2 f - 1 . m - 1 / 2 κ ,

Figure imgb0003
pour 1 ≤ f ≤ 2K.It is recalled that for an input vector S (t) comprising 2 K samples, S (f) is a vector of 2 K samples with: S f = Σ m = 1 2 κ S m . e - 2 f - 1 . m - 1 / 2 κ ,
Figure imgb0003
for 1 ≤ f ≤ 2 K.

Par la suite, le calculateur 5 effectue la séquence d'opérations suivante :

  • il détermine et mémorise le module de S(f), à savoir |S(f)|,
  • il détermine et mémorise la valeur moyenne atteinte par |S(f)|, notée Sfmoy (moyenne arithmétique, logarithmique ou autre),
  • pour toutes les fréquences f, telles que Sfmoy.R2 < |S(f)| < Sfmoy.R1, il construit et mémorise Sc(f) comme 1/|S(f)|α,
  • pour toutes les fréquences f, telles que S(f)| ≤ Sfmoy.R2, il construit et mémorise Sc(f) comme 1/(Sfmoy.R2),
  • pour toutes les fréquences f, telles que |S(fs)| ≥ Sfmoy.R1, il construit et mémorise Sc(f) comme 1/(Sfmoy.R1)α, α étant un nombre réel positif non nul, avantageusement égal à 1,
  • il effectue la multiplication de Sc(f), par une fonction y(f) = e -2iπft0, où t0 est un décalage temporel compris entre 0 et Tmax [Tmax est la durée d'enregistrement de la réponse impulsionnelle S(t)] choisi pour respecter la chronologie des événements (principe de causalité) : t0 peut avantageusement être choisi égal à Tmax/2, ou égal à une valeur inférieure,
  • et finalement détermine et mémorise le résultat I(f) = y(f).Sc(f).
Subsequently, the computer 5 performs the following sequence of operations:
  • it determines and stores the module of S (f), namely | S (f) |,
  • it determines and stores the average value reached by | S (f) |, denoted Sfmoy (arithmetic mean, logarithmic or other),
  • for all frequencies f, such that Sfmoy.R2 <| S (f) | <Sfmoy.R1, it builds and stores Sc (f) as 1 / | S (f) | α ,
  • for all frequencies f, such as S (f) | ≤ Sfmoy.R2, it builds and stores Sc (f) as 1 / (Sfmoy.R2),
  • for all frequencies f, such that | S (fs) | ≥ Sfmoy.R1, it constructs and stores Sc (f) as 1 / (Sfmoy.R1) α , α being a nonzero positive real number, advantageously equal to 1,
  • it performs the multiplication of Sc (f) by a function y (f) = e -2iπft0 , where t0 is a time shift between 0 and Tmax [Tmax is the recording time of the impulse response S (t)] chosen to respect the chronology of events (principle of causality): t0 may advantageously be chosen equal to Tmax / 2, or equal to a lower value,
  • and finally determines and stores the result I (f) = y (f) .Sc (f).

On notera que la fonction Sc(f) pourrait plus généralement être calculée sous la forme Sc(f) = 1/[Si(f)]α, où S1(f) est une fonction obtenue par écrêtage du module de S(f).It should be noted that the function Sc (f) could more generally be computed in the form Sc (f) = 1 / [Si (f)] α , where S1 (f) is a function obtained by clipping the module of S (f). .

Le calculateur (5) calcule alors la transformée de Fourier inverse de I(f), à savoir I(t).The calculator (5) then calculates the inverse Fourier transform of I (f), namely I (t).

On rappelle que la transformée de Fourier rapide inverse de I(f), I(t) est un vecteur de 2K échantillons avec : I t = 1 / 2 κ m = 1 2 κ I m . e 2 m - 1 . t - 1 / 2 κ , 1 t 2 κ .

Figure imgb0004
It is recalled that the fast inverse Fourier transform of I (f), I (t) is a vector of 2 K samples with: I t = 1 / 2 κ Σ m = 1 2 κ I m . e 2 m - 1 . t - 1 / 2 κ , 1 t 2 κ .
Figure imgb0004

Le gabarit de filtre W(t) est alors obtenu par le calculateur 5 en effectuant le produit de convolution S(-t) avec I(t), ce qui permet de mettre en place le module logiciel de filtre 54 dans le calculateur 5 et clôt l'étape d'apprentissage.The filter template W (t) is then obtained by the computer 5 by making the convolution product S (-t) with I (t), which makes it possible to set up the filter software module 54 in the computer 5 and closes the learning step.

On rappelle que le produit de convolution d'une fonction f(t) par une fonction g(t) vaut : f t g t = - + f τ . g t - τ . τ .

