EP1538645B1 - Hybrid circuit breaker - Google Patents

Hybrid circuit breaker Download PDF

Info

Publication number
EP1538645B1
EP1538645B1 EP03293050A EP03293050A EP1538645B1 EP 1538645 B1 EP1538645 B1 EP 1538645B1 EP 03293050 A EP03293050 A EP 03293050A EP 03293050 A EP03293050 A EP 03293050A EP 1538645 B1 EP1538645 B1 EP 1538645B1
Authority
EP
European Patent Office
Prior art keywords
circuit breaker
breaker device
parallel
series
breaking cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03293050A
Other languages
German (de)
French (fr)
Other versions
EP1538645A1 (en
Inventor
Pierre Sellier
Ronan Besrest
Claudio Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Technique pour lEnergie Atomique Technicatome SA
TechnicAtome SA
Original Assignee
Societe Technique pour lEnergie Atomique Technicatome SA
TechnicAtome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP03293050A priority Critical patent/EP1538645B1/en
Application filed by Societe Technique pour lEnergie Atomique Technicatome SA, TechnicAtome SA filed Critical Societe Technique pour lEnergie Atomique Technicatome SA
Priority to DE60303773T priority patent/DE60303773T2/en
Priority to ES03293050T priority patent/ES2259409T3/en
Priority to AT03293050T priority patent/ATE319177T1/en
Priority to US10/895,456 priority patent/US7508636B2/en
Priority to RU2004135408/09A priority patent/RU2338287C2/en
Priority to CNB2004100979348A priority patent/CN100339925C/en
Publication of EP1538645A1 publication Critical patent/EP1538645A1/en
Application granted granted Critical
Publication of EP1538645B1 publication Critical patent/EP1538645B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/222Power arrangements internal to the switch for operating the driving mechanism using electrodynamic repulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/222Power arrangements internal to the switch for operating the driving mechanism using electrodynamic repulsion
    • H01H2003/225Power arrangements internal to the switch for operating the driving mechanism using electrodynamic repulsion with coil contact, i.e. the movable contact itself forms a secondary coil in which the repulsing current is induced by an operating current in a stationary coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/548Electromechanical and static switch connected in series

Definitions

  • the present invention relates to the field of circuit breaker devices in particular for alternative or continuous electrical networks and electrical systems or equipment in general.
  • circuit breaker devices which are inserted into an electrical circuit to be protected have a switch element which cuts off the current flowing in the circuit to be protected under abnormal operating conditions, for example in the event of a short circuit occurring in the circuit to be protected.
  • the circuit breaker devices are mechanical, that is to say that the breaking of the current is obtained only by the opening of a mechanical switch element.
  • a mechanical switch element comprises two contacting conductive parts which are in mechanical contact when the switch element is closed (normal operation) and which mechanically separate when the switch element is open (abnormal operation in case of overcurrent).
  • the mechanical cutoff results in the establishment of an electric arc because of the large energy accumulated in the circuit in which the circuit breaker device is mounted and protects.
  • This electric arc degrades firstly by erosion conductive parts making contact and secondly the environment surrounding the ionization switch element. Thus the current takes some time to stop because of this ionization.
  • This electric arc by degrading the conductive parts making contact requires maintenance operations which are restrictive and expensive.
  • the conductive parts making contact are placed in an interrupting chamber, it is a chamber filled with a specific medium that can be air, the vacuum, a particular gas for example sulfur hexafluoride SF 6 but which in the future will probably be banned for environmental reasons.
  • This specific medium is able to withstand the overpressure created by the formation of the electric arc and is intended to promote its extinction.
  • Such circuit breaker devices with a mechanical switch element have a high breaking time.
  • the time for the mechanical switch element to open is of the order of a millisecond or even several milliseconds.
  • Another disadvantage is that they are bulky, the dimensions of the breaking chamber are all the more important as the tension is high.
  • the first systems using power thyristors were born at LV low voltage ( ⁇ 1kV).
  • IGBT Insulated Gate Bipolar Transistor bipolar transistor insulated gate
  • the circuit breaker devices have Joule losses in the on state and a cooling device must be provided. It is also necessary to integrate a system of dissipation of the energy present at the moment of the cut.
  • This circuit breaker device 10 is intended to protect an electric circuit materialized by an electric line L.
  • the circuit breaker device 10 is connected in series. with the circuit to be protected L.
  • the circuit breaker device 10 comprises a main branch 1 in which there is a mechanical switch element 2 and an auxiliary branch 3 connected in parallel with the main branch 1.
  • the auxiliary branch 3 comprises a half-cut cell
  • This cut-off cell 4 comprises a Graetz bridge 40 with four diodes D and connected to the terminals of a diagonal. of the Graetz bridge 40 at least one semiconductor breaking element 41 connected in parallel with a varistor 42.
  • This breaking element can be a thyristor.
  • This element can be open-controlled, for example an IGCT thyristor.
  • commandable at opening is that the semiconductor breakout element opens as soon as an appropriate command is applied to it.
  • a simple thyristor is not "controllable at the opening". It opens after a command, only a zero current.
  • the semiconductor cut-off element 41 is therefore either in a conducting state (closed) or in a non-conducting state (open), which makes the semiconductor breaking cell active (open) or non-conducting (closed). ).
  • connection of the semiconductor breaking cell 4 to the main branch 1 is at the ends of the other diagonal of the Graetz bridge 40.
  • the mechanical switch element 2 In normal operation, the mechanical switch element 2 is closed. Its two conducting parts making contact are in mechanical contact.
  • the semiconductor breaking element 41 is in a non-conducting state.
  • the circuit L to be protected can be traversed by an electric current via the main branch 1 of the circuit breaker device, ie via the mechanical switch element 2 and practically without losses by Joule effect. If an overcurrent occurs in the circuit L to be protected and therefore in the main branch 1 of the circuit breaker device, means (not shown) control the opening of the mechanical switch element 2 and simultaneously the setting-in state of the semiconductor breaking element 41.
  • a low electric arc appears at the level of the conductive parts making contact with the mechanical switch element 2 during their separation. The voltage corresponding to this electric arc allows the current flowing in the circuit to be protected L to switch rapidly in the auxiliary branch 3 in which the semiconductor breaking cell 4 is conducting.
  • the semiconductor breaking element 41 of the breaking cell 4 is set to non-conducting state, which allows the final cut of the current in the circuit L to be protected.
  • the opening speed of the mechanical switch element 2 is as fast as possible so that the electric arc generated between the conductive parts making contact with the mechanical switch element 2 has an energy of weaker possible and is therefore no longer likely to degrade the said parts.
  • this electric arc plays an important role because it is the low arc voltage (about ten volts) that polarizes the semiconductor breaking element 41 above its threshold voltage thus causing it to pass passing state and deflects the current in the branch auxiliary.
  • the control signal is conventionally a pulse applied on the gate of the thyristor 41 at the moment of opening of the mechanical switch element 2.
  • This hybrid circuit breaker device 10 therefore solves some of the technical difficulties of purely static circuit breaker devices, but its performance is mainly dependent on the opening speed of the mechanical switch element 2.
  • circuit breaker devices whether static or hybrid, are unsatisfactory especially in the case of high voltage applications of high power.
  • EP-A-1 014 403 discloses a circuit breaker device corresponding to the preamble of claim 1.
  • the present invention is precisely intended to provide a hybrid circuit breaker device that does not have the disadvantages mentioned above.
  • an object of the invention is to provide a hybrid circuit breaker device comprising a mechanical switch element and a semiconductor breaking element capable of driving a direct or alternating current and in which there is no electric arc when the opening of the mechanical switch element even if the current is important.
  • Another object of the invention is to provide a hybrid circuit breaker device with reduced maintenance.
  • the invention relates more precisely to a circuit breaker device comprising a main branch containing a mechanical switch element and an auxiliary branch containing a semiconductor breaking cell, this auxiliary branch being connected in parallel with the main branch.
  • the main branch comprises in series with the mechanical switch element a series switching assistance module comprising a semiconductor breaking cell controllable at the opening in parallel with an impedance.
  • the auxiliary branch comprises a parallel module for switching assistance comprising an impedance, this impedance including at least one element of the capacitor type.
  • the impedance of the switching aid serial module is preferably a varistor.
  • the semiconductor cutoff cell controllable at the opening may comprise at least one series assembly with a diode and an IGCT type thyristor.
  • the open-ended semiconductor breaking cell may have two series assemblies mounted in parallel to each other.
  • the semiconductor breaking cell of the auxiliary branch may comprise at least one thyristor.
  • the semiconductor breaking cell of the auxiliary branch may comprise two thyristors connected in parallel head to tail.
  • the auxiliary branch breaking cell comprises a thyristor and a Graetz bridge having two diagonals, the thyristor forming a diagonal of the Graetz bridge, the main branch forming the other diagonal of the Graetz bridge.
  • the impedance of the parallel switching assistance module may comprise a capacitor in series with the thyristor.
  • a series inductor can be connected in series with the capacitor.
  • the impedance of the parallel module for switching assistance may comprise an assembly formed of a capacitor and a first resistor connected in parallel, this assembly being in series with a second resistor and with the semiconductor breaking cell of the auxiliary branch.
  • a series inductor can be connected in series with the assembly and the second resistor.
  • the parallel module for switching assistance may comprise a Graetz bridge having two diagonals, a set parallel to the capacitor and a resistor being connected across a first diagonal of the Graetz bridge, an inductor auxiliary being connected to the terminals of the other diagonal, one of the terminals of the second diagonal is connected to the semiconductor breaking cell of the auxiliary branch.
  • a series inductor can be connected between the Graetz bridge and the semiconductor break cell of the auxiliary branch.
  • the mechanical switch element may comprise a Thomson type electromagnetic drive moving contact.
  • the present invention also relates to a method for tripping a circuit breaker device thus characterized. It consists, in the presence of an overcurrent in the main branch, switching from an on state to a non-on state the controllable semiconductor breaking cell to the opening of the switching aid serial module, to switch from a non-on state to a passing state the semiconductor break cell of the auxiliary branch, then to open the mechanical switch element which was initially closed, and finally to switch, from the appearance of a current zero, the state in the non-passing state the semiconductor breaking cell of the auxiliary branch.
  • FIG. 2 shows schematically a circuit breaker device according to the invention.
  • This device comprises, as in the prior art, a main branch 1 containing a mechanical switch element 2 and an auxiliary branch 3 connected in parallel with the main branch 1 and containing a semiconductor breaking cell 4.
  • This semi-cutoff cell -conductor is either in an on state or in a non-passing state.
  • the circuit breaker device according to the invention comprises in the main branch 1 a series module for switching assistance M2 formed of another semiconductor breaking cell controllable at the opening 5 mounted in parallel with an impedance Z1.
  • the term "serial module" is used to indicate that this module is in the main branch 1.
  • This semiconductor breaking cell controllable at the opening 5 is in either a passing state or a non-passing state.
  • the series switching assistance module M2 is connected in series with the mechanical switch element 2.
  • the auxiliary branch 3 comprises in addition to the semiconductor breaking cell 4 a parallel module for assisting the switching.
  • switching M4 formed of an impedance Z2 with at least one capacitor type element C.
  • parallel module is used to indicate that the module is in the auxiliary branch 3 in parallel.
  • impedance used in this context refers to a portion of circuit exhibiting an opposition to the passage of any current (DC or AC), such a circuit portion is made based on inductance coil type components and / or capacitor and / or resistance.
  • circuit breaker device will be bidirectional to operate in AC but it is not an obligation, it can be monodirectional.
  • FIG. 3A shows in detail a first embodiment of a circuit breaker device according to the invention.
  • This circuit breaker device is bidirectional, it is suitable for a phase of an alternating electric network but also for a continuous electrical network.
  • the dotted parts are superfluous in a one-way circuit breaker device.
  • the semiconductor breaking cell controllable at the opening 5 comprises at least one series assembly formed of a diode D1 and a semiconductor component controllable at the opening IG2.
  • a component may be a thyristor type IGCT, a conventional thyristor would not be suitable because it opens only zero current.
  • Two series sets are used when the circuit-breaker device has to be bidirectional and in this case the two sets are connected in parallel to each other.
  • the connection of the second set IG'2, D'1 is shown in dashed lines to show that the second set is optional.
  • This semiconductor breaking cell controllable at the opening 5 is connected in parallel with an impedance Z1 which is of varistor type V1.
  • This varistor which may be of MOV (metal oxide varistor) type, is dimensioned to dissipate energy which in the past was dissipated during the establishment of the electric arc.
  • the assembly of the opening-controllable semiconductor breaking cell 5 and the impedance Z1 is connected in series with the mechanical switch element 2.
  • the varistor V1 can withstand a voltage representing only a fraction of the network voltage, for example half.
  • the mechanical switch element 2 may be based on the use of forces. electromagnetic devices for moving a movable contact 2.1, the object being to obtain the establishment of a force index jump.
  • An example of a mechanical switch element 2 is illustrated in FIG. 5A. This mechanical switch element is Thomson type without ferromagnetic material. The known principle is based on Lenz's law.
  • the movable contact 2.1 is secured to a moving part 2.2 of non-magnetic conductive material.
  • This piece 2.2 cooperates with a propulsion circuit comprising a preferably flat coil 2.3 and a supply circuit 2.4.
  • the choice of the flat coil 2.3 makes it possible to obtain a vertical magnetic field near the moving part 2.2.
  • a counter-current in the opposite direction originates in the moving part 2.2 and because of the interaction between these two currents, a force of repulsion F appears between the flat coil 2.3 and the moving part 2.2.
  • This repulsive force F causes a displacement of the moving part 2.2 which was in an initial position of rest.
  • the movable contact 2.1 In this initial rest position, the movable contact 2.1 is in electrical contact with at least one fixed contact 2.0 (connected to the circuit L to be protected) and the mechanical switch element 2 is closed.
  • the repulsion force F which applies to the moving part 2.2 is intended to separate the movable contact 2.1 from the fixed contact 2.0 and thus to open the mechanical switch element 2. Thanks to its ring-shaped recessed shape, the moving part 2.2, is propelled vertically in a translation. In this way, the moving mass is reduced with respect to a solid part, as is the energy required for propulsion and / or the speed of displacement is increased. Other moving part geometries are possible for example a solid disk.
  • the moving part 2.2 and the movable contact 2.1 are merged.
  • the moving part would be for example silver-coated aluminum to also perform the function of electrical contact.
  • L1 represents the inductance of the flat coil 2.3
  • R10 is its resistance
  • L2 represents the inductance of the moving part 2.2
  • R11 is its resistance
  • M represents the mutual inductance between the flat coil 2.3 and the moving part 2.2.
  • This equivalent circuit is connected to the supply circuit 2.4 which is formed of at least one capacitor C10 intended to be charged at a voltage Uo before a discharge, a diode D10 connected in parallel with the capacitor C10 and a thyristor TH10 inserted between the parallel set C10, D10 and the equivalent circuit.
  • the semiconductor breaking cell 4 which is in the auxiliary branch 3 is formed of two thyristors TH1, TH'1 mounted head to tail.
  • One of the TH'1 thyristors can be omitted in a directional mono assembly.
  • the M4 parallel switching aid module is connected in series with the switchgear semiconductor 4 of the auxiliary branch 3. It comprises a resistor R2 connected in series with a parallel assembly formed of a resistor R1 in parallel with a capacitor C1.
  • the parallel switching assistance module M4 may also comprise in series with the resistor R2 and the parallel assembly R1, C1, a series inductance LS1. This series inductance LS1 serves to limit the rise rate of the current during the conduction of the semiconductor breaking cell 4 to obtain a proper engagement even DC.
  • Impedance Z2 comprises capacitor C1, resistors R1 and R2 and series inductance LS1.
  • FIG. 3B illustrates another embodiment of a circuit breaker device according to the invention derived from that of FIG. 3A.
  • This parallel module M4 comprises a Graetz Pb bridge with four diodes D21 to D24.
  • a first diagonal of the Graetz bridge Pb is mounted a parallel assembly with a capacitor C11 and a resistor R11.
  • An auxiliary inductor LA1 is connected in parallel across the other diagonal of the Graetz Pb bridge.
  • One of the ends of the second diagonal is connected to the main branch 1.
  • the other end of the second diagonal is connected to the semiconductor breaking cell 4 via series LS1 inductance (if present).
  • the impedance Z2 comprises the capacitor C11, the resistor R11, the auxiliary inductance LA1 and the series inductance LS1.
  • FIG. 4 illustrates another embodiment of a circuit breaker device according to the invention. Compared with FIGS. 3A, 3B, the same configuration is found in the main branch 1, ie the mechanical switch element 2 in series with the series switching assistance module M2.
  • the semiconductor breaking cell 4 comprises a Graetz Pa bridge with four diodes D11 to D14 and mounted in a diagonal of the Graetz bridge, a thyristor THa.
  • This Graetz Pa bridge is connected to the terminals of the series assembly formed by the series switching assistance module M2 and the mechanical switch element 2. This connection is made at the ends of the other diagonal of the bridge.
  • the parallel switching assistance module M4 comprises a capacitor Ca which is connected diagonally in series with the thyristor THa.
  • a series inductance LS1 can be inserted between the thyristor THa and the capacitor Ca.
  • the impedance Z2 comprises the capacitor Ca and the series inductance LS1.
  • the semiconductor components controllable at the opening of the main branch 1 may be thyristors of IGCT type, the Single thyristors are not suitable because it is necessary to control the opening without waiting for a zero crossing of the current.
  • the semiconductor breaking cell controllable at the opening 5 of the series module for switching assistance M2 switches to a non-passing state.
  • the voltage across the impedance Z1 (varistor V1) increases to its threshold value.
  • the voltage at the terminals of the series switching assistance module M2 increases, the impedance Z1 opposing the passage of current in the main branch 1.
  • the semiconductor breaking cell 4 of the auxiliary branch 3 becomes conducting.
  • the current flowing in the circuit to be protected L is deflected in the auxiliary branch 3, which diverts the energy which otherwise would have been dissipated in the semiconductor breaking cell controllable at the opening 5 of the main branch 1 at the risk of destroying it.
  • the current in the mechanical switch element 2 tends to zero and the voltage across it is zero.
  • the mechanical switch element 2 is then open without causing the establishment of an electric arc.
  • the voltage at its terminals After the opening of the mechanical switch element 2, the voltage at its terminals immediately becomes equal to the voltage that was present across the impedance Z2 because the current being canceled in the impedance Z1, the voltage at its terminals becomes null. All the voltage of the auxiliary branch 3 is applied to the mechanical switch element 2 which is open.
  • the current flowing in the auxiliary branch 3 is limited by the presence of the impedance Z2 which opposes its passage and the maximum value of this current is significantly reduced.
  • the capacitor type element C charges.
  • the semiconductor breaking cell 4 of the auxiliary branch 3 is rendered non-conducting.
  • the transition to the off state is caused by the zero crossing of the current in the semiconductor breaking cell 4 of the auxiliary branch 3.
  • the mechanical switch element 2 is open, the semiconductor breaking cell 4 of the auxiliary branch 3 is in the off state as well as the semiconductor breaking cell controllable at the opening 5 of the series switching assistance module M2. No more current flows in the circuit to be protected L and the circuit breaker device has played its role of protection.
  • the advantage of the variant of Figure 3B is to perform the current limiting function in part by the impedance of the auxiliary inductance LA1. After the tripping in the main branch 1 and the branching of the current in the parallel branch 3 a portion of the current passes into the auxiliary inductance LA1 before the final cut by thyristors TH1, TH'1 of the semiconductor breaking cell. 4. This makes it possible to reduce the design constraints on the capacitor C11 which is used in this case, essentially in its role of deflecting the current from the main branch 1 to the parallel branch 3.
  • the current B in the mechanical switch element 2 goes to zero. This zero crossing takes a certain time when there is LS1 series inductance in the M4 parallel switching aid module.
  • the current D passing through the semiconductor breaking cell 4 of the auxiliary branch 3 is the current from the circuit L diverted from the main branch 1.
  • This current D reaches a maximum (about 5000 A) then decreases due to the presence in the impedance Z2 of the capacitor type element C which is charged.
  • the current D ends up canceling at a time t1 and the semiconductor breaking cell 4 of the auxiliary branch 3 is forced to the off state.
  • the time interval between t0 and t1 is about 450 microseconds.
  • FIG. 6B which is a zoom of FIG. 6A around time t0, further represents the shape of voltage E at the terminals of mechanical switch element 2.
  • This voltage E is zero at the same time as current B after t0, which allows to open the mechanical switch element 2 without generating an electric arc. This opening is done at a time t2.
  • the time interval between t0 and t2 is about 20 microseconds. Then the voltage E across the mechanical switch element 2 begins to grow and reaches the voltage that was present across the impedance Z2.
  • Such a circuit breaker device is capable of operating both low voltage A or B and high voltage A or B. These voltages may be DC or AC voltages.
  • Such a circuit breaker device has a mechanical switch element that can operate in a normal environment. This means that it can operate without being confined to a breaking chamber in an appropriate gaseous or vacuum atmosphere.
  • a passive cooling device can be used.
  • Such a circuit breaker device is compact. Its footprint is much smaller than that of configurations with interrupting chamber.
  • a delay is possible in bidirectional mode because it is possible for the hybrid circuit breaker device to operate for a certain time with its auxiliary branch 3 in conduction while leaving the LC circuit (formed of the capacitor C, of the series inductance LS1 of the parallel module). switching assistance M4 and circuit inductance to be protected L) oscillating before being cut by the semiconductor breaking cell 4. During this period the current is limited by the impedances of the auxiliary branch 3.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electronic Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

