EP1532400B1 - Procede et dispositif pour faire bruler un melange combustible-oxydant - Google Patents

Procede et dispositif pour faire bruler un melange combustible-oxydant Download PDF

Info

Publication number
EP1532400B1
EP1532400B1 EP03790608.8A EP03790608A EP1532400B1 EP 1532400 B1 EP1532400 B1 EP 1532400B1 EP 03790608 A EP03790608 A EP 03790608A EP 1532400 B1 EP1532400 B1 EP 1532400B1
Authority
EP
European Patent Office
Prior art keywords
oxidising agent
catalyst
channels
flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03790608.8A
Other languages
German (de)
English (en)
Other versions
EP1532400A1 (fr
Inventor
Timothy Griffin
Dieter Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Publication of EP1532400A1 publication Critical patent/EP1532400A1/fr
Application granted granted Critical
Publication of EP1532400B1 publication Critical patent/EP1532400B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13002Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel

Definitions

  • the present invention relates to a method and a device for burning a fuel-oxidizer mixture in a combustion chamber of a turbo group, in particular a power plant.
  • the gas turbo group consists essentially of a compressor, a combustion chamber, a turbine and a generator.
  • fuel is mixed with compressed air in the compressor before combustion and then burned in a combustion chamber.
  • Compressed air supplied via a partial air line is mixed with fuel supplied via a partial fuel line and introduced into a reactor having a catalyst coating.
  • the fuel mixture is converted into a synthesis gas comprising hydrogen, carbon monoxide, residual air and residual fuel. This synthesis gas is injected into such zones of the combustion chamber in which they cause a stabilization of the flame.
  • the present invention deals with the problem of demonstrating possibilities for stabilization for the combustion of a lean fuel-oxidizer mixture in a combustion chamber of a turbo group.
  • the invention is based on the general idea of only partially oxidizing a rich pilot fuel-oxidizer mixture in a catalyst such that highly reactive hydrogen forms, the partially oxidized hydrogen-containing mixture, together with an additional oxidant stream, into at least one zone which is suitable for stabilizing the combustion of the main fuel-oxidizer mixture.
  • the required for Volloxidation the partially oxidized pilot mixture oxidizer is introduced or injected into the suitable zones for combustion stabilization, whereby the stability of the pilot flames thus generated increases.
  • the pilot flames do not draw any or at least significantly less oxidant from the main mixture when they are burned, which also makes the main mixture reaction more stable.
  • the additionally supplied oxidizer stream which is also referred to below as the heat exchanger oxidizer stream, can be used for preheating the pilot-fuel-oxidizer mixture and / or for cooling the catalyst.
  • the oxidizer used in a turbo group usually comes from the pressure side of a compressor, so that the oxidizer, usually air, already has a relatively high temperature.
  • a pilot-fuel-oxidizer mixture is formed whose temperature is below that of the densified oxidizer since the fuel, usually natural gas, has a relatively low temperature during injection.
  • another partial flow of the compressor-derived oxidizer may be used to preheat the pilot fuel-oxidizer mixture be used by a suitable heat coupling is performed.
  • the ignition limit of the catalytic reaction is achieved even at a relatively short inlet path into the catalyst, which can be achieved at the same time an increased conversion rate in the catalyst.
  • the catalytic reaction now increases the temperature of the catalyst. In order for the desired partial oxidation to take place predominantly in the catalyst, the temperature in the catalyst should not increase too much, since otherwise a full oxidation takes place and / or a homogeneous gas reaction can occur.
  • the heat exchanger oxidizer stream is suitable, in particular for its heat release to the pilot fuel-oxidizer mixture, in a special way for cooling the catalyst. As a result, the desired partial oxidation reaction can be stabilized in the catalyst.
  • the catalyst may have a plurality of channels through which it is possible to pass in parallel, one of which is catalytically active and the other catalytically inactive.
  • the catalytically active channels thereby form a catalytically active path through the catalyst, which is designed so that it allows the desired partial oxidation with the formation of hydrogen as it flows through the rich pilot fuel-oxidizer mixture.
  • the catalytically inactive channels form a catalytically inactive path through the catalyst, which is flowed through in operation by the heat exchanger-oxidizer stream.