Figure imgb0005
It is recalled that the convolution product of a function f (t) by a function g (t) is: f t boy Wut t = - + f τ . boy Wut t - τ . τ .
Figure imgb0005

Comme il va de soi, et comme il résulte d'ailleurs de ce qui précède, l'invention n'est pas limitée à l'exemple de réalisation particulier qui vient d'être décrit ; elle en embrasse au contraire toutes les variantes, notamment celles dans lesquelles :

  • la réponse impulsionnelle S(t) est déterminée autrement qu'en faisant émettre des signaux acoustiques impulsionnels, par exemple en faisant émettre un bruit blanc ou des suites de signaux prédéterminés dont on peut extraire la réponse S(t) par des méthodes de calcul connues en soi, explicitées par exemple dans le document FR-A-2 747 863 pour le calcul des réponses impulsionnelles dans le domaine des ondes radio-électriques.
  • l'espace à sonoriser serait autre qu'une salle d'écoute, par exemple une salle anéchoïde, l'objectif étant dans ce cas par exemple de réaliser un ensemble unité de traitement et enceinte acoustique tel que la phase des ondes acoustiques émises par l'enceinte acoustique respecte la phase des signaux électriques envoyés à l'entrée dudit ensemble.
It goes without saying, and as it follows from the foregoing, the invention is not limited to the particular embodiment which has just been described; on the contrary, it embraces all variants, especially those in which:
  • the impulse response S (t) is determined other than by sending acoustic impulse signals, for example by emitting white noise or predetermined signal sequences from which the response S (t) can be extracted by known calculation methods as such, for example in the document FR-A-2,747,863 for calculating impulse responses in the field of radio waves.
  • the space to be sounded would be other than a listening room, for example an anechoic room, the objective being in this case for example to achieve a treatment unit unit and acoustic enclosure such as the phase of the acoustic waves emitted by the acoustic enclosure respects the phase of the electrical signals sent to the input of said assembly.

Claims (9)

  1. A method of diffusing sound in a space (100) in order to transmit in this space information in the form of acoustic waves representative of a signal X(t), by means of at least one acoustic enclosure (2) having at least one input (25) controlling a number n of loudspeakers (22,24), n being a natural integer greater than or equal to 1, this method comprising at least one step of sound diffusion during which an electrical signal, where :
    P(t)=W(t) ⊗X(t) is applied to the input of the acoustic enclosure (2) where:
    ⊗ is the mathematical convolution product operator and
    W(t) represents a filter template previously determined and memorized,
    the said method comprising a training step during which the filter template is determined as follows: W t = S - t I t ,
    Figure imgb0007
    where
    S(-t) is the temporal return of the impulse response S(t) between the enclosure and a target zone (101) of the space (100) where sound is diffused, t representing the time,
    and I (t) is the temporal response of the product e-2iπft0.Sc(f), where f represents the frequency, t0 is a time shift coefficient and Sc(f)=1/(S1(f))α, a being a non zero positive number and S1(f) being a real function obtained by clipping the module |S(f)| of the response in frequency S(f) of the impulse response S(t).
  2. A method according to claim 1, wherein during the training step the function Sc(f) is determined as follows:
    ,for Sfmoy.R2<|S(f)|<Sfmoy.R1,Sc(ƒ)=1/|S(ƒ)|α,
    R1 and R2 being two positive numbers, R1 being greater than R2 and Sfmoy being the mean value of |S(f)|,
    . for |S(f)|≤Sfmoy.R2, Sc(f)=1/(Sfmoy.R2)α
    for |S(f)≥ Sfmoy.R1, Sc(f)=1/(Sfmoy,R1)α,
  3. A method according to any preceding claim, wherein the coefficient of the temporal shift t0 is comprised between 0 and Tmax, Tmax being the recording duration of the response S(t).
  4. A method according to any preceding claim, wherein I(t) is obtained using the real part of the inverse Fourier transform of the product e-2iπƒt0.Sc(f).
  5. A method according to any preceding claim, wherein the impulse response S(t) is memorized on a number 2K of samples, and S(f) is calculated from S(t), using a technique of fast Fourier transform of S(t).
  6. A method according to any preceding claim, wherein the impulse response S(t) is memorized on a number 2K of samples and I (t) is calculated from the product e-2iπƒt0.Sc(f) using a fast inverse Fourier transform technique.
  7. A method according to any preceding claim, wherein a equals 1.
  8. A method according to any preceding claim, wherein the coefficients R1 and R2 are chosen so as to obtain an amplitude excursion chosen from among an excursion of around 12 dB, an excursion of around 24 dB, an excursion of around 36 dB and an excursion of around 48 dB.
  9. A method according to any preceding claim, in which the quantity Sfmoy is calculated for a band of frequencies fb representing only a portion of the audible frequencies.
EP03757113A 2002-06-10 2003-06-06 Public address system tuning method Expired - Lifetime EP1540987B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0207110 2002-06-10
FR0207110A FR2840759B1 (en) 2002-06-10 2002-06-10 SOUND PROCESS
PCT/FR2003/001694 WO2003105525A1 (en) 2002-06-10 2003-06-06 P.a. system installation method

Publications (2)

Publication Number Publication Date
EP1540987A1 EP1540987A1 (en) 2005-06-15
EP1540987B1 true EP1540987B1 (en) 2012-05-30

Family

ID=29559099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03757113A Expired - Lifetime EP1540987B1 (en) 2002-06-10 2003-06-06 Public address system tuning method

Country Status (6)