The device has a main branch (1) with an inline module connected in series with a mechanical switch unit (2). The main branch has a semi-conductor cell (5) that is in parallel with a varistor. An auxiliary branch is connected in parallel with the main branch. The auxiliary branch has a parallel module for assisting a switching block (M4) and a part of a circuit (Z2) that includes a capacitor (C). An independent claim is also included for a process of activating a circuit breaker device.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne le domaine des dispositifs disjoncteurs notamment pour les réseaux électriques alternatifs ou continus et les systèmes ou équipements électriques en général. Ces dispositifs disjoncteur que l'on insère dans un circuit électrique à protéger possèdent un élément interrupteur qui coupe le courant circulant dans le circuit à protéger dans des conditions anormales de fonctionnement, par exemple en cas de court-circuit apparaissant dans le circuit à protéger.The present invention relates to the field of circuit breaker devices in particular for alternative or continuous electrical networks and electrical systems or equipment in general. These circuit breaker devices which are inserted into an electrical circuit to be protected have a switch element which cuts off the current flowing in the circuit to be protected under abnormal operating conditions, for example in the event of a short circuit occurring in the circuit to be protected.

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

Traditionnellement les dispositifs disjoncteur sont mécaniques, c'est à dire que la coupure du courant est obtenue uniquement par l'ouverture d'un élément interrupteur mécanique. Un tel élément interrupteur mécanique comporte deux pièces conductrices faisant contact qui sont en contact mécanique lorsque l'élément interrupteur est fermé (fonctionnement normal) et qui se séparent mécaniquement lorsque l'élément interrupteur est ouvert (fonctionnement anormal en cas de surintensité). Il y a généralement un contact mobile et au moins un contact fixe dans ces pièces conductrices faisant contact. Ces dispositifs disjoncteur mécaniques présentent plusieurs inconvénients notamment lorsqu'ils sont traversés par des courants importants.Traditionally, the circuit breaker devices are mechanical, that is to say that the breaking of the current is obtained only by the opening of a mechanical switch element. Such a mechanical switch element comprises two contacting conductive parts which are in mechanical contact when the switch element is closed (normal operation) and which mechanically separate when the switch element is open (abnormal operation in case of overcurrent). There is generally a movable contact and at least one fixed contact in these conductive making contact parts. These mechanical circuit breaker devices have several drawbacks especially when they are crossed by large currents.

La coupure mécanique se traduit par l'établissement d'un arc électrique du fait des énergies importantes accumulées dans le circuit dans lequel le dispositif disjoncteur est monté et qu'il protège.The mechanical cutoff results in the establishment of an electric arc because of the large energy accumulated in the circuit in which the circuit breaker device is mounted and protects.

Cet arc électrique dégrade d'une part par érosion les pièces conductrices faisant contact et d'autre part le milieu environnant l'élément interrupteur par ionisation. Ainsi le courant met un certain temps à s'interrompre à cause de cette ionisation. Cet arc électrique en dégradant les pièces conductrices faisant contact nécessite des opérations de maintenance contraignantes et coûteuses.This electric arc degrades firstly by erosion conductive parts making contact and secondly the environment surrounding the ionization switch element. Thus the current takes some time to stop because of this ionization. This electric arc by degrading the conductive parts making contact requires maintenance operations which are restrictive and expensive.