  • This construction thus makes it possible, on the one hand, to preheat the pilot-fuel-oxidizer mixture introduced into the catalytic converter and, on the other hand, to cool the catalytic converter.
  • a targeted coordination of the catalytically active channels and the catalytically inactive channels, in particular with regard to their number, arrangement and dimensioning a targeted to a nominal operating state of the device, in particular the turbo group, thermal management for the catalyst can be achieved. This allows a long service life for the catalyst and reproducible combustion reactions in the catalyst and thus in the stabilization zones.
  • a turbo group 1 comprises a turbine 2, which is designed in particular as a gas turbine, and a compressor 3, which is connected to the turbine 2 via a drive shaft 4.
  • the turbo group 1 is used in a power plant, in which case the turbine 2 additionally drives a generator 5 via the shaft 4.
  • the turbo group 1 furthermore comprises a combustion system designated as combustion chamber 6, which has at least one combustion chamber 7 and at least one premix burner 8 arranged upstream of this combustion chamber 7.
  • the combustion chamber 6 is connected on the input side to the high-pressure side of the compressor 3 and on the output side to the high-pressure side of the turbine 2. Accordingly, the combustion chamber 6 is supplied via an oxidizer 9 from the compressor 3 with oxidizer, in particular air.
  • the fuel supply takes place via a corresponding fuel line 10.
  • the hot combustion gases are supplied to the turbine 2 via a hot gas line 11.
  • the combustion chamber 6 is used for combustion of a fuel-oxidizer mixture in the combustion chamber 7; the combustion chamber 6 thus forms a device according to the invention. Therefore, this device will be referred to as 6 below.
  • Fig. 2 is a detailed view of the combustion chamber 6 and the device 6 reproduced. Accordingly, by suitable flow guidance, a total oxidizer stream 12 coming from the compressor 3 is introduced at 13 into a main oxidant stream 14 and a minor oxidizer stream 15. At 16, the sub-oxidant stream 15 is split into a pilot oxidizer stream 17 and a heat exchanger-oxidizer stream 18. Similarly, here too, a total fuel stream 19 at 20 becomes a major fuel Stream 21 and a pilot fuel stream 22 split.
  • the splitting of the oxidizer streams can take place, for example, in a plenum of the combustion chamber 6, so that the splitting stations 13 and 16 coincide.
  • the fuel flow may be a suitable valve or the like. Arranged. It is also possible to provide the pilot fuel stream 22 with its own pump and, in particular, to supply the combustion chamber 6 independently of the main fuel stream 21.
  • the main oxidant stream 14 and the main fuel stream 21 are supplied to the premix burner 8, whereby a main fuel-oxidizer mixture 23 is formed in the premix burner 8.
  • This main fuel-oxidizer mixture 23 is then introduced into the combustion chamber 7, where it burns in a complete oxidation.
  • the supply of fuel and oxidizer takes place in the premix burner 8 so that a lean main mixture 23 results.
  • the device 6 or the combustion chamber 6 is also equipped with a catalyst 24, the catalyst material is selected so that it causes partial oxidation of a supplied fuel-oxidizer mixture in certain boundary conditions, such that hydrogen is formed during this partial oxidation.
  • the catalyst 24 is supplied with a mixture of the pilot oxidant stream 17 and the pilot fuel stream 22.
  • the admixing of the pilot fuel stream 22 to the pilot oxidizer stream 17 takes place in such a way that a rich pilot fuel-oxidizer mixture 17, 22 is formed.
  • the mixture formation can take place - as here - in an inlet region of the catalyst 24; likewise, the pilot fuel-oxidizer mixture 17, 22 may already be formed upstream of the catalytic converter 24.
  • the synthesis gas forming in the catalyst 24 by partial oxidation is hereinafter referred to as partially oxidized pilot fuel-oxidizer mixture, which is introduced into the combustion chamber 7, for example, according to the arrow 25.
  • pilot fuel-oxidizer mixture which is introduced into the combustion chamber 7, for example, according to the arrow 25.
  • further reaction products in the case of a natural gas / air mixture are essentially carbon monoxide and residual air or residual ester gas.
  • the partially oxidized pilot fuel-oxidizer mixture 25 is then introduced according to the invention together with the heat exchanger-oxidizer stream 18 into the combustion chamber 7. As a result, at the respective discharge point a very stable pilot flame or pilot combustion can be generated.
  • the heat exchanger oxidizer stream 18 and the volumetric flow of the partially oxidized pilot mixture 25 are suitably coordinated so that, when mixed, a lean or at least slightly lean mixture is formed.
