EP1529297B1 - Micromechanical switch - Google Patents

Micromechanical switch Download PDF

Info

Publication number
EP1529297B1
EP1529297B1 EP03709654A EP03709654A EP1529297B1 EP 1529297 B1 EP1529297 B1 EP 1529297B1 EP 03709654 A EP03709654 A EP 03709654A EP 03709654 A EP03709654 A EP 03709654A EP 1529297 B1 EP1529297 B1 EP 1529297B1
Authority
EP
European Patent Office
Prior art keywords
spring element
mass
spring
contact
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03709654A
Other languages
German (de)
French (fr)
Other versions
EP1529297A1 (en
Inventor
Arnd Kaelberer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1529297A1 publication Critical patent/EP1529297A1/en
Application granted granted Critical
Publication of EP1529297B1 publication Critical patent/EP1529297B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch

Definitions

  • the invention relates to a micromechanical switch according to the preamble of the main claim.
  • micromechanical switches wherein a mass is elastically held by a spring element. When a force, for example an acceleration force, is applied, the mass is moved, thereby deflecting the spring element.
  • the micro-mechanical switch according to the invention with the features of the main claim has the advantage over the prior art that the micromechanical switch is realized from simple basic elements of surface micromechanics, which are mastered in manufacturing processes.
  • the micromechanical switch according to the invention also has the advantage of bringing about miniaturization compared with known switches and of causing a suppression of switch bounces. Due to the smaller implementation, a considerable cost savings is possible. Furthermore, it should be regarded as an advantage that in the case of the micromechanical switch according to the invention compared to an extended acceleration sensor system, there is a saving in the evaluation electronics. Furthermore, the micromechanical switch according to the invention can advantageously be operated without a power supply, so that it actually only functions as a switch element.
  • the at least one contact element is provided movable and connected to a second spring element.
  • the switch bounce is effectively reduced because a certain contact pressure of the contact element is brought to the ground by the second spring element.
  • first spring element and / or the second spring element comprise U-spring elements. This makes it possible to produce the spring elements inexpensively in a simple manner.
  • the spring constant of the second spring element relative to the spring constant of the first spring element is provided significantly smaller.
  • the movement of the mass is not significantly hindered or changed by the movement of the mass while contacting the mass with the contact element.
  • a third spring element is provided which acts stabilizing on the movement of the mass. As a result, it is advantageously possible to guide the movement of the mass.
  • the spring constant of the third spring element relative to the spring constant of the first spring element is provided significantly smaller. This makes it possible that the movement of the mass is not substantially changed by the third spring element and the movement of the mass is essentially predetermined by the second spring element.
  • a stop is provided, whereby the prevention of a deflection of the first spring element is provided beyond a predetermined maximum degree of deflection of the first spring element addition. This prevents that at too high an acceleration of the mass of the micromechanical switch is destroyed.
  • the micromechanical switch comprises a movable mass 1, which is provided in particular as a seismic mass 1. Furthermore, the micromechanical switch, which is also referred to below as an acceleration switch, comprises a spring element 2, which is referred to below as the first spring element 2.
  • the mass 1 is connected to the first spring element 2.
  • the mass 1 is also provided movable, wherein upon movement of the mass 1, the first spring element 2 is deflected. Due to the deflection of the first spring element 2, a restoring force is exerted on the mass 1 by the first spring element 2.
  • the mass 1 is provided movable only in a linear direction of movement. This direction of movement is in FIG.
  • the mass 1 provided along the section line AA. According to the invention, however, it is also provided to provide the mass 1 such that it is movably provided in a plurality of directions of movement. I'm in the FIG. 1 illustrated embodiment, a third spring element 4 is further provided, which stabilizes the movement of the mass 1. According to the invention, it is provided in particular that the first spring element 2 along the direction of movement of the mass 1 is provided on one side of the mass 1 and that the third spring element 4 along the direction of movement of the mass 1 to the first spring element 2 is provided opposite.
  • the first spring element 2 and the third spring element 4 comprise in particular U-spring elements, which are micromechanically producible by default.
  • the micromechanical switch comprises at least one contact element 3, which according to the invention is provided in particular connected to a second spring element 30.
  • the contact element 3 is provided in particular as a contact mass and, in an advantageous embodiment, is integrally connected to the second spring element 30.
  • the arrangement of the micromechanical switch according to the invention is provided so that the mass 1 is a first piece along its direction of movement movable, during which the first spring element 2 is deflected to a certain predetermined degree. At this predetermined degree of deflection of the first spring element 2, the mass 1 contacts the contact element 3 or the contact mass.
  • the mass 1 and the first spring element 2 are provided such that a movement of the mass 1 over the predetermined degree of deflection of the first spring element 2 is also possible.
  • the first spring element 1 is deflected even further than the predetermined degree of deflection and the contact between the mass 1 and the contact element 3 remains during this movement proportion.
  • it is provided, in particular, to connect the contact element 3 to a second spring element 30 such that during the movement of the mass 1 in contact with the contact element 3 in addition to the deflection of the first spring element 2 beyond the predetermined degree of its deflection also a deflection of the second spring element 30 is provided, whereby the contact element 3 is pressed in particular to the mass 1.
  • the micromechanical switch predetermined maximum degree of deflection of the first spring element 2 is provided according to the invention above the predetermined degree of deflection of the first spring element 2, at which the first contact between the contact element 3 and the mass 1 takes place.
  • the micromechanical switch also has, for example, a bonding frame 8, as well as a first bonding pad 5, ie, a first pad 5 and a first printed circuit 6 for contacting the first bond pad 5 with the suspension of the contact element 3.
  • the inventive Micromechanical switch also has a second bonding pad 5a and a conductor track 6a, which serves to contact the second bonding pad 5a with the suspensions of the first spring element 2.
  • the micromechanical switch further has a third bonding pad 5b and a third conductor track 6b, which serves for contacting the third bonding pad 5b with the suspension of a further contact element 3b.
  • the further contact element 3b and its contacting devices is optionally provided.
  • Essential for the function of the micromechanical switch according to the invention as a switch is that at least two contacts are available by means of at least two bond pads 5, 5a, 5b and corresponding interconnects 6, 6a, 6b, which in a corresponding movement of the mass 1 such that the first Spring element 2 is deflected beyond the predetermined degree of deflection, are electrically low in contact with each other.
  • the mass 1 When acceleration occurs in the detection direction, the mass 1 is accelerated in the direction of the first spring element 2.
  • the stabilizing spring 4 or third spring element 4 is in this case in FIG. 1 served example and should be chosen so that it obstructs the movement of the mass 1 only insignificantly.
  • the spring constant of the third spring element 4 is provided significantly smaller than the spring constant of the first spring element 2. From a defined position of the mass 1, the mass 1 impinges on the contact element 3 or the contact element 3b, so that the switch is closed, ie that a contact between the electrical terminals of the contact element 3, 3b and the mass 1 or between the electrical terminals of the contact element 3 and the further contact element 3b and optionally also the mass 1 is closed.
  • This defined position of the mass 1 corresponds to a predetermined degree of deflection of the first spring element 2, where a contact of the mass with the at least one contact element 3 is provided. Furthermore, this predetermined degree of deflection of the first spring element 2 corresponds to a defined force effect on the mass 1, which is caused for example by a defined acceleration of the entire micromechanical switch such that the mass 1 in the direction of the contact element 3 to the predetermined degree of deflection of the first Spring element 2 is deflected. At a larger deflection or a greater acceleration to the mass 1, the contact elements 3, 3b remain connected to the mass 1. The second spring element 30 presses the contact element 3 on the mass 1. This bouncing of the switch is effectively prevented.
  • the second spring element 30 of the contact element 3 should slow the movement of the mass 1 only insignificantly, ie the switch or the mass is still contact the mass 1 with the contact element 3 further in motion against the restoring force of the first spring element 2.
  • This is inventively particular ensures that the spring constant of the second spring element 30 is provided with respect to the spring constant of the first spring element 2 significantly smaller.
  • the force curve is not linear by the contact of the mass 1 with the contact elements 2.
  • the mass 1 remains in motion as long as sufficient acceleration is applied to the system of the micromechanical switch or the mass 1 abuts against the stop 7 if the acceleration is too great.
  • the second spring element 30 of the contact element 3 serves on the one hand as a bounce protection and on the other serves to extend the switching time of the acceleration switch, since with a falling outer acceleration and a reverse movement of the mass 1 towards lower deflections of the first spring element 2 of the contact as long as it remains closed until the second spring element 30 of the contact element 3 is completely relaxed.
  • This inventive behavior of the micromechanical switch and the movement of the mass despite the closed circuit, ie the movement of the mass 1 at a deflection of the first spring element 2 above the predetermined degree of deflection, can be interpreted as a "moving switch".
  • FIG. 2 is a sectional view of the micromechanical switch according to the invention according to the section line AA of the FIG. 1 shown.
  • the representation in FIG. 1 is slightly enlarged and slightly distorted compared to the representation in FIG. 1 shown.
  • FIG. 2 is like in FIG. 1 the mass 1 and the first spring element 2 shown.
  • the third spring element 4 is shown.
  • the suspension 2a of the first spring element 2 is shown, which is electrically connected to the second bonding pad 5a by means of the second conductor track 6a. Recognizable in FIG. 2 is still the frame 8 of the micromechanical switch.
  • the entire micromechanical switch is inventively provided on a substrate 10 and the moving parts of the micromechanical switch, ie in particular the mass 1 and the spring elements 2, 30, 3, 4 are covered by a cover 9.
  • the cover 9 is in FIG. 1 not shown.
  • the substrate 10 is provided in particular as a semiconductor substrate, for example a silicon substrate.
  • the moving elements in the in FIG. 2 The functional layer of the micromechanical switch designated by the reference numeral 11 is likewise provided according to the invention, in particular in semiconductor material, for example silicon.
  • the eighth is of course according to the invention to a good conductivity of the material of the mass 1 and the first spring element 2 and the second spring element 30 or generally all elements which serve the power line at a contact of the switch.