Country Link
US (1) US7171005B2 (en)
EP (1) EP1540987B1 (en)
AU (1) AU2003258785A1 (en)
DK (1) DK1540987T3 (en)
FR (1) FR2840759B1 (en)
WO (1) WO2003105525A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249260B2 (en) * 2007-04-13 2012-08-21 Qualcomm Incorporated Method and apparatus for audio path filter tuning
EP3508836B1 (en) * 2018-01-05 2020-07-29 Infineon Technologies AG Photoacoustic system and method for estimating a gas concentration
GB2600538B (en) * 2020-09-09 2023-04-05 Tymphany Worldwide Enterprises Ltd Method of providing audio in a vehicle, and an audio apparatus for a vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458362A (en) 1982-05-13 1984-07-03 Teledyne Industries, Inc. Automatic time domain equalization of audio signals
US4683590A (en) * 1985-03-18 1987-07-28 Nippon Telegraph And Telphone Corporation Inverse control system
US4888808A (en) 1987-03-23 1989-12-19 Matsushita Electric Industrial Co., Ltd. Digital equalizer apparatus enabling separate phase and amplitude characteristic modification
JP2646210B2 (en) * 1987-05-27 1997-08-27 ヤマハ株式会社 Electroacoustic reverberation support device
JP2569872B2 (en) * 1990-03-02 1997-01-08 ヤマハ株式会社 Sound field control device
JPH042928A (en) * 1990-04-19 1992-01-07 Matsushita Electric Ind Co Ltd Sound field controlling apparatus
GB9026906D0 (en) * 1990-12-11 1991-01-30 B & W Loudspeakers Compensating filters
GB2252023B (en) * 1991-01-21 1995-01-18 Mitsubishi Electric Corp Acoustic system
US5572443A (en) * 1993-05-11 1996-11-05 Yamaha Corporation Acoustic characteristic correction device
DE4332804C2 (en) * 1993-09-27 1997-06-05 Klippel Wolfgang Adaptive correction circuit for electroacoustic sound transmitters
JP3537674B2 (en) * 1998-09-30 2004-06-14 パイオニア株式会社 Audio system
JP4663085B2 (en) * 2000-09-19 2011-03-30 パナソニック株式会社 Sound reproduction device

Also Published As

Publication number Publication date
DK1540987T3 (en) 2012-08-20
FR2840759B1 (en) 2004-07-23
WO2003105525A1 (en) 2003-12-18
AU2003258785A1 (en) 2003-12-22
US20050226440A1 (en) 2005-10-13
EP1540987A1 (en) 2005-06-15
FR2840759A1 (en) 2003-12-12
US7171005B2 (en) 2007-01-30

Similar Documents

Publication Publication Date Title
RU2569914C2 (en) Driving parametric loudspeakers
EP1578170B1 (en) Test apparatus, test method, and computer program
EP3111667B1 (en) Method and system for automatic acoustic equalisation
EP1876706B1 (en) Acoustic reproduction device
US9413316B2 (en) Asymmetric polynomial psychoacoustic bass enhancement
EP2113913B1 (en) Method and system for reconstituting low frequencies in an audio signal
EP2042000B1 (en) Method and device for diagnosing the operating state of a sound system
US7286946B2 (en) Transmission characteristic measuring device transmission characteristic measuring method, and amplifier
EP2341614B1 (en) Linearization device for a power amplifier
EP1586220B1 (en) Method and device for controlling a reproduction unit using a multi-channel signal
JP2009175420A (en) Sound correction device
EP1540987B1 (en) Public address system tuning method
FR2890280A1 (en) Audio processing unit for sound reproducing stereo system, has psychoacoustic model linearizing response curve of loudspeaker enclosure according to direction of perception of sound by user
WO2012045927A1 (en) Method for developing correction filters for correcting the acoustic modes of a room
EP1634435B1 (en) Echo processing method and device
WO1988004124A1 (en) Device for processing an electric audiofrequency signal
EP3637792B1 (en) Device for controlling a speaker and associated sound playback system
FR3112017A1 (en) Electronic equipment including a distortion simulator
CH622919A5 (en)
EP1792305A1 (en) Method and device for evaluating the efficiency of a noise reducing function for audio signals
EP1014669A1 (en) Acoustic system for echo cancellation
EP0577441A2 (en) Apparatus for analyzing speech and acoustical events
EP3248286B1 (en) Amplifier with adjustment of the automatic sound level
FR2957185A1 (en) Threshold determination method for attenuating noise generated in e.g. room, involves determining threshold to be applied to component of sound signal based on noise level and amplitude, and maintaining noise generated by sound signal
US10658996B2 (en) Rendering wideband ultrasonic signals audible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PUBLIC ADDRESS SYSTEM TUNING METHOD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 560532

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60341092

Country of ref document: DE

Effective date: 20120802

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 560532

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

BERE Be: lapsed

Owner name: CYNOVE

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121001

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120606

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120910

26N No opposition filed

Effective date: 20130301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60341092

Country of ref document: DE

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140527

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140529

Year of fee payment: 12

Ref country code: DE

Payment date: 20140523

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140522

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60341092

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210519

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630