  • the partially oxidized pilot mixture 25 and the heat exchanger oxidizer stream 18 are introduced or injected into one or more zones 26, of which Fig. 2 a symbolically bounded by a dotted line. These zones 26 are chosen to be particularly suitable for stabilizing the main combustion of the main fuel-oxidizer mixture 23 formed in the premix burner 8. Such zones 26 are located mainly in the combustion chamber 7.
  • At least one such zone 26 is in the premix burner 8, so that additionally or alternatively, the partially oxidized pilot mixture 25 together with the heat exchanger-oxidizer stream 18 at a corresponding point in the premix burner 8 are introduced, which, for example, in the embodiments of 3 and 4 is realized.
  • suitable zones 26 may be, for example: a central recirculation zone in the combustion chamber 7, an external recirculation or dead water zone and a remote from the combustion chamber 7 portion of the Vorrmischbrenners 8.
  • the catalyst 24 has a catalytically active path 27 and a catalytically inactive path 28, which is coupled to the catalytically active path 27 to transmit heat. While the pilot fuel-oxidizer mixture 17, 22 is introduced into the catalytically active path 27, the catalytically inactive path 28 is traversed by the heat exchanger-oxidizer stream 18. As a result, the heat exchanger-oxidizer stream 18th be used on the one hand for preheating the pilot mixture 17, 22, whose temperature has been lowered by the admixing of the relatively cold pilot fuel stream 22. By preheating the ignition of the catalyst reaction is advantageously shifted toward the inlet end of the catalyst 24.
  • the flow through the catalytically inactive path 28 with the heat exchanger-oxidizer stream 18 causes a cooling of the catalyst 24, so that the catalyst 24 can be operated in a predetermined and for the desired catalytic reaction particularly suitable temperature window.
  • a Butleroxidation of the pilot mixture 17, 22 and the formation of a homogeneous gas reaction in the pilot mixture 17, 22 are avoided within the catalyst 24.
  • the means used for the supply of the heat exchanger oxidizer stream 18 thereby form an oxidizer feed device, in which case the catalytically inactive path 28 of the catalyst 24 forms a component of this oxidizer feed device.
  • the catalyst 24 may be integrated into the premix burner 8.
  • the catalyst 24 may be installed in a lance 29, which is centrally located on a head 30 of the benner 8 remote from the combustion chamber 7 and protrudes here in the direction of the combustion chamber 7 into the premix burner 8.
  • the reactive, partially oxidized pilot mixture 25 is in this case together with the heat exchanger-oxidizer stream 18 injected at the head 30 in the premix burner 8.
  • the catalyst 24 itself is centrally located in the head 30 of the premix burner 8.
  • the catalyst 24 may have a plurality of channels 31 and 32 which can be flowed through in parallel, of which one are catalytically active channels 31, while the other are catalytically inactive channels 32.
  • the catalytically active channels 31 form the catalytically active path 27 of the catalyst 24, while the catalytically inactive channels 32 form the catalytically inactive path 28 of the catalyst 24.
  • the catalyst 4 In front of the inlet openings of the individual channels 31, 32, the catalyst 4 here has a distribution chamber 33, which is the distribution point 16 in Fig. 2 equivalent.
  • the supplied minor oxidant stream 15 is distributed to the catalytically active channels 31 (pilot oxidant stream 17) and the catalytically inactive channels 32 (heat exchanger oxidizer stream 18).
  • the admixing of the pilot fuel stream 22 takes place within the catalytically active channels 31, expediently before a catalytic coating of the catalytically active channels 31.
  • the catalytically active channels 31 and the catalytically inactive channels 32 are alternately arranged one another.
  • the catalytically active channels 31 are heat-transmitting coupled to the catalytically inactive channels 32, which can be realized in particular by common boundary walls.
  • the individual channels 31, 32 of the catalytic converter 24 can be catalytically active or catalytically inactive, line by line, and alternately arranged one row at a time. Accordingly, change in Fig. 5 Lines 34, which consist of juxtaposed catalytically active channels 31, with lines 35, which consist of juxtaposed catalytically inactive channels 32. This results in an alternating layering of the lines 34, 35 transversely to the main flow direction of the catalyst 24.
  • Um to separate the introduction of the heat exchanger oxidizer stream 18 into the catalytically inactive channels 32 from the supply of the pilot mixture 17, 22 from pilot fuel stream 22 and pilot oxidant stream 17 into the catalytically active channels 31 is the Catalyst 24 upstream of a distributor head 36.