Pour réduire les méfaits de l'arc électrique inévitable et alléger la maintenance, on place les pièces conductrices faisant contact dans une chambre de coupure, il s'agit d'une enceinte emplie d'un milieu spécifique qui peut être l'air, le vide, un gaz particulier par exemple l'hexafluorure de soufre SF6 mais qui dans l'avenir sera vraisemblablement interdit pour des raisons environnementales. Ce milieu spécifique est capable de supporter la surpression créée par la formation de l'arc électrique et est destiné à favoriser son extinction.To reduce the harmful effects of the inevitable electric arc and to ease the maintenance, the conductive parts making contact are placed in an interrupting chamber, it is a chamber filled with a specific medium that can be air, the vacuum, a particular gas for example sulfur hexafluoride SF 6 but which in the future will probably be banned for environmental reasons. This specific medium is able to withstand the overpressure created by the formation of the electric arc and is intended to promote its extinction.

De tels dispositifs disjoncteur à élément interrupteur mécanique ont un temps de coupure élevé. Le temps pour que l'élément interrupteur mécanique s'ouvre est de l'ordre de la milliseconde voire de plusieurs millisecondes.Such circuit breaker devices with a mechanical switch element have a high breaking time. The time for the mechanical switch element to open is of the order of a millisecond or even several milliseconds.

Un autre inconvénient est qu'ils sont volumineux, les dimensions de la chambre de coupure sont d'autant plus importantes que la tension est haute.Another disadvantage is that they are bulky, the dimensions of the breaking chamber are all the more important as the tension is high.

Les progrès récents de l'électronique de puissance ont permis d'envisager le remplacement de la coupure électromécanique par une coupure électronique via des composants semi-conducteurs de puissance. Des dispositifs disjoncteur dits statiques sont à l'étude.Recent advances in power electronics have made it possible to consider the replacement of the electromechanical break with an electronic break via semiconductor power components. So-called static circuit breaker devices are under study.

Les premiers systèmes utilisant des thyristors de puissance ont vu le jour en basse tension BT (<1kV) .The first systems using power thyristors were born at LV low voltage (<1kV).

Puis des prototypes à base de IGBT (abréviation anglo-saxonne de Insulated Gate Bipolar Transistor soit transistor bipolaire à porte isolée) et encore plus récemment à base de IGCT (abréviation anglo-saxonne de integrated gate-commutated thyristor soit thyristor à grille commutée intégrée) ont été testés pour des tensions alternatives de plusieurs kilovolts.Then prototypes based on IGBT (Insulated Gate Bipolar Transistor bipolar transistor insulated gate) and even more recently on the basis of IGCT integrated gate-switched SCR thyristor integrated gate have been tested for alternating voltages of several kilovolts.

Ces dispositifs disjoncteur entièrement statiques présentent bien l'intérêt d'une vitesse de coupure accrue (inférieure à la milliseconde), mais possèdent des inconvénients spécifiques aux composants semi-conducteurs. Le courant maximal qu'ils supportent et la tension maximale qu'ils tiennent sont limités. Le dispositif disjoncteur ne peut être temporisé car le composant semi-conducteur qui conduit ne peut supporter le courant de défaut maximal, il faut donc impérativement couper le courant avant d'atteindre cette valeur destructive. Cette coupure se fait en moins d'une demi-alternance dans le cas de courant alternatif.These fully static circuit breaker devices have the advantage of an increased cutoff speed (less than 1 millisecond), but have disadvantages specific to semiconductor components. The maximum current they support and the maximum voltage they hold are limited. The circuit breaker device can not be delayed because the conducting semiconductor component can not support the maximum fault current, so it is essential to cut the current before reaching this destructive value. This cut is done in less than half a half cycle in the case of alternating current.

Les dispositifs disjoncteurs possèdent des pertes par effet Joule à l'état passant et un dispositif de refroidissement doit être prévu. Il faut également intégrer un système de dissipation de l'énergie présente au moment de la coupure.The circuit breaker devices have Joule losses in the on state and a cooling device must be provided. It is also necessary to integrate a system of dissipation of the energy present at the moment of the cut.

L'utilisation de dispositifs disjoncteur «purement statiques», uniquement à base de composants semi-conducteurs pour des tensions de plusieurs kilovolts et des courants supérieurs au kilo ampère reste donc encore problématique.The use of "purely static" circuit breaker devices solely based on semiconductor components for voltages of several kilovolts and currents greater than one kilo ampere still remains problematic.

Afin de contourner ces difficultés, des dispositifs disjoncteur hybrides (mécaniques et électroniques) qui utilisent à la fois des semi-conducteurs et un élément interrupteur mécanique, sont actuellement en développement. Un tel dispositif disjoncteur est décrit par exemple dans la demande de brevet WO00/54292.In order to circumvent these difficulties, hybrid circuit breaker devices (mechanical and electronic) that use both semiconductors and a mechanical switch element, are currently under development. Such a circuit breaker device is described for example in the patent application WO00 / 54292.

Un dispositif disjoncteur 10 similaire à celui décrit dans cette demande de brevet, bien que simplifié, est représenté en figure 1. Ce dispositif disjoncteur 10 est destiné à protéger un circuit électrique matérialisé par une ligne électrique L. Le dispositif disjoncteur 10 est monté en série avec le circuit à protéger L. Le dispositif disjoncteur 10 comporte une branche principale 1 dans laquelle se trouve un élément interrupteur mécanique 2 et une branche auxiliaire 3 montée en parallèle avec la branche principale 1. La branche auxiliaire 3 comporte une cellule de coupure à semi-conducteur 4. Cette cellule de coupure 4 comporte un pont de Graetz 40 avec quatre diodes D et connecté aux bornes d'une diagonale du pont de Graetz 40 au moins un élément de coupure à semi-conducteur 41 monté en parallèle avec une varistance 42. Cet élément de coupure peut être un thyristor. Cet élément peut être commandablé à l'ouverture par exemple un thyristor de type IGCT.A circuit breaker device 10 similar to that described in this patent application, although simplified, is shown in FIG. 1. This circuit breaker device 10 is intended to protect an electric circuit materialized by an electric line L. The circuit breaker device 10 is connected in series. with the circuit to be protected L. The circuit breaker device 10 comprises a main branch 1 in which there is a mechanical switch element 2 and an auxiliary branch 3 connected in parallel with the main branch 1. The auxiliary branch 3 comprises a half-cut cell This cut-off cell 4 comprises a Graetz bridge 40 with four diodes D and connected to the terminals of a diagonal. of the Graetz bridge 40 at least one semiconductor breaking element 41 connected in parallel with a varistor 42. This breaking element can be a thyristor. This element can be open-controlled, for example an IGCT thyristor.

La signification de l'expression « commandable à l'ouverture » est que l'élément de coupure à semi-conducteur s'ouvre dès qu'on lui applique une commande appropriée.The meaning of "commandable at opening" is that the semiconductor breakout element opens as soon as an appropriate command is applied to it.

Un simple thyristor n'est pas « commandable à l'ouverture ». Il ne s'ouvre, après une commande, qu'à un zéro de courant.A simple thyristor is not "controllable at the opening". It opens after a command, only a zero current.

L'élément de coupure à semi-conducteur 41 est donc soit dans un état passant (fermé) soit dans un état non passant (ouvert), ce qui rend la cellule de coupure à semi-conducteur passante (ouverte) ou non passante (fermée).The semiconductor cut-off element 41 is therefore either in a conducting state (closed) or in a non-conducting state (open), which makes the semiconductor breaking cell active (open) or non-conducting (closed). ).

La connexion de la cellule de coupure à semi-conducteur 4 à la branche principale 1 se fait au niveau des extrémités de l'autre diagonale du pont de Graetz 40.The connection of the semiconductor breaking cell 4 to the main branch 1 is at the ends of the other diagonal of the Graetz bridge 40.

En fonctionnement normal, l'élément interrupteur mécanique 2 est fermé. Ses deux pièces conductrices faisant contact sont en contact mécanique. L'élément de coupure à semi-conducteur 41 est dans un état non passant. Le circuit L à protéger peut être parcouru par un courant électrique via la branche principale 1 du dispositif disjoncteur c'est à dire via l'élément interrupteur mécanique 2 et ce pratiquement sans pertes par effet Joule. En cas d'apparition d'une surintensité dans le circuit L à protéger et donc dans la branche principale 1 du dispositif disjoncteur, des moyens (non représentés) commandent l'ouverture de l'élément interrupteur mécanique 2 et simultanément la mise à l'état passant de l'élément de coupure à semi-conducteur 41. Un faible arc électrique apparaît au niveau des pièces conductrices faisant contact de l'élément interrupteur mécanique 2 lors de leur séparation. La tension correspondant à cet arc électrique permet au courant qui circule dans le circuit à protéger L de commuter rapidement dans la branche auxiliaire 3 dans laquelle la cellule de coupure 4 semi-conducteur est passante.In normal operation, the mechanical switch element 2 is closed. Its two conducting parts making contact are in mechanical contact. The semiconductor breaking element 41 is in a non-conducting state. The circuit L to be protected can be traversed by an electric current via the main branch 1 of the circuit breaker device, ie via the mechanical switch element 2 and practically without losses by Joule effect. If an overcurrent occurs in the circuit L to be protected and therefore in the main branch 1 of the circuit breaker device, means (not shown) control the opening of the mechanical switch element 2 and simultaneously the setting-in state of the semiconductor breaking element 41. A low electric arc appears at the level of the conductive parts making contact with the mechanical switch element 2 during their separation. The voltage corresponding to this electric arc allows the current flowing in the circuit to be protected L to switch rapidly in the auxiliary branch 3 in which the semiconductor breaking cell 4 is conducting.

Dès que la distance entre les pièces conductrices faisant contact de l'élément interrupteur mécanique 2 est suffisante pour que l'arc électrique s'éteigne, l'élément de coupure à semi-conducteur 41 de la cellule de coupure 4 est mis à l'état non passant, ce qui permet la coupure finale du courant dans le circuit L à protéger.As soon as the distance between the conductive parts making contact with the mechanical switch element 2 is sufficient for the electric arc to go out, the semiconductor breaking element 41 of the breaking cell 4 is set to non-conducting state, which allows the final cut of the current in the circuit L to be protected.

On s'arrange pour que la vitesse d'ouverture de l'élément interrupteur mécanique 2 soit la plus rapide possible de manière à ce que l'arc électrique généré entre les pièces conductrices faisant contact de l'élément interrupteur mécanique 2 ait une énergie la plus faible possible et ne soit donc plus de nature à dégrader les dites pièces. Cet arc électrique joue toutefois un rôle important car c'est la faible tension d'arc (une dizaine de volts) qui polarise l'élément de coupure à semi-conducteur 41 au-dessus de sa tension de seuil le faisant ainsi passer à l'état passant et fait dévier le courant dans la branche auxiliaire. Le signal de commande est de manière classique une impulsion appliquée sur la gâchette du thyristor 41 au moment de l'ouverture de l'élément interrupteur mécanique 2.It is arranged so that the opening speed of the mechanical switch element 2 is as fast as possible so that the electric arc generated between the conductive parts making contact with the mechanical switch element 2 has an energy of weaker possible and is therefore no longer likely to degrade the said parts. However, this electric arc plays an important role because it is the low arc voltage (about ten volts) that polarizes the semiconductor breaking element 41 above its threshold voltage thus causing it to pass passing state and deflects the current in the branch auxiliary. The control signal is conventionally a pulse applied on the gate of the thyristor 41 at the moment of opening of the mechanical switch element 2.

Ce dispositif disjoncteur hybride 10 résout donc certaines des difficultés techniques des dispositifs disjoncteur purement statiques, mais ses performances sont principalement dépendantes de la vitesse d'ouverture de l'élément interrupteur mécanique 2. Les études ont montré que l'accroissement de la vitesse d'ouverture de l'élément interrupteur mécanique présente une limite physique lorsque l'on augmente le courant et la tension sur une topologie hybride. En effet, pour que l'élément interrupteur mécanique puisse supporter des courants élevés, il faut augmenter la superficie de la zone de contact entre les pièces conductrices formant contact, ce qui augmente la masse de la pièce conductrice mobile et diminue la vitesse d'ouverture. Cette dernière risque de devenir insuffisante pour commuter le courant rapidement dans la branche dérivée et pour produire un arc de faible énergie. Une intensité élevée de courant dans la branche principale nous ramène donc au problème du disjoncteur mécanique entraînant une dégradation du contact mécanique de l'élément interrupteur mécanique 2.This hybrid circuit breaker device 10 therefore solves some of the technical difficulties of purely static circuit breaker devices, but its performance is mainly dependent on the opening speed of the mechanical switch element 2. Studies have shown that the increase in the speed of The opening of the mechanical switch element has a physical limit when increasing the current and voltage on a hybrid topology. Indeed, for the mechanical switch element to withstand high currents, it is necessary to increase the area of the contact area between the conductive parts forming contact, which increases the mass of the movable conductive part and decreases the opening speed. . The latter may become insufficient to switch the current rapidly in the derived branch and to produce a low energy arc. A high intensity of current in the main branch thus brings us back to the problem of the mechanical circuit breaker resulting in a degradation of the mechanical contact of the mechanical switch element 2.