Abstract

A micromechanical switch with a mass (1) and a first spring element (2) is disclosed, whereby when a given degree of deflection of the first spring element (2) is exceeded a contacting of the mass (1) with a contact element (3) is provided.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem mikromechanischen Schalter nach der Gattung des Hauptanspruches. Es sind allgemein mikromechanische Schalter bekannt, wobei eine Masse elastisch durch ein Federelement gehalten wird. Beim Einwirken einer Kraft, beispielsweise eine Beschleunigungskraft, wird die Masse bewegt und damit das Federelement ausgelenkt.The invention relates to a micromechanical switch according to the preamble of the main claim. There are generally known micromechanical switches, wherein a mass is elastically held by a spring element. When a force, for example an acceleration force, is applied, the mass is moved, thereby deflecting the spring element.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße mikromechanische Schalter mit den Merkmalen des Hauptanspruches hat gegenüber dem Stand der Technik den Vorteil, dass der mikromechanische Schalter aus einfachen Grundelementen der Oberflächenmikromechanik realisiert ist, die in Fertigungsprozessen beherrscht werden. Der erfindungsgemäße mikromechanische Schalter weist weiterhin den Vorteil auf, gegenüber bekannten Schaltern eine Miniaturisierung herbeizuführen und eine Unterdrückung von Schalterprellen zu bewirken. Durch die kleinere Realisierung ist eine beträchtliche Kostenersparnis möglich. Weiterhin ist als Vorteil anzusehen, dass bei dem erfindungsgemäßen mikromechanischen Schalter gegenüber einem erweiterten Beschleunigungssensor-System eine Ersparnis der Auswerteelektronik vorliegt. Weiterhin kann der erfindungsgemäße mikromechanische Schalter vorteilhaft ohne Spannungsversorgung betrieben werden, sodass er tatsächlich nur als Schalterelement fungiert.The micro-mechanical switch according to the invention with the features of the main claim has the advantage over the prior art that the micromechanical switch is realized from simple basic elements of surface micromechanics, which are mastered in manufacturing processes. The micromechanical switch according to the invention also has the advantage of bringing about miniaturization compared with known switches and of causing a suppression of switch bounces. Due to the smaller implementation, a considerable cost savings is possible. Furthermore, it should be regarded as an advantage that in the case of the micromechanical switch according to the invention compared to an extended acceleration sensor system, there is a saving in the evaluation electronics. Furthermore, the micromechanical switch according to the invention can advantageously be operated without a power supply, so that it actually only functions as a switch element.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen mikromechanischen Schalters möglich.The measures listed in the dependent claims advantageous refinements and improvements of the main claim micromechanical switch are possible.