  • This distributor head 36 has an output 38 connected to an input 37 of the catalytic converter 24.
  • the distributor head 36 has an in Fig. 5
  • the first input 39 is connected to a pilot-fuel-oxidizer-mixture line, not shown, which feeds the pilot mixture 17, 22 to the first input 39.
  • a heat exchanger-oxidizer line (not shown) which forms part of the abovementioned oxidizer feed device is connected to the second input 40, via which the heat exchanger-oxidizer flow 18 is supplied to the second input 40.
  • the distributor head 36 is made up of a plurality of shafts 41 and 42 which are adjacent to the main throughflow direction of the catalytic converter 24. All shafts 41, 42 are open to the output 38 of the distributor head 36. The first wells 41 associated with the first input 39 are also open to the first input 39 while being closed to the second input 40. In a corresponding manner, the second slots 40 associated with the second input 40 are open towards the second input 40 and closed towards the first input 39. In this case, the dimensioning of the shafts 41, 42 is matched to the dimensioning of the channels 31, 32 of the catalytic converter 40 so that each shaft outlet covers a row 34, 35.
  • the distributor head 36 basically has the same structure as in the embodiment according to FIG Fig. 5 ,
  • the catalyst 24, the catalytically active channels 31 and the catalytic inactive channels 32 in Fig. 6 not more line like in Fig. 5 but arranged in a checkerboard pattern.
  • this checkerboard arrangement is rotated relative to a rectangular cross-section of the catalyst 24 by 45 ° about the main flow direction of the catalyst 24, so that quasi a diagonal checkered arrangement of the channels 31, 32 results.
  • a perforated plate 43 having a plurality of through holes 44 arranged in a predetermined hole pattern 45.
  • This hole pattern 45 is expediently chosen such that each channel 31, 32 only communicates with one of the shafts 41, 42 via a single through hole 44.
  • the holes 44 are open on the one hand only to a single well 41, 42 and on the other hand only to a single channel 31, 32 or to a single channel group of catalytically active channels 31 or catalytically inactive channels 32.
  • the pilot mixture 17, 22 flowing into the first shafts 41 passes exclusively into catalytically active channels 31, while, on the other hand, the heat exchanger oxidizer stream 18 flows exclusively into catalytically inactive channels 32 via the second shafts 42.
  • Fig. 7a is a section through the cross section of the catalyst 24 according to Fig. 6 played. Accordingly, the catalytically active channels 31 and the catalytically inactive channels 32 are arranged so that they alternate in a checkerboard pattern.
  • Registered lines represent the orientations or longitudinal center planes of the respective channels 31, 32 associated shafts 41 and 42 at the exit thereof.
  • Fig. 7b gives a line by line alternating arrangement of the catalytically active channels 31 and the catalytically inactive channels 32 according to the in Fig. 5 illustrated embodiment of the catalyst 24 again and otherwise corresponds to the representation according to Fig. 7a ,
  • Fig. 7c another advantageous arrangement for the catalytically active channels 31 and the catalytically inactive channels 32 is shown.
  • the number of catalytically inactive channels 32 and their share of the total cross-sectional area of the catalyst 24 is greater than in the catalytically active channels 31.
  • the supply of the heat exchanger-oxidizer stream 18 and the pilot mixture 17, 22 then takes place via a corresponding Arrangement of the first shafts 41 and second shafts 42 in the distributor head 36th
  • the catalytically active channels 31 and the catalytically inactive channels 32 are again arranged like a box, the catalytically active channels 31 being grouped together in groups of four. Accordingly, a significantly larger number of catalytically active channels 31, while the proportion of the total area of the catalyst 24 through which can flow in the catalytically active channels 31 is about the same size as in the catalytically inactive channels 32.
  • a catalyst arrangement on the WO 03/033985 A1 directed.
  • From the WO 03/033985 A1 go to a method and a device for supplying and discharging two gases to or from a Multi-channel monolith structure.
  • a first and a second gas can be supplied to one another separated from the first and second channels of the monolith structure.
  • the channels are arranged so that each first channel having at least one second channel has a common partition wall through which mass and / or heat exchange between the channels is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Claims (15)