A ce jour, les dispositifs disjoncteurs, qu'ils soient statiques ou hybrides, ne donnent pas satisfaction notamment dans le cas d'applications haute tension de forte puissance.To date, circuit breaker devices, whether static or hybrid, are unsatisfactory especially in the case of high voltage applications of high power.

Le document EP-A-1 014 403 décrit un dispositif disjoncteur correspondant au préambule de la revendication 1.EP-A-1 014 403 discloses a circuit breaker device corresponding to the preamble of claim 1.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention a justement comme but de proposer un dispositif disjoncteur hybride qui ne présente pas les inconvénients mentionnés ci dessus.The present invention is precisely intended to provide a hybrid circuit breaker device that does not have the disadvantages mentioned above.

Plus précisément un but de l'invention est de proposer un dispositif disjoncteur hybride comportant un élément interrupteur mécanique et un élément de coupure à semi-conducteur apte à conduire un courant continu ou alternatif et dans lequel il n'apparaît pas d'arc électrique lors de l'ouverture de l'élément interrupteur mécanique même si le courant est important.More specifically, an object of the invention is to provide a hybrid circuit breaker device comprising a mechanical switch element and a semiconductor breaking element capable of driving a direct or alternating current and in which there is no electric arc when the opening of the mechanical switch element even if the current is important.

Un autre but de l'invention est de proposer un dispositif disjoncteur hybride à maintenance réduite.Another object of the invention is to provide a hybrid circuit breaker device with reduced maintenance.

Pour atteindre ces buts, l'invention concerne plus précisément un dispositif disjoncteur comportant une branche principale contenant un élément interrupteur mécanique et une branche auxiliaire contenant une cellule de coupure à semi-conducteur, cette branche auxiliaire étant montée en parallèle avec la branche principale. La branche principale comporte en série avec l'élément interrupteur mécanique un module série d'aide à la commutation comprenant une cellule de coupure à semi-conducteur commandable à l'ouverture en parallèle avec une impédance. La branche auxiliaire comporte un module parallèle d'aide à la commutation comprenant une impédance, cette impédance incluant au moins un élément de type condensateur.To achieve these aims, the invention relates more precisely to a circuit breaker device comprising a main branch containing a mechanical switch element and an auxiliary branch containing a semiconductor breaking cell, this auxiliary branch being connected in parallel with the main branch. The main branch comprises in series with the mechanical switch element a series switching assistance module comprising a semiconductor breaking cell controllable at the opening in parallel with an impedance. The auxiliary branch comprises a parallel module for switching assistance comprising an impedance, this impedance including at least one element of the capacitor type.

L'impédance du module série d'aide à la commutation est de préférence une varistance.The impedance of the switching aid serial module is preferably a varistor.

La cellule de coupure à semi-conducteur commandable à l'ouverture peut comporter au moins un ensemble série avec une diode et un thyristor de type IGCT.The semiconductor cutoff cell controllable at the opening may comprise at least one series assembly with a diode and an IGCT type thyristor.

Si le dispositif disjoncteur est bidirectionnel, la cellule de coupure à semi-conducteur commandable à l'ouverture peut comporter deux ensembles série montés en parallèle tête-bêche.If the circuit breaker device is bi-directional, the open-ended semiconductor breaking cell may have two series assemblies mounted in parallel to each other.

La cellule de coupure à semi-conducteur de la branche auxiliaire peut comporter au moins un thyristor.The semiconductor breaking cell of the auxiliary branch may comprise at least one thyristor.

Si le dispositif disjoncteur est bidirectionnel, la cellule de coupure à semi-conducteur de la branche auxiliaire peut comporter deux thyristors montés en parallèle tête-bêche.If the circuit breaker device is bidirectional, the semiconductor breaking cell of the auxiliary branch may comprise two thyristors connected in parallel head to tail.

Dans un autre mode de réalisation, la cellule de coupure de la branche auxiliaire comporte un thyristor et un pont de Graetz ayant deux diagonales, le thyristor formant une diagonale du pont de Graetz, la branche principale formant l'autre diagonale du pont de Graetz.In another embodiment, the auxiliary branch breaking cell comprises a thyristor and a Graetz bridge having two diagonals, the thyristor forming a diagonal of the Graetz bridge, the main branch forming the other diagonal of the Graetz bridge.

Dans ce mode de réalisation, l'impédance du module parallèle d'aide à la commutation peut comporter un condensateur en série avec le thyristor.In this embodiment, the impedance of the parallel switching assistance module may comprise a capacitor in series with the thyristor.

Une inductance série peut être montée en série avec le condensateur.A series inductor can be connected in series with the capacitor.

Dans un autre mode de réalisation, l'impédance du module parallèle d'aide à la commutation peut comporter un ensemble formé d'un condensateur et d'une première résistance montés en parallèle, cet ensemble étant en série avec une seconde résistance et avec la cellule de coupure à semi-conducteur de la branche auxiliaire.In another embodiment, the impedance of the parallel module for switching assistance may comprise an assembly formed of a capacitor and a first resistor connected in parallel, this assembly being in series with a second resistor and with the semiconductor breaking cell of the auxiliary branch.

Une inductance série peut être montée en série avec l'ensemble et la seconde résistance.A series inductor can be connected in series with the assembly and the second resistor.

Dans un autre mode de réalisation le module parallèle d'aide à la commutation peut comporter un pont de Graetz ayant deux diagonales, un ensemble parallèle avec le condensateur et une résistance étant connecté aux bornes d'une première diagonale du pont de Graetz, une inductance auxiliaire étant connectée aux bornes de l'autre diagonale, l'une des bornes de la seconde diagonale est reliée à la cellule de coupure à semi-conducteur de la branche auxiliaire.In another embodiment, the parallel module for switching assistance may comprise a Graetz bridge having two diagonals, a set parallel to the capacitor and a resistor being connected across a first diagonal of the Graetz bridge, an inductor auxiliary being connected to the terminals of the other diagonal, one of the terminals of the second diagonal is connected to the semiconductor breaking cell of the auxiliary branch.

Une inductance série peut être connectée entre le pont de Graetz et la cellule de coupure à semi-conducteur de la branche auxiliaire.A series inductor can be connected between the Graetz bridge and the semiconductor break cell of the auxiliary branch.

Pour être rapide, l'élément interrupteur mécanique peut comporter un contact mobile à entraînement électromagnétique de type Thomson.To be fast, the mechanical switch element may comprise a Thomson type electromagnetic drive moving contact.

La présente invention concerne également un procédé de déclenchement d'un dispositif disjoncteur ainsi caractérisé. Il consiste, en présence d'une surintensité dans la branche principale,
à basculer d'un état passant à un état non passant la cellule de coupure à semi-conducteur commandable à l'ouverture du module série d'aide à la commutation,
à basculer d'un état non passant à un état passant la cellule de coupure à semi-conducteur de la branche auxiliaire,
puis à ouvrir l'élément interrupteur mécanique qui était initialement fermé,
et enfin à basculer, dès l'apparition d'un zéro de courant, de l'état passant à l'état non passant la cellule de coupure à semi-conducteur de la branche auxiliaire.
The present invention also relates to a method for tripping a circuit breaker device thus characterized. It consists, in the presence of an overcurrent in the main branch,
switching from an on state to a non-on state the controllable semiconductor breaking cell to the opening of the switching aid serial module,
to switch from a non-on state to a passing state the semiconductor break cell of the auxiliary branch,
then to open the mechanical switch element which was initially closed,
and finally to switch, from the appearance of a current zero, the state in the non-passing state the semiconductor breaking cell of the auxiliary branch.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :

  • la figure 1 déjà décrite montre un schéma d'un dispositif disjoncteur hybride de l'art antérieur ;
  • la figure 2 montre un schéma d'un dispositif disjoncteur selon l'invention ;
  • les figures 3A, 3B montrent de manière plus détaillée deux modes de réalisation d'un dispositif disjoncteur selon l'invention ;
  • la figure 4 montre de manière plus détaillée un autre mode de réalisation d'un dispositif disjoncteur selon l'invention ;
  • la figure 5A montre un exemple d'élément interrupteur mécanique du dispositif disjoncteur et la figure 5B est son circuit équivalent ;
  • les figures 6A et 6B illustrent les courants circulant dans le dispositif disjoncteur selon l'invention, dans l'élément interrupteur mécanique et dans la cellule de coupure à semi-conducteur de la branche auxiliaire ainsi que la tension aux bornes de l'élément interrupteur mécanique en présence d'une surintensité dans la branche principale.
The present invention will be better understood on reading the description of exemplary embodiments given, purely by way of indication and in no way limiting, with reference to the appended drawings in which:
  • Figure 1 already described shows a diagram of a hybrid circuit breaker device of the prior art;
  • Figure 2 shows a diagram of a circuit breaker device according to the invention;
  • FIGS. 3A, 3B show in greater detail two embodiments of a circuit breaker device according to the invention;
  • Figure 4 shows in more detail another embodiment of a circuit breaker device according to the invention;
  • FIG. 5A shows an example of a mechanical switch element of the circuit breaker device and FIG. 5B is its equivalent circuit;
  • FIGS. 6A and 6B illustrate the currents flowing in the circuit breaker device according to the invention, in the mechanical switch element and in the semiconductor breaking cell of the auxiliary branch as well as the voltage across the mechanical switch element in the presence of an overcurrent in the main branch.

Des parties identiques, similaires ou équivalentes des différentes figures décrites ci-après portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.Identical, similar or equivalent parts of the different figures described below bear the same numerical references so as to facilitate the passage from one figure to another.

Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.The different parts shown in the figures are not necessarily in a uniform scale, to make the figures more readable.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

On va maintenant se reporter à la figure 2 qui montre de manière schématique un dispositif disjoncteur selon l'invention. Ce dispositif comporte comme dans l'art antérieur une branche principale 1 contenant un élément interrupteur mécanique 2 et une branche auxiliaire 3 montée en parallèle avec la branche principale 1 et contenant une cellule de coupure à semi-conducteur 4. Cette cellule de coupure à semi-conducteur est soit dans un état passant soit dans un état non passant. Par rapport au schéma de la figure 1, le dispositif disjoncteur selon l'invention comporte dans la branche principale 1 un module série d'aide à la commutation M2 formé d'une autre cellule de coupure à semi-conducteur commandable à l'ouverture 5 montée en parallèle avec une impédance Z1. L'expression « module série » est employée pour indiquer que ce module se trouve dans la branche principale 1. Cette cellule de coupure à semi-conducteur commandable à l'ouverture 5 est soit dans un état passant ou soit dans un état non passant. Le module série d'aide à la commutation M2 est connecté en série avec l'élément interrupteur mécanique 2. De plus, la branche auxiliaire 3 comporte en plus de la cellule de coupure à semi-conducteur 4 un module parallèle d'aide à la commutation M4 formé d'une impédance Z2 avec au moins un élément de type condensateur C. L'expression « module parallèle » est employée pour indiquer que le module est dans la branche auxiliaire 3 en parallèle.We will now refer to Figure 2 which shows schematically a circuit breaker device according to the invention. This device comprises, as in the prior art, a main branch 1 containing a mechanical switch element 2 and an auxiliary branch 3 connected in parallel with the main branch 1 and containing a semiconductor breaking cell 4. This semi-cutoff cell -conductor is either in an on state or in a non-passing state. With respect to the diagram of FIG. 1, the circuit breaker device according to the invention comprises in the main branch 1 a series module for switching assistance M2 formed of another semiconductor breaking cell controllable at the opening 5 mounted in parallel with an impedance Z1. The term "serial module" is used to indicate that this module is in the main branch 1. This semiconductor breaking cell controllable at the opening 5 is in either a passing state or a non-passing state. The series switching assistance module M2 is connected in series with the mechanical switch element 2. In addition, the auxiliary branch 3 comprises in addition to the semiconductor breaking cell 4 a parallel module for assisting the switching. switching M4 formed of an impedance Z2 with at least one capacitor type element C. The expression "parallel module" is used to indicate that the module is in the auxiliary branch 3 in parallel.