Besonders vorteilhaft ist, dass das wenigstens ein Kontaktelement bewegbar und mit einem zweiten Federelement verbunden vorgesehen ist. Hierdurch wird wirksam das Schalterprellen reduziert, weil durch das zweite Federelement ein gewisser Anpressdruck des Kontaktelements an die Masse herbeigeführt wird.It is particularly advantageous that the at least one contact element is provided movable and connected to a second spring element. As a result, the switch bounce is effectively reduced because a certain contact pressure of the contact element is brought to the ground by the second spring element.

Weiterhin ist von Vorteil, dass das erste Federelement und/oder das zweite Federelement U-Federelemente umfassen. Dadurch ist es möglich, die Federelemente in einfacher Weise kostengünstig herzustellen.Furthermore, it is advantageous that the first spring element and / or the second spring element comprise U-spring elements. This makes it possible to produce the spring elements inexpensively in a simple manner.

Weiterhin ist von Vorteil, dass die Federkonstante des zweiten Federelements gegenüber der Federkonstante des ersten Federelements deutlich kleiner vorgesehen ist. Dadurch wird durch die Bewegung der Masse bei gleichzeitiger Kontaktierung der Masse mit dem Kontaktelement die Bewegung der Masse nicht wesentlich behindert bzw. geändert.Furthermore, it is advantageous that the spring constant of the second spring element relative to the spring constant of the first spring element is provided significantly smaller. As a result, the movement of the mass is not significantly hindered or changed by the movement of the mass while contacting the mass with the contact element.

Weiterhin ist von Vorteil, dass ein drittes Federelement vorgesehen ist, welches stabilisierend auf die Bewegung der Masse wirkt. Dadurch ist es vorteilhaft möglich, die Bewegung der Masse zu führen.Furthermore, it is advantageous that a third spring element is provided which acts stabilizing on the movement of the mass. As a result, it is advantageously possible to guide the movement of the mass.

Weiterhin ist es von Vorteil, dass die Federkonstante des dritten Federelements gegenüber der Federkonstante des ersten Federelements deutlich kleiner vorgesehen ist. Dadurch ist es möglich, dass die Bewegung der Masse durch das dritte Federelement nicht wesentlich verändert wird und die Bewegung der Masse im wesentlichen durch das zweite Federelement vorgegeben ist.Furthermore, it is advantageous that the spring constant of the third spring element relative to the spring constant of the first spring element is provided significantly smaller. This makes it possible that the movement of the mass is not substantially changed by the third spring element and the movement of the mass is essentially predetermined by the second spring element.

Weiterhin ist von Vorteil, dass ein Anschlag vorgesehen ist, wodurch die Verhinderung einer Auslenkung des ersten Federelements über einen vorgegebenen maximalen Grad der Auslenkung des ersten Federelements hinaus vorgesehen ist. Dadurch wird verhindert, dass bei einer zu großen Beschleunigung der Masse der mikromechanische Schalter zerstört wird.Furthermore, it is advantageous that a stop is provided, whereby the prevention of a deflection of the first spring element is provided beyond a predetermined maximum degree of deflection of the first spring element addition. This prevents that at too high an acceleration of the mass of the micromechanical switch is destroyed.

Das Dokument EP 0 981 052 offenbart einen Schalter gemäss dem Oberbegriff des Anspruchs 1.The document EP 0 981 052 discloses a switch according to the preamble of claim 1.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in den nachfolgenden Beschreibung näher erläutert. Es zeigen

  • Figur 1 ein erfindungsgemäßer mikromechanische Schalter in Draufsicht und
  • Figur 2 der erfindungsgemäße mikromechanische Schalter in einer Schnittdarstellung gemäß einer Schnittlinie AA aus Figur 1.
An embodiment of the invention is illustrated in the drawing and explained in more detail in the following description. Show it
  • FIG. 1 a micromechanical switch according to the invention in plan view and
  • FIG. 2 the micromechanical switch according to the invention in a sectional view according to a section line AA FIG. 1 ,