  1. Procédé de combustion d'un mélange carburant-oxydant dans une chambre de combustion (7) d'un groupe turbo (1), plus particulièrement d'une centrale énergétique,
    - dans lequel un flux total d'oxydant (12) est divisé en un flux principal d'oxydant (14) et un flux secondaire d'oxydant (15),
    - dans lequel le flux principal d'oxydant (14) constitue un mélange pauvre avec un flux principal de carburant (21) dans un brûleur de pré-mélange (8) et ce mélange principal carburant-oxydant (23) est entièrement oxydé dans la chambre de combustion (7),
    - dans lequel le flux secondaire d'oxydant (15) est divisé en un flux pilote d'oxydant (17) et un flux d'oxydant à transmission thermique (18),
    - dans lequel le flux pilote d'oxydant (17) constitue un mélange riche avec un flux pilote de carburant (22) et le mélange (17, 22) est partiellement oxydé dans un catalyseur (24) en produisant de l'hydrogène,
    - dans lequel le mélange pilote carburant-oxydant (25) partiellement oxydé et le flux d'oxydant à transmission thermique (18) sont introduits ensemble après le catalyseur (24) dans une zone (26) appropriée pour la stabilisation de la combustion du mélange carburant-oxydant principal (23).
  2. Procédé selon la revendication 1, caractérisé en ce que le flux d'oxydant à transmission thermique (18) et le mélange pilote carburant-oxydant (25) partiellement oxydé constituent un mélange maigre ou légèrement maigre après le catalyseur (24).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le flux d'oxydant à transmission thermique (18) est utilisé pour le pré-chauffage du mélange pilote carburant-oxydant (25) et/ou pour le refroidissement du catalyseur (24).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que
    - le catalyseur (24) comprend plusieurs canaux (31, 32) pouvant être traversés parallèlement, dont les uns (31) sont catalytiquement actifs et les autres (32) sont catalytiquement inactifs,
    - le mélange pilote carburant-oxydant (17, 22) est conduit par les canaux catalytiquement actifs (31),
    - le flux d'oxydant à transmission thermique (18) est conduit par les canaux catalytiquement inactifs (32).
  5. Procédé selon la revendication 4, caractérisé en ce que les canaux catalytiquement actifs (31) et les canaux catalytiquement inactifs (32) sont couplés entre eux de façon à favoriser la transmission thermique.
  6. Dispositif (6) avec une chambre de combustion (7) pour la combustion d'un mélange carburant-oxydant dans un groupe turbo (1), plus particulièrement d'une centrale énergétique,
    - avec un brûleur de pré-mélange (8), dans lequel, lors du fonctionnement du dispositif (6), un flux principal d'oxydant (14) constitue avec un flux principal de carburant (21) un mélange pauvre et ce mélange principal carburant-oxydant (23) est entièrement oxydé,
    - avec au moins un catalyseur (24), qui est conçu pour effectuer, lors du fonctionnement du dispositif (6), lorsqu'un mélange pilote carburant-oxydant (17, 22) riche le traverse, une oxydation partielle en produisant de l'hydrogène,
    - avec un dispositif d'alimentation en oxydant (28, 32) qui ajoute, lors du fonctionnement du dispositif (6), au mélange pilote carburant-oxydant (25), en aval du catalyseur (24), un flux d'oxydant à transmission thermique (18),
    - le catalyseur (24) et le dispositif d'alimentation en oxydant (28, 32) sont conçus de façon à ce qu'ils introduisent, lors du fonctionnement du dispositif (6), le mélange pilote carburant-oxydant (25) et le flux d'oxydant à transmission thermique (18) ensemble dans une zone (26) appropriée pour une stabilisation de la combustion du mélange principal carburant-oxydant (23), caractérisé en ce que
    - en amont du catalyseur (24) est disposé une tête de distribution (36) qui est reliée avec une première entrée (39) à une conduite de mélange pilote carburant-oxydant, avec une deuxième entrée (40) à une conduite de transmission thermique d'oxydant et avec une sortie (38) au catalyseur (24) et
    - la tête de distribution (36) comprend plusieurs compartiments (41, 42) adjacents transversalement par rapport à la direction d'écoulement, qui sont tous ouverts au niveau de la sortie (38) et de manière sélective au niveau de la première entrée (39) ou au niveau de la deuxième entrée (40).
  7. Dispositif selon la revendication 6, caractérisé en ce que