Le terme « impédance » employé dans ce contexte désigne une partie de circuit manifestant une opposition au passage d'un courant quelconque (continu ou alternatif), une telle partie de circuit est réalisée à base de composants de type bobine d'inductance et/ou condensateur et/ou résistance.The term "impedance" used in this context refers to a portion of circuit exhibiting an opposition to the passage of any current (DC or AC), such a circuit portion is made based on inductance coil type components and / or capacitor and / or resistance.

De préférence un tel dispositif disjoncteur sera bidirectionnel pour pouvoir fonctionner en courant alternatif mais ce n'est pas une obligation, il peut être monodirectionnel.Preferably such a circuit breaker device will be bidirectional to operate in AC but it is not an obligation, it can be monodirectional.

On peut se référer à la figure 3A qui montre en détails un premier mode de réalisation d'un dispositif disjoncteur selon l'invention. Ce dispositif disjoncteur est bidirectionnel, il convient pour une phase d'un réseau électrique alternatif mais également pour un réseau électrique continu. Les parties dessinées en pointillées sont superflues dans un dispositif disjoncteur monodirectionnel.Reference can be made to FIG. 3A which shows in detail a first embodiment of a circuit breaker device according to the invention. This circuit breaker device is bidirectional, it is suitable for a phase of an alternating electric network but also for a continuous electrical network. The dotted parts are superfluous in a one-way circuit breaker device.

Dans le module série d'aide à la commutation M2, la cellule de coupure à semi-conducteur commandable à l'ouverture 5 comporte au moins un ensemble série formé d'une diode D1 et d'un composant semi-conducteur commandable à l'ouverture IG2. Un tel composant peut être un thyristor de type IGCT, un thyristor classique ne conviendrait pas car il ne s'ouvre qu'au zéro de courant. On emploie deux ensembles série lorsque le dispositif disjoncteur doit être bidirectionnel et dans ce cas les deux ensembles sont montés en parallèle tête-bêche. Sur la figure 3, la connexion du second ensemble IG'2, D'1 est représentée en pointillés pour montrer que le second ensemble est optionnel. Cette cellule de coupure à semi-conducteur commandable à l'ouverture 5 est montée en parallèle avec une impédance Z1 qui est de type varistance V1. Cette varistance qui peut être de type MOV (metal oxide varistor soit varistance à oxyde métallique) est dimensionnée pour dissiper de l'énergie qui dans le passé était dissipée lors de l'établissemnt de l'arc électrique. L'ensemble de la cellule de coupure à semi-conducteur commandable à l'ouverture 5 et de l'impédance Z1 est connecté en série avec l'élément interrupteur mécanique 2. La varistance V1 peut supporter une tension ne représentant qu'une fraction de la tension du réseau, par exemple la moitié.In the series switching assistance module M2, the semiconductor breaking cell controllable at the opening 5 comprises at least one series assembly formed of a diode D1 and a semiconductor component controllable at the opening IG2. Such a component may be a thyristor type IGCT, a conventional thyristor would not be suitable because it opens only zero current. Two series sets are used when the circuit-breaker device has to be bidirectional and in this case the two sets are connected in parallel to each other. In Figure 3, the connection of the second set IG'2, D'1 is shown in dashed lines to show that the second set is optional. This semiconductor breaking cell controllable at the opening 5 is connected in parallel with an impedance Z1 which is of varistor type V1. This varistor, which may be of MOV (metal oxide varistor) type, is dimensioned to dissipate energy which in the past was dissipated during the establishment of the electric arc. The assembly of the opening-controllable semiconductor breaking cell 5 and the impedance Z1 is connected in series with the mechanical switch element 2. The varistor V1 can withstand a voltage representing only a fraction of the network voltage, for example half.

L'élément interrupteur mécanique 2 peut être basé sur l'utilisation de forces. électromagnétiques pour la mise en mouvement d'un contact mobile 2.1, le but étant d'obtenir l'établissement d'un saut indiciel de force. Un exemple d'élément interrupteur mécanique 2 est illustré sur la figure 5A. Cet élément interrupteur mécanique est de type Thomson sans matériau ferromagnétique. Le principe connu se base sur la loi de Lenz.The mechanical switch element 2 may be based on the use of forces. electromagnetic devices for moving a movable contact 2.1, the object being to obtain the establishment of a force index jump. An example of a mechanical switch element 2 is illustrated in FIG. 5A. This mechanical switch element is Thomson type without ferromagnetic material. The known principle is based on Lenz's law.

Le contact mobile 2.1 est solidaire d'une pièce mobile 2.2 en matériau conducteur amagnétique. Cette pièce 2.2 coopère avec un circuit de propulsion comprenant une bobine 2.3 de préférence plate et un circuit d'alimentation 2.4. Le choix de la bobine plate 2.3 permet d'obtenir un champ magnétique vertical à proximité de la pièce mobile 2.2. Lorsque la bobine 2.3 est excitée par un courant intense en impulsions délivré par le circuit d'alimentation 2.4, un contre-courant de sens inverse prend naissance dans la pièce mobile 2.2 et à cause de l'interaction entre ces deux courants, une force de répulsion F apparaît entre la bobine plate 2.3 et la pièce mobile 2.2. Cette force de répulsion F provoque un déplacement de la pièce mobile 2.2 qui était dans une position initiale de repos. Dans cette position initiale de repos, le contact mobile 2.1 est en contact électrique avec au moins un contact fixe 2.0 (relié au circuit L à protéger) et l'élément interrupteur mécanique 2 est fermé. La force de répulsion F qui s'applique sur la pièce mobile 2.2 vise à séparer le contact mobile 2.1 du contact fixe 2.0 et donc à ouvrir l'élément interrupteur mécanique 2. Grâce à sa forme évidée en forme d'anneau, la pièce mobile 2.2, est propulsée verticalement en une translation. De la sorte, on réduit la masse en mouvement par rapport à une pièce pleine, ainsi que l'énergie nécessaire à la propulsion et/ou on augmente la vitesse de déplacement. D'autres géométries de pièce mobile sont possibles par exemple un disque plein. Lorsque la bobine 2.3 n'est plus excitée, la pièce mobile 2.2 reprend sa position de repos et l'élément interrupteur 2 est de nouveau fermé.The movable contact 2.1 is secured to a moving part 2.2 of non-magnetic conductive material. This piece 2.2 cooperates with a propulsion circuit comprising a preferably flat coil 2.3 and a supply circuit 2.4. The choice of the flat coil 2.3 makes it possible to obtain a vertical magnetic field near the moving part 2.2. When the coil 2.3 is excited by an intense pulse current delivered by the supply circuit 2.4, a counter-current in the opposite direction originates in the moving part 2.2 and because of the interaction between these two currents, a force of repulsion F appears between the flat coil 2.3 and the moving part 2.2. This repulsive force F causes a displacement of the moving part 2.2 which was in an initial position of rest. In this initial rest position, the movable contact 2.1 is in electrical contact with at least one fixed contact 2.0 (connected to the circuit L to be protected) and the mechanical switch element 2 is closed. The repulsion force F which applies to the moving part 2.2 is intended to separate the movable contact 2.1 from the fixed contact 2.0 and thus to open the mechanical switch element 2. Thanks to its ring-shaped recessed shape, the moving part 2.2, is propelled vertically in a translation. In this way, the moving mass is reduced with respect to a solid part, as is the energy required for propulsion and / or the speed of displacement is increased. Other moving part geometries are possible for example a solid disk. When coil 2.3 is more excited, the moving part 2.2 resumes its rest position and the switch element 2 is closed again.

Il est possible que la pièce mobile 2.2 et le contact mobile 2.1 soient confondus. Dans cette configuration, la pièce mobile serait par exemple en aluminium revêtu d'argent pour assurer également la fonction de contact électrique.It is possible that the moving part 2.2 and the movable contact 2.1 are merged. In this configuration, the moving part would be for example silver-coated aluminum to also perform the function of electrical contact.

On se réfère à la figure 5B qui est un circuit équivalent du circuit de propulsion coopérant avec la pièce mobile 2.2 ainsi que du circuit d'alimentation 2.4. L1 représente l'inductance de la bobine plate 2.3, R10 est sa résistance. L2 représente l'inductance de la pièce mobile 2.2 et R11 est sa résistance. M représente l'inductance mutuelle entre la bobine plate 2.3 et la pièce mobile 2.2.Referring to Figure 5B which is an equivalent circuit of the propulsion circuit cooperating with the movable part 2.2 and the supply circuit 2.4. L1 represents the inductance of the flat coil 2.3, R10 is its resistance. L2 represents the inductance of the moving part 2.2 and R11 is its resistance. M represents the mutual inductance between the flat coil 2.3 and the moving part 2.2.

Ce circuit équivalent est relié au circuit d'alimentation 2.4 qui est formé d'au moins un condensateur C10 destiné à être chargé à une tension Uo avant une décharge, d'une diode D10 montée en parallèle avec le condensateur C10 et d'un thyristor TH10 inséré entre l'ensemble parallèle C10, D10 et le circuit équivalent.This equivalent circuit is connected to the supply circuit 2.4 which is formed of at least one capacitor C10 intended to be charged at a voltage Uo before a discharge, a diode D10 connected in parallel with the capacitor C10 and a thyristor TH10 inserted between the parallel set C10, D10 and the equivalent circuit.

On se réfère de nouveau à la figure 3A. La cellule de coupure à semi-conducteur 4 qui se trouve dans la branche auxiliaire 3 est formée de deux thyristors TH1, TH'1 montés tête bêche. L'un des thyristors TH'1 peut être omis dans un montage mono directionnel.Reference is again made to FIG. 3A. The semiconductor breaking cell 4 which is in the auxiliary branch 3 is formed of two thyristors TH1, TH'1 mounted head to tail. One of the TH'1 thyristors can be omitted in a directional mono assembly.

Le module parallèle d'aide à la commutation M4 est monté en série avec la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3. Il comporte une résistance R2 montée en série avec un ensemble parallèle formé d'une résistance R1 en parallèle avec un condensateur C1. Le module parallèle d'aide à la commutation M4 peut également comprendre en série avec la résistance R2 et l'ensemble parallèle R1, C1, une inductance série LS1. Cette inductance série LS1 sert à limiter la vitesse de montée du courant lors de la mise en conduction de la cellule de coupure à semi-conducteur 4 pour obtenir un enclenchement correct même en courant continu. L'impédance Z2 comporte le condensateur C1, les résistances R1 et R2 et l'inductance série LS1.The M4 parallel switching aid module is connected in series with the switchgear semiconductor 4 of the auxiliary branch 3. It comprises a resistor R2 connected in series with a parallel assembly formed of a resistor R1 in parallel with a capacitor C1. The parallel switching assistance module M4 may also comprise in series with the resistor R2 and the parallel assembly R1, C1, a series inductance LS1. This series inductance LS1 serves to limit the rise rate of the current during the conduction of the semiconductor breaking cell 4 to obtain a proper engagement even DC. Impedance Z2 comprises capacitor C1, resistors R1 and R2 and series inductance LS1.

La figure 3B illustre un autre mode de réalisation d'un dispositif disjoncteur selon l'invention dérivé de celui de la figure 3A.FIG. 3B illustrates another embodiment of a circuit breaker device according to the invention derived from that of FIG. 3A.

Sur ce schéma, on retrouve la même configuration dans la branche principale 1 et la même configuration pour la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3. La différence se situe au niveau du module parallèle d'aide à la communication M4. Ce module parallèle M4 comporte un pont de Graetz Pb avec quatre diodes D21 à D24. Dans une première diagonale du pont de Graetz Pb est monté un ensemble parallèle avec un condensateur C11 et une résistance R11. Une inductance auxiliaire LA1 est montée en parallèle aux bornes de l'autre diagonale du pont de Graetz Pb.In this diagram, we find the same configuration in the main branch 1 and the same configuration for the semiconductor cutoff cell 4 of the auxiliary branch 3. The difference is in the parallel module of M4 communication aid . This parallel module M4 comprises a Graetz Pb bridge with four diodes D21 to D24. In a first diagonal of the Graetz bridge Pb is mounted a parallel assembly with a capacitor C11 and a resistor R11. An auxiliary inductor LA1 is connected in parallel across the other diagonal of the Graetz Pb bridge.