Beschreibung des AusführungsbeispielsDescription of the embodiment

In Figur 1 ist der erfmdungsgemäße mikromechanische Schalter dargestellt. Der mikromechanische Schalter umfasst eine bewegliche Masse 1, welche insbesondere als seismische Masse 1 vorgesehen ist. Weiterhin umfasst der mikromechanische Schalter, der im folgenden auch als Beschleunigungsschalter bezeichnet wird, ein Federelement 2, welches im folgenden als erstes Federelement 2 bezeichnet wird. Die Masse 1 ist mit dem ersten Federelement 2 verbunden. Die Masse 1 ist darüber hinaus beweglich vorgesehen, wobei bei einer Bewegung der Masse 1 das erste Federelement 2 ausgelenkt wird. Durch die Auslenkung des ersten Federelements 2 wird eine Rückstellkraft auf die Masse 1 durch das erste Federelement 2 ausgeübt. Erfindungsgemäß ist es beispielhaft vorgesehen, dass die Masse 1 lediglich in einer linearen Bewegungsrichtung bewegbar vorgesehen ist. Diese Bewegungsrichtung ist in Figur 1 entlang der Schnittlinie AA vorgesehen. Erfindungsgemäß ist es jedoch auch vorgesehen, die Masse 1 derart vorzusehen, dass diese in mehreren Bewegungsrichtungen beweglich vorgesehen ist. Im in der Figur 1 dargestellten Ausführungsbeispiel ist weiterhin ein drittes Federelement 4 vorgesehen, welches die Bewegung der Masse 1 stabilisiert. Erfindungsgemäß ist es insbesondere vorgesehen, dass das erste Federelement 2 entlang der Bewegungsrichtung der Masse 1 auf der einen Seite der Masse 1 vorgesehen ist und dass das dritte Federelement 4 entlang der Bewegungsrichtung der Masse 1 dem ersten Federelement 2 gegenüber vorgesehen ist. Das erste Federelement 2 und das dritte Federelement 4 umfassen insbesondere U-Federelemente, welche standardmäßig mikromechanisch herstellbar sind.In FIG. 1 the erfmdungsgemäße micromechanical switch is shown. The micromechanical switch comprises a movable mass 1, which is provided in particular as a seismic mass 1. Furthermore, the micromechanical switch, which is also referred to below as an acceleration switch, comprises a spring element 2, which is referred to below as the first spring element 2. The mass 1 is connected to the first spring element 2. The mass 1 is also provided movable, wherein upon movement of the mass 1, the first spring element 2 is deflected. Due to the deflection of the first spring element 2, a restoring force is exerted on the mass 1 by the first spring element 2. According to the invention, it is provided by way of example that the mass 1 is provided movable only in a linear direction of movement. This direction of movement is in FIG. 1 provided along the section line AA. According to the invention, however, it is also provided to provide the mass 1 such that it is movably provided in a plurality of directions of movement. I'm in the FIG. 1 illustrated embodiment, a third spring element 4 is further provided, which stabilizes the movement of the mass 1. According to the invention, it is provided in particular that the first spring element 2 along the direction of movement of the mass 1 is provided on one side of the mass 1 and that the third spring element 4 along the direction of movement of the mass 1 to the first spring element 2 is provided opposite. The first spring element 2 and the third spring element 4 comprise in particular U-spring elements, which are micromechanically producible by default.

Weiterhin umfasst der mikromechanische Schalter wenigstens ein Kontaktelement 3, welches erfindungsgemäß insbesondere mit einem zweiten Federelement 30 verbunden vorgesehen ist. Das Kontaktelement 3 ist erfindungsgemäß insbesondere als Kontaktmasse vorgesehen und in einer vorteilhaften Ausführungsform einstückig mit dem zweiten Federelement 30 verbunden. Die Anordnung des erfindungsgemäßen mikromechanischen Schalters ist so vorgesehen, dass die Masse 1 ein erstes Stück entlang ihrer Bewegungsrichtung bewegbar ist, während dem das erste Federelement 2 bis zu einem gewissen vorgegebenen Grad ausgelenkt wird. Bei diesem vorgegebenen Grad der Auslenkung des ersten Federelements 2 berührt die Masse 1 das Kontaktelement 3 bzw. die Kontaktmasse. Erfindungsgemäß ist es jetzt vorgesehen, dass die Masse 1 und das erste Federelement 2 derart vorgesehen sind, dass auch eine Bewegung der Masse 1 über den vorgegebenen Grad der Auslenkung des ersten Federelements 2 hinaus möglich ist. Hierbei wird also das erste Federelement 1 noch weiter als der vorgegebene Grad der Auslenkung ausgelenkt und der Kontakt zwischen der Masse 1 und dem Kontaktelement 3 bleibt während diesen Bewegungsanteil bestehen. Erfindungsgemäß ist es insbesondere vorgesehen, das Kontaktelement 3 mit einem zweiten Federelement 30 zu verbinden, sodass während der Bewegung der Masse 1 in Kontakt mit dem Kontaktelement 3 zusätzlich zur Auslenkung des ersten Federelements 2 über den vorgegebenen Grad seiner Auslenkung hinaus auch eine Auslenkung des zweiten Federelements 30 vorgesehen ist, wodurch das Kontaktelement 3 insbesondere an die Masse 1 angedrückt wird.Furthermore, the micromechanical switch comprises at least one contact element 3, which according to the invention is provided in particular connected to a second spring element 30. According to the invention, the contact element 3 is provided in particular as a contact mass and, in an advantageous embodiment, is integrally connected to the second spring element 30. The arrangement of the micromechanical switch according to the invention is provided so that the mass 1 is a first piece along its direction of movement movable, during which the first spring element 2 is deflected to a certain predetermined degree. At this predetermined degree of deflection of the first spring element 2, the mass 1 contacts the contact element 3 or the contact mass. According to the invention, it is now provided that the mass 1 and the first spring element 2 are provided such that a movement of the mass 1 over the predetermined degree of deflection of the first spring element 2 is also possible. Here, therefore, the first spring element 1 is deflected even further than the predetermined degree of deflection and the contact between the mass 1 and the contact element 3 remains during this movement proportion. According to the invention, it is provided, in particular, to connect the contact element 3 to a second spring element 30 such that during the movement of the mass 1 in contact with the contact element 3 in addition to the deflection of the first spring element 2 beyond the predetermined degree of its deflection also a deflection of the second spring element 30 is provided, whereby the contact element 3 is pressed in particular to the mass 1.

Erfindungsgemäß ist es weiterhin vorgesehen, dass der mikromechanische Schalter Anschläge 7 aufweist, welche verhindern, dass die Masse 1 eine zu großen maximale Bewegung in Bewegungsrichtung ausführt. Es wird durch den Anschlag 7 also verhindert, dass das erste Federelement 2 über einen vorgegebenen maximalen Grad der Auslenkung hinaus ausgelenkt wird. Der vorgegebene maximale Grad der Auslenkung des ersten Federelements 2 ist erfindungsgemäß oberhalb des vorgegebenen Grads der Auslenkung des ersten Federelements 2 vorgesehen, an dem die erste Kontaktgabe zwischen dem Kontaktelement 3 und der Masse 1 stattfindet.According to the invention, provision is further made for the micromechanical switch to have stops 7 which prevent the mass 1 from carrying out too great maximum movement in the direction of movement. It is thus prevented by the stop 7, that the first spring element 2 is deflected beyond a predetermined maximum degree of deflection out. The predetermined maximum degree of deflection of the first spring element 2 is provided according to the invention above the predetermined degree of deflection of the first spring element 2, at which the first contact between the contact element 3 and the mass 1 takes place.