    - le catalyseur (24) comprend un chemin catalytiquement actif (27), pouvant être traversé, ainsi d'un chemin catalytiquement inactif (28), pouvant être traversé, parallèle à celui-ci,
    - le chemin catalytiquement actif (27) est conçu pour effectuer, lorsqu'un mélange pilote carburant-oxydant (17, 22) le traverse, une oxydation partielle en produisant de l'hydrogène,
    - le chemin catalytiquement inactif (28) est couplé de façon à transmettre la chaleur avec le chemin catalytiquement actif (27), constitue un composant du dispositif d'alimentation en oxydant et est traversé, lors du fonctionnement du dispositif (6), par le flux d'oxydant à transmission thermique (18).
  8. Dispositif selon la revendication 7, caractérisé en ce que
    - le catalyseur (24) comprend plusieurs canaux parallèles (31, 32) pouvant être traversés, dont les uns (31) sont catalytiquement actifs et les autres (32) sont catalytiquement inactifs,
    - le chemin catalytiquement actif (27) du catalyseur (24) est constitué de ses canaux catalytiquement actifs (31),
    - le chemin catalytiquement inactif (28) du catalyseur (24) est constitué de ses canaux catalytiquement inactifs (32).
  9. Dispositif selon la revendication 8, caractérisé en ce qu'une conduite pilote de carburant est raccordée aux canaux catalytiquement actifs (31), de façon à ce que, lors du fonctionnement du dispositif (6), elle introduise le flux pilote de carburant (22) séparément dans les différents canaux catalytiquement actifs (31).
  10. Dispositif selon la revendication 7 ou 8, caractérisé en ce que
    - une conduite pilote d'oxydant est raccordée au chemin catalytiquement actif (27),
    - une conduite pilote de carburant est raccordée en amont du catalyseur (24) à la conduite pilote d'oxydant.
  11. Dispositif selon l'une des revendications 6 à 10, caractérisé en ce que le catalyseur (24) est disposé de manière concentrique dans une tête (30) du brûleur de pré-mélange (8).
  12. Dispositif selon l'une des revendications 6 à 10, caractérisé en ce que le catalyseur (24) est disposé dans une lance (29), qui est disposée de manière concentrique dans une tête (30) du brûleur de pré-mélange (8), et dépasse dans le brûleur de pré-mélange (8).
  13. Dispositif selon les revendications 6 et 8, caractérisé en ce que
    - les canaux catalytiquement actifs (31) et les canaux catalytiquement inactifs (32) sont répartis de façon à ce que des premières lignes (34) de canaux catalytiquement actifs (31) juxtaposés et des deuxièmes lignes (35) de canaux catalytiquement inactifs (32) juxtaposés soient disposées de manière alternée, plus particulièrement d'une ligne à l'autre,
    - les premiers compartiments (41) ouverts vers la première entrée (39) sont adjacents aux premières lignes (34) et les deuxièmes compartiments (42) ouverts vers la deuxième entrée (40) sont adjacents aux deuxièmes lignes (35).
  14. Dispositif selon les revendications 6 ou 13, caractérisé en ce que, entre la tête de distribution (36) et le catalyseur (24), est disposée une plaque perforée (43) dont la disposition des trous (45) est choisie de façon à ce que chaque canal (31, 32) communique par l'intermédiaire d'un seul trou de passage (44) avec un des compartiments (41, 42).
  15. Dispositif selon la revendication 14, caractérisé en ce que
    - les canaux catalytiquement actifs (31) et les canaux catalytiquement inactifs (32) sont disposés de manière alternée à la manière d'un plateau de jeu d'échecs,
    - la disposition des trous (45) de la plaque perforée (43) et la disposition des canaux (31, 32) sont adaptées entre elles de façon à ce que les canaux catalytiquement actifs (31) communiquent, par l'intermédiaire des trous de passage (44) correspondants, avec les premiers compartiments (41), qui conduisent à la première entrée (39) de la tête de distribution (36), tandis que les canaux catalytiquement inactifs (32) communiquent, par l'intermédiaire des trous de passage (44) correspondants, avec les deuxièmes compartiments (42), qui conduisent à la deuxième entrée (40) de la tête de distribution (36).
EP03790608.8A 2002-08-30 2003-08-12 Procede et dispositif pour faire bruler un melange combustible-oxydant Expired - Lifetime EP1532400B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40697902P 2002-08-30 2002-08-30
US406979P 2002-08-30
PCT/CH2003/000542 WO2004020905A1 (fr) 2002-08-30 2003-08-12 Procede et dispositif pour faire bruler un melange combustible-oxydant