L'une des extrémités de la seconde diagonale est reliée à la branche principale 1. L'autre extrémité de la seconde diagonale est reliée à la cellule de coupure à semi-conducteur 4 via l'inductance série LS1 (si elle est présente).One of the ends of the second diagonal is connected to the main branch 1. The other end of the second diagonal is connected to the semiconductor breaking cell 4 via series LS1 inductance (if present).

L'impédance Z2 comporte le condensateur C11, la résistance R11, l'inductance auxiliaire LA1 et l'inductance série LS1.The impedance Z2 comprises the capacitor C11, the resistor R11, the auxiliary inductance LA1 and the series inductance LS1.

La figure 4 illustre un autre mode de réalisation d'un dispositif disjoncteur selon l'invention. Par rapport aux figures 3A, 3B, on retrouve la même configuration dans la branche principale 1, c'est à dire l'élément interrupteur mécanique 2 en série avec le module série d'aide à la commutation M2 .FIG. 4 illustrates another embodiment of a circuit breaker device according to the invention. Compared with FIGS. 3A, 3B, the same configuration is found in the main branch 1, ie the mechanical switch element 2 in series with the series switching assistance module M2.

Dans la branche auxiliaire 3, la cellule de coupure à semi-conducteur 4 comporte un pont de Graetz Pa avec quatre diodes D11 à D14 et monté dans une diagonale du pont de Graetz Pa un thyristor THa. Ce pont de Graetz Pa est connecté aux bornes de l'ensemble série formé du module série d'aide à la commutation M2 et de l'élément interrupteur mécanique 2. Cette connexion se fait au niveau des extrémités de l'autre diagonale du pont de Graetz Pa. Le module parallèle d'aide à la commutation M4 comprend un condensateur Ca qui est connecté dans la diagonale en série avec le thyristor THa. Comme précédemment, une inductance série LS1 peut être insérée entre le thyristor THa et le condensateur Ca. L'impédance Z2 comporte le condensateur Ca et l'inductance série LS1.In the auxiliary branch 3, the semiconductor breaking cell 4 comprises a Graetz Pa bridge with four diodes D11 to D14 and mounted in a diagonal of the Graetz bridge, a thyristor THa. This Graetz Pa bridge is connected to the terminals of the series assembly formed by the series switching assistance module M2 and the mechanical switch element 2. This connection is made at the ends of the other diagonal of the bridge. Graetz Pa. The parallel switching assistance module M4 comprises a capacitor Ca which is connected diagonally in series with the thyristor THa. As previously, a series inductance LS1 can be inserted between the thyristor THa and the capacitor Ca. The impedance Z2 comprises the capacitor Ca and the series inductance LS1.

Dans les modes de réalisation qui viennent d'être décrits, les composants semi-conducteurs commandables à l'ouverture de la branche principale 1 peuvent être des thyristors de type IGCT, les thyristors simples ne conviennent pas car on a besoin de commander l'ouverture sans attendre un passage à zéro du courant.In the embodiments which have just been described, the semiconductor components controllable at the opening of the main branch 1 may be thyristors of IGCT type, the Single thyristors are not suitable because it is necessary to control the opening without waiting for a zero crossing of the current.

On va voir maintenant le fonctionnement d'un tel dispositif disjoncteur en se reportant à la figure 2. A l'état normal, c'est à dire lorsque l'intensité du courant circulant dans le circuit à protéger L est normale, l'élément interrupteur mécanique 2 est fermé et le module série d'aide à la commutation M2 passant c'est à dire que la cellule de coupure à semi-conducteur commandable à l'ouverture 5 est dans un état passant. La cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3 est dans un état non passant. Tout le courant du circuit à protéger L traverse la branche principale 1 du dispositif disjoncteur.We will now see the operation of such a circuit breaker device with reference to FIG. 2. In the normal state, ie when the current flowing in the circuit to be protected L is normal, the element mechanical switch 2 is closed and the serial module switching assistance M2 passing that is to say that the semiconductor breaking cell controllable at the opening 5 is in an on state. The semiconductor breaking cell 4 of the auxiliary branch 3 is in a non-conducting state. All the current of the circuit to be protected L crosses the main branch 1 of the circuit breaker device.

En présence d'une surintensité dans le circuit à protéger L et donc dans la branche principale 1 du dispositif disjoncteur selon l'invention, la cellule de coupure à semi-conducteur commandable à l'ouverture 5 du module série d'aide à la commutation M2 bascule dans un état non passant. La tension aux bornes de l'impédance Z1 (varistance V1) croît jusqu'à sa valeur de seuil. La tension aux bornes du module série d'aide à la commutation M2 augmente, l'impédance Z1 s'opposant au passage de courant dans la branche principale 1.In the presence of an overcurrent in the circuit to be protected L and therefore in the main branch 1 of the circuit breaker device according to the invention, the semiconductor breaking cell controllable at the opening 5 of the series module for switching assistance M2 switches to a non-passing state. The voltage across the impedance Z1 (varistor V1) increases to its threshold value. The voltage at the terminals of the series switching assistance module M2 increases, the impedance Z1 opposing the passage of current in the main branch 1.

La cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3 devient passante. Le courant circulant dans le circuit à protéger L est dévié dans la branche auxiliaire 3, ce qui détourne l'énergie qui sinon aurait été dissipée dans la cellule de coupure à semi-conducteur commandable à l'ouverture 5 de la branche principale 1 au risque de la détruire.The semiconductor breaking cell 4 of the auxiliary branch 3 becomes conducting. The current flowing in the circuit to be protected L is deflected in the auxiliary branch 3, which diverts the energy which otherwise would have been dissipated in the semiconductor breaking cell controllable at the opening 5 of the main branch 1 at the risk of destroying it.

Le courant dans l'élément interrupteur mécanique 2 tend vers zéro et la tension à ses bornes est nulle. L'élément interrupteur mécanique 2 est alors ouvert sans provoquer l'établissement d'un arc électrique.The current in the mechanical switch element 2 tends to zero and the voltage across it is zero. The mechanical switch element 2 is then open without causing the establishment of an electric arc.

Après l'ouverture de l'élément interrupteur mécanique 2, la tension à ses bornes devient immédiatement égale à la tension qui était présente aux bornes de l'impédance Z2 car le courant s'annulant dans l'impédance Z1, la tension à ses bornes devient nulle. Toute la tension de la branche auxiliaire 3 s'applique sur l'élément interrupteur mécanique 2 qui est ouvert.After the opening of the mechanical switch element 2, the voltage at its terminals immediately becomes equal to the voltage that was present across the impedance Z2 because the current being canceled in the impedance Z1, the voltage at its terminals becomes null. All the voltage of the auxiliary branch 3 is applied to the mechanical switch element 2 which is open.

Le courant circulant dans la branche auxiliaire 3 est limité par la présence de l'impédance Z2 qui s'oppose à son passage et la valeur maximale de ce courant est significativement diminuée. L'élément de type condensateur C se charge. Lorsqu'une tension suffisante s'établit aux bornes de l'impédance Z2, la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3 est rendue non passante. Le passage à l'état non passant est provoqué par le passage à zéro du courant dans la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3. En mode bidirectionnel, on peut attendre plusieurs alternances d'oscillation du circuit LC, formé module parallèle d'aide à la commutation M4 et de l'inductance du circuit à protéger L, avant de commander l'ouverture du thyristor TH1 ou TH'1 ce qui produit une temporisation. On a une fonction de limiteur de courant avant la coupure.The current flowing in the auxiliary branch 3 is limited by the presence of the impedance Z2 which opposes its passage and the maximum value of this current is significantly reduced. The capacitor type element C charges. When a sufficient voltage is established across the impedance Z2, the semiconductor breaking cell 4 of the auxiliary branch 3 is rendered non-conducting. The transition to the off state is caused by the zero crossing of the current in the semiconductor breaking cell 4 of the auxiliary branch 3. In bidirectional mode, it is possible to wait for several alternations of oscillation of the LC circuit, formed parallel module of M4 switching assistance and the inductance of the circuit to be protected L, before controlling the opening of thyristor TH1 or TH'1 which produces a delay. We have a function of current limiter before breaking.

A l'état final, l'élément interrupteur mécanique 2 est ouvert, la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3 est à l'état non passant ainsi que la cellule de coupure à semi-conducteur commandable à l'ouverture 5 du module série d'aide à la commutation M2. Plus aucun courant ne circule dans le circuit à protéger L et le dispositif disjoncteur a joué son rôle de protection.In the final state, the mechanical switch element 2 is open, the semiconductor breaking cell 4 of the auxiliary branch 3 is in the off state as well as the semiconductor breaking cell controllable at the opening 5 of the series switching assistance module M2. No more current flows in the circuit to be protected L and the circuit breaker device has played its role of protection.

L'intérêt de la variante de la figure 3B est de réaliser la fonction de limitation du courant en partie par l'impédance de l'inductance auxiliaire LA1. Après le déclenchement dans la branche principale 1 et la dérivation du courant dans la branche parallèle 3 une partie du courant passe dans l'inductance auxiliaire LA1 avant la coupure finale par les thyristors TH1, TH'1 de la cellule de coupure à semi-conducteur 4. Ceci permet de diminuer les contraintes de dimensionnement sur le condensateur C11 qui est utilisé dans ce cas, essentiellement dans son rôle de déviation du courant de la branche principale 1 vers la branche parallèle 3.The advantage of the variant of Figure 3B is to perform the current limiting function in part by the impedance of the auxiliary inductance LA1. After the tripping in the main branch 1 and the branching of the current in the parallel branch 3 a portion of the current passes into the auxiliary inductance LA1 before the final cut by thyristors TH1, TH'1 of the semiconductor breaking cell. 4. This makes it possible to reduce the design constraints on the capacitor C11 which is used in this case, essentially in its role of deflecting the current from the main branch 1 to the parallel branch 3.

Avec cette structure, il est de plus possible de jouer sur l'angle d'amorçage des thyristors TH1, TH'1. En effet, pendant la phase de conduction dans l'inductance auxiliaire LA1, une commande retardée de l'angle d'amorçage des thyristors permet de limiter le courant de défaut à la valeur souhaitée. Ceci améliore la fonction de limitation du courant du disjoncteur avant ouverture.With this structure, it is further possible to play on the starting angle of thyristors TH1, TH'1. Indeed, during the conduction phase in the auxiliary inductance LA1, a delayed control of the thyristor firing angle makes it possible to limit the fault current to the desired value. This improves the current limiting function of the circuit breaker before opening.

On va maintenant commenter, en se référant aux figures 6A, 6B, des courbes qui simulent le courant global A traversant le dispositif disjoncteur, le courant B traversant l'élément interrupteur mécanique 2 et le courant D traversant la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3 au moment du déclenchement du dispositif disjoncteur en présence d'une surintensité dans le circuit L qu'il protège. A cause de cette surintensité le courant B dans l'élément interrupteur mécanique 2 croît jusqu'à un instant t0 correspondant à l'instant où la cellule de coupure à semi-conducteur commandable à l'ouverture 5 du module série d'aide à la commutation M2 bascule à l'état non passant. Il prend alors une valeur d'environ 2500 A. L'intervalle de temps entre t0 et le début de la montée du courant B vaut environ 100 microsecondes.With reference to FIGS. 6A and 6B, we will now comment on curves that simulate the global current flowing through the circuit breaker device, the current B flowing through the mechanical switch element 2 and the current D flowing through the semiconductor breaking cell. 4 of the auxiliary branch 3 at the moment of tripping of the circuit breaker device in the presence of an overcurrent in the circuit L it protects. Due to this overcurrent, the current B in the mechanical switch element 2 increases up to a time t0 corresponding to the instant when the semiconductor breaking cell controllable at the opening 5 of the serial module of assistance to the M2 switching switches to the off state. It then takes a value of about 2500 A. The time interval between t0 and the start of the rise of the current B is about 100 microseconds.

Le courant B dans l'élément interrupteur mécanique 2 passe à zéro. Ce passage à zéro prend un certain temps lorsqu'il y a inductance série LS1 dans le module parallèle d'aide à la commutation M4. A l'instant t0, le courant D traversant la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3 est le courant provenant du circuit L détourné de la branche principale 1. Ce courant D atteint un maximum (environ 5000 A) puis décroît à cause de la présence dans l'impédance Z2 de l'élément type condensateur C qui se charge. Le courant D finit par s'annuler à un instant t1 et la cellule de coupure à semi-conducteur 4 de la branche auxiliaire 3 est forcée à l'état non passant. L'intervalle de temps entre t0 et t1 vaut environ 450 microsecondes.The current B in the mechanical switch element 2 goes to zero. This zero crossing takes a certain time when there is LS1 series inductance in the M4 parallel switching aid module. At time t0, the current D passing through the semiconductor breaking cell 4 of the auxiliary branch 3 is the current from the circuit L diverted from the main branch 1. This current D reaches a maximum (about 5000 A) then decreases due to the presence in the impedance Z2 of the capacitor type element C which is charged. The current D ends up canceling at a time t1 and the semiconductor breaking cell 4 of the auxiliary branch 3 is forced to the off state. The time interval between t0 and t1 is about 450 microseconds.