Erfindungsgemäß weist der mikromechanische Schalter beispielhaft auch einen Bondrahmen 8 auf, sowie einen ersten Bondpad 5, d. h. eine erste Anschlussfläche 5 sowie einen erste Leiterbahn 6 zur Kontaktierung des ersten Bondpads 5 mit der Aufhängung des Kontaktelements 3 auf. Weiterhin weist der erfindungsgemäße mikromechanische Schalter auch einen zweiten Bondpad 5a auf sowie eine Leiterbahn 6a, welche der Kontaktierung des zweiten Bondpads 5a mit den Aufhängungen des ersten Federelements 2 dient. Weiterhin weist der mikromechanische Schalter weiterhin einen dritten Bondpad 5b und eine dritte Leiterbahn 6b auf, welche der Kontaktierung des dritten Bondpads 5b mit der Aufhängung eines weiteren Kontaktelements 3b dient. Das weitere Kontaktelement 3b und seine Kontaktierungsvorrichtungen (drittes Bondpad 5b und dritte Leiterbahn 6b) ist optional vorgesehen. Wesentlich für die Funktion des erfindungsgemäßen mikromechanischen Schalters als Schalter ist, dass mittels wenigstens zwei Bondpads 5, 5a, 5b und entsprechenden Leiterbahnen 6, 6a, 6b wenigstens zwei Kontakte zur Verfügung stehen, die bei einer entsprechenden Bewegung der Masse 1 derart, dass das erste Federelement 2 über den vorgegebenen Grad der Auslenkung hinaus ausgelenkt wird, elektrisch niederohmig miteinander in Kontakt stehen. Hierzu kann es erfindungsgemäß entweder vorgesehen sein, dass die Kontaktgabe zwischen dem Kontaktelement 3, der Masse 1 und dem ersten Federelement 2 sowie seiner Aufhängung zum zweiten Bondpad 5a hin erfolgt oder dass die Kontaktgabe vom Kontaktelement 3 über die Masse 1 zum weiteren Kontaktelement 3b sowie zur dritten Leiterbahn 6b und dem dritten Bondpad 5b erfolgt oder auch das zwei Schalter gleichzeitig realisiert sind, indem sowohl das erste Kontaktelement 3 als auch das weitere Kontaktelement 3b vorgesehen ist und die seismische Masse 1 über das zweite Bondpad 5a und die zweite Leiterbahn 6a elektrisch angeschlossen sind.According to the invention, the micromechanical switch also has, for example, a bonding frame 8, as well as a first bonding pad 5, ie, a first pad 5 and a first printed circuit 6 for contacting the first bond pad 5 with the suspension of the contact element 3. Furthermore, the inventive Micromechanical switch also has a second bonding pad 5a and a conductor track 6a, which serves to contact the second bonding pad 5a with the suspensions of the first spring element 2. Furthermore, the micromechanical switch further has a third bonding pad 5b and a third conductor track 6b, which serves for contacting the third bonding pad 5b with the suspension of a further contact element 3b. The further contact element 3b and its contacting devices (third bonding pad 5b and third interconnect 6b) is optionally provided. Essential for the function of the micromechanical switch according to the invention as a switch is that at least two contacts are available by means of at least two bond pads 5, 5a, 5b and corresponding interconnects 6, 6a, 6b, which in a corresponding movement of the mass 1 such that the first Spring element 2 is deflected beyond the predetermined degree of deflection, are electrically low in contact with each other. For this purpose, it can be inventively either provided that the contact between the contact element 3, the mass 1 and the first spring element 2 and its suspension to the second bonding pad 5a out or that the contact from the contact element 3 via the ground 1 to the other contact element 3b and Third conductor 6b and the third bonding pad 5b takes place or even the two switches are realized simultaneously by both the first contact element 3 and the further contact element 3b is provided and the seismic mass 1 via the second bonding pad 5a and the second conductor 6a are electrically connected ,

Durch die Variation der Breite der U-Federn des ersten Federelements 2, des zweiten Federelements 30 und des dritten Federelements 4 sowie deren Stege zwischen den U-Federn können diese Federn bzw. Federelemente 2, 30, 4 den Bedürfnissen als lineare oder nichtlineare Federn angepasst werden.By varying the width of the U-springs of the first spring element 2, the second spring element 30 and the third spring element 4 and their webs between the U-springs these springs or spring elements 2, 30, 4 adapted to the needs as linear or non-linear springs become.