Publications (2)

Publication Number Publication Date
EP1532400A1 EP1532400A1 (fr) 2005-05-25
EP1532400B1 true EP1532400B1 (fr) 2017-07-26

Family

ID=31978397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03790608.8A Expired - Lifetime EP1532400B1 (fr) 2002-08-30 2003-08-12 Procede et dispositif pour faire bruler un melange combustible-oxydant

Country Status (5)

Country Link
US (1) US7421844B2 (fr)
EP (1) EP1532400B1 (fr)
CN (1) CN100489397C (fr)
AU (1) AU2003249830A1 (fr)
WO (1) WO2004020905A1 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020902A1 (fr) 2002-08-30 2004-03-11 Alstom Technology Ltd Procede et dispositif de melange de flux fluidiques
CN100489397C (zh) 2002-08-30 2009-05-20 阿尔斯托姆科技有限公司 用于使燃料氧化剂混合物燃烧的方法和装置
DE502005003324D1 (de) * 2004-03-30 2008-04-30 Alstom Technology Ltd Vorrichtung und verfahren zur flammenstabilisierung in einem brenner
DE102004041794A1 (de) * 2004-03-30 2005-10-20 Alstom Technology Ltd Baden Vorrichtung und Verfahren zur Flammenstabilisierung in einem Brenner
EP1738109A1 (fr) * 2004-03-31 2007-01-03 Alstom Technology Ltd Reacteur catalytique et procede de combustion de melanges air-combustible a l'aide d'un reacteur catalytique
EP1614963A1 (fr) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Système de combustion à prémélange et procédé
JP2008534896A (ja) 2005-03-23 2008-08-28 アルストム テクノロジー リミテッド 前混合バーナにおいて水素を燃焼する方法と装置
DE102005061486B4 (de) 2005-12-22 2018-07-12 Ansaldo Energia Switzerland AG Verfahren zum Betreiben einer Brennkammer einer Gasturbine
US7841180B2 (en) * 2006-12-19 2010-11-30 General Electric Company Method and apparatus for controlling combustor operability
US8671658B2 (en) 2007-10-23 2014-03-18 Ener-Core Power, Inc. Oxidizing fuel
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
US7928596B2 (en) 2008-10-06 2011-04-19 General Electric Company Systems and methods for the utilization of energy generated by a powered vehicle
US8701413B2 (en) 2008-12-08 2014-04-22 Ener-Core Power, Inc. Oxidizing fuel in multiple operating modes
US20100175386A1 (en) * 2009-01-09 2010-07-15 General Electric Company Premixed partial oxidation syngas generation and gas turbine system
US20100275611A1 (en) * 2009-05-01 2010-11-04 Edan Prabhu Distributing Fuel Flow in a Reaction Chamber
US8621869B2 (en) 2009-05-01 2014-01-07 Ener-Core Power, Inc. Heating a reaction chamber
EP2299178B1 (fr) * 2009-09-17 2015-11-04 Alstom Technology Ltd Procédé et système de combustion de turbine à gaz pour mélanger sans danger des carburants riches en H2 avec de l'air
IT1397215B1 (it) * 2009-12-29 2013-01-04 Ansaldo Energia Spa Assieme bruciatore per un impianto a turbina a gas e impianto a turbina a gas comprendente detto assieme bruciatore
WO2011116010A1 (fr) 2010-03-15 2011-09-22 Flexenergy, Inc. Traitement de carburant et d'eau
NL2006526C2 (en) * 2011-04-01 2012-10-02 Heatmatrix Group B V Device and method for mixing two fluids.
EP2718067B1 (fr) 2011-04-11 2023-10-11 Milwaukee Electric Tool Corporation Dispositif de poinçon éjecteur hydraulique à main
US9057028B2 (en) 2011-05-25 2015-06-16 Ener-Core Power, Inc. Gasifier power plant and management of wastes
US9279364B2 (en) 2011-11-04 2016-03-08 Ener-Core Power, Inc. Multi-combustor turbine
US9273606B2 (en) 2011-11-04 2016-03-01 Ener-Core Power, Inc. Controls for multi-combustor turbine
RU2014130185A (ru) * 2011-12-27 2016-02-20 Кавасаки Дзюкогё Кабусики Кайся Каталитическая камера сгорания газотурбинного двигателя
US9328916B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation with heat control
US9206980B2 (en) 2012-03-09 2015-12-08 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9267432B2 (en) 2012-03-09 2016-02-23 Ener-Core Power, Inc. Staged gradual oxidation
US9017618B2 (en) 2012-03-09 2015-04-28 Ener-Core Power, Inc. Gradual oxidation with heat exchange media
US9534780B2 (en) 2012-03-09 2017-01-03 Ener-Core Power, Inc. Hybrid gradual oxidation
US8807989B2 (en) 2012-03-09 2014-08-19 Ener-Core Power, Inc. Staged gradual oxidation
US9371993B2 (en) 2012-03-09 2016-06-21 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9273608B2 (en) 2012-03-09 2016-03-01 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9726374B2 (en) 2012-03-09 2017-08-08 Ener-Core Power, Inc. Gradual oxidation with flue gas
US8844473B2 (en) 2012-03-09 2014-09-30 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US9328660B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US8926917B2 (en) 2012-03-09 2015-01-06 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9347664B2 (en) 2012-03-09 2016-05-24 Ener-Core Power, Inc. Gradual oxidation with heat control