La figure 6B qui est un zoom de la figure 6A autour de l'instant t0, représente en plus l'allure de la tension E aux bornes de l'élément interrupteur mécanique 2. Cette tension E est nulle en même temps que le courant B après t0, ce qui permet d'ouvrir l'élément interrupteur mécanique 2 sans engendrer d'arc électrique. Cette ouverture se fait à un instant t2. L'intervalle de temps entre t0 et t2 vaut environ 20 microsecondes. Ensuite la tension E aux bornes de l'élément interrupteur mécanique 2 commence à croître et atteint la tension qui était présente aux bornes de l'impédance Z2.FIG. 6B, which is a zoom of FIG. 6A around time t0, further represents the shape of voltage E at the terminals of mechanical switch element 2. This voltage E is zero at the same time as current B after t0, which allows to open the mechanical switch element 2 without generating an electric arc. This opening is done at a time t2. The time interval between t0 and t2 is about 20 microseconds. Then the voltage E across the mechanical switch element 2 begins to grow and reaches the voltage that was present across the impedance Z2.

Les avantages d'un dispositif disjoncteur selon l'invention sont appréciables.The advantages of a circuit breaker device according to the invention are appreciable.

Un tel dispositif disjoncteur est apte à fonctionner aussi bien basse tension A ou B qu'en haute tension A ou B. Ces tensions peuvent être des tensions continues ou alternatives.Such a circuit breaker device is capable of operating both low voltage A or B and high voltage A or B. These voltages may be DC or AC voltages.

Un tel dispositif disjoncteur possède un élément interrupteur mécanique qui peut fonctionner dans un environnement normal. Cela signifie qu'il peut fonctionner sans être confiné dans une chambre de coupure dans une ambiance gazeuse appropriée ou sous vide.Such a circuit breaker device has a mechanical switch element that can operate in a normal environment. This means that it can operate without being confined to a breaking chamber in an appropriate gaseous or vacuum atmosphere.

Puisque aucun arc électrique n'apparaît au moment de l'ouverture de l'élément interrupteur mécanique, il n'y a pas de dégradation du contact mécanique et donc pas d'usure importante des pièces conductrices formant contact. La maintenance est réduite, les coûts sont diminués. La reproductibilité des opérations d'ouverture de l'élément interrupteur mécanique est garantie.Since no electric arc appears at the moment of opening of the mechanical switch element, there is no degradation of the mechanical contact and therefore no significant wear of the conductive parts forming contact. Maintenance is reduced, costs are reduced. Reproducibility opening operations of the mechanical switch element is guaranteed.

Il possède une vitesse de coupure qui est grande grâce à la présence des cellules de coupure à semi-conducteur sans pour autant nécessiter un élément interrupteur mécanique rapide. Il n'y a donc pas de nouvelle technologie d'élément de interrupteur mécanique à développer.It has a cutoff speed which is large thanks to the presence of semiconductor breaking cells without requiring a fast mechanical switch element. There is therefore no new mechanical switch element technology to develop.

Grâce à la présence du composant semi-conducteur commandable à l'ouverture de la branche principale, les pertes par effet Joule en conduction sont réduites. Un dispositif de refroidissement passif peut être utilisé.Due to the presence of the controllable semiconductor component at the opening of the main branch, Joule losses in conduction are reduced. A passive cooling device can be used.

Un tel dispositif disjoncteur est compact. Son encombrement est beaucoup plus faible que celui des configurations avec chambre de coupure.Such a circuit breaker device is compact. Its footprint is much smaller than that of configurations with interrupting chamber.

Une temporisation est possible en mode bidirectionnel car il est possible que le dispositif disjoncteur hybride fonctionne pendant un certain temps avec sa branche auxiliaire 3 en conduction en laissant le circuit LC (formé du condensateur C, de l'inductance série LS1 du module parallèle d'aide à la commutation M4 et de l'inductance du circuit à protéger L) osciller avant de le couper par la cellule de coupure à semi-conducteur 4. Pendant cette période le courant est limité par les impédances de la branche auxiliaire 3.A delay is possible in bidirectional mode because it is possible for the hybrid circuit breaker device to operate for a certain time with its auxiliary branch 3 in conduction while leaving the LC circuit (formed of the capacitor C, of the series inductance LS1 of the parallel module). switching assistance M4 and circuit inductance to be protected L) oscillating before being cut by the semiconductor breaking cell 4. During this period the current is limited by the impedances of the auxiliary branch 3.

Si la coupure a lieu au moment d'un zéro de courant, l'énergie accumulée dans le circuit à protéger est nulle et la dissipation d'énergie est minimisée.If the cut takes place at the moment of a current zero, the energy accumulated in the circuit to be protected is zero and the dissipation of energy is minimized.

Claims (15)

  1. Circuit breaker device comprising a main branch (1) comprising a mechanical switch element (2) and an auxiliary branch (3) containing a semiconductor breaking cell (4), this auxiliary branch (3) being mounted in parallel with the main branch (1), characterised in that the main branch (1) comprises, in series with the mechanical switch element (2), a serial switching assistance module (M2) comprising a semiconductor breaking cell (5) controllable in opening in parallel with an impedance (Z1) and in that the auxiliary branch (3) comprises a parallel switching assistance module (M4) comprising an impedance (Z2), this impedance (Z2) including at least one capacitor type element (C).
  2. Circuit breaker device according to claim 1, characterised in that the impedance (Z1) of the serial switching assistance module (M2) is a varistance (V1).
  3. Circuit breaker device according to either claim 1 or 2, characterised in that the semiconductor breaking cell (5) controllable in opening comprises at least one serial assembly (D1, IG2) with a diode and an IGCT type thyristor.
  4. Circuit breaker device according to claim 3, characterised in that it comprises two series assemblies (D1, IG2, D'1, IG'2) installed head-foot in parallel.
  5. Circuit breaker device according to any one of claims 1 to 4, characterised in that the semiconductor breaking cell (4) in the auxiliary branch (3) comprises at least one thyristor (THa).
  6. Circuit breaker device according to claim 5, characterised in that the semiconductor breaking cell (4) comprises two thyristors (TH1, TH'1) mounted head-foot in parallel.
  7. Circuit breaker device according to claim 5, characterised in that the semiconductor breaking cell (4) in the auxiliary branch (3) comprises a thyristor (THa) and a Graetz bridge (D11, D12, D13., D14) with two diagonals, the thyristor (THa) forming a diagonal of the Graetz bridge, the main branch (1) forming the other diagonal of the Graetz bridge.
  8. Circuit breaker device according to claim 7, characterised in that the impedance (Z2) of the parallel switching assistance module (M4) comprises a capacitor (Ca) in series with the thyristor (THa).
  9. Circuit breaker device according to claim 8, characterised in that a series inductance is mounted in series between the capacitor (Ca) and the thyristor (THa).
  10. Circuit breaker device according to any one of claims 1 to 6, characterised in that the impedance (Z2) of the parallel switching assistance module (M4) comprises an assembly formed of a capacitor (C1) and a first resistance (R1) installed in parallel, this assembly being installed in series with a second resistance (R2) and with the semiconductor breaking cell (4) in the auxiliary branch (3).
  11. Circuit breaker device according to claim 10, characterised in that a series inductance (LS1) is mounted in series with the assembly and the second resistance (R2).
  12. Circuit breaker device according to any one of claims 1 to 6, characterised in that the parallel switching assistance module (M4) comprises a Graetz bridge (Pb) with two diagonals, an assembly parallel with the capacitor (C11) and a resistance. (R11) being connected to the terminals of a first diagonal of the Graetz bridge, an auxiliary inductance (LA1) being connected to the terminals of a second diagonal, one of the terminals of the second diagonal being connected to the semiconductor breaking cell (4) in the auxiliary branch (3).
  13. Circuit breaker device according to claim 12, characterised in that a series inductance (LS1) is connected between the Graetz bridge (Pb) and the semiconductor breaking cell (4) in the auxiliary branch.
  14. Circuit breaker device according to any one of claims 1 to 13, characterised in that the mechanical switch element (2) comprises a Thomson type mobile contact (2.1) with electromagnetic drive.
  15. Method for triggering a circuit breaker device according to any one of the above claims, characterised in that it consists of the following, when there is an overcurrent in the main branch (1):
    switching the semiconductor breaking cell (5) controllable in opening, from a conducting state to a non-conducting state,
    switching the semiconductor breaking cell (4) in the auxiliary branch (3), from a non-conducting state to a conducting state,
    then opening the mechanical switch element (2) that was initially closed,
    and finally switching the semiconductor breaking cell (4) in the auxiliary branch (3) from the conducting state to the non-conducting state as soon as the current becomes zero.
EP03293050A 2003-12-05 2003-12-05 Hybrid circuit breaker Expired - Lifetime EP1538645B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE60303773T DE60303773T2 (en) 2003-12-05 2003-12-05 Hybrid circuit breaker
ES03293050T ES2259409T3 (en) 2003-12-05 2003-12-05 HYBRID CIRCUIT DEVICE DEVICE.
AT03293050T ATE319177T1 (en) 2003-12-05 2003-12-05 HYBRID CIRCUIT BREAKER
EP03293050A EP1538645B1 (en) 2003-12-05 2003-12-05 Hybrid circuit breaker
US10/895,456 US7508636B2 (en) 2003-12-05 2004-02-26 Hybrid circuit breaker device
RU2004135408/09A RU2338287C2 (en) 2003-12-05 2004-12-03 Hybride switch mechanism
CNB2004100979348A CN100339925C (en) 2003-12-05 2004-12-06 Hybrid circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03293050A EP1538645B1 (en) 2003-12-05 2003-12-05 Hybrid circuit breaker

Publications (2)

Publication Number Publication Date
EP1538645A1 EP1538645A1 (en) 2005-06-08
EP1538645B1 true EP1538645B1 (en) 2006-03-01

Family

ID=34443123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03293050A Expired - Lifetime EP1538645B1 (en) 2003-12-05 2003-12-05 Hybrid circuit breaker

Country Status (7)