Bei einer auftretenden Beschleunigung in Detektionsrichtung, wird die Masse 1 in Richtung des ersten Federelements 2 beschleunigt. Die Stabilisierungsfeder 4 oder auch dritte Federelement 4 wird in diesem Fall in Figur 1 dargestellten Beispiel gedient und sollte so gewählt werden, dass sie die Bewegung der Masse 1 nur unwesentlich behindert. Dies ist erfindungsgemäß dadurch realisiert, dass die Federkonstante des dritten Federelements 4 gegenüber der Federkonstante des ersten Federelements 2 deutlich kleiner vorgesehen ist. Ab einer definierten Position der Masse 1 trifft die Masse 1 auf das Kontaktelement 3 bzw. das Kontaktelement 3b, sodass der Schalter geschlossen ist, d. h. dass eine Kontaktgabe zwischen den elektrischen Anschlüssen des Kontaktelements 3, 3b und der Masse 1 bzw. zwischen den elektrischen Anschlüssen des Kontaktelements 3 und des weiteren Kontaktelements 3b und optional darüber hinaus noch der Masse 1 geschlossen ist. Dieser definierten Position der Masse 1 entspricht ein vorgegebener Grad der Auslenkung des ersten Federelements 2, wo eine Berührung der Masse mit dem wenigstens einen Kontaktelement 3 vorgesehen ist. Weiterhin entspricht diesem vorgegebenen Grad der Auslenkung des ersten Federelements 2 eine definierte Kraftwirkung auf die Masse 1, welche beispielsweise durch eine definierte Beschleunigung des gesamten mikromechanischen Schalters derart hervorgerufen wird, dass die Masse 1 in Richtung des Kontaktelements 3 bis zum vorgegebenen Grad der Auslenkung des ersten Federelements 2 ausgelenkt ist. Bei einer größeren Auslenkung bzw. einer größeren Beschleunigung auf die Masse 1 bleiben die Kontaktelemente 3, 3b mit der Masse 1 verbunden. Das zweite Federelement 30 drückt dabei das Kontaktelement 3 auf die Masse 1. Hierdurch ist ein Prellen des Schalters wirksam unterbunden. Das zweite Federelement 30 des Kontaktelements 3 sollte die Bewegung der Masse 1 nur unwesentlich verlangsamen, d. h. der Schalter bzw. die Masse ist trotzdem Kontakt der Masse 1 mit dem Kontaktelement 3 weiter in Bewegung gegen die Rückstellkraft des ersten Federelements 2. Dies wird erfindungsgemäß insbesondere dadurch gewährleistet, dass die Federkonstante des zweiten Federelements 30 gegenüber der Federkonstante des ersten Federelements 2 deutlich kleiner vorgesehen ist. Der Kraftverlauf wird jedoch durch den Kontakt der Masse 1 mit den Kontaktelementen 2 nicht linear. Die Masse 1 bleibt solange in Bewegung wie eine ausreichende Beschleunigung an dem System des mikromechanischen Schalters anliegt oder die Masse 1 bei einer zu großen Beschleunigung gegen den Anschlag 7 anschlägt. Das zweite Federelement 30 des Kontaktelements 3 dient hierbei zum einen als Prellschutz und zum anderen dient es dazu, die Schaltzeit des Beschleunigungsschalters zu verlängern, da bei einer abfallenden äußeren Beschleunigung und einer umgekehrten Bewegung der Masse 1 hin zu geringeren Auslenkungen des ersten Federelements 2 der Kontakt solange noch geschlossen bleibt, bis das zweite Federelement 30 des Kontaktelements 3 vollständig entspannt ist. Hierdurch ergibt sich der Vorteil, dass insbesondere aufgrund der größeren Schaltzeit eine sicherer Detektion durch den Beschleunigungsschalter möglich ist. Dieses erfindungsgemäße Verhalten des mikromechanischen Schalters sowie die Bewegung der Masse trotz geschlossenem Stromkreis, d. h. die Bewegung der Masse 1 bei einer Auslenkung des ersten Federelements 2 oberhalb des vorgegebenen Grads der Auslenkung, kann als "bewegter Schalter" interpretiert werden.When acceleration occurs in the detection direction, the mass 1 is accelerated in the direction of the first spring element 2. The stabilizing spring 4 or third spring element 4 is in this case in FIG. 1 served example and should be chosen so that it obstructs the movement of the mass 1 only insignificantly. This is realized according to the invention in that the spring constant of the third spring element 4 is provided significantly smaller than the spring constant of the first spring element 2. From a defined position of the mass 1, the mass 1 impinges on the contact element 3 or the contact element 3b, so that the switch is closed, ie that a contact between the electrical terminals of the contact element 3, 3b and the mass 1 or between the electrical terminals of the contact element 3 and the further contact element 3b and optionally also the mass 1 is closed. This defined position of the mass 1 corresponds to a predetermined degree of deflection of the first spring element 2, where a contact of the mass with the at least one contact element 3 is provided. Furthermore, this predetermined degree of deflection of the first spring element 2 corresponds to a defined force effect on the mass 1, which is caused for example by a defined acceleration of the entire micromechanical switch such that the mass 1 in the direction of the contact element 3 to the predetermined degree of deflection of the first Spring element 2 is deflected. At a larger deflection or a greater acceleration to the mass 1, the contact elements 3, 3b remain connected to the mass 1. The second spring element 30 presses the contact element 3 on the mass 1. This bouncing of the switch is effectively prevented. The second spring element 30 of the contact element 3 should slow the movement of the mass 1 only insignificantly, ie the switch or the mass is still contact the mass 1 with the contact element 3 further in motion against the restoring force of the first spring element 2. This is inventively particular ensures that the spring constant of the second spring element 30 is provided with respect to the spring constant of the first spring element 2 significantly smaller. However, the force curve is not linear by the contact of the mass 1 with the contact elements 2. The mass 1 remains in motion as long as sufficient acceleration is applied to the system of the micromechanical switch or the mass 1 abuts against the stop 7 if the acceleration is too great. The second spring element 30 of the contact element 3 serves on the one hand as a bounce protection and on the other serves to extend the switching time of the acceleration switch, since with a falling outer acceleration and a reverse movement of the mass 1 towards lower deflections of the first spring element 2 of the contact as long as it remains closed until the second spring element 30 of the contact element 3 is completely relaxed. This results in the advantage that a reliable detection by the acceleration switch is possible, in particular due to the greater switching time. This inventive behavior of the micromechanical switch and the movement of the mass despite the closed circuit, ie the movement of the mass 1 at a deflection of the first spring element 2 above the predetermined degree of deflection, can be interpreted as a "moving switch".