US9381484B2 (en) 2012-03-09 2016-07-05 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9353946B2 (en) 2012-03-09 2016-05-31 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9359947B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US8980192B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US9234660B2 (en) 2012-03-09 2016-01-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9359948B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US8671917B2 (en) 2012-03-09 2014-03-18 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US8980193B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9567903B2 (en) 2012-03-09 2017-02-14 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US20230228221A1 (en) * 2022-01-04 2023-07-20 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1069211A (fr) * 1952-12-26 1954-07-06 Gaz Et Chaleur Générateur d'air chaud par combustion catalytique
FR2436958A2 (fr) * 1978-09-22 1980-04-18 Ceraver Procede de fabrication d'un element d'echange indirect de chaleur en matiere ceramique, et element obtenu par ce procede
US4298059A (en) * 1978-09-23 1981-11-03 Rosenthal Technik Ag Heat exchanger and process for its manufacture
US5634784A (en) * 1991-01-09 1997-06-03 Precision Combustion, Inc. Catalytic method
US5235804A (en) * 1991-05-15 1993-08-17 United Technologies Corporation Method and system for combusting hydrocarbon fuels with low pollutant emissions by controllably extracting heat from the catalytic oxidation stage
US5207053A (en) * 1991-05-15 1993-05-04 United Technologies Corporation Method and system for staged rich/lean combustion
US5165224A (en) * 1991-05-15 1992-11-24 United Technologies Corporation Method and system for lean premixed/prevaporized combustion
GB9212794D0 (en) * 1992-06-16 1992-07-29 Ici Plc Catalytic combustion
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
DE4439619A1 (de) 1994-11-05 1996-05-09 Abb Research Ltd Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
DE19654022A1 (de) 1996-12-21 1998-06-25 Abb Research Ltd Verfahren zum Betrieb einer Gasturbogruppe
US20020015931A1 (en) * 1999-03-18 2002-02-07 Lance Smith Conduit positioner
US6358040B1 (en) * 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
NO321805B1 (no) 2001-10-19 2006-07-03 Norsk Hydro As Fremgangsmate og anordning for a lede to gasser inn og ut av kanalene i en flerkanals monolittenhet.
CN100489397C (zh) 2002-08-30 2009-05-20 阿尔斯托姆科技有限公司 用于使燃料氧化剂混合物燃烧的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2003249830A1 (en) 2004-03-19
US7421844B2 (en) 2008-09-09
CN1703601A (zh) 2005-11-30
EP1532400A1 (fr) 2005-05-25
CN100489397C (zh) 2009-05-20
US20060080968A1 (en) 2006-04-20
WO2004020905A1 (fr) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1532400B1 (fr) Procede et dispositif pour faire bruler un melange combustible-oxydant
EP1730441B1 (fr) Dispositif et procede pour stabiliser une flamme
DE69729505T2 (de) Arbeitsweise einer Gasturbinenbrennkammer
EP1064498B1 (fr) Bruleur pour une turbine a gas
WO2004094909A1 (fr) Procede et dispositif d'utilisation d'un bruleur d'un moteur thermique, notamment d'un systeme de turbines a gaz
EP2116766A1 (fr) Lance à combustible
DE2940431A1 (de) Brennkammer mit abgestufter brennstoffeinspritzung und verfahren zum betreiben einer hochtemperaturbrennkammer
EP1497589A1 (fr) Chambre de combustion avec oxydation sans flamme
EP1861657A1 (fr) Procede et dispositif de combustion d'hydrogene dans un bruleur de premelange
WO2005095856A1 (fr) Reacteur catalytique et procede de combustion de melanges air-combustible a l'aide d'un reacteur catalytique
EP0889289B1 (fr) Système de turbine à gaz et méthode d'exploitation
EP1301697B1 (fr) Turbine a gaz et procede permettant de faire fonctionner ladite turbine
CH702737A2 (de) Brennkammer mit zwei Brennräumen.
DE3102165A1 (de) Brenner-kesselkombination mit verbessertem brenner und verbrennungsverfahren
DE102020212361A1 (de) Gasturbinenverbrennungsvorrichtung
DE102020212410A1 (de) Gasturbinenverbrennungsvorrichtung
DE102005061486B4 (de) Verfahren zum Betreiben einer Brennkammer einer Gasturbine
WO2003029725A1 (fr) Procede de combustion destine notamment a un procede de production de courant electronique et/ou de chaleur
EP0210205B1 (fr) Dispositif de combustion de combustibles liquides et gazeux produisant des gaz d'echappement depourvus d'oxydes azotiques
EP1072758A2 (fr) Procédé pour le refroidissement des aubes d'une turbine à gaz
EP3246557B1 (fr) Systeme de propulsion d'un fusee et son procede de fonctionnement
EP3246558B1 (fr) Procede de fonctionnement d'un systeme de propulsion de fusee et systeme de propulsion de fusee
DE102013112162A1 (de) Mikromischerdüse
EP1491824B1 (fr) Réacteur catalytique et procédé d'utilisation correspondant
DE102020213015A1 (de) Brennkammerauskleidung mit Kühlstruktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WINKLER, DIETER

Inventor name: GRIFFIN, TIMOTHY

17Q First examination report despatched

Effective date: 20070906

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315681

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170822

Year of fee payment: 15

Ref country code: DE

Payment date: 20170822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315681

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315681

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180812