Country Link
US (1) US7508636B2 (en)
EP (1) EP1538645B1 (en)
CN (1) CN100339925C (en)
AT (1) ATE319177T1 (en)
DE (1) DE60303773T2 (en)
ES (1) ES2259409T3 (en)
RU (1) RU2338287C2 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040432A1 (en) * 2005-08-25 2007-03-01 Rwth Aachen Current limiting switch
EP2369709B1 (en) 2005-10-24 2016-05-04 Robert Bosch GmbH Switch-Fuse with control management for solar cells
US7633725B2 (en) * 2005-12-20 2009-12-15 General Electric Company Micro-electromechanical system based soft switching
US7876538B2 (en) * 2005-12-20 2011-01-25 General Electric Company Micro-electromechanical system based arc-less switching with circuitry for absorbing electrical energy during a fault condition
US20070139829A1 (en) * 2005-12-20 2007-06-21 General Electric Company Micro-electromechanical system based arc-less switching
US7643256B2 (en) 2006-12-06 2010-01-05 General Electric Company Electromechanical switching circuitry in parallel with solid state switching circuitry selectively switchable to carry a load appropriate to such circuitry
US9076607B2 (en) * 2007-01-10 2015-07-07 General Electric Company System with circuitry for suppressing arc formation in micro-electromechanical system based switch
US7542250B2 (en) * 2007-01-10 2009-06-02 General Electric Company Micro-electromechanical system based electric motor starter
US8358488B2 (en) * 2007-06-15 2013-01-22 General Electric Company Micro-electromechanical system based switching
DE102007042903A1 (en) 2007-07-02 2009-01-08 Bammert, Jörg Electric current i.e. direct current, switching circuit for switching circuit of alternating current converter in photovoltaic system, has transistor with control connection connected with current path, and disabling both closed switches
US7808764B2 (en) * 2007-10-31 2010-10-05 General Electric Company System and method for avoiding contact stiction in micro-electromechanical system based switch
WO2011044928A1 (en) * 2009-10-13 2011-04-21 Abb Research Ltd. A hybrid circuit breaker
CN102687221B (en) * 2009-11-16 2015-11-25 Abb技术有限公司 The apparatus and method of the current interruption of transmission line or distribution line and current limliting are arranged
EP2339599A1 (en) * 2009-12-22 2011-06-29 ABB Research Ltd. A switch and use thereof
EP2569793B1 (en) * 2010-05-11 2014-07-16 ABB Technology AG A high voltage dc breaker apparatus
DE102010052136A1 (en) * 2010-11-22 2012-05-24 Siemens Aktiengesellschaft Circuit arrangements for electronically controlled DC networks
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
FR2968829B1 (en) * 2010-12-10 2012-12-21 Schneider Electric Ind Sas CURRENT LIMITER CIRCUIT BREAKER
EP2639805B1 (en) * 2010-12-23 2014-12-10 ABB Technology AG Method, circuit breaker and switching unit for switching off high-voltage DC currents
GB2493911A (en) * 2011-08-18 2013-02-27 Univ Manchester Conduction path of direct current circuit breaker
WO2013068046A1 (en) * 2011-11-11 2013-05-16 Abb Technology Ag Using the transfer switch of a hybrid circuit breaker as selector switch
WO2013071980A1 (en) * 2011-11-18 2013-05-23 Abb Technology Ag Hvdc hybrid circuit breaker with snubber circuit
WO2013091700A1 (en) * 2011-12-21 2013-06-27 Abb Technology Ltd An arrangement for controlling the electric power transmission in a hvdc power transmission system
ES2911756T3 (en) * 2011-12-22 2022-05-20 Siemens Energy Global Gmbh & Co Kg dc hybrid breaker device
FR2985082B1 (en) * 2011-12-23 2014-02-21 Alstom Technology Ltd MECATRONIC CIRCUIT BREAKER DEVICE AND RELATIVE TRIGGERING METHOD AND APPLICATION TO HIGH CONTINUOUS CURRENT CUTTING
CN104620345B (en) * 2012-08-27 2016-10-26 Abb瑞士股份有限公司 Arrange the device for turn-off current
EP2722859B2 (en) 2012-10-16 2019-08-28 ABB Schweiz AG Multi-block hybrid vacuum circuit breaker having in series connected vacuum interrupters
FR2998705B1 (en) 2012-11-28 2015-02-13 Alstom Technology Ltd SPRING-TYPE CONTROL DEVICE PARTICULARLY FOR HIGH VOLTAGE OR MEDIUM VOLTAGE CIRCUIT BREAKER OR SWITCH
CN103021739B (en) * 2012-11-30 2014-10-15 西安交通大学 Hybrid direct-current circuit breaker
US9831657B2 (en) 2012-12-19 2017-11-28 Siemens Aktiengesellschaft Device for switching a direct current in a pole of a DC voltage network
DK2929627T3 (en) * 2013-01-29 2017-01-16 Siemens Ag DC TENSION SWITCH TO CHANGE A CARD BREAK
CN103972875B (en) * 2013-01-31 2016-07-06 南京南瑞继保电气有限公司 Limit line current or make device and the control method thereof of electric current disjunction
CN103346531B (en) * 2013-02-06 2014-11-26 西安交通大学 Bidirectional breaking-based mixing type circuit breaker
EP2768102B1 (en) * 2013-02-13 2016-02-10 General Electric Technology GmbH Circuit interruption device
CN103280763B (en) * 2013-02-27 2016-12-28 国网智能电网研究院 A kind of dc circuit breaker and its implementation
US9198255B2 (en) 2013-03-14 2015-11-24 Nxp B.V. Voltage to current architecture to improve PWM performance of output drivers
EP2787520B1 (en) 2013-04-02 2015-11-04 ABB Technology AG Vacuum chamber with a one-piece metallic cover for self-centering
US9054530B2 (en) 2013-04-25 2015-06-09 General Atomics Pulsed interrupter and method of operation
CN105723489B (en) * 2013-08-05 2019-06-04 英诺锂资产公司 With the reversing switch for blocking semiconductor
KR101506581B1 (en) * 2013-08-14 2015-03-27 주식회사 효성 High-voltage DC circuit breaker
US9947496B2 (en) 2013-08-30 2018-04-17 Eaton Industries (Netherlands) B.V. Circuit breaker with hybrid switch
US9948089B2 (en) 2013-12-11 2018-04-17 Mitsubishi Electric Corporation DC circuit breaker device
WO2015113120A1 (en) * 2014-01-31 2015-08-06 Любомир СЕКУЛОВ High-speed switch for direct and alternating current
CN103986138B (en) * 2014-05-14 2017-01-25 国家电网公司 Modularized current-limiting breaker power module
EP3251189B1 (en) * 2015-01-30 2018-10-10 ABB Schweiz AG Scalable switchyard for interconnecting direct current power networks
US9742185B2 (en) 2015-04-28 2017-08-22 General Electric Company DC circuit breaker and method of use
EP4012738A1 (en) * 2015-05-05 2022-06-15 Siemens Aktiengesellschaft Switching device
DE102015226475A1 (en) * 2015-05-05 2016-11-10 Siemens Aktiengesellschaft switching device
US9660439B2 (en) * 2015-06-05 2017-05-23 General Electric Company Direct current power distribution and protection system
CN107615431B (en) * 2015-08-05 2019-11-12 Abb瑞士股份有限公司 Bidirectional power valve and its control method and the mixing multiterminal HVDC system for using it
KR101794945B1 (en) * 2015-08-24 2017-12-01 주식회사 효성 DC Circuit Breaker
CN106558865B (en) * 2015-09-25 2019-03-15 全球能源互联网研究院 A kind of modified cascade full-bridge high voltage DC breaker and its quick coincidence method
US9998117B2 (en) 2015-12-10 2018-06-12 Abb Schweiz Ag Solid state resettable fuses
GB2560887A (en) * 2017-03-21 2018-10-03 Gridon Ltd AC switching arrangement
EP3389069B1 (en) * 2017-04-11 2019-12-11 Microelettrica Scientifica S.p.A. Improved breaker for high d.c. current or voltage applications, for instance industrial and/or railways applications
DE102017122218A1 (en) * 2017-09-26 2019-03-28 Eaton Industries (Austria) Gmbh Low-voltage protection device
GB2574038A (en) * 2018-05-24 2019-11-27 Entrust Microgrid Llp Two-stage switching mechanism for use in a DC circuit
DE102018114641A1 (en) * 2018-06-19 2019-12-19 Vacon Oy Safety concept for DC link capacitors
US11424093B2 (en) 2018-10-24 2022-08-23 The Florida State University Research Foundation, Inc. Direct current hybrid circuit breaker with reverse biased voltage source
US11646575B2 (en) 2018-10-24 2023-05-09 The Florida State University Research Foundation, Inc. Direct current hybrid circuit breaker with reverse biased voltage source
KR102164975B1 (en) * 2019-01-29 2020-10-13 전남대학교산학협력단 Two-way DC Circuit Breaker
EP3879548B1 (en) * 2020-03-10 2022-12-21 ABB Schweiz AG Fault current limiter circuit breaker
US11394199B2 (en) 2020-09-11 2022-07-19 Abb Schweiz Ag Intelligent current limiting for solid-state switching
CN112713050A (en) * 2020-12-11 2021-04-27 平高集团有限公司 Electromagnetic quick mechanism and quick mechanical switch
WO2022204996A1 (en) * 2021-03-30 2022-10-06 华为数字能源技术有限公司 Circuit breaker and power supply system
GB202115513D0 (en) 2021-10-28 2021-12-15 Rolls Royce Plc Electrical power system
US11901140B2 (en) * 2022-05-16 2024-02-13 Rockwell Automation Technologies, Inc. Hybrid circuit breaker with solid state devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH609182A5 (en) * 1975-12-01 1979-02-15 Asea Ab
US4631621A (en) * 1985-07-11 1986-12-23 General Electric Company Gate turn-off control circuit for a solid state circuit interrupter
US4644309A (en) * 1985-12-30 1987-02-17 General Electric Company High speed contact driver for circuit interruption device
US4723187A (en) * 1986-11-10 1988-02-02 General Electric Company Current commutation circuit
US4862313A (en) * 1987-12-11 1989-08-29 Hitachi, Ltd. Driving apparatus for DC circuit breakers
US5164872A (en) * 1991-06-17 1992-11-17 General Electric Company Load circuit commutation circuit
CA2275616A1 (en) * 1996-12-17 1998-06-25 Dan Windmar Device and method relating to protection of an object against over-currents comprising over-current reduction
EP1014403A1 (en) * 1998-12-21 2000-06-28 Asea Brown Boveri AG Current-limiting switch
SE9900852D0 (en) * 1999-03-08 1999-03-08 Secheron Sa An electrical coil module, an electrical coil comprising such modules, an actuation mechanism including such a coil and a circuit breaker comprising such an actuation mechanism
DE10002870A1 (en) * 2000-01-24 2001-08-23 Abb Research Ltd Current limiting arrangement has switching point connected in rated current path in series with vacuum switch and provided with device for increasing spark voltage

Also Published As

Publication number Publication date
ES2259409T3 (en) 2006-10-01
RU2004135408A (en) 2006-05-10
CN1617281A (en) 2005-05-18
US7508636B2 (en) 2009-03-24
RU2338287C2 (en) 2008-11-10
DE60303773T2 (en) 2006-09-21
DE60303773D1 (en) 2006-04-27
ATE319177T1 (en) 2006-03-15
US20050146814A1 (en) 2005-07-07
CN100339925C (en) 2007-09-26
EP1538645A1 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
EP1538645B1 (en) Hybrid circuit breaker
FR2738664A1 (en) Hybrid suppressor utilising Miller effect for suppressing arcs formed at contacts of electrical switch
EP2795645A1 (en) Mechatronic circuit breaker device and associated tripping method and use thereof in interrupting a high direct current
EP3942585B1 (en) Current cut-off device for high-voltage direct current with resonator and switching
WO2020136350A1 (en) Current breaker device for high-voltage direct current with adaptive oscillatory circuit, and control method
EP1870977B1 (en) Device for protecting against voltage surges connecting several spark gaps with simultaneous triggering in series and corresponding methods
EP3903333B1 (en) Current breaker device for high-voltage direct current with capacitive buffer circuit, and control method
FR3062512A1 (en) HIGH VOLTAGE CONTINUOUS CURRENT CUTTING DEVICE
WO2004042762A1 (en) Device for protection against voltage surges with mobile electrode
EP0517618B1 (en) Load-break device for electric circuit
CA2068857C (en) Circuit breaker with high breaking capacity
EP2842151B1 (en) Driver circuit for a circuit breaker
FR2595865A1 (en) ELECTRIC SWITCH, PARTICULARLY HIGH-SPEED CONTACT MAGNETIC ACTUATOR
EP3699942B1 (en) Operating system for a vacuum bulb
EP2631927A1 (en) Method for shutting down an electric arc, method and device for protecting a facility against overvoltages
WO2018069627A1 (en) Co2 switch for a high voltage dc grid
EP3437115B1 (en) Hybridisation system for high voltage direct current
FR2595866A1 (en) High-speed contact drive device for circuit breaker
EP4315381A1 (en) Cutoff device for high-dc-voltage electric current with plasma tube
EP4104195B1 (en) Mechanical current cut-off device for high-voltage direct current with a capacitor in a secondary path, facility and method using such a device
EP4167261A1 (en) Electric switching device and associated switching system and method
EP2546851B1 (en) High-voltage switching device in an electric grid
WO2023017221A1 (en) Device and method for disconnecting a high-voltage direct electric current with a fuse, and oscillating-current overload system
BE359271A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60303773

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060801

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2259409

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060602

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061205

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20121211

Year of fee payment: 10

Ref country code: CZ

Payment date: 20121122

Year of fee payment: 10

Ref country code: DE

Payment date: 20121207

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20121219

Year of fee payment: 10

Ref country code: TR

Payment date: 20121127

Year of fee payment: 10

Ref country code: GB

Payment date: 20121219

Year of fee payment: 10

Ref country code: SE

Payment date: 20121214

Year of fee payment: 10

Ref country code: IT

Payment date: 20121214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20121123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121219

Year of fee payment: 10

BERE Be: lapsed

Owner name: SOC. TECHNIQUE POUR L'ENERGIE ATOMIQUE TECHNICATO

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60303773

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 319177

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60303773

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131205

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131205