In Figur 2 ist eine Schnittdarstellung des erfindungsgemäßen mikromechanischen Schalters gemäß der Schnittlinie AA aus der Figur 1 dargestellt. Die Darstellung in Figur 1 ist leicht vergrößert und etwas verzerrt gegenüber der Darstellung in Figur 1 dargestellt. In Figur 2 ist wie in Figur 1 die Masse 1 und das erste Federelement 2 dargestellt. Auf der der Masse 1 gegenüberliegenden Seite des ersten Federelements 2 ist in Figur 2 das dritte Federelement 4 dargestellt. Weiterhin ist in Figur 2 die Aufhängung 2a des ersten Federelements 2 dargestellt, welche elektrisch mittels der zweiten Leiterbahn 6a mit dem zweiten Bondpad 5a verbunden ist. Erkennbar in Figur 2 ist weiterhin der Rahmen 8 des mikromechanischen Schalters. Der gesamte mikromechanische Schalter ist erfindungsgemäß auf einem Substrat 10 vorgesehen und die beweglichen Teile des mikromechanischen Schalters, d. h. insbesondere die Masse 1 und die Federelemente 2, 30, 3, 4 sind mittels einer Abdeckung 9 abgedeckt. Die Abdeckung 9 ist in Figur 1 nicht dargestellt. Das Substrat 10 ist erfindungsgemäß insbesondere als Halbleitersubstrat, beispielsweise Siliziumsubstrat vorgesehen. Die beweglichen Elemente in der in Figur 2 mit dem Bezugszeichen 11 bezeichneten Funktionsschicht des mikromechanischen Schalters sind erfindungsgemäß ebenfalls insbesondere in Halbleitermaterial beispielsweise Silizium, vorgesehen.In FIG. 2 is a sectional view of the micromechanical switch according to the invention according to the section line AA of the FIG. 1 shown. The representation in FIG. 1 is slightly enlarged and slightly distorted compared to the representation in FIG. 1 shown. In FIG. 2 is like in FIG. 1 the mass 1 and the first spring element 2 shown. On the opposite side of the mass 1 of the first spring element 2 is in FIG. 2 the third spring element 4 is shown. Furthermore, in FIG. 2 the suspension 2a of the first spring element 2 is shown, which is electrically connected to the second bonding pad 5a by means of the second conductor track 6a. Recognizable in FIG. 2 is still the frame 8 of the micromechanical switch. The entire micromechanical switch is inventively provided on a substrate 10 and the moving parts of the micromechanical switch, ie in particular the mass 1 and the spring elements 2, 30, 3, 4 are covered by a cover 9. The cover 9 is in FIG. 1 not shown. According to the invention, the substrate 10 is provided in particular as a semiconductor substrate, for example a silicon substrate. The moving elements in the in FIG. 2 The functional layer of the micromechanical switch designated by the reference numeral 11 is likewise provided according to the invention, in particular in semiconductor material, for example silicon.

Zur achten ist selbstverständlich erfindungsgemäß auf eine gute Leitfähigkeit des Materials der Masse 1 und des ersten Federelements 2 bzw. des zweiten Federelements 30 bzw. generell alle Elemente, welche der Stromleitung bei einer Kontaktgabe des Schalters dienen.The eighth is of course according to the invention to a good conductivity of the material of the mass 1 and the first spring element 2 and the second spring element 30 or generally all elements which serve the power line at a contact of the switch.

Claims (7)

  1. Micromechanical switch with a mass (1) and with a first spring element (2), the mass (1) being provided such that it is movable and connected to the first spring element (2), at least one contact element (3) being provided, a deflection of the first spring element (2) when there is a predetermined movement of the mass (1) being provided, the mass (1) and the at least one contact element (3) being provided separately from each other up to a predetermined degree of deflection of the first spring element (2), and contact of the mass (1) with the at least one contact element (3) being provided as from the predetermined degree of deflection of the first spring element (2), characterized in that, when there is a greater deflection of the first spring element (2) than the predetermined degree of deflection, a common movement of the mass (1) and the at least one contact element (3) is provided.
  2. Micromechanical switch according to Claim 1, characterized in that the at least one contact element (3) is provided such that it is movable and connected to a second spring element (30).
  3. Micromechanical switch according to Claim 1 or 2, characterized in that the first spring element (2) and/or the second spring element (30) comprises U spring elements.
  4. Micromechanical switch according to Claim 2 or 3, characterized in that the spring constant of the second spring element (30) is provided such that it is much smaller than the spring constant of the first spring element (2).
  5. Micromechanical switch according to one of the preceding claims, characterized in that a third spring element (4), which has a stabilizing effect on the movement of the mass (1), is provided.
  6. Micromechanical switch according to Claim 5, characterized in that the spring constant of the third spring element (4) is provided such that it is much smaller than the spring constant of the first spring element (2).
  7. Micromechanical switch according to one of the preceding claims, characterized in that a stop (7) is provided, whereby the prevention of a deflection of the first spring element (2) beyond a predetermined maximum degree of deflection of the first spring element (2) is provided.
EP03709654A 2002-08-02 2003-02-25 Micromechanical switch Expired - Lifetime EP1529297B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10235369A DE10235369A1 (en) 2002-08-02 2002-08-02 Micromechanical switch for acceleration sensor system, has spring element for inertia mass deflected by acceleration force to allow inertia mass to contact contact element
DE10235369 2002-08-02
PCT/DE2003/000592 WO2004019357A1 (en) 2002-08-02 2003-02-25 Micromechanical switch

Publications (2)

Publication Number Publication Date
EP1529297A1 EP1529297A1 (en) 2005-05-11
EP1529297B1 true EP1529297B1 (en) 2011-05-18

Family

ID=30469359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03709654A Expired - Lifetime EP1529297B1 (en) 2002-08-02 2003-02-25 Micromechanical switch

Country Status (5)

Country Link
US (1) US7081592B2 (en)
EP (1) EP1529297B1 (en)
JP (1) JP4327722B2 (en)
DE (1) DE10235369A1 (en)
WO (1) WO2004019357A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8775997B2 (en) 2003-09-15 2014-07-08 Nvidia Corporation System and method for testing and configuring semiconductor functional circuits
US8788996B2 (en) 2003-09-15 2014-07-22 Nvidia Corporation System and method for configuring semiconductor functional circuits
US8732644B1 (en) 2003-09-15 2014-05-20 Nvidia Corporation Micro electro mechanical switch system and method for testing and configuring semiconductor functional circuits
US6880940B1 (en) * 2003-11-10 2005-04-19 Honda Motor Co., Ltd. Magnesium mirror base with countermeasures for galvanic corrosion
US8711161B1 (en) 2003-12-18 2014-04-29 Nvidia Corporation Functional component compensation reconfiguration system and method
DE102004040886A1 (en) * 2004-08-24 2006-03-02 Volkswagen Ag Operating device for a motor vehicle
US8723231B1 (en) * 2004-09-15 2014-05-13 Nvidia Corporation Semiconductor die micro electro-mechanical switch management system and method
US8711156B1 (en) 2004-09-30 2014-04-29 Nvidia Corporation Method and system for remapping processing elements in a pipeline of a graphics processing unit
US8021193B1 (en) 2005-04-25 2011-09-20 Nvidia Corporation Controlled impedance display adapter
US7793029B1 (en) 2005-05-17 2010-09-07 Nvidia Corporation Translation device apparatus for configuring printed circuit board connectors
US8417838B2 (en) 2005-12-12 2013-04-09 Nvidia Corporation System and method for configurable digital communication
US8412872B1 (en) 2005-12-12 2013-04-02 Nvidia Corporation Configurable GPU and method for graphics processing using a configurable GPU
US7716816B2 (en) * 2006-09-22 2010-05-18 Rockwell Automation Technologies, Inc. Method of manufacturing a switch assembly
US8724483B2 (en) 2007-10-22 2014-05-13 Nvidia Corporation Loopback configuration for bi-directional interfaces
FR2950194B1 (en) * 2009-09-11 2011-09-02 Commissariat Energie Atomique ELECTROMECHANICAL ACTUATOR WITH INTERDIGITED ELECTRODES
US9331869B2 (en) 2010-03-04 2016-05-03 Nvidia Corporation Input/output request packet handling techniques by a device specific kernel mode driver
GB2521990A (en) * 2013-03-22 2015-07-15 Schrader Electronics Ltd A microelectromechanical switch and related fabrication method
DE102022200336A1 (en) * 2022-01-13 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Contact element of a MEMS relay

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295870B1 (en) * 1991-02-08 2001-10-02 Alliedsignal Inc. Triaxial angular rate and acceleration sensor
US5712609A (en) 1994-06-10 1998-01-27 Case Western Reserve University Micromechanical memory sensor
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
US5828138A (en) * 1996-12-02 1998-10-27 Trw Inc. Acceleration switch
JP2000065855A (en) * 1998-08-17 2000-03-03 Mitsubishi Electric Corp Semiconductor acceleration switch and manufacture thereof
WO2001071364A1 (en) * 2000-03-17 2001-09-27 Microsensors, Inc. Method of canceling quadrature error in an angular rate sensor
KR100331453B1 (en) * 2000-07-18 2002-04-09 윤종용 Position sensing apparatus for an electrostatic XY-stage using time-division multiplexing
WO2002088631A2 (en) * 2001-05-02 2002-11-07 The Regents Of The University Of California Non-resonant four degrees-of-freedom micromachined gyroscope
US6765160B1 (en) * 2002-08-21 2004-07-20 The United States Of America As Represented By The Secetary Of The Army Omnidirectional microscale impact switch
US6928874B2 (en) * 2002-11-15 2005-08-16 The Regents Of The University Of California Dynamically amplified micromachined vibratory angle measuring gyroscopes, micromachined inertial sensors and method of operation for the same
US6845670B1 (en) * 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
US6843127B1 (en) * 2003-07-30 2005-01-18 Motorola, Inc. Flexible vibratory micro-electromechanical device

Also Published As

Publication number Publication date
EP1529297A1 (en) 2005-05-11
JP2005535100A (en) 2005-11-17
WO2004019357A1 (en) 2004-03-04
US20050173233A1 (en) 2005-08-11
US7081592B2 (en) 2006-07-25
DE10235369A1 (en) 2004-02-19
JP4327722B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
EP1529297B1 (en) Micromechanical switch
EP0740844B1 (en) Multi-stage switch
WO2005001864A1 (en) Pressure sensor in the form of a film
DE2347722B2 (en) PUSH BUTTON SWITCH
DE10023199B4 (en) Safety switching device for electrical machines or robots and manual control device and method for determining the switching states of such a safety switching device
EP2795799A1 (en) Operating device
DE2346392A1 (en) KEYBOARD, IN PARTICULAR FOR ELECTRONIC COMPUTERS
DE2451546A1 (en) KEYPAD
EP2984668A1 (en) Device for operating multiple functions in a motor vehicle
DE202020105904U1 (en) Device for detecting a key press of a key module and keyboard
DE1765920A1 (en) Contact arrangement for electrical switchgear
EP0466021A2 (en) Acceleration switch with snap-action spring
DE2058743A1 (en) Electric switch
DE2101197A1 (en) Electrical snap switch
WO2001065580A1 (en) Auxiliary module for an electromechanical switchgear and corresponding electromechanical switchgear
DE2639538C2 (en) Device for transmitting a switching movement
EP0809266A2 (en) Low tension switch device
DE2246714A1 (en) SWITCH BUTTON WITH A SNAP MECHANIC
DE102004029172B3 (en) Electric control panel
EP1137029B1 (en) Apparatus for proximity switching of an electrical contact and pressure measuring apparatus
DE3308989A1 (en) Push-button switch
DE4241481A1 (en) Switches, especially steering column switches
EP0831509A2 (en) Driving system for switches, particularly for relays
DE3110699A1 (en) Membrane switch operated by a pressure medium
DE10340329B4 (en) Control switch arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313701

Country of ref document: DE

Effective date: 20110630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120228

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313701

Country of ref document: DE

Effective date: 20120221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120222

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130225

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130225

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313701